JP4420344B2 - Optical fiber preform manufacturing equipment - Google Patents

Optical fiber preform manufacturing equipment Download PDF

Info

Publication number
JP4420344B2
JP4420344B2 JP2004360027A JP2004360027A JP4420344B2 JP 4420344 B2 JP4420344 B2 JP 4420344B2 JP 2004360027 A JP2004360027 A JP 2004360027A JP 2004360027 A JP2004360027 A JP 2004360027A JP 4420344 B2 JP4420344 B2 JP 4420344B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber preform
burner
screw shaft
central member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004360027A
Other languages
Japanese (ja)
Other versions
JP2006169007A (en
Inventor
直人 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004360027A priority Critical patent/JP4420344B2/en
Publication of JP2006169007A publication Critical patent/JP2006169007A/en
Application granted granted Critical
Publication of JP4420344B2 publication Critical patent/JP4420344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing an optical fiber preform in which one can accurately know the weight, the volume and the density of deposited soot at any time in the production process, and can take measures against the inferior deposition state or the like by knowing the state or the like at early time of the process progress. <P>SOLUTION: The method and the apparatus for producing an optical fiber preform, which is an outside vapor phase deposition method and which is characterized in that one can know the weight of the deposited soot for optional number of layers of soot deposited on the optical fiber preform 1 during the optional number of one-way strokes of the traverse of the burner 5, by the change amount of measured value of the weight detector 6 at starting point and ending point of elapsed time during the optional number of one-way strokes, in that one can calculate the volume of the deposited soot using the moved distance of the optical fiber preform 1 in the direction to get apart from the burner 5 during the elapsed time, and in that one can calculate the density of the deposited soot for the optional number of layers from the weight value and the volume value of the deposited soot. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

この発明は光ファイバ母材製造装置、さらに詳しく言えば、バーナと光ファイバ母材表面間の距離を一定に保つ制御条件の下での中心部材のこの軸線に直交する方向の移動に注目し、スートの堆積成長につれての上記中心部材の移動量の低周波カウンタを応用しての精密測定、およびこれを利用して堆積スート総重量の精密測定を取り扱う光ファイバ母材の製造装置に関するものである。 The present invention an optical fiber preform manufactured by ZoSo location, and more particularly, attention to the movement of direction perpendicular to the axis of the central member under control conditions to keep the distance between the burner and the preform surface constant and, manufactured ZoSo location of the center precise measurement of the movement amount of the application of low frequency counter member, and the optical fiber preform handling precise measurement of deposition soot total weight by using this for as soot deposition growth It is about.

図1は光ファイバ母材の外付け製造方法を説明するための簡略な平面図であるが、この製造方法を一言で言えば、比較的屈折率の高い軸状の中心部材(その両端は1A、1B)を水平に保持して回転させながら、その周囲にこれより所望の程度屈折率の低い配合の原料ガスの燃焼炎をバーナによって吹き付けながらそのバーナを中心部材の長手方向にトラバースさせてスートを付着させるものである。   FIG. 1 is a simplified plan view for explaining an external manufacturing method of an optical fiber preform. In short, this manufacturing method is a shaft-shaped central member having relatively high refractive index (both ends thereof). 1A, 1B) is held horizontally and rotated, while a burner of a raw material gas having a lower refractive index is blown around it by the burner while traversing the burner in the longitudinal direction of the central member. Soot is attached.

このような光ファイバ母材の製造方法においては、使用する原料ガスを吹き付けるバーナ炎の温度や流量などに関する諸条件を基本的に一定にした状態においては、中心部材の両端1A、1Bを光ファイバ母材の表面温度で定まる所定の回数数をもって同期回転させる工程、バーナと光ファイバ母材表面との距離を一定に保持するよう制御する結果、スートの堆積層が厚くなるにつれて製造中の母材をバーナから遠ざけるようにその軸線に直交する方向に移動調節する工程、またさらに製造工程終了後のスート堆積量の重量を計測する工程などが重要となる。   In such a method of manufacturing an optical fiber preform, in a state where various conditions relating to the temperature and flow rate of the burner flame for blowing the raw material gas used are basically constant, both ends 1A and 1B of the central member are connected to the optical fiber. The process of synchronous rotation with a predetermined number of times determined by the surface temperature of the base material, and the control of the distance between the burner and the surface of the optical fiber base material to maintain a constant result. The step of moving and adjusting in a direction perpendicular to the axis so as to move away from the burner, and the step of measuring the weight of the soot deposition amount after the completion of the manufacturing process are important.

前者の、中心部材の両端1A、1Bを光ファイバ母材の表面温度で定まる所定の回数数をもって同期回転させる工程技術に関しては、本件の発明者が既に特開2004−155634号公報によってその研究の一端を開示しており、今回の発明においては後者の工程に関する技術を主として説明する。   Regarding the former, the process technology for synchronously rotating the both ends 1A, 1B of the central member at a predetermined number of times determined by the surface temperature of the optical fiber preform, the inventor of the present invention has already been researched by Japanese Patent Application Laid-Open No. 2004-155634. One end is disclosed, and in the present invention, a technique relating to the latter process is mainly described.

外付け方法によって付着堆積させたスート重量は、従来は中心部材の両端部1A、1Bをそれぞれ支持する軸受2A、2Bの下方に設置され図1では破線で示されているたとえばロードセルのような重量検知器6の、製造が始まる前の指示重量と完了後のそれとの差によって計測することが普通であった。
特開2003−020245号公報
The soot weight deposited and deposited by the external method is conventionally set under the bearings 2A and 2B for supporting the both end portions 1A and 1B of the center member, respectively, and is a weight such as a load cell shown by a broken line in FIG. It was common to measure by the difference between the indicated weight of the detector 6 before the start of manufacture and that after completion.
JP 2003-020245 A

堆積スートの重量をはかる従来の方法によるときは、付着堆積したスートの全重量を製造工程の終了後に知ることはできても、そのスート堆積層部分の体積の大きさを知ることができず、したがってスートの密度を知ることができなかった欠点があった。このため堆積層部分のスートの密度分布としては、次の焼結工程のために本来は中心に向かって比較的高くなるようにするのがもっとも好適なのであるが、工程途中で密度値を知ることができないために、製造工程を上述のように理想的に管理することが不可能な欠点があった。   When the conventional method for measuring the weight of the deposited soot is used, the total weight of the deposited soot can be known after completion of the manufacturing process, but the volume of the soot deposited layer portion cannot be known. Therefore, there was a drawback that the density of soot could not be known. For this reason, the soot density distribution in the deposited layer is most preferably relatively high toward the center for the next sintering process, but knowing the density value during the process. In other words, the manufacturing process cannot be ideally managed as described above.

この発明は上述の課題を解決するためになされたものであって、光ファイバ母材の中心部材の両端部をそれぞれ軸受によって回転可能に支持して回転させながら、近傍をトラバースするバーナから所要の原料ガスの燃焼炎を吹き付け、前記中心部材の外周部に前記原料ガスのスートを堆積させて光ファイバ母材を製造する光ファイバ母材の外付け製造装置において、前記両端部をそれぞれ回転駆動する第1モータおよび第2モータを所定の回転数をもって同期回転させるとともに、前記両端部を一体的に、前記光ファイバ母材の外周部表面と前記バーナとの距離が一定に保持されるように前記中心部材の軸線に直交し前記バーナから遠ざかりまたこれに近づく方向に移動調節させ、前記中心部材の両端部を支持する軸受が一つのフレーム上に担持固定され、このフレームに1回転の進み量既知の送りねじ軸が係合し、この送りねじ軸を回転駆動することによって前記フレームを前記中心部材の軸線に直交し前記バーナから遠ざかり、またこれに近づく方向に調節移動するように構成され、前記送りねじ軸の回転量をそれに設けたパルス発信器から出力されるパルス数を低周波カウンタによって計数することによって計測するようにしたものである。 The present invention has been made to solve the above-mentioned problems, and it is necessary to use a burner that traverses the vicinity while rotating both ends of the center member of the optical fiber preform rotatably supported by bearings. In an external manufacturing apparatus for an optical fiber preform, in which an optical fiber preform is manufactured by spraying a combustion flame of a source gas and depositing the soot of the source gas on the outer peripheral portion of the central member, the both ends are driven to rotate. The first motor and the second motor are synchronously rotated at a predetermined number of revolutions, and the both end portions are integrated so that the distance between the outer peripheral surface of the optical fiber preform and the burner is kept constant. perpendicular to the axis of the central member away from the burner also moved adjusted in a direction approaching to this, on the frame at both ends bearings supporting the one of the central member The feed screw shaft, which is held and fixed, engages with this frame and has a known advance amount of one rotation, and rotates the feed screw shaft to move the frame away from the burner perpendicular to the axis of the central member. The amount of rotation of the feed screw shaft is measured by counting the number of pulses output from a pulse transmitter provided thereon with a low-frequency counter .

また、前記低周波カウンタには互いに90度位相をずらしたA、B二相式のものを使用し、その一方の相を光ファイバ母材がバーナから遠ざかる際の送りねじ軸の回転に伴って発せられるパルスの計数に、また他方の相を同送りねじ軸の同じく近づく際の回転に伴って発せられるパルスの計数に割り当てるようにし、A、B相のパルスの代数和加算は、いずれも反対相のパルス立下り点において実行することによってパルス数計数の誤差を避けるようにしたものである。 The low-frequency counter is a two-phase A and B type whose phases are shifted by 90 degrees from each other, and one of the phases is accompanied by the rotation of the feed screw shaft when the optical fiber preform moves away from the burner. Assign the other phase to the counting of pulses emitted and the other phase to the counting of pulses emitted with the same rotation of the feed screw shaft, and the algebraic sum addition of the A and B phase pulses is opposite By executing at the pulse falling point of the phase, an error in counting the number of pulses is avoided .

発明によれば、光ファイバ母材の中心部材の両端部をそれぞれ軸受によって回転可能に支持して回転させながら、近傍をトラバースするバーナから所要の原料ガスの燃焼炎を吹き付け、前記中心部材の外周部に前記原料ガスのスートを堆積させて光ファイバ母材を製造する光ファイバ母材の外付け製造装置において、前記両端部をそれぞれ回転駆動する第1モータおよび第2モータを所定の回転数をもって同期回転させるとともに、前記両端部を一体的に、前記光ファイバ母材の外周部表面と前記バーナとの距離が一定に保持されるように前記中心部材の軸線に直交し前記バーナから遠ざかりまたこれに近づく方向に移動調節させ、前記中心部材の両端部を支持する軸受が一つのフレーム上に担持固定され、このフレームに1回転の進み量既知の送りねじ軸が係合し、この送りねじ軸を回転駆動することによって前記フレームを前記中心部材の軸線に直交し前記バーナから遠ざかり、またこれに近づく方向に調節移動するように構成され、前記送りねじ軸の回転量をそれに設けたパルス発信器から出力されるパルス数を低周波カウンタによって計数することによって計測するようにしたので、スートの付着堆積量を製造工程の間の任意の時点において、バーナのトラバース移動の任意数行程分に対応する任意数層分のスート量を計量でき、同時のその時点でのスート密度をも算出できるから、スートの堆積状態不良などの事態を製造工程中いつでも検知回避でき、これによって良質の光ファイバ母材を効率的に生産できる効果がある。 According to the present invention, while the both ends of the central member of the optical fiber preform are rotatably supported by the bearings, the required source gas combustion flame is blown from the burner traversing the vicinity, In an optical fiber preform external manufacturing apparatus for producing an optical fiber preform by depositing the soot of the raw material gas on the outer periphery, the first motor and the second motor that respectively rotate and drive the both ends are set to a predetermined number of rotations. And the both ends are integrally moved away from the burner perpendicular to the axis of the central member so that the distance between the outer peripheral surface of the optical fiber preform and the burner is kept constant. The bearing that supports both ends of the central member is supported and fixed on one frame, and the amount of advancement of one rotation is already fixed to this frame. The feed screw shaft is engaged, and by rotating the feed screw shaft, the frame is moved perpendicularly to the axis of the central member, away from the burner, and adjusted and moved in a direction approaching the burner. Since the amount of rotation of the lead screw shaft is measured by counting the number of pulses output from a pulse transmitter provided on the lead screw shaft with a low frequency counter, the amount of deposited soot deposition can be measured at any time during the manufacturing process. In addition, it is possible to measure the amount of soot for any number of layers corresponding to any number of steps of traversing the burner, and to calculate the soot density at that time at the same time. Detection can be avoided at any time, and this has the effect of efficiently producing a high-quality optical fiber preform.

また、前記低周波カウンタには互いに90度位相をずらしたA、B二相式のものを使用し、その一方の相を光ファイバ母材がバーナから遠ざかる際の送りねじ軸の回転に伴って発せられるパルスの計数に、また他方の相を同送りねじ軸の同じく近づく際の回転に伴って発せられるパルスの計数に割り当てるようにし、A、B相のパルスの代数和加算は、いずれも反対相のパルス立下り点において実行することによってパルス数計数の誤差を避けるようにしたものでは、スートの堆積量の体積を正確に測定できるから、スート重量および密度を製造工程中のいずれの時点でも正確に算出できる効果があり、これを制御装置にフィードバックして良質の光ファイバ母材の製造を可能にする効果がある。 The low-frequency counter is a two-phase A and B type whose phases are shifted by 90 degrees from each other, and one of the phases is accompanied by the rotation of the feed screw shaft when the optical fiber preform moves away from the burner. Assign the other phase to the counting of pulses emitted and the other phase to the counting of pulses emitted with the same rotation of the feed screw shaft, and the algebraic sum addition of the A and B phase pulses is opposite By avoiding pulse number counting errors by running at the phase pulse falling point, the volume of soot deposition can be accurately measured, so the soot weight and density can be determined at any point during the manufacturing process. There is an effect that it can be calculated accurately, and this is fed back to the control device, so that it is possible to produce a high-quality optical fiber preform.

図1についてこの発明装置の一例を説明する。製造すべき光ファイバ母材1は両端が1A、1Bである中心部材の外周部に付着堆積するスートによって順次その直径を大きく成長させる。スートは中心部材の一端1Aから他端1Bまで往復トラバースするバーナ5によって所定の配合の原料ガスの燃焼炎を吹き付けることによって付着堆積する。   An example of the inventive device will be described with reference to FIG. The diameter of the optical fiber preform 1 to be manufactured is successively increased by a soot that adheres and accumulates on the outer periphery of the central member having both ends 1A and 1B. The soot is deposited and deposited by spraying a combustion flame of a raw material gas of a predetermined composition by a burner 5 that reciprocates and traverses from one end 1A to the other end 1B of the central member.

製造中の光ファイバ母材1の表面温度は表面温度計4によって計測され、この温度に従ってバーナ5の最適なトラバース速度が決められる。また光ファイバ母材1の表面とバーナ5との距離Bはレーザー変位計3によって計測制御され、常に好適な数値に保持されることが重要である。したがって光ファイバ母材1は製造工程中、バーナ5が一端1Aから他端1Bまでの片道行程、つまり1ストローク移動する時間経過時に、それまでに堆積するスート1層分の厚さだけ常に光ファイバ母材1の軸線に直交する方向においてバーナ5から遠ざかるように移動させることが必要となる。   The surface temperature of the optical fiber preform 1 during manufacture is measured by the surface thermometer 4, and the optimum traverse speed of the burner 5 is determined according to this temperature. In addition, it is important that the distance B between the surface of the optical fiber preform 1 and the burner 5 is measured and controlled by the laser displacement meter 3 and is always kept at a suitable value. Therefore, during the manufacturing process, the optical fiber preform 1 always has an optical fiber of the thickness of one soot layer deposited so far when the burner 5 travels one way from one end 1A to the other end 1B, that is, when one stroke moves. It is necessary to move away from the burner 5 in a direction perpendicular to the axis of the base material 1.

実際は光ファイバ母材1には、バーナ5のトラバースの各片道行程において全長にわたって等しい厚さのスートの付着が行われるとは限らないから、工程が進むうちに表面に凹凸部分が発生し、この凹所をレーザー変位計3が捉えるときには、光ファイバ母材1は上記の制御条件に従って逆にバーナ5に近づく方向に移動させられることも生じる。   Actually, the optical fiber preform 1 is not always attached with soot having the same thickness over the entire length in each one-way stroke of the traverse of the burner 5, so that an uneven portion is generated on the surface as the process proceeds. When the laser displacement meter 3 captures the recess, the optical fiber preform 1 may be moved in the direction approaching the burner 5 according to the above control conditions.

光ファイバ母材1全体の、その軸線に直交しかつバーナ5による燃焼ガスの噴射方向に一致する方向の移動調節は、機械的には中心部材の両端部1A、1Bを担持固定するフレーム10に、1回転の進み量(たとえば2重ねじであればこれはピッチの2倍となる)既知の送りねじ軸7を係合させ、この送りねじ軸7をサーボモータ、ステッピングモータなどのドライバ付きの適宜の駆動モータ9によって正逆回転駆動することによって行われる。普通は駆動モータ9の正転のとき光ファイバ母材1をバーナ5から遠ざける方向の移動をさせるように構成される。   The movement adjustment of the entire optical fiber preform 1 in the direction perpendicular to the axis of the optical fiber preform 1 and coincident with the combustion gas injection direction by the burner 5 is mechanically performed on the frame 10 that supports and fixes both end portions 1A and 1B of the central member. Advancing amount of one rotation (for example, if it is a double screw, this is twice the pitch) A known feed screw shaft 7 is engaged, and this feed screw shaft 7 is attached with a driver such as a servo motor or a stepping motor. This is performed by forward / reverse rotation driving by an appropriate drive motor 9. Normally, the optical fiber preform 1 is configured to move in a direction away from the burner 5 when the drive motor 9 rotates forward.

送りねじ軸7の回転数は、それに取り付けたたとえばエンコーダのようなパルス発信器8によって出力されるパルス数を低周波カウンタ11によって計数することにすれば正確な計数が可能となる。使用したパルス発信器8が送りねじ軸7の1回転につきn個のパルスを発信し、またその送りねじ軸の1回転進み量をaとすれば、たとえば仮に、製造工程のある途中の時点までの正転パルスのカウント数がN1、逆転パルスのカウント数がN2であるとすれば、光ファイバ母材1へのその時点までの付着スート層の厚さ(=光ファイバ母材の半径増大量)は式a{N1+(−N2)}/nによって算出されるわけである。   The number of rotations of the feed screw shaft 7 can be accurately counted by counting the number of pulses output from a pulse transmitter 8 such as an encoder attached thereto with a low frequency counter 11. If the used pulse transmitter 8 transmits n pulses per revolution of the feed screw shaft 7 and the advance amount of one revolution of the feed screw shaft is a, for example, until a certain point in the manufacturing process. If the forward rotation pulse count number is N1 and the reverse pulse count number is N2, the thickness of the soot layer deposited on the optical fiber preform 1 up to that point (= the radius increase amount of the optical fiber preform) ) Is calculated by the equation a {N1 + (− N2)} / n.

図2に示したものはこの発明のひとつの実施例であって、この実施例としては低周波カウンタ11による計数の実際的な一つの工夫を取り上げる。この低周波カウンタ11として互いに90度の位相差を持つA、B2相式のものを用い、A相は光ファイバ母材1をバーナ5から遠ざけるような駆動モータ9の正転パルスの計数に当てられ、B相は同じく逆転に当てられる。   FIG. 2 shows one embodiment of the present invention. As this embodiment, one practical device for counting by the low-frequency counter 11 is taken up. As this low frequency counter 11, an A and B two-phase type having a phase difference of 90 degrees is used. The A phase is used for counting forward rotation pulses of the drive motor 9 so as to keep the optical fiber preform 1 away from the burner 5. Phase B is also subject to reversal.

この種のカウンタの取り扱いでもっとも注意すべくかつ重要なことはパルス数の正確な計数、特に本件の場合のように正、負の符号が変わるパルスが一つの工程進行中に混じる場合である。   The most important and important thing in handling this type of counter is the exact counting of the number of pulses, especially when the pulses with positive and negative signs are mixed in one process as in the present case.

通常カウンタのパルス計数は、A相パルス波の1周期を図示のように90度位相ごとに4つのステージに分けて考えたときには、正転方向の場合、A相ON中でのB相立ち上がり、つまり第2ステージの始点で計測し、ここで1パルスの算入が実行されるものであるが、本発明においてはさらに正確を期すために、第4ステージの始点、つまり第4ステージの終点まで時間Δtの余裕を残したB相立下りにおいてそれまで計数していたA相パルス列の進行を停止させるインターロックをかけるとともにこの点で算入確定するように構成されている。負の逆転パルス計数から正のパルス計数に移り変わる場合も同様である。   The pulse count of the normal counter is as follows. When one cycle of the A-phase pulse wave is divided into four stages every 90 degrees as shown in the figure, in the forward rotation direction, the B-phase rise while the A-phase is ON, In other words, the measurement is performed at the start point of the second stage, and one pulse is counted here. However, in the present invention, the time until the start point of the fourth stage, that is, the end point of the fourth stage is taken for further accuracy. An interlock is applied to stop the progression of the A-phase pulse train that has been counted up to the B-phase falling while leaving a margin of Δt, and the calculation is confirmed at this point. The same applies to the case where the negative reverse pulse count is changed to the positive pulse count.

実施例で説明したカウンタのパルス計数手段は、正負の符号の混じるパルス数の代数和を求める一般の計数にそのまま広く応用できる。 The pulse counting means of the counter described in the embodiment can be widely applied to general counting for obtaining the algebraic sum of the number of pulses mixed with positive and negative signs.

光ファイバ母材の製造装置の簡略平面図である。It is a simplified top view of the manufacturing apparatus of an optical fiber preform. 実施例のパルス計数の説明図である。It is explanatory drawing of the pulse count of an Example.

1 光ファイバ母材
1A、1B 中心部材の両端
2A、2B 軸受
3 レーザー変位計
4 表面温度計
5 バーナ
6 重量検知計
7 送りねじ軸
8 パルス発信器
9 駆動モータ
10 フレーム
11 低周波カウンタ
DESCRIPTION OF SYMBOLS 1 Optical fiber preform 1A, 1B Both ends of central member 2A, 2B Bearing 3 Laser displacement meter 4 Surface thermometer 5 Burner 6 Weight detector 7 Feed screw shaft 8 Pulse transmitter 9 Drive motor 10 Frame 11 Low frequency counter

Claims (2)

光ファイバ母材(1)の中心部材の両端部(1A、1B)をそれぞれ軸受(2A、2B)によって回転可能に支持して回転させながら、近傍をトラバースするバーナ(5)から所要の原料ガスの燃焼炎を吹き付け、前記中心部材の外周部に前記原料ガスのスートを堆積させて光ファイバ母材(1)を製造する光ファイバ母材の外付け製造装置において、
前記両端部(1A、1B)をそれぞれ回転駆動する第1モータ(M1)および第2モータ(M2)を所定の回転数をもって同期回転させるとともに、前記両端部(1A、1B)を一体的に、前記光ファイバ母材の外周部表面と前記バーナ(5)との距離が一定に保持されるように前記中心部材の軸線に直交し前記バーナ(5)から遠ざかりまたこれに近づく方向に移動調節させ
前記中心部材の両端部(1A、1B)を支持する軸受(2A、2B)が一つのフレーム(10)上に担持固定され、このフレーム(10)に1回転の進み量既知の送りねじ軸(7)が係合し、
この送りねじ軸(7)を回転駆動することによって前記フレーム(10)を前記中心部材の軸線に直交し前記バーナ(5)から遠ざかり、またこれに近づく方向に調節移動するように構成され、
前記送りねじ軸(7)の回転量をそれに設けたパルス発信器(8)から出力されるパルス数を低周波カウンタ(11)によって計数することによって計測することを特徴とする光ファイバ母材の外付け製造装置
The required source gas from the burner (5) traversing the vicinity while rotating both ends (1A, 1B) of the central member of the optical fiber preform (1) rotatably supported by bearings (2A, 2B), respectively. In an external manufacturing apparatus for an optical fiber preform that produces an optical fiber preform (1) by depositing soot of the source gas on the outer peripheral portion of the central member,
The first motor (M1) and the second motor (M2) that respectively rotate and drive the both end portions (1A, 1B) are synchronously rotated at a predetermined rotation number, and the both end portions (1A, 1B) are integrally formed. In order to keep the distance between the outer peripheral surface of the optical fiber preform and the burner (5) constant, the distance is perpendicular to the axis of the central member and is moved away from the burner (5) and adjusted so as to approach it. ,
Bearings (2A, 2B) that support both ends (1A, 1B) of the central member are supported and fixed on one frame (10), and a feed screw shaft (known in advance amount of one rotation) is attached to the frame (10). 7) engaged,
By rotating the feed screw shaft (7), the frame (10) is configured to move perpendicularly to the axis of the central member, away from the burner (5), and adjust and move in a direction approaching the burner (5),
It said feed screw shaft (7) an optical fiber preform, characterized that you measured by counting the rotation amount of the pulse generator which is provided to it the number of pulses output from (8) by a low-frequency counter (11) of External manufacturing equipment .
前記低周波カウンタ(11)には互いに90度位相をずらしたA、B二相式のものを使用し、その一方の相を光ファイバ母材(1)がバーナ(5)から遠ざかる際の送りねじ軸(7)の回転に伴って発せられるパルスの計数に、また他方の相を同送りねじ軸の同じく近づく際の回転に伴って発せられるパルスの計数に割り当てるようにし、A、B相のパルスの代数和加算は、いずれも反対相のパルス立下り点において実行することによってパルス数計数の誤差を避けるようにしたことを特徴とする請求項記載の光ファイバ母材の外付け製造装置。 The low-frequency counter (11) is an A / B two-phase type whose phase is shifted by 90 degrees from each other, and one phase is sent when the optical fiber preform (1) moves away from the burner (5). The number of pulses emitted as the screw shaft (7) is rotated and the other phase is assigned to the number of pulses generated as the feed screw shaft approaches the same rotation. algebraic sum of the pulse addition are all external apparatus for manufacturing an optical fiber preform according to claim 1, characterized in that to avoid the errors of the number of pulses counted by performing the pulse falling down point opposite phase .
JP2004360027A 2004-12-13 2004-12-13 Optical fiber preform manufacturing equipment Active JP4420344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360027A JP4420344B2 (en) 2004-12-13 2004-12-13 Optical fiber preform manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360027A JP4420344B2 (en) 2004-12-13 2004-12-13 Optical fiber preform manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2006169007A JP2006169007A (en) 2006-06-29
JP4420344B2 true JP4420344B2 (en) 2010-02-24

Family

ID=36670154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360027A Active JP4420344B2 (en) 2004-12-13 2004-12-13 Optical fiber preform manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4420344B2 (en)

Also Published As

Publication number Publication date
JP2006169007A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
TWI383942B (en) Winding device, tension device and winding method
JP6777828B2 (en) Devices and methods for winding coils
JP2648409B2 (en) Method and apparatus for modifying the cross section of an optical fiber preform
JP4813018B2 (en) Substrate processing apparatus and method, and encoder scale machined by this method
JPWO2010122680A1 (en) Tooth profile measurement method for involute gears
CN103712795B (en) A kind of Efficient measurement of gear global error, apparatus and method
CN107167083A (en) The error compensation system and method for a kind of grating scale
JP4420344B2 (en) Optical fiber preform manufacturing equipment
CN110514119A (en) A kind of gear global error measuring apparatus and method based on double Circular gratings
JP2011069680A (en) Surface roughness measuring device and surface roughness measuring method
CN113328662A (en) Method for reproducing multiple dynamic speed values by one metering standard device
JP2014237548A (en) Method for adjusting turn angle position of package frame which rotatably holds package wound pipe, and textile machine for manufacturing package equipped with plural take-up parts
RU185038U1 (en) Pendulum dividing machine for forming dashed structures on non-planar working surfaces
CN208125105U (en) A kind of cross-section thin-wall bearing measuring device
CN207036053U (en) A kind of error compensation system of grating scale
CN113526232A (en) Method for high-precision ground-cushion yarn laying of yarn during bobbin winding
CN108917684A (en) A kind of cross-section thin-wall bearing measuring device and measuring method
CN102163499A (en) Method for automatically stepping power transformer winding former
RU192433U1 (en) DIVISION MACHINE OF PENDULUM TYPE FOR MANUFACTURE OF HATCH STRUCTURES ON CONCAVATED SURFACES
CN108627110A (en) A kind of device and measurement method measuring spiral coil screw diameter
CN111240274A (en) Control system and control method for medium linear speed winding in non-circular winding system
US9050760B2 (en) Blown film scanning method
RU2691821C1 (en) Pendulum-type dividing machine for making dashed structures on non-planar working surfaces
JP2006035179A (en) Coating apparatus
RU2725324C1 (en) Pendulum-type dividing machine for making dashed structures on concave surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4420344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250