JP4419735B2 - Fuel cell vehicle - Google Patents

Fuel cell vehicle Download PDF

Info

Publication number
JP4419735B2
JP4419735B2 JP2004210538A JP2004210538A JP4419735B2 JP 4419735 B2 JP4419735 B2 JP 4419735B2 JP 2004210538 A JP2004210538 A JP 2004210538A JP 2004210538 A JP2004210538 A JP 2004210538A JP 4419735 B2 JP4419735 B2 JP 4419735B2
Authority
JP
Japan
Prior art keywords
fuel cell
power
temperature
state
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004210538A
Other languages
Japanese (ja)
Other versions
JP2006032169A (en
Inventor
滋人 梶原
政孝 太田
知之 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004210538A priority Critical patent/JP4419735B2/en
Publication of JP2006032169A publication Critical patent/JP2006032169A/en
Application granted granted Critical
Publication of JP4419735B2 publication Critical patent/JP4419735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は燃料電池と蓄電装置を電源として備えた燃料電池車両に関し、特に、燃料電池が過充電の状態で発生した余剰電力を効率的に消費するための改良技術に関する。   The present invention relates to a fuel cell vehicle equipped with a fuel cell and a power storage device as a power source, and more particularly to an improved technique for efficiently consuming surplus power generated when the fuel cell is overcharged.

燃料電池と蓄電装置を電源として備えた燃料電池車両においては、主として燃料電池で発電した電力をトラクションモータに供給して車両走行を行う他、減速時や降坂時にトラクションモータに回生制動を行わせて回収した回生電力を蓄電装置に充電し、その回生電力を発進加速や登坂走行等の負荷が大きい場面や燃料電池の運転効率が悪い走行領域でのアシストに利用することで、走行可能距離、燃費、運転性能を向上させている。この種の燃料電池車両においては、回生制動中に蓄電装置のSOC(State of Charge)が上限に達すると、回生制動の中断によりトラクションモータにて減速トルクを発生させることができなくなり、制動力が低下するという問題がある。このような問題を解決するため、特開2002−204505号公報には、蓄電装置が過充電の状態において、回生制動又はアイドリング等の低負荷運転時に余剰電力が発生した場合に補機類の運転効率を低下させて余剰電力を消費させる技術が提案されている。
特開2002−204505号公報
In a fuel cell vehicle equipped with a fuel cell and a power storage device as a power source, the vehicle is driven mainly by supplying power generated by the fuel cell to the traction motor, and regenerative braking is performed on the traction motor during deceleration or downhill. The regenerative power collected in this way is charged to the power storage device, and the regenerative power is used for assistance in scenes where the load is high, such as starting acceleration or running uphill, or in driving areas where the fuel cell operating efficiency is poor. Improves fuel economy and driving performance. In this type of fuel cell vehicle, when the SOC (State of Charge) of the power storage device reaches an upper limit during regenerative braking, the traction motor cannot generate deceleration torque due to regenerative braking interruption, and the braking force is reduced. There is a problem of lowering. In order to solve such a problem, Japanese Patent Application Laid-Open No. 2002-204505 describes the operation of auxiliary machinery when surplus power is generated during low load operation such as regenerative braking or idling while the power storage device is overcharged. Techniques for reducing the efficiency and consuming excess power have been proposed.
JP 2002-204505 A

しかし、蓄電装置が過充電の状態において余剰電力が発生した場合に、燃料電池の低負荷運転を継続させた状態で、補機類等で余剰電力を消費するというのは燃費が悪化するため好ましくない。また、蓄電装置が過充電の状態において余剰電力が発生した場合に、燃料電池の運転を休止させ、補機類等で余剰電力を消費すると、燃料電池の自己発熱の停止と走行風の影響を受けてスタック温度が低下し、I−V特性が悪化する虞がある。I−V特性が悪化すると、その後の高負荷要求に応答して燃料電池を再起動しても、一旦低下したセル電圧は直ちには十分に回復せず、応答遅れが生じるため、ドライバビリティが低下する。   However, when surplus power is generated when the power storage device is overcharged, it is preferable to consume the surplus power with auxiliary equipment or the like while the low load operation of the fuel cell is continued because fuel efficiency deteriorates. Absent. Also, if surplus power is generated when the power storage device is overcharged, stopping the operation of the fuel cell and consuming surplus power with auxiliary equipment, etc. will cause the fuel cell's self-heating to stop and the influence of traveling wind As a result, the stack temperature decreases, and the IV characteristics may deteriorate. When the IV characteristics deteriorate, even if the fuel cell is restarted in response to a subsequent high load request, the once-reduced cell voltage is not recovered immediately and a response delay occurs, resulting in a decrease in drivability. To do.

そこで、本発明はこのような問題を解決し、蓄電装置が過充電の状態で発生した余剰電力を燃料電池車両のドライバビリティを損ねることなく消費するとともに、燃費の悪化を抑制できる燃料電池車両を提案することを課題とする。   Therefore, the present invention solves such a problem, and a fuel cell vehicle that consumes surplus power generated in a state where the power storage device is overcharged without impairing the drivability of the fuel cell vehicle and can suppress deterioration in fuel consumption. The challenge is to propose.

上記の課題を解決するため、本発明の燃料電池車両は、燃料電池と、蓄電装置と、燃料電池又は蓄電装置のうち少なくとも何れか一方から供給される電力によって駆動されるとともに回生電力を蓄電装置に充電可能なトラクションモータと、蓄電装置のSOCが所定値以上の状態で余剰電力が発生した場合に燃料電池の運転を制限するとともに、余剰電力を消費して燃料電池の温度を調整する温度調整手段とを備え、温度調整手段は、車両走行速度が速い程、燃料電池の温度を高くする。かかる構成により、蓄電装置が過充電の状態で発生した余剰電力を燃料電池車両のドライバビリティを損ねることなく消費するとともに、燃費の悪化を抑制できる。また、走行風の影響を受けて冷却された燃料電池を適度な温度に昇温できる。「温度調整手段」とは、余剰電量を熱エネルギーに変換して燃料電池の温度調整を行う手段(例えば、エアコン装置等)に加えて、更に燃料電池の運転状態を制御する制御手段(例えば、コントローラ等)を含むものとする。 In order to solve the above problems, a fuel cell vehicle according to the present invention is driven by electric power supplied from at least one of a fuel cell, a power storage device, and a fuel cell or a power storage device, and supplies regenerative power to the power storage device. A traction motor that can be recharged and a temperature adjustment that limits the operation of the fuel cell and adjusts the temperature of the fuel cell when surplus power is generated when the SOC of the power storage device is greater than or equal to a predetermined value. And the temperature adjusting means increases the temperature of the fuel cell as the vehicle traveling speed increases. With this configuration, surplus power generated when the power storage device is overcharged can be consumed without impairing the drivability of the fuel cell vehicle, and deterioration of fuel consumption can be suppressed. Further, the temperature of the fuel cell cooled by the influence of the traveling wind can be raised to an appropriate temperature. “Temperature adjusting means” means a control means (for example, an air conditioner or the like) for controlling the operating state of the fuel cell in addition to means for adjusting the temperature of the fuel cell by converting surplus electricity into heat energy (for example, an air conditioner). Controller etc.).

温度調整手段は蓄電装置のSOCが所定値以上の状態で余剰電力が発生した場合に燃料電池の運転を一時休止させるのが望ましい。燃料電池の運転を一時休止することで、蓄電装置の過充電を抑制できる。   The temperature adjusting means desirably pauses the operation of the fuel cell when surplus power is generated when the SOC of the power storage device is equal to or higher than a predetermined value. By temporarily stopping the operation of the fuel cell, overcharge of the power storage device can be suppressed.

ここで、余剰電力としては、例えば、トラクションモータが回生制動時に回収した回生電力を挙げることができる。   Here, as the surplus power, for example, regenerative power collected by the traction motor during regenerative braking can be cited.

温度調整手段としては、燃料電池車両の空調装置を含む構成とするのが好適である。空調装置を用いることにより余剰電力を消費するだけでなく、これを熱エネルギーに変換することで、燃料電池を暖機できる。   The temperature adjusting means preferably includes a fuel cell vehicle air conditioner. In addition to consuming excess power by using an air conditioner, the fuel cell can be warmed up by converting it into thermal energy.

温度調整手段は余剰電力の一部を燃料電池の温度調整に必要な熱エネルギーとして消費し、余剰電力からこの熱エネルギーを控除した残存電力量に基づいて車室の目標温度を調整するのが望ましい。かかる構成により、余剰電力を消費して燃料電池を適度に暖機することができる。   It is desirable that the temperature adjusting means consumes a part of the surplus power as heat energy necessary for adjusting the temperature of the fuel cell, and adjusts the target temperature of the passenger compartment based on the remaining power amount obtained by subtracting this heat energy from the surplus power. . With this configuration, it is possible to appropriately warm up the fuel cell by consuming surplus power.

本発明の燃料電池車両は、上述の構成に加えて、燃料電池の温度調整に伴って燃料電池内部の湿度を調整する湿度調整手段を更に備えるのが望ましい。温度調整手段による燃料電池の温度調整に伴う電解質膜等の乾燥を抑制できる。   In addition to the above-described configuration, the fuel cell vehicle of the present invention preferably further includes a humidity adjusting unit that adjusts the humidity inside the fuel cell in accordance with the temperature adjustment of the fuel cell. Drying of the electrolyte membrane and the like accompanying temperature adjustment of the fuel cell by the temperature adjusting means can be suppressed.

本発明によれば、蓄電装置が過充電の状態で発生した余剰電力を燃料電池車両のドライバビリティを損ねることなく消費するとともに、燃費の悪化を抑制できる。   According to the present invention, surplus power generated when the power storage device is overcharged can be consumed without impairing the drivability of the fuel cell vehicle, and deterioration of fuel consumption can be suppressed.

図1は燃料電池車両(FCEV)のシステム構成の概略を示している。燃料電池車両10は電源装置として燃料電池21と二次電池(蓄電装置)22を混載したハイブリッドシステム(FCHVシステム)として構成されている。燃料電池21は、例えば、固体高分子型燃料電池として構成され、燃料ガスと酸化ガスの供給を受けて電力を発電する。燃料電池21のアノード極には高圧水素タンク等の水素供給源(図示せず)から放出された水素ガスが燃料ガスとして供給され、カソード極にはエアフィルタ61を通じて粉塵等が濾過されたエアがエアコンプレッサ62により加圧され、加湿器63にて適度に加湿された加圧エアが酸化ガスとして供給される。加湿器63はカソードオフガス流路65を通じて燃料電池21から排出された高湿潤状態の酸素オフガス(高湿潤ガス)と、カソードガス流路64を通じて燃料電池21に流入する低湿潤状態の酸化ガス(乾燥ガス)との間で水分交換を行い、燃料電池21に流入する酸化ガスを適度に過湿する。エアコンプレッサ62と加湿器63は燃料電池21内部(ガスチャンネル、高分子電解質膜など)の湿度を調整する湿度調整手段MCとして機能する。   FIG. 1 schematically shows the system configuration of a fuel cell vehicle (FCEV). The fuel cell vehicle 10 is configured as a hybrid system (FCHV system) in which a fuel cell 21 and a secondary battery (power storage device) 22 are mounted together as a power supply device. The fuel cell 21 is configured as, for example, a polymer electrolyte fuel cell, and generates electric power upon receiving supply of fuel gas and oxidizing gas. Hydrogen gas released from a hydrogen supply source (not shown) such as a high-pressure hydrogen tank is supplied to the anode electrode of the fuel cell 21 as fuel gas, and air from which dust or the like has been filtered through the air filter 61 is supplied to the cathode electrode. Pressurized air pressurized by the air compressor 62 and moderately humidified by the humidifier 63 is supplied as an oxidizing gas. The humidifier 63 is a high-humidity oxygen off-gas (high-humidity gas) discharged from the fuel cell 21 through the cathode off-gas channel 65 and a low-humidity oxidizing gas (dry) that flows into the fuel cell 21 through the cathode gas channel 64. Moisture exchange with the gas) is performed, and the oxidizing gas flowing into the fuel cell 21 is appropriately overhumidified. The air compressor 62 and the humidifier 63 function as humidity adjusting means MC that adjusts the humidity inside the fuel cell 21 (gas channel, polymer electrolyte membrane, etc.).

燃料電池21で発電された電力は電力ラインL1,L2を介して各種の電力負荷に供給される。本実施形態では電力負荷として、直流電力を交流電力に変換するインバータINV1〜INV3、直流電力を昇圧又は降圧するDC/DCコンバータCNVを例示しているが、これに限られるものではなく、必要に応じて各種の電力負荷を接続してもよい。インバータINV1は車室内を冷暖房制御するエアコン装置(空調装置)30に設置された圧縮機P1を駆動するモータM1に交流電力を供給する。インバータINV2は燃料電池21の冷却水系統に設置された冷却水ポンプP2を駆動するモータM2に交流電力を供給する。インバータINV3はトラクションモータ(車両駆動用モータ)M3に交流電力を供給する。DC/DCコンバータCNVは燃料電池21にて発電された電力又はトラクションモータM3にて回生された電力を適度な電圧に変換して二次電池22を充電する他、燃料電池21の出力電圧を調整して燃料電池21と二次電池22から電力負荷へ供給される電力の分配制御を行う。二次電池22としては、例えば、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、リチウム二次電池などが好適であり、その電源容量は燃料電池車両の予想される走行状態や負荷変動などに応じて設計される。但し、二次電池22に替えてキャパシタ等の蓄電装置を搭載してもよい。   The power generated by the fuel cell 21 is supplied to various power loads via the power lines L1 and L2. In the present embodiment, the inverters INV1 to INV3 that convert DC power into AC power and the DC / DC converter CNV that boosts or lowers DC power are illustrated as power loads. However, the present invention is not limited to this, and is necessary. Various power loads may be connected accordingly. The inverter INV1 supplies AC power to a motor M1 that drives a compressor P1 installed in an air conditioner (air conditioner) 30 that controls the cooling and heating of the passenger compartment. The inverter INV2 supplies AC power to a motor M2 that drives a cooling water pump P2 installed in the cooling water system of the fuel cell 21. The inverter INV3 supplies AC power to a traction motor (vehicle driving motor) M3. The DC / DC converter CNV converts the electric power generated by the fuel cell 21 or the electric power regenerated by the traction motor M3 into an appropriate voltage to charge the secondary battery 22 and adjust the output voltage of the fuel cell 21 Thus, distribution control of power supplied from the fuel cell 21 and the secondary battery 22 to the power load is performed. As the secondary battery 22, for example, a nickel / cadmium storage battery, a nickel / hydrogen storage battery, a lithium secondary battery, or the like is suitable, and its power capacity is designed according to the expected running state of the fuel cell vehicle, load fluctuations, and the like. Is done. However, a power storage device such as a capacitor may be mounted instead of the secondary battery 22.

燃料電池21の冷却水系統には、冷却水路52〜56、ラジエータ57、冷却水ポンプP2、三方弁A4,A5が設置されている。通常運転における冷却状態では、三方弁A4のポートa1,a2を開き、ポートa3を閉じる一方で、三方弁A5のポートb1,b3を開き、ポートb2を閉じる。すると、冷却水路52,53によって閉回路が形成され、燃料電池21から排出された高温の冷却水はラジエータ57にて冷却された後、冷却水路52,53を循環する。冷却水温度は三方弁A4の各ポートa1〜a3を開閉制御し、冷却水路52から分岐してラジエータ57をバイパスする冷却水路54のバイパス流量を調整することにより調整できる。一方、冷却水路55,56はエアコン装置30内部に設置された熱交換器51に連通しており、エアコン装置30との間で熱交換を行い、冷却水温度を昇温することによって、燃料電池21を適度な温度に暖機できるように構成されている。冷却水とエアコン装置30との熱交換により燃料電池21を暖機する処理手順の詳細については後述する。   In the cooling water system of the fuel cell 21, cooling water passages 52 to 56, a radiator 57, a cooling water pump P2, and three-way valves A4 and A5 are installed. In the cooling state in normal operation, the ports a1 and a2 of the three-way valve A4 are opened and the port a3 is closed, while the ports b1 and b3 of the three-way valve A5 are opened and the port b2 is closed. Then, a closed circuit is formed by the cooling water channels 52 and 53, and the high-temperature cooling water discharged from the fuel cell 21 is cooled by the radiator 57 and then circulates in the cooling water channels 52 and 53. The cooling water temperature can be adjusted by controlling the opening and closing of the ports a1 to a3 of the three-way valve A4 and adjusting the bypass flow rate of the cooling water passage 54 branched from the cooling water passage 52 and bypassing the radiator 57. On the other hand, the cooling water channels 55 and 56 communicate with a heat exchanger 51 installed inside the air conditioner device 30, and perform heat exchange with the air conditioner device 30 to raise the temperature of the cooling water to thereby increase the temperature of the fuel cell. It is comprised so that 21 can be warmed up to moderate temperature. Details of a processing procedure for warming up the fuel cell 21 by heat exchange between the cooling water and the air conditioner 30 will be described later.

エアコン装置30はヒートポンプサイクルによって車室内を冷暖房制御するための装置であり、主として、室内器(熱交換器)41と室外器(熱交換器)42を備え、圧縮機P1によって冷媒を循環流路43内に循環させている。循環流路43には、膨張弁A1,A2、四方弁A3、圧縮機P1が設置されており、四方弁A3の各ポートc1〜c4を開閉制御することで冷媒の流れる方向を制御し、圧縮機P1の回転方向を変えることなくヒートポンプサイクルを実現できるように構成されている。エアコン装置30はエアコン用ダクト31から取り入れた外気をブロアファンPNにより圧縮し、室内器41にて熱交換を行った後、車室内又は車室外へ向けて温風又は冷風を送風する。車室内を冷暖房する場合には、車室外に連通する通風路33をエアコン用ダクト切り替え弁A6によって閉塞し、車室内に連通する通風路32に温風又は冷風を導く。一方、車室内を冷暖房しない場合には、車室内に連通する通風路32をエアコン用ダクト切り替え弁A6によって閉塞し、車室外に連通する通風路33に温風又は冷風を導く。上述した熱交換器51にはエアコン装置30と熱交換器51との間の熱交換を遮断するための切り替え弁A7,A8が設置されており、切り替え弁A7,A8が閉弁することによって熱交換器51がその周囲を覆われると、熱交換器51は外気との接触が断たれるため、エアコン装置30との熱交換が遮断される。一方、切り替え弁A7,A8が開弁すると、熱交換器51はエアコン装置30との間で熱交換が可能になる。   The air conditioner 30 is an apparatus for controlling the heating and cooling of the vehicle interior by a heat pump cycle, and mainly includes an indoor unit (heat exchanger) 41 and an outdoor unit (heat exchanger) 42, and a refrigerant P is circulated by the compressor P1. It is circulated in 43. The circulation passage 43 is provided with expansion valves A1, A2, a four-way valve A3, and a compressor P1, and controls the direction in which the refrigerant flows by controlling the opening and closing of the ports c1 to c4 of the four-way valve A3. The heat pump cycle can be realized without changing the rotation direction of the machine P1. The air conditioner 30 compresses the outside air taken in from the air conditioner duct 31 with the blower fan PN, exchanges heat with the indoor unit 41, and then blows warm air or cold air toward the vehicle interior or the exterior of the vehicle interior. In the case of cooling and heating the passenger compartment, the air passage 33 communicating with the outside of the passenger compartment is closed by the air conditioner duct switching valve A6, and hot air or cold air is guided to the air passage 32 communicating with the passenger compartment. On the other hand, when the vehicle interior is not cooled or heated, the air passage 32 communicating with the vehicle interior is closed by the air conditioner duct switching valve A6, and hot air or cold air is guided to the air passage 33 communicating with the outside of the vehicle interior. The heat exchanger 51 described above is provided with switching valves A7 and A8 for blocking heat exchange between the air conditioner device 30 and the heat exchanger 51, and heat is generated by closing the switching valves A7 and A8. When the exchanger 51 is covered, the heat exchanger 51 is disconnected from the outside air, so that heat exchange with the air conditioner 30 is blocked. On the other hand, when the switching valves A7 and A8 are opened, the heat exchanger 51 can exchange heat with the air conditioner 30.

コントローラ(ECU)70はアクセルセンサ71からのアクセル開度信号、車速センサからの車速信号等に基づいて要求負荷を算出し、要求発電量が得られるように燃料電池21の運転制御を行う他、必要に応じて各種のシステム制御(例えば、後述する余剰電力消費制御など)を行う制御手段である。コントローラ70はSOC検出手段C1が検出した二次電池22のSOC、温度検出手段C2が検出した燃料電池21の温度、湿度検出手段C3が検出した燃料電池21の湿度を取得することによってシステム状態(例えば、燃料電池21の内部状態(温度又は湿度等)及び二次電池22の充電状態)を監視し、上述した圧縮機P1、冷却水ポンプP2、各種の弁A1〜A8、ブロアファンPN、湿度調整手段MC、DC/DCコンバータCNV、インバータINV1〜INV3を制御することによりシステム全体を制御する。また、コントローラ70は低負荷運転時に燃料電池21の運転を一時休止し、二次電池22からの電力供給のみで車両走行する運転モード(間欠運転モード)を実施するように構成されている。   The controller (ECU) 70 calculates the required load based on the accelerator opening signal from the accelerator sensor 71, the vehicle speed signal from the vehicle speed sensor, and the like, and controls the operation of the fuel cell 21 so as to obtain the required power generation amount. It is a control means for performing various system controls (for example, surplus power consumption control described later) as necessary. The controller 70 acquires the SOC of the secondary battery 22 detected by the SOC detector C1, the temperature of the fuel cell 21 detected by the temperature detector C2, and the humidity of the fuel cell 21 detected by the humidity detector C3. For example, the internal state (temperature or humidity, etc.) of the fuel cell 21 and the charging state of the secondary battery 22 are monitored, and the above-described compressor P1, cooling water pump P2, various valves A1 to A8, blower fan PN, humidity The entire system is controlled by controlling the adjusting means MC, the DC / DC converter CNV, and the inverters INV1 to INV3. In addition, the controller 70 is configured to temporarily stop the operation of the fuel cell 21 during low load operation and to perform an operation mode (intermittent operation mode) in which the vehicle travels only by supplying power from the secondary battery 22.

図3はエアコン装置30の冷暖房要求の有無、二次電池22の充電状態、及び燃料電池21の暖機要求の有無に基づいてシステムを7種類の状態に分類した表を示している。図2は上述した7種類の状態のうち「状態1」に対応する余剰電力消費制御のフローチャートを示している(説明の便宜上、「状態2」〜「状態7」については省略している。)ここで、「余剰電力消費制御」とは、二次電池22が過充電の状態において、低負荷運転時(回生制動時)に発生した余剰電力を補機類の運転効率を低下させて消費させる制御をいい、燃料電池21の暖機要求がある場合には余剰電力を熱エネルギーに変換して燃料電池21を暖機する制御を含む。   FIG. 3 shows a table in which the system is classified into seven states based on the presence / absence of a cooling / heating request of the air conditioner 30, the charging state of the secondary battery 22, and the presence / absence of a warming-up request of the fuel cell 21. FIG. 2 shows a flowchart of surplus power consumption control corresponding to “state 1” among the seven types of states described above (for convenience of explanation, “state 2” to “state 7” are omitted). Here, “surplus power consumption control” means that surplus power generated during low-load operation (during regenerative braking) is consumed by reducing the operation efficiency of the auxiliary machinery when the secondary battery 22 is overcharged. This control includes control for warming up the fuel cell 21 by converting surplus power into thermal energy when there is a request for warming up the fuel cell 21.

まず、「状態1」における余剰電力消費制御について説明する。「状態1」は車室内の暖房要求があり、二次電池22が過充電の状態にあり、更に、燃料電池21の暖機要求があるときのシステム状態である。「状態1」では、二次電池22が過充電の状態にあるため、燃料電池21の運転を制限(望ましくは、一時休止)し、トラクションモータM3が回収した回生電力によって補機類等(例えば、圧縮機P1や冷却水ポンプP2など)に動作電力を供給する。また、このシステム状態では車室内の暖房要求と燃料電池21の暖機要求があるため、コントローラ70はトラクションモータM3によって回収された回生電力量(余剰電力量)、燃料電池21の目標温度、燃料電池車両10の走行速度等に基づいて燃料電池21の温度調整に必要な熱エネルギーを算出する。そして、余剰電力から燃料電池21の温度調整に必要な熱エネルギーを控除した残存電力量では車室温度をドライバが指定した温度に調整できない場合には、エアコン装置30の作動目標温度をこの残存電力量で賄うことのできる温度に変更する。コントローラ70は車室内温度と作動目標温度(要求温度)の偏差から算出される車室内の暖房に必要な熱エネルギーと、燃料電池21を目標温度に暖機するために必要な熱エネルギー(エアコン装置30と熱交換器51の熱交換量を含む)を合計した熱エネルギーが室内器41から放出されるように膨張弁A1,A2、四方弁A3、圧縮機P1、及びブロアファンPNを制御する。具体的には、コントローラ70は圧縮機P1を駆動させて冷媒を循環させるとともに、膨張弁A1を全開にし、膨張弁A2を膨張弁として使用し、四方弁A3のポートc2とc3を連通状態にし、ポートc1とc4を連通状態にする。これにより室内器41は放熱を行い、室外器42は吸熱を行うので、エアコン用ダクト31から取り込まれた外気は室内器41から熱を受け取り、熱交換器51を通過する過程において冷却水と熱交換を行いつつ、通風路32に導かれる。熱交換器51により昇温された冷却水は冷却水ポンプP2によって冷却水路52,55,56,53を循環し、燃料電池21を暖機する。このとき三方弁A5のポートb1,b2は開かれ、ポートb3は閉じられている。また、エアコン用ダクト切り替え弁A6は通風路33を閉塞するように弁位置が制御され、切り替え弁A7,A8は熱交換器51とエアコン装置30とが熱交換できるように弁位置が制御される。このようにコントローラ70とエアコン装置30は余剰電力を熱エネルギーに変換して燃料電池21の温度を調整する温度調整手段として機能する。   First, surplus power consumption control in “state 1” will be described. “State 1” is a system state when there is a request for heating in the passenger compartment, the secondary battery 22 is in an overcharged state, and there is a request for warming up the fuel cell 21. In “State 1”, since the secondary battery 22 is in an overcharged state, the operation of the fuel cell 21 is restricted (preferably temporarily suspended), and auxiliary machinery or the like (for example, by the regenerative power collected by the traction motor M3) , Supply operating power to the compressor P1 and the cooling water pump P2. Further, in this system state, since there is a request for heating the vehicle interior and a request for warming up the fuel cell 21, the controller 70 determines the amount of regenerative power (surplus power amount) recovered by the traction motor M3, the target temperature of the fuel cell 21, and the fuel. Thermal energy necessary for temperature adjustment of the fuel cell 21 is calculated based on the traveling speed of the battery vehicle 10 and the like. If the vehicle interior temperature cannot be adjusted to the temperature specified by the driver with the remaining power amount obtained by subtracting the thermal energy necessary for adjusting the temperature of the fuel cell 21 from the surplus power, the operation target temperature of the air conditioner 30 is set to the remaining power. Change to a temperature that can be covered by volume. The controller 70 calculates heat energy required for heating the vehicle interior calculated from the deviation between the vehicle interior temperature and the operation target temperature (required temperature), and heat energy required for warming the fuel cell 21 to the target temperature (air conditioner device). The expansion valves A1 and A2, the four-way valve A3, the compressor P1, and the blower fan PN are controlled so that the total heat energy including the heat exchange amount of 30 and the heat exchanger 51 is released from the indoor unit 41. Specifically, the controller 70 drives the compressor P1 to circulate the refrigerant, fully opens the expansion valve A1, uses the expansion valve A2 as an expansion valve, and brings the ports c2 and c3 of the four-way valve A3 into communication. Ports c1 and c4 are brought into communication. As a result, the indoor unit 41 radiates heat and the outdoor unit 42 absorbs heat, so that the outside air taken in from the air-conditioner duct 31 receives heat from the indoor unit 41 and passes through the heat exchanger 51 in the course of passing through the heat exchanger 51. While exchanging, the air is guided to the ventilation path 32. The cooling water heated by the heat exchanger 51 is circulated through the cooling water passages 52, 55, 56, and 53 by the cooling water pump P2 to warm up the fuel cell 21. At this time, the ports b1 and b2 of the three-way valve A5 are opened and the port b3 is closed. In addition, the valve position of the air conditioner duct switching valve A6 is controlled so as to close the ventilation path 33, and the switching valves A7 and A8 are controlled so that the heat exchanger 51 and the air conditioner 30 can exchange heat. . As described above, the controller 70 and the air conditioner device 30 function as temperature adjusting means for adjusting the temperature of the fuel cell 21 by converting surplus power into heat energy.

尚、燃料電池21を暖機する際には湿度調整手段MCを制御して燃料電池21内部の高分子電解質膜が適度な湿潤状態を保持できるように制御するのが好ましい。例えば、コントローラ70はエアコンプレッサ62を低回転させて、加湿器63にて加湿された微量のエアを燃料電池21に供給し、湿度検出手段C3が検出した湿度が目標湿度に一致するように制御する。但し、湿度に限らず露点を基に燃料電池21の湿潤状態を制御してもよい。また、冷却水ポンプP2の回転数やラジエータ57の冷却能力等を制御して、燃料電池21に流入する冷却水の温度上昇率(単位時間あたりの上昇温度)を緩やかに制御することで燃料電池21の湿潤状態を制御してもよい。このように余剰電力を熱エネルギーに変換し、その熱エネルギーの一部を利用して燃料電池21を暖機することにより余剰電力を効率的に消費することで、二次電池22の過充電を抑制しつつ、燃料電池21の冷却によるI−V特性の悪化状態(出力制限状態)を抑制できる。燃料電池21の目標温度としては燃料電池車両10の走行速度が速くなる程、高くなるように設定するのが望ましい。   When the fuel cell 21 is warmed up, it is preferable to control the humidity adjusting means MC so that the polymer electrolyte membrane inside the fuel cell 21 can maintain an appropriate wet state. For example, the controller 70 rotates the air compressor 62 at a low speed, supplies a small amount of air humidified by the humidifier 63 to the fuel cell 21, and controls the humidity detected by the humidity detecting means C3 to match the target humidity. To do. However, the wet state of the fuel cell 21 may be controlled based on the dew point as well as the humidity. Further, by controlling the rotation speed of the cooling water pump P2, the cooling capacity of the radiator 57, etc., the temperature increase rate (the rising temperature per unit time) of the cooling water flowing into the fuel cell 21 is moderately controlled. 21 wet states may be controlled. In this way, surplus power is converted into heat energy, and the surcharge is efficiently consumed by warming up the fuel cell 21 using a part of the heat energy, thereby overcharging the secondary battery 22. While suppressing, the deterioration state (output restriction state) of the IV characteristic by cooling of the fuel cell 21 can be suppressed. The target temperature of the fuel cell 21 is desirably set so as to increase as the traveling speed of the fuel cell vehicle 10 increases.

ここで、図2を参照しながら「状態1」における余剰電量消費制御について再述する(但し、上述の説明と重複する部分については説明を簡略化する。)。コントローラ70は二次電池22のSOCを監視し、SOCが所定値(例えば80%〜90%)以上である場合には過充電であると判定する(S1;YES)。二次電池22が過充電の状態においてトラクションモータM3による回生制動が行われると(S2;YES)、回生電力によって低負荷運転時の車載補機類の動作電力を賄えるため、燃料電池21の運転を停止する(S3)。次いで、車室内の暖房要求があるか否かをチェックし(S4)、暖房要求がある場合には(S4;YES)、エアコン装置30を制御して車室内を暖房し(S5)、暖房要求がない場合には(S4;NO)、暖房は行わない。次いで、燃料電池21の暖機要求があるか否かをチェックし(S6)、暖機要求がある場合には(S6;YES)、熱交換器51を介して冷却水による燃料電池21の暖機制御を行う(S7)。この暖機制御では温度検出手段C2が検出した燃料電池21内部の温度が目標温度に一致するように室内器41の放熱量、熱交換器51における熱交換量、冷却水ポンプP2の回転数、ラジエータ57の冷却能力などが制御される。更に、必要に応じて燃料電池21内部の高分子電解質膜が乾燥し過ぎないように湿潤状態が制御される(S8)。   Here, the surplus electricity consumption control in “state 1” will be described again with reference to FIG. 2 (however, the description overlapping with the above description will be simplified). The controller 70 monitors the SOC of the secondary battery 22, and determines that it is overcharged when the SOC is equal to or greater than a predetermined value (for example, 80% to 90%) (S1; YES). If regenerative braking by the traction motor M3 is performed in a state where the secondary battery 22 is overcharged (S2; YES), the regenerative power can cover the operating power of the in-vehicle auxiliary equipment during low load operation. Is stopped (S3). Next, it is checked whether or not there is a heating request in the vehicle interior (S4). If there is a heating request (S4; YES), the air conditioning device 30 is controlled to heat the vehicle interior (S5), and a heating request is made. When there is no (S4; NO), heating is not performed. Next, it is checked whether or not there is a request for warm-up of the fuel cell 21 (S6). If there is a request for warm-up (S6; YES), the fuel cell 21 is warmed by cooling water via the heat exchanger 51. Machine control is performed (S7). In this warm-up control, the amount of heat dissipated in the indoor unit 41, the amount of heat exchange in the heat exchanger 51, the number of rotations of the cooling water pump P2, so that the temperature inside the fuel cell 21 detected by the temperature detecting means C2 matches the target temperature, The cooling capacity of the radiator 57 is controlled. Further, the wet state is controlled as necessary so that the polymer electrolyte membrane inside the fuel cell 21 does not dry too much (S8).

次に、「状態2」〜「状態7」の各状態における余剰電力消費制御の概要について説明する。「状態2」は車室内の冷暖房要求がなく、二次電池22が過充電の状態にあり、更に、燃料電池21の暖機要求がある状態である。この状態ではトラクションモータM3で回収した回生電力を利用して圧縮機P1と冷却水ポンプP2を駆動し、エアコン装置30から放熱される熱によって熱交換器51を介して冷却水を昇温し、燃料電池21を目標温度に暖機する。エアコン用ダクト切り替え弁A6は通風路32を閉塞することにより、車室内には温風が導かれないように制御される。   Next, an outline of surplus power consumption control in each state of “state 2” to “state 7” will be described. “State 2” is a state in which there is no cooling / heating request in the passenger compartment, the secondary battery 22 is in an overcharged state, and there is a request for warming up the fuel cell 21. In this state, the compressor P1 and the cooling water pump P2 are driven using the regenerative electric power collected by the traction motor M3, and the temperature of the cooling water is raised through the heat exchanger 51 by the heat radiated from the air conditioner 30. The fuel cell 21 is warmed up to the target temperature. The air conditioner duct switching valve A6 is controlled so that the warm air is not guided into the vehicle interior by closing the ventilation passage 32.

「状態3」は車室内の暖房要求があり、二次電池22が過充電の状態になく、更に、燃料電池21の暖機要求がある状態である。この状態では二次電池22は過充電の状態にないため、燃料電池21が発電した電力で補機類(例えば、圧縮機P1や冷却水ポンプP2など)を駆動する。コントローラ70は室内器41によって放熱が行われ、室外器42によって吸熱が行われるように膨張弁A1,A2、四方弁A3を制御し、更に、車室温度と燃料電池21の温度がそれぞれ目標温度に達するために必要な圧縮機P1と冷却水ポンプP2の消費電力量を算出し、燃料電池21の発電量を制御する。   “State 3” is a state in which there is a request for heating the passenger compartment, the secondary battery 22 is not overcharged, and there is a request for warming up the fuel cell 21. In this state, since the secondary battery 22 is not in an overcharged state, auxiliary machinery (for example, the compressor P1 and the cooling water pump P2) is driven by the power generated by the fuel cell 21. The controller 70 controls the expansion valves A1 and A2 and the four-way valve A3 so that heat is radiated by the indoor unit 41 and heat is absorbed by the outdoor unit 42. Further, the cabin temperature and the temperature of the fuel cell 21 are respectively set to the target temperatures. The amount of power consumed by the compressor P1 and the cooling water pump P2 required to reach the value is calculated, and the amount of power generated by the fuel cell 21 is controlled.

「状態4」は車室内の冷暖房要求がなく、二次電池22が過充電の状態になく、更に、燃料電池21の暖機要求がある状態である。この状態では「状態3」と同様に燃料電池21が発電した電力で補機類(例えば、圧縮機P1や冷却水ポンプP2など)を駆動し、室内器41に放熱を行わせ、室外器42に吸熱を行わせる。コントローラ70は燃料電池21の温度が目標温度に達するために必要な圧縮機P1と冷却水ポンプP2の消費電力量を算出し、燃料電池21の発電量を制御する。コントローラ70はエアコン装置30から放熱される熱によって熱交換器51を介して冷却水を昇温し、燃料電池21を目標温度に暖機する。エアコン用ダクト切り替え弁A6は通風路32を閉塞することにより、車室内には温風が導かれないように制御される。   “State 4” is a state in which there is no request for cooling / heating in the passenger compartment, the secondary battery 22 is not overcharged, and there is a request for warm-up of the fuel cell 21. In this state, as in “State 3”, the auxiliary devices (for example, the compressor P1 and the cooling water pump P2) are driven by the power generated by the fuel cell 21, causing the indoor unit 41 to radiate heat, and the outdoor unit 42. To endotherm. The controller 70 calculates the power consumption of the compressor P1 and the cooling water pump P2 necessary for the temperature of the fuel cell 21 to reach the target temperature, and controls the power generation amount of the fuel cell 21. The controller 70 raises the temperature of the cooling water through the heat exchanger 51 by the heat radiated from the air conditioner 30 and warms up the fuel cell 21 to the target temperature. The air conditioner duct switching valve A6 is controlled so that the warm air is not guided into the vehicle interior by closing the ventilation passage 32.

「状態5」は車室内の冷房要求があり、二次電池22が過充電の状態にあり、更に、燃料電池21の暖機要求がない状態である。この状態ではトラクションモータM3で回収した回生電力を利用して圧縮機P1と冷却水ポンプP2を駆動し、膨張弁A1,A2、四方弁A3を制御して室内器41に吸熱を行わせ、室外器42に発熱を行わせる。室内器41の吸熱動作によって発生した冷風は通風路32を通じて車室内に導かれる。エアコン用ダクト切り替え弁A6は通風路33を閉塞することにより、車室外には冷風が導かれないように制御される。また、燃料電池21内部を循環する冷却水は熱交換器51に流入しないように三方弁A5が制御される。切り替え弁A7,A8は熱交換器51とエアコン装置30との間で熱交換が行われないように弁位置が制御される。   “State 5” is a state in which there is a cooling request in the vehicle interior, the secondary battery 22 is in an overcharged state, and there is no request for warming up the fuel cell 21. In this state, the regenerative power collected by the traction motor M3 is used to drive the compressor P1 and the cooling water pump P2, and the expansion valves A1, A2, and the four-way valve A3 are controlled to cause the indoor unit 41 to absorb heat, The device 42 generates heat. The cold air generated by the heat absorption operation of the indoor unit 41 is guided to the vehicle interior through the ventilation path 32. The air conditioner duct switching valve A6 is controlled so that the cool air is not guided outside the passenger compartment by closing the ventilation passage 33. Further, the three-way valve A5 is controlled so that the cooling water circulating inside the fuel cell 21 does not flow into the heat exchanger 51. The valve positions of the switching valves A7 and A8 are controlled so that heat exchange is not performed between the heat exchanger 51 and the air conditioner device 30.

「状態6」は車室内の暖房要求があり、二次電池22が過充電の状態にあり、更に、燃料電池21の暖機要求がない状態である。この状態ではトラクションモータM3で回収した回生電力を利用して圧縮機P1と冷却水ポンプP2を駆動し、膨張弁A1,A2、四方弁A3を制御して室内器41に発熱を行わせ、室外器42に吸熱を行わせる。室内器41の発熱動作によって発生した温風は通風路32を通じて車室内に導かれる。エアコン用ダクト切り替え弁A6は通風路33を閉塞することにより、車室外には温風が導かれないように制御される。また、燃料電池21内部を循環する冷却水は熱交換器51に流入しないように三方弁A5が制御される。切り替え弁A7,A8は熱交換器51とエアコン装置30との間で熱交換が行われないように弁位置が制御される。   "State 6" is a state in which there is a request for heating the vehicle interior, the secondary battery 22 is in an overcharged state, and there is no request for warming up the fuel cell 21. In this state, the regenerative power collected by the traction motor M3 is used to drive the compressor P1 and the cooling water pump P2, and the expansion valves A1, A2 and the four-way valve A3 are controlled to cause the indoor unit 41 to generate heat, The container 42 is made to absorb heat. The warm air generated by the heat generation operation of the indoor unit 41 is guided to the vehicle interior through the ventilation path 32. The air conditioner duct switching valve A6 is controlled so that the warm air is not guided outside the passenger compartment by closing the ventilation passage 33. Further, the three-way valve A5 is controlled so that the cooling water circulating inside the fuel cell 21 does not flow into the heat exchanger 51. The valve positions of the switching valves A7 and A8 are controlled so that heat exchange is not performed between the heat exchanger 51 and the air conditioner device 30.

「状態7」は車室内の冷暖房要求がなく、二次電池22が過充電の状態にあり、更に、燃料電池21の暖機要求がない状態である。この状態ではトラクションモータM3で回収した回生電力を利用して圧縮機P1と冷却水ポンプP2を駆動し、膨張弁A1,A2、四方弁A3を制御して室内器41に発熱を行わせ、室外器42に吸熱を行わせる。室内器41の発熱動作によって発生した温風は通風路33を通じて車室外に導かれる。エアコン用ダクト切り替え弁A6は通風路32を閉塞することにより、車室内には温風が導かれないように制御される。また、燃料電池21内部を循環する冷却水は熱交換器51に流入しないように三方弁A5が制御される。切り替え弁A7,A8は熱交換器51とエアコン装置30との間で熱交換が行われないように弁位置が制御される。   “State 7” is a state in which there is no request for air conditioning in the passenger compartment, the secondary battery 22 is in an overcharged state, and there is no request for warming up the fuel cell 21. In this state, the regenerative power collected by the traction motor M3 is used to drive the compressor P1 and the cooling water pump P2, and the expansion valves A1, A2 and the four-way valve A3 are controlled to cause the indoor unit 41 to generate heat, The container 42 is made to absorb heat. The warm air generated by the heat generation operation of the indoor unit 41 is guided outside the vehicle compartment through the ventilation path 33. The air conditioner duct switching valve A6 is controlled so that the warm air is not guided into the vehicle interior by closing the ventilation passage 32. Further, the three-way valve A5 is controlled so that the cooling water circulating inside the fuel cell 21 does not flow into the heat exchanger 51. The valve positions of the switching valves A7 and A8 are controlled so that heat exchange is not performed between the heat exchanger 51 and the air conditioner device 30.

尚、燃料電池21の温度を調整する温度調整手段としては、上述したエアコン装置30の他に、例えば、電気ヒータを燃料電池21の内部(例えば、セパレータ内)又は冷却水路に設置し、余剰電力を利用して電気ヒータを通電し、燃料電池21を直接的に又は冷却水を介して間接的に温度調整してもよい。   As a temperature adjusting means for adjusting the temperature of the fuel cell 21, in addition to the air conditioner 30 described above, for example, an electric heater is installed in the fuel cell 21 (for example, in a separator) or a cooling water channel, and surplus power is provided. Alternatively, the temperature of the fuel cell 21 may be adjusted directly or indirectly through cooling water.

本実施形態の燃料電池車両のシステム構成図である。1 is a system configuration diagram of a fuel cell vehicle according to an embodiment. 本実施形態の余剰電力消費制御のフローチャートである。It is a flowchart of the surplus power consumption control of this embodiment. 本実施形態のシステム状態表である。It is a system state table | surface of this embodiment.

符号の説明Explanation of symbols

10…燃料電池車両 21…燃料電池 22…二次電池 30…エアコン装置 70…コントローラ INV1〜INV3…インバータ M1〜M3…モータ C1…SOC検出手段 C2…温度検出手段 C3…湿度検出手段 MC…湿度調整手段 DESCRIPTION OF SYMBOLS 10 ... Fuel cell vehicle 21 ... Fuel cell 22 ... Secondary battery 30 ... Air-conditioner apparatus 70 ... Controller INV1-INV3 ... Inverter M1-M3 ... Motor C1 ... SOC detection means C2 ... Temperature detection means C3 ... Humidity detection means MC ... Humidity adjustment means

Claims (6)

燃料電池と、蓄電装置と、前記燃料電池又は前記蓄電装置のうち少なくとも何れか一方から供給される電力によって駆動されるとともに回生電力を前記蓄電装置に充電可能なトラクションモータと、前記蓄電装置のSOCが所定値以上の状態で余剰電力が発生した場合に前記燃料電池の運転を制限するとともに、前記余剰電力を消費して前記燃料電池の温度を調整する温度調整手段とを備え、前記温度調整手段は車両走行速度が速い程、前記燃料電池の温度を高くする、燃料電池車両。 A fuel cell, a power storage device, a traction motor that is driven by power supplied from at least one of the fuel cell and the power storage device and that can recharge the power storage device, and a SOC of the power storage device A temperature adjusting means for restricting the operation of the fuel cell when surplus power is generated in a state where the power is greater than or equal to a predetermined value, and adjusting the temperature of the fuel cell by consuming the surplus power, and the temperature adjusting means Is a fuel cell vehicle in which the temperature of the fuel cell is increased as the vehicle traveling speed increases . 請求項1に記載の燃料電池車両であって、前記温度調整手段は前記蓄電装置のSOCが所定値以上の状態で余剰電力が発生した場合に前記燃料電池の運転を一時休止させる、燃料電池車両。   2. The fuel cell vehicle according to claim 1, wherein the temperature adjustment unit temporarily stops the operation of the fuel cell when surplus power is generated when the SOC of the power storage device is equal to or higher than a predetermined value. . 請求項1又は請求項2に記載の燃料電池車両であって、前記余剰電力は前記トラクションモータが回生制動時に回収した回生電力である、燃料電池車両。 3. The fuel cell vehicle according to claim 1 , wherein the surplus power is regenerative power collected by the traction motor during regenerative braking. 4. 請求項1乃至請求項3のうち何れか1項に記載の燃料電池車両であって、前記温度調整手段は前記燃料電池車両の空調装置を含む、燃料電池車両。 4. The fuel cell vehicle according to claim 1 , wherein the temperature adjusting unit includes an air conditioner for the fuel cell vehicle. 5. 請求項4に記載の燃料電池車両であって、前記温度調整手段は前記余剰電力の一部を前記燃料電池の温度調整に必要な熱エネルギーとして消費し、前記余剰電力から前記熱エネルギーを控除した残存電力量に基づいて車室の目標温度を調整する、燃料電池車両。 5. The fuel cell vehicle according to claim 4 , wherein the temperature adjusting means consumes a part of the surplus power as heat energy necessary for temperature adjustment of the fuel cell, and subtracts the heat energy from the surplus power. A fuel cell vehicle that adjusts a target temperature of a passenger compartment based on the amount of remaining power. 請求項1乃至請求項5のうち何れか1項に記載の燃料電池車両であって、前記燃料電池の温度調整に伴って燃料電池内部の湿度を調整する湿度調整手段を更に備える、燃料電池車両。 6. The fuel cell vehicle according to any one of claims 1 to 5 , further comprising a humidity adjusting unit that adjusts humidity inside the fuel cell in accordance with temperature adjustment of the fuel cell. .
JP2004210538A 2004-07-16 2004-07-16 Fuel cell vehicle Expired - Fee Related JP4419735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210538A JP4419735B2 (en) 2004-07-16 2004-07-16 Fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210538A JP4419735B2 (en) 2004-07-16 2004-07-16 Fuel cell vehicle

Publications (2)

Publication Number Publication Date
JP2006032169A JP2006032169A (en) 2006-02-02
JP4419735B2 true JP4419735B2 (en) 2010-02-24

Family

ID=35898255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210538A Expired - Fee Related JP4419735B2 (en) 2004-07-16 2004-07-16 Fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP4419735B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923979B2 (en) * 2006-11-24 2012-04-25 トヨタ自動車株式会社 Coordinated cooling system for fuel cell and air conditioning
JP4957206B2 (en) * 2006-11-24 2012-06-20 トヨタ自動車株式会社 Coordinated cooling system for fuel cell and air conditioning
JP4492824B2 (en) 2007-11-21 2010-06-30 トヨタ自動車株式会社 Fuel cell system
JP5824165B2 (en) * 2011-12-09 2015-11-25 バラード パワー システムズ インコーポレイテッド Fuel cell assembly and control method thereof
KR101283178B1 (en) 2011-12-14 2013-07-05 현대자동차주식회사 Fuel cell system for vehicle, and control method thereof
JP6472579B2 (en) 2016-07-01 2019-02-20 三菱電機株式会社 Storage battery cooling control device and storage battery cooling control method
KR101915848B1 (en) * 2016-09-23 2019-01-08 재단법인대구경북과학기술원 Hybrid electricity supplying system containing solid oxide fuel cell and secondary battery and controlling method
JP6617727B2 (en) * 2017-02-02 2019-12-11 トヨタ自動車株式会社 Hybrid vehicle
JP6788228B2 (en) * 2017-03-31 2020-11-25 トヨタ自動車株式会社 Fuel cell vehicle
JP6584020B2 (en) * 2017-12-21 2019-10-02 本田技研工業株式会社 Electric vehicle
JP6584019B2 (en) 2017-12-21 2019-10-02 本田技研工業株式会社 Electric vehicle
KR102540935B1 (en) * 2018-11-29 2023-06-08 현대자동차주식회사 Method for controlling driving of fuel cell system
JP7156194B2 (en) * 2019-07-17 2022-10-19 トヨタ自動車株式会社 hybrid vehicle
JP7455001B2 (en) 2020-05-29 2024-03-25 本田技研工業株式会社 Control system, moving object, and control method

Also Published As

Publication number Publication date
JP2006032169A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US10106012B2 (en) Air-conditioner for vehicle
JP5754346B2 (en) Fuel cell system
JP6687895B2 (en) Vehicle fuel cell warm-up device
KR101136897B1 (en) Air conditioning control system
KR101294164B1 (en) System for managing waste heat of electric car and method therefor
JP5644746B2 (en) Fuel cell vehicle air conditioner
JP4419735B2 (en) Fuel cell vehicle
JP4341356B2 (en) Fuel cell system
JP5673261B2 (en) Fuel cell system
US20070218328A1 (en) Fuel cell system
CN109941117B (en) Electric vehicle
WO2007119688A1 (en) Temperature control system for fuel cell
JP4930270B2 (en) Vehicle and heat exchange system
JP5747701B2 (en) Battery pack temperature control device
JP2013218789A (en) Fuel cell system
JP4984808B2 (en) Air conditioning control system
JP2013177101A (en) Air conditioning control method and air conditioning control system
JP2011131858A (en) Air-conditioning system having fuel cell, air-conditioning method using fuel cell, and fuel cell vehicle having air-conditioning system
JP2009154697A (en) Battery temperature control device
JP7426427B2 (en) Temperature control device and vehicle
JP2018147614A (en) Fuel cell system
JP7472189B2 (en) Temperature control device and vehicle
KR102540935B1 (en) Method for controlling driving of fuel cell system
JP2018147732A (en) Electric vehicle
JP7322498B2 (en) fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees