JP4419615B2 - Sheet manufacturing method - Google Patents

Sheet manufacturing method Download PDF

Info

Publication number
JP4419615B2
JP4419615B2 JP2004070226A JP2004070226A JP4419615B2 JP 4419615 B2 JP4419615 B2 JP 4419615B2 JP 2004070226 A JP2004070226 A JP 2004070226A JP 2004070226 A JP2004070226 A JP 2004070226A JP 4419615 B2 JP4419615 B2 JP 4419615B2
Authority
JP
Japan
Prior art keywords
thickness
adjusting means
sheet
operation amount
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004070226A
Other languages
Japanese (ja)
Other versions
JP2005254647A (en
Inventor
次郎 寺尾
正嗣 上原
肇 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004070226A priority Critical patent/JP4419615B2/en
Publication of JP2005254647A publication Critical patent/JP2005254647A/en
Application granted granted Critical
Publication of JP4419615B2 publication Critical patent/JP4419615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92171Distortion, shrinkage, dilatation, swell or warpage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92438Conveying, transporting or storage of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92447Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92523Force; Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92666Distortion, shrinkage, dilatation, swell or warpage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Description

本発明は、フィルムなどのシートの製造方法に関するものである。   The present invention relates to a method for producing a sheet such as a film.

プラスチックフィルムの製造を例として図面を参照しながら本発明の背景を説明する。図1は一般的なシートの製造設備の全体概略構成を示す図であり、図2は、図1に示す口金の要部拡大斜視図である。シートの製造プロセスは押出機3により押しだされた重合体をシートの厚み調整手段10を幅方向に多数配置した口金4によりシート状に成形し、成形された重合体を、連続的にシート成形プロセス、たとえば延伸機2を通過させ、シート厚みを厚み測定器8にてシート幅方向の分布として測定し(以下、測定したシートの幅方向の厚み分布を厚みプロファイルと呼ぶ)、シートを巻き取るものである。測定した厚みプロファイルを予め設定した厚みプロファイルに近づけるため、口金4のシート幅方向に多数配設されたシートの厚み調整手段10に対応する厚み測定位置での厚み測定値が予め設定された目標値に近づくように、制御装置を介して前記厚み調整手段を制御するようにしたシートの製造方法が行われている。図15は口金4における厚み調整手段10と厚み測定器8の位置での厚み調整手段の対応関係を説明する図である。図15の上部横線は口金4でのシートを表しており、下部横線は厚み測定器8でのシートを表している。口金4での各厚み調整手段10の位置21a〜21dを通過した重合体は、幅方向の延伸をうけ、厚み測定位置で幅方向位置22a〜22dを通過する。したがって、22aでの厚み測定値が目標値に近づくように21aにある厚み調整手段10を制御している。   The background of the present invention will be described with reference to the drawings by taking the production of a plastic film as an example. FIG. 1 is a diagram showing an overall schematic configuration of a general sheet manufacturing facility, and FIG. 2 is an enlarged perspective view of a main part of the base shown in FIG. In the sheet manufacturing process, the polymer extruded by the extruder 3 is formed into a sheet shape by a die 4 in which a number of sheet thickness adjusting means 10 are arranged in the width direction, and the formed polymer is continuously formed into a sheet. The sheet thickness is measured as a distribution in the sheet width direction with a thickness measuring device 8 (hereinafter, the measured thickness distribution in the width direction is referred to as a thickness profile), and the sheet is wound up. Is. In order to bring the measured thickness profile closer to the preset thickness profile, the thickness measurement values at the thickness measurement positions corresponding to the thickness adjusting means 10 of the sheets arranged in the sheet width direction of the base 4 are set in advance. A sheet manufacturing method is performed in which the thickness adjusting means is controlled through a control device so as to approach the distance. FIG. 15 is a view for explaining the correspondence between the thickness adjusting means 10 in the base 4 and the thickness adjusting means at the position of the thickness measuring device 8. The upper horizontal line in FIG. 15 represents the sheet at the base 4, and the lower horizontal line represents the sheet at the thickness measuring device 8. The polymer that has passed through the positions 21a to 21d of each thickness adjusting means 10 in the base 4 is subjected to stretching in the width direction, and passes through the width direction positions 22a to 22d at the thickness measurement position. Therefore, the thickness adjusting means 10 at 21a is controlled so that the thickness measurement value at 22a approaches the target value.

このようなシートの製造方法においては、各厚み調整手段とシート厚みの測定位置との対応関係が精度良く決定されていることが重要である。精度良く決定されていないと、図15で22aのシート厚みを調整するために21bの厚み調整手段を操作すると、22bのシート厚みが変わるなど、本来調整すべき位置とは異なった位置のシート厚みを変更することになり、シートの厚みを精度良く制御することができず、シートの品質が低下する。   In such a sheet manufacturing method, it is important that the correspondence between each thickness adjusting means and the sheet thickness measurement position is determined with high accuracy. If the thickness is not accurately determined, operating the thickness adjusting unit 21b in order to adjust the thickness of the sheet 22a in FIG. Therefore, the thickness of the sheet cannot be accurately controlled, and the quality of the sheet is deteriorated.

厚み調整手段とシート厚み測定位置の対応関係を決定する方法としては、シートが幅方向の各所で、シート幅方向に均一に延伸されるものであれば、キャスト位置でのシート幅と測定位置でのシート幅の相似的な関係から各厚み調整手段に対応する測定位置を決定することができる。しかし、実際にはシート幅方向で場所によって延伸状態が異なるため、上記のように単純に相似関係を利用して対応関係を決定することはできず、各厚み調整手段に対応する測定位置を実測する必要がある。   As a method for determining the correspondence between the thickness adjusting means and the sheet thickness measurement position, the sheet width at the cast position and the measurement position can be used as long as the sheet is uniformly stretched in the sheet width direction at various points in the width direction. The measurement position corresponding to each thickness adjusting means can be determined from the similar relationship between the sheet widths. However, since the stretched state actually varies depending on the location in the sheet width direction, the correspondence cannot be determined simply by using the similarity as described above, and the measurement position corresponding to each thickness adjusting means is actually measured. There is a need to.

厚み調整手段と測定位置の対応関係を決定する際に通常用いられている方法は、厚みが安定している時に厚み測定器により厚みプロファイルを測定しておき、特定の厚み調整手段に製品製造時とは大きく異なる操作量を与え、シートの厚みが定常状態になったところで再度厚み測定器により厚みプロファイルを測定することで、厚み調整手段を操作したことにより起こるシートの局所的な厚み変動の幅方向分布(以下、厚みの空間的変動成分と呼ぶ)を求め、求めた厚みの空間的変動成分からピーク位置を検出し、ピーク位置に最も近い測定位置を前記厚み調整手段の対応位置とする特許文献1に記載の方法である。   The method usually used to determine the correspondence between the thickness adjustment means and the measurement position is that the thickness profile is measured with a thickness meter when the thickness is stable, and the specific thickness adjustment means is used during product manufacture. When the thickness of the sheet reaches a steady state, the thickness profile is measured again with the thickness meter, and the width of the local thickness fluctuation caused by operating the thickness adjusting means is given. Patent for obtaining a direction distribution (hereinafter referred to as a spatial variation component of thickness), detecting a peak position from the obtained spatial variation component of thickness, and setting a measurement position closest to the peak position as a corresponding position of the thickness adjusting means The method described in Document 1.

しかし、厚みの空間的変動成分を求める際に、厚みの時間変動が定常状態になった時の厚みプロファイルから操作量変化を与える前の厚みプロファイルを減算するため、実際の厚み測定値に含まれる厚み測定器からのノイズやシートの流れ方向の厚みムラの影響が増大する。そして前記ノイズ等の影響が大きい厚みの空間的変動成分からピーク位置を精度良く検出するためには、前記ノイズ等よりも大きく厚みを変動させなければならない。そのため幅方向の空間的な厚み分布が製品製造時と大きく異なることに起因して、シートの延伸工程において製品製造時とは延伸の挙動が異なることがあり、精度の良く対応位置を求めることが難しい場合が少なくない。   However, when obtaining the spatial variation component of the thickness, the thickness profile before the change in the operation amount is subtracted from the thickness profile when the temporal variation of the thickness is in a steady state, and therefore included in the actual thickness measurement value. The influence of noise from the thickness measuring instrument and thickness unevenness in the sheet flow direction increases. In order to accurately detect the peak position from the spatial variation component of the thickness that is greatly affected by the noise or the like, the thickness must be varied more than the noise or the like. Therefore, due to the fact that the spatial thickness distribution in the width direction is greatly different from that at the time of product manufacture, the stretching behavior may differ from that at the time of product manufacture in the sheet stretching process, and the corresponding position can be obtained with high accuracy. It is often difficult.

またピーク位置を求める際に厚み測定器からのノイズやシートの流れ方向の厚みムラの影響を減らす工夫として、予め厚み調整手段に与える操作量を変化させた時に予想される厚みプロファイルの時系列パターンを例えば図13に示したように作成しておき、例えば図14に示したような実際に操作量を変化させたの厚みプロファイルの時系列パターンと比較することでピーク位置を決定する特許文献2に記載の方法がある。この方法では定常状態の厚みプロファイルに加えて非定常状態の時の厚みプロファイルの時系列パターンも用いるので、ノイズやシートの流れ方向の厚みムラの影響を減らしている。しかし、厚み調整手段とシート厚み測定位置の対応関係を決定する際には、厚み調整手段を操作する前の厚みプロファイルに凹凸がなく平らであれば良いが、実際には厚みプロファイルの凹凸を完全になくすことはできない。そのため、厚み調整手段を操作する前の厚みプロファイルの凹凸に起因して決定したピーク位置に誤差が含まれる問題がある。また、厚み調整手段を操作する前の厚みプロファイルの凹凸を排除するために、各時系列の厚みプロファイルから操作量変化を与える前の厚みプロファイルを減算するため、実際の厚み測定値に含まれる厚み測定器からのノイズやシートの流れ方向の厚みムラの影響が増大し、決定したピーク位置に誤差が含まれる問題もある。   In addition, as a contrivance to reduce the influence of noise from the thickness measuring instrument and thickness unevenness in the sheet flow direction when determining the peak position, a time-series pattern of the thickness profile expected when the amount of operation given to the thickness adjusting means is changed in advance 13 is created as shown in FIG. 13, for example, and the peak position is determined by comparing with the time-series pattern of the thickness profile in which the operation amount is actually changed as shown in FIG. There is a method described in. In this method, in addition to the steady-state thickness profile, the time-series pattern of the non-steady-state thickness profile is also used, thereby reducing the influence of noise and thickness unevenness in the sheet flow direction. However, when determining the correspondence between the thickness adjusting means and the sheet thickness measurement position, it is sufficient that the thickness profile before operating the thickness adjusting means is flat with no irregularities. It cannot be lost. Therefore, there is a problem that an error is included in the peak position determined due to the unevenness of the thickness profile before operating the thickness adjusting means. In addition, in order to eliminate unevenness of the thickness profile before operating the thickness adjusting means, the thickness profile included in the actual thickness measurement value is subtracted from the thickness profile before the operation amount change is applied from each time series thickness profile. There is also a problem that the influence of noise from the measuring instrument and thickness unevenness in the flow direction of the sheet increases, and an error is included in the determined peak position.

また、任意の厚み調整手段に与える操作量を変更すると、前記厚み調整手段の対応位置近傍で厚み分布が変化することから、任意の厚み調整手段に与える操作量の時系列データと、幅方向に全てもしくは一部の厚み測定位置での厚み時系列データに対して相互相関を適用することで両者の相関関係を定量化し、前記厚み調整手段に与える操作量の時系列データと最も相関の大きい厚みの時系列データである厚み測定位置を対応位置として決定する特許文献3に記載の方法がある。特許文献3に記載されている手法では厚み調整手段に与える操作量は製品製造時の実際の制御信号であるため、結果的に得られた厚み分布はほとんど時間変化しない通常平坦な目標の形状となる。そのため特許文献1の発明とは異なり、操作量変動に起因する厚み変動は小さいので、厚み測定でのノイズ等に埋もれやすく、操作量データと厚みの時系列データの相関が小さくなってしまう。ゆえに対応位置を決定するには多量のデータが必要となり現実には用いることが難しい。
特開平9−323351号公報 特開2002−86539号公報 特開昭62−286723号公報 株式会社日科技連出版社発行大村平著「多変量解析のはなし」134ページから161ページ
In addition, if the operation amount given to the arbitrary thickness adjusting means is changed, the thickness distribution changes in the vicinity of the corresponding position of the thickness adjusting means, so the time series data of the operating amount given to the arbitrary thickness adjusting means and the width direction By applying cross-correlation to thickness time-series data at all or some thickness measurement positions, the correlation between the two is quantified, and the thickness having the greatest correlation with the time-series data of the operation amount given to the thickness adjusting means There is a method described in Patent Document 3 in which the thickness measurement position, which is time series data, is determined as the corresponding position. In the method described in Patent Document 3, since the operation amount given to the thickness adjusting means is an actual control signal at the time of product manufacture, the thickness distribution obtained as a result is usually a flat target shape that hardly changes over time. Become. Therefore, unlike the invention of Patent Document 1, the thickness variation due to the operation amount variation is small, so that it is easily buried in noise or the like in the thickness measurement, and the correlation between the operation amount data and the time series data of the thickness becomes small. Therefore, a large amount of data is required to determine the corresponding position, and it is difficult to use in reality.
JP-A-9-323351 JP 2002-86539 A JP-A-62-286723 Published by Nikka Giren Publisher, Taira Omura, “The Story of Multivariate Analysis”, pages 134 to 161

本発明の課題は、厚み調整手段の違いやシートの製造条件に応じて、厚み調整手段と厚み測定位置とのシート幅方向における相互の位置の対応関係を求めるに際して、精度良く厚み調整手段と厚み測定位置とのシート幅方向における相互の位置の対応関係を決定し、厚みを精度良く制御できるシートの製造方法を提供することにある。 An object of the present invention is to obtain a thickness adjusting unit and a thickness with high accuracy when determining the correspondence between the thickness adjusting unit and the thickness measurement position in the sheet width direction according to the difference in the thickness adjusting unit and the manufacturing conditions of the sheet. It is an object of the present invention to provide a sheet manufacturing method capable of determining a correspondence relationship between positions in a sheet width direction with respect to a measurement position and controlling thickness with high accuracy.

上記課題を解決するために、本発明によれば、複数個の厚み調整手段を備えたダイを用いて重合体をシート状に押し出し、成形して所望の厚みのシートとなすとともに、そのシート幅方向の厚み分布を測定し、測定値に基づいて各測定位置に対応する前記厚み調整手段に加える操作量を計算し、この操作量によって厚み調整手段を操作してシート厚みを制御するシートの製造方法であって、前記複数の厚み調整手段に次式(1)を満たす、プローブ分を含む操作量を与え、その結果得られたシート厚み分布測定値の時系列データから、次式(2)で近似される厚み分布の変動を抽出し、抽出した厚み変動成分から前記厚み調整手段と厚み測定位置との前記シート幅方向における相互の位置の対応関係を決定し、該対応関係に基づいて前記厚み調整手段を操作することを特徴とする、シートの製造方法が提供される。
u(t)=u0+f(t)×Δu ・・・式(1)
0+g(t)×Δy ・・・式(2)
ここで、
t:時刻
u(t):時刻tにおいて前記各厚み調整手段に与える操作量ベクトル
Δu:操作量ベクトルの前記プローブ分の幅方向における空間的変動成分ベクトル
f(t):操作量ベクトルの前記プローブ分の時刻tにおける時間的変動成分
0:操作量に前記プローブ分を与える前の前記各厚み調整手段に与える操作量ベクトル
Δy:操作量に前記プローブ分の操作量を与え始めた後の厚み変動の厚み測定位置での幅方向における空間的変動成分ベクトル
g(t):操作量に前記プローブ分の操作量を与え始めた後の厚み変動の時刻tにおける時間的変動成分
0:操作量に前記プローブ分の操作量を与える前の厚み測定位置での幅方向厚み分布ベクトル
また、本発明の別の形態によれば、複数個の厚み調整手段を備えたダイを用いて重合体をシート状に押し出し、成形して所望の厚みのシートとなすとともに、そのシート幅方向の厚み分布を測定し、測定値に基づいて各測定位置に対応する前記厚み調整手段に加える操作量を計算し、この操作量によって厚み調整手段を操作してシート厚みを制御するシートの製造方法であって、前記複数の厚み調整手段に次式(3)を満たす、周期Tで時間的に変動するプローブ分を含む操作量を与え、その結果得られたシート厚み分布測定値の時系列データから、周期的に時間変動する厚みの幅方向空間的変動成分を抽出し、抽出した厚み変動から前記厚み調整手段と厚み測定位置との前記シート幅方向における相互の位置の対応関係を決定し、該対応関係に基づいて前記厚み調整手段を操作することを特徴とする、シートの製造方法が提供される。
u(t)=u0+Σi=1 M(h(t+Tφi/(2π))Δui)・・・式(3)
ここで、
t:時刻
u(t):時刻tにおいて前記各厚み調整手段に与える操作量ベクトル
M:操作量ベクトルの前記プローブ分に含まれる、前記周期Tで変動する成分の数(1以上の自然数)
Δui:操作量ベクトルの前記プローブ分のi番目の成分の幅方向の空間的変動成分ベクトル(ここで、i≠jを満たす任意のi,jにおいてΔui≠Δujであり、また任意のiにおいてΔui≠0である(iおよびj=1,2,・・・,M))
h(t):操作量ベクトルの前記プローブ分の時刻tにおける時間的変動成分であり、周期がTである関数
φi:操作量ベクトルの前記プローブ分のi番目の成分の幅方向の空間的変動成分Δuiの位相(ここで、M=2以上の場合、i≠jを満たす任意のi,jにおいてφi≠φjかつ|φi|<πである(iおよびj=1,2,・・・,M))
0:操作量に前記プローブ分を与える前の前記各厚み調整手段に与える操作量ベクトル
また、本発明の好ましい形態によれば、前記プローブ分の空間的変動成分として、シート幅方向の中央部の値よりも端部の値小さなものを用いることを特徴とするシートの製造方法が提供される。
In order to solve the above problems, according to the present invention, a polymer is extruded into a sheet using a die provided with a plurality of thickness adjusting means, and formed into a sheet having a desired thickness, and its sheet width Manufacturing a sheet for measuring the thickness distribution in the direction, calculating an operation amount to be applied to the thickness adjusting unit corresponding to each measurement position based on the measurement value, and controlling the sheet thickness by operating the thickness adjusting unit according to the operation amount In this method, an operation amount including a probe that satisfies the following equation (1) is given to the plurality of thickness adjusting means, and from the time series data of the sheet thickness distribution measurement value obtained as a result, the following equation (2) The thickness distribution fluctuation approximated by is extracted, and the correspondence relationship between the thickness adjusting means and the thickness measurement position in the sheet width direction is determined from the extracted thickness fluctuation component, and based on the correspondence relation, Thickness Characterized by operating the integer unit, the production method of the sheet is provided.
u (t) = u 0 + f (t) × Δu (1)
y 0 + g (t) × Δy (2)
here,
t: Time u (t): Manipulation vector Δu given to each thickness adjusting means at time t: Spatial variation component vector f (t) of the manipulation vector in the width direction of the probe The probe of the manipulation vector Time fluctuation component u 0 at time t of minutes: Operation amount vector Δy given to each thickness adjusting means before giving the probe amount to the operation amount: Thickness after starting to give the operation amount for the probe to the operation amount Spatial fluctuation component vector g (t) in the width direction at the thickness measurement position of fluctuation: Time fluctuation component y 0 at time t of thickness fluctuation after starting to give the manipulation quantity for the probe to the manipulation quantity: Manipulation quantity The thickness direction distribution vector in the width direction at the thickness measurement position before giving the manipulated variable for the probe. According to another aspect of the present invention, a polymer using a die provided with a plurality of thickness adjusting means Is molded into a sheet with a desired thickness, the thickness distribution in the sheet width direction is measured, and the amount of operation applied to the thickness adjusting means corresponding to each measurement position is calculated based on the measured value A sheet manufacturing method for controlling the sheet thickness by operating the thickness adjusting means according to the operation amount, wherein the plurality of thickness adjusting means satisfy the following expression (3) and vary with time in the period T: The amount of operation including the minute is given, and the width direction spatial variation component of the thickness periodically varying from the time series data of the sheet thickness distribution measurement value obtained as a result is extracted, and the thickness adjustment is performed from the extracted thickness variation determining the correspondence between the positions of each other in the sheet width direction of the means and the thickness measuring position, characterized by operating the thickness adjusting means based on the correspondence relation, the production method of the sheet is provided It is.
u (t) = u 0 + Σ i = 1 M (h (t + Tφ i / (2π)) Δu i ) (3)
here,
t: Time u (t): Manipulation vector M given to each thickness adjusting means at time t: Number of components varying in the period T included in the probe of the manipulating vector (a natural number of 1 or more)
Δu i : Spatial variation component vector in the width direction of the i-th component for the probe of the manipulated variable vector (where Δu i ≠ Δu j at any i and j satisfying ij , and any Δi i ≠ 0 at i (i and j = 1, 2,..., M))
h (t): a temporal variation component at time t of the probe portion of the operation amount vector, periodic functions is a T phi i: spatial width direction of the i th component of the probe portion of the operation amount vector Phase of the fluctuation component Δu i (where M = 2 or more, φ i ≠ φ j and | φ i | <π at any i, j that satisfies i ≠ j (i and j = 1, 2) , ..., M))
u 0 : Operation amount vector given to each thickness adjusting means before giving the probe amount to the operation amount According to a preferred embodiment of the present invention, as a spatial variation component for the probe, a central portion in the sheet width direction the value of the value Rimotan unit manufacturing method of the sheet, which comprises using small objects is provided.

本発明によれば、以下に説明するとおり、製品製造時に近い小さな厚み変動で、厚み測定器の測定ノイズおよびシートの流れ方向の厚みムラの影響をあまり受けずに、操作量に起因した幅方向の空間的な厚み変動を抽出することにより、正確に厚み調整手段と厚み測定位置とのシート幅方向における相互の位置の対応関係が決定出来る。したがって、シートを製造する場合には、決定した対応関係を用いて厚み調整が正確に行えるので、歩留まりが向上し生産性が向上する。 According to the present invention, as will be described below, the width direction caused by the operation amount is less affected by the measurement noise of the thickness measuring instrument and the thickness unevenness in the flow direction of the sheet with a small thickness fluctuation near the time of product manufacture. By extracting the spatial thickness fluctuations, it is possible to accurately determine the correspondence between the positions of the thickness adjusting means and the thickness measurement position in the sheet width direction . Therefore, when manufacturing a sheet, the thickness can be adjusted accurately using the determined correspondence, so that the yield is improved and the productivity is improved.

以下、本発明の最良の実施形態の例をプラスチックフィルムの製造に適用した場合を例にとって、図面を参照しながら説明する。   Hereinafter, an example in which the embodiment of the present invention is applied to the production of a plastic film will be described with reference to the drawings.

図1は、一般的なシートの製造設備の全体概略構成を示す図であり、図2は、図1に示す口金の要部拡大斜視図である。   FIG. 1 is a diagram showing an overall schematic configuration of a general sheet manufacturing facility, and FIG. 2 is an enlarged perspective view of a main part of the base shown in FIG.

このシートの製造設備は、重合体を押し出す押出機3と、押し出された重合体をシート状に成形する口金4、前記シート状に成形された重合体(以下シート1という)を冷却する冷却ロール5、シート1をシート幅方向および/またはシート流れ方向に延伸する延伸機2、延伸されたシート1を巻き取る巻取機6を備えている。口金4は、シート1の幅方向(図の紙面に直交する方向)に配列された多数の厚み調整手段10と重合体を吐出する間隙11を備えている。さらにこのシートの製造設備は、シートの幅方向に厚み分布を測定する厚み測定器8と、前記厚み分布に基づいて厚み調整手段を制御する制御手段9を備えている。   The sheet manufacturing equipment includes an extruder 3 for extruding a polymer, a die 4 for forming the extruded polymer into a sheet, and a cooling roll for cooling the polymer formed into the sheet (hereinafter referred to as sheet 1). 5. A stretching machine 2 that stretches the sheet 1 in the sheet width direction and / or the sheet flow direction, and a winder 6 that winds the stretched sheet 1 are provided. The base 4 includes a large number of thickness adjusting means 10 arranged in the width direction of the sheet 1 (a direction perpendicular to the drawing sheet) and a gap 11 for discharging the polymer. Further, the sheet manufacturing facility includes a thickness measuring device 8 that measures the thickness distribution in the width direction of the sheet, and a control unit 9 that controls the thickness adjusting unit based on the thickness distribution.

厚み測定器8はシート1の厚みをシート幅方向に走査してシートの幅方向の厚み分布を測定する。厚み測定器8としては、β線、X線、赤外線等の吸収を利用したものや、可視光、赤外光等の干渉を利用したもの等、任意の厚み測定器を用いることができる。   The thickness measuring device 8 scans the thickness of the sheet 1 in the sheet width direction and measures the thickness distribution in the sheet width direction. As the thickness measuring device 8, any thickness measuring device such as a device using absorption of β rays, X rays, infrared rays or the like, or a device using interference of visible light, infrared light or the like can be used.

制御手段9は、上記シート1の厚み測定値と目標厚み値との差値に基づいて、操作量を演算し、操作量を厚み調整手段10に加える。   The control unit 9 calculates an operation amount based on the difference value between the thickness measurement value of the sheet 1 and the target thickness value, and adds the operation amount to the thickness adjustment unit 10.

厚み調整手段10は、口金4にシートの幅方向に複数個(ここではn個とする)、等間隔で配設されている。具体的構成としては、厚み調整手段10にヒートボルトを用い、これらのボルトの温度を変化させてボルトを熱膨張、収縮させることにより口金4の間隙11を調整するヒートボルト方式や、厚み調整手段10にリップヒーターを用い、重合体の温度を変化させて重合体の粘性率の変化により口金4から吐出される重合体の吐出量を変えることによりシート1の厚みを調整するリップヒーター方式のものを用いることができる。   A plurality of thickness adjusting means 10 are arranged in the base 4 in the width direction of the sheet (here, n) at equal intervals. Specifically, heat bolts are used for the thickness adjusting means 10, and a heat bolt system for adjusting the gap 11 of the base 4 by changing the temperature of these bolts to thermally expand and contract these bolts, or thickness adjusting means. A lip heater system that uses a lip heater 10 to adjust the thickness of the sheet 1 by changing the temperature of the polymer and changing the discharge amount of the polymer discharged from the die 4 by changing the viscosity of the polymer. Can be used.

制御手段9が操作量を演算する際には、上記シート1の厚み測定値と目標厚み値との差である偏差データに対してフィルタ処理等の変換処理を行うことが好ましい。フィルタ処理としては、シートの幅方向に移動平均処理する幅方向のフィルタ処理や、過去の偏差データとの間で加重平均処理する時間方向のフィルタ処理などを用いることができる。   When the control means 9 calculates the manipulated variable, it is preferable to perform a conversion process such as a filter process on the deviation data that is the difference between the measured thickness value of the sheet 1 and the target thickness value. As the filter processing, it is possible to use a width-direction filtering process that performs moving average processing in the sheet width direction, a time-direction filtering process that performs weighted averaging processing with respect to past deviation data, and the like.

さらに制御手段9は、上記のフィルタ処理ずみの、厚み調整手段の数に個数を間引いた偏差データに基づいて操作量を算出し、厚み調整手段10を制御する。制御方法は、PID制御や数学的モデルを利用した現代制御を用いることができる。   Further, the control means 9 controls the thickness adjusting means 10 by calculating the manipulated variable based on the deviation data obtained by thinning the number of the thickness adjusting means after filtering. As the control method, PID control or modern control using a mathematical model can be used.

上記シートの製造設備において、各厚み調整手段と各厚み測定位置との対応関係はおよそわかっているが、精度よくシートの厚みを制御するには、前記対応関係が精度よく決定されていることが望ましい。以下に本実施形態における、シートの各厚み調整手段と各厚み測定位置の対応関係を決定する方法について説明する。   In the sheet manufacturing facility, the correspondence between each thickness adjusting means and each thickness measurement position is roughly known, but in order to control the thickness of the sheet with high accuracy, the correspondence is determined with high accuracy. desirable. Hereinafter, a method for determining the correspondence between each thickness adjusting means of the sheet and each thickness measurement position in the present embodiment will be described.

まず、厚み測定位置における対応位置を求めたい厚み調整手段10−kを1個以上選ぶ(k=1,2,・・・,n)。次に選んだ厚み調整手段10−kに対して次式(1)を満たす、プローブ分を含む操作量を与える。
u(t)=u0+f(t)×Δu ・・・式(1)
ここで
t:時刻(t=1,2,・・・td)
td:操作量ベクトルの前記プローブ分を与える時間
u(t):時刻tにおける、各厚み調整手段10−m(m=1,2,・・・,n)に与える操作量を要素とする操作量ベクトル
Δu:各厚み調整手段に与える操作量ベクトルの前記プローブ分の空間的変動成分ベクトル(k番目の要素≠0)
f(t):操作量ベクトルの前記プローブ分における時刻tでの時間的変動成分(t=1,2,・・,tdの少なくとも1つにおいてf(t)≠0)
0:操作量ベクトルに前記プローブ分を与える前の前記各厚み調整手段に与える操作量ベクトル
である。ここで操作量ベクトルのプローブ分とは、操作量の時間的および空間的な変動成分を表し、具体的には式(1)の第2項のこととする。
First, one or more thickness adjusting means 10-k for which the corresponding position at the thickness measurement position is desired is selected (k = 1, 2,..., N). Next, an operation amount including the probe that satisfies the following expression (1) is given to the selected thickness adjusting means 10-k.
u (t) = u 0 + f (t) × Δu (1)
Where t: time (t = 1, 2,... Td)
td: time for giving the probe of the operation amount vector u (t): operation with the operation amount given to each thickness adjusting means 10-m (m = 1, 2,..., n) at time t as an element Amount vector Δu: Spatial variation component vector for the probe of the operation amount vector given to each thickness adjusting means (kth element ≠ 0)
f (t): temporal variation component at time t in the probe amount of the manipulated variable vector (f (t) ≠ 0 in at least one of t = 1, 2,..., td)
u 0 is an operation amount vector given to each thickness adjusting means before giving the probe amount to the operation amount vector. Here, the probe amount of the manipulated variable vector represents a temporal and spatial fluctuation component of the manipulated variable, and specifically, the second term of the equation (1).

なお時刻tは演算を簡単にするために連続的ではなく、離散的に捉えて、厚み測定器8がシートを幅方向に走査することでシートの厚み分布を測定し、1回の走査が終了した各時点で定義している。多少演算が複雑になるが、もちろん時刻tを連続的に捉えることもできる。以下、本実施の形態においては時刻を離散的なものとして説明する。
また選んだ厚み調整手段から遠く離れた厚み調整手段へ与える操作量は、選んだ厚み調整手段に干渉する可能性もあるので固定しておき(Δuの各要素のうち、選んだ厚み調整手段から遠い厚み調整手段に対応する成分がゼロ)、制御をしないことが望ましい。ただし、本発明を実施する際に制御で除去すべき外乱が多い場合には、選んだ厚み調整手段から干渉しない程度離れた厚み調整手段は制御をしておくのも望ましい形態である。
Note that the time t is not continuous but is discrete to simplify the calculation, and the thickness measuring device 8 scans the sheet in the width direction to measure the thickness distribution of the sheet, and one scan is completed. Defined at each point. Although the operation is somewhat complicated, it is of course possible to capture the time t continuously. Hereinafter, in the present embodiment, the time will be described as discrete.
Also, the amount of operation given to the thickness adjusting means far away from the selected thickness adjusting means may be interfered with the selected thickness adjusting means, so it is fixed (from among the elements of Δu, from the selected thickness adjusting means. The component corresponding to the distant thickness adjusting means is zero), and it is desirable not to control. However, when there are a lot of disturbances to be removed by control when carrying out the present invention, it is also desirable to control the thickness adjusting means separated from the selected thickness adjusting means so as not to interfere.

この際、上記厚み調整手段10−kのみではなく、上記厚み調整手段10−kを中心とする幅方向に連続する厚み調整手段群(たとえば、k−2、k−1、k、k+1およびk+2番目の各厚み調整手段の集まり)に対して式(1)を満たすとともに、上記厚み調整手段10−kを中心として対称で幅方向に滑らかな分布をもつ操作量の空間的変動成分(式(1)におけるΔu)を与えることも、厚み調整手段がヒートボルト方式の場合は厚み調整手段内部に持つひずみエネルギーを小さくし無理な変形をさせないという観点で、またリップヒーター方式の場合でも幅方向位置毎でリップ温度の高低差を大きくしないという観点で望ましい形態である。ここで滑らかとは、例えば隣接する厚み調整手段に与える操作量の空間的変動成分の差が所定の値以下となることなどで定量化できる。操作量を与える厚み調整手段を特定の厚み調整手段のみとする場合でも、連続する厚み調整手段群とする場合でも、対応関係を求めたい厚み調整手段(群)が2個以上であるならば、選んだ厚み調整手段または選んだ厚み調整手段を中心とする厚み調整手段群はそれぞれの操作量変化による厚み空間的変動分布が互いに重ならない、すなわち干渉しない程度に間隔を離すことが対応位置を決定する際の容易さの観点から好ましい。   At this time, not only the thickness adjusting means 10-k but also a thickness adjusting means group (for example, k-2, k-1, k, k + 1, and k + 2) continuous in the width direction centering on the thickness adjusting means 10-k. The spatial variation component of the manipulated variable (formula (equation (1)) satisfying the formula (1) for the first thickness adjusting means) and having a smooth distribution in the width direction symmetrically about the thickness adjusting means 10-k. Δu) in 1) is also given from the viewpoint that the strain energy in the thickness adjusting means is reduced when the thickness adjusting means is a heat bolt type so as not to cause excessive deformation. This is desirable from the viewpoint of not increasing the difference in the lip temperature. Here, “smooth” can be quantified, for example, when the difference in the spatial variation component of the manipulated variable given to the adjacent thickness adjusting means is equal to or less than a predetermined value. Even when only a specific thickness adjusting means is used as the thickness adjusting means for providing the operation amount, even when the thickness adjusting means is a continuous thickness adjusting means group, if there are two or more thickness adjusting means (groups) for which a correspondence relationship is desired, The selected thickness adjusting means or the thickness adjusting means group centered on the selected thickness adjusting means determines the corresponding position that the thickness spatial variation distribution due to the change of each operation amount does not overlap each other, that is, the distance is separated so as not to interfere with each other. This is preferable from the viewpoint of ease of operation.

f(t)に関しては、矩形波状の関数や正弦波状の関数などt=1,2,・・・,tdの少なくとも1つにおいてf(t)≠0の関数を任意に取ることができる。   With respect to f (t), a function of f (t) ≠ 0 can be arbitrarily selected at least one of t = 1, 2,..., td, such as a rectangular wave function or a sine wave function.

また操作量ベクトルの前記プローブ分における幅方向の空間的変動成分ベクトルΔu、および時間的変動成分f(t)は、製品製造時の重合体の流れと前記プローブ分を含む操作量を与えた時の重合体の流れとの違いが許容値以下であるような厚み変化量、厚み測定器のノイズの大きさ、シートの流れ方向の厚みムラの大きさ、厚み調整手段の応答の速さ、操作量を変化させた時の厚み変化量の割合を表すプロセスゲイン等のプロセスパラメータおよび測定に要する時間と測定の精度から適宜決定すれば良い。望ましくは、厚み調整手段に式(1)を満たす操作量を与えた時に、見込まれる厚み変化の大きさが、特定の幅方向位置に固定した厚み測定器から得られる1分から10分間の測定データの標準偏差と比較して2倍以上10倍以下となる操作量を与えることが望ましい。   Further, the spatial variation component vector Δu in the width direction and the temporal variation component f (t) in the probe amount of the operation amount vector give the operation amount including the polymer flow and the probe amount at the time of product manufacture. Variation in thickness such that the difference from the polymer flow is less than the allowable value, the noise level of the thickness meter, the thickness unevenness in the sheet flow direction, the speed of response of the thickness adjusting means, the operation What is necessary is just to determine suitably from process parameters, such as a process gain showing the ratio of the amount of thickness changes when changing quantity, time required for measurement, and measurement accuracy. Desirably, when the operation amount satisfying the expression (1) is given to the thickness adjusting means, the expected thickness change is measured data from 1 minute to 10 minutes obtained from a thickness measuring instrument fixed at a specific width direction position. It is desirable to provide an operation amount that is 2 to 10 times that of the standard deviation.

製品製造時の重合体の流れや前記プローブ分を含む操作量を与えた時の重合体の流れを調べる方法としては、特定の厚み調整手段を選び、口金4の先端の間隙11から重合体が押し出される位置において、上記特定の厚み調整手段に該当する位置に錐状の鋭利な物体を用いて押し出される重合体にケガキ線をつける方法や、口金4から押し出され冷却ドラム上にある重合体にインクを用いて印をつける方法がある。   As a method of examining the flow of the polymer at the time of manufacturing the product and the flow of the polymer when the operation amount including the probe is given, a specific thickness adjusting means is selected, and the polymer is removed from the gap 11 at the tip of the base 4. At the position to be extruded, a method of marking the polymer extruded using a cone-shaped sharp object at a position corresponding to the specific thickness adjusting means, or a polymer extruded from the base 4 and on the cooling drum There is a method of marking with ink.

なお、上記のように重合体の流れの変化を調べることは、操作量の幅方向の空間的変動成分Δu、および時間的変動成分f(t)を決める際に一度以上実施すれば良い。製品製造時の重合体の流れと操作量変動を与えた時の重合体の流れの違いの許容値は、厚み調整手段と測定位置の対応関係の必要精度によって決められる。少なくともシートの流れ方向において厚み測定器8のある厚み測定位置にて可視化した重合体の流れの変動が、厚み測定位置での厚み調整手段の間隔に換算して、厚み調整手段0.5個分以下の長さであるのが好ましい。より好ましくは厚み調整手段0.2個分以下の長さにする。   Note that the change in the flow of the polymer as described above may be performed once or more when determining the spatial variation component Δu in the width direction of the manipulated variable and the temporal variation component f (t). The allowable value of the difference between the polymer flow at the time of product manufacture and the polymer flow when the manipulated variable is changed is determined by the required accuracy of the correspondence between the thickness adjusting means and the measurement position. At least in the flow direction of the sheet, the fluctuation in the flow of the polymer visualized at a certain thickness measurement position of the thickness measuring device 8 is converted into an interval of the thickness adjustment means at the thickness measurement position, and 0.5 thickness adjustment means. The following lengths are preferred. More preferably, the length is equal to or less than 0.2 thickness adjusting means.

次に厚み調整手段に式(1)を満たすプローブ分を含む操作量を与え始めてからの厚み測定器8から得られるシートの厚みプロファイルの時系列データから、式(2)で近似される厚み変動を抽出する。
0+g(t)×Δy ・・・式(2)
ここで、
t:時刻(t=1,2,・・・td)
td:操作量ベクトルの前記プローブ分を与える時間。
Δy:操作量に前記プローブ分の操作量を与え始めてからの厚み変動の厚み測定位置での幅方向における空間的変動成分ベクトル(≠零ベクトル)
g(t):操作量に前記プローブ分の操作量を与え始めてからの厚み変動の時刻tにおける時間的変動成分
0:操作量に前記プローブ分の操作量を与える前の厚み測定位置での幅方向厚み分布ベクトル
である。
Next, from the time series data of the sheet thickness profile obtained from the thickness measuring instrument 8 after starting to give the manipulated variable including the probe satisfying the formula (1) to the thickness adjusting means, the thickness fluctuation approximated by the formula (2) To extract.
y 0 + g (t) × Δy (2)
here,
t: Time (t = 1, 2,... td)
td: time for giving the probe amount of the manipulated variable vector.
Δy: Spatial variation component vector (≠ zero vector) in the width direction at the thickness measurement position of the thickness variation after the manipulation amount corresponding to the probe starts to be given to the manipulation amount
g (t): Time variation component at time t of the thickness fluctuation after starting to give the manipulated variable for the probe to the manipulated variable y 0 : at the thickness measurement position before giving the manipulated variable for the probe to the manipulated variable It is a width direction thickness distribution vector.

図17はある連続的な時刻における厚み測定器8の幅方向位置を示す図である。図17に示したように、厚み分布測定時に厚み測定器8がシートを幅方向に走査し、その軌跡30がジグザグ状になるため、ある幅方向位置で厚みを測定する時刻は27a〜27cであるのに対して、他の幅方向位置で厚みを測定するのは28a〜28cとなり、厳密には各幅方向位置での厚みは同時刻の厚みではない。   FIG. 17 is a diagram showing the position in the width direction of the thickness measuring device 8 at a certain continuous time. As shown in FIG. 17, when measuring the thickness distribution, the thickness measuring device 8 scans the sheet in the width direction, and the locus 30 becomes zigzag, so the time when the thickness is measured at a certain position in the width direction is 27a to 27c. On the other hand, the thicknesses measured at other positions in the width direction are 28a to 28c. Strictly speaking, the thickness at each position in the width direction is not the thickness at the same time.

しかし、厚み調整手段10にヒートボルトもしくリップヒータのどちらを用いた場合でも、一般に応答が遅いために近似的に27aの時刻も28aの時刻の両方とも29aに得られたと近似して計算しても良い。また27aの時刻に得られた厚み測定値を直接使うのではなく、連続する27aと27bの時刻にそれぞれ得られた2つの厚み測定値の平均値を29aに得られた厚みとして計算しても良い。   However, even if either a heat bolt or a lip heater is used as the thickness adjusting means 10, since the response is generally slow, the calculation is performed by approximating that both the time at 27a and the time at 28a are obtained at 29a. May be. In addition, instead of directly using the thickness measurement value obtained at the time of 27a, the average value of the two thickness measurement values obtained at the successive time of 27a and 27b may be calculated as the thickness obtained at 29a. good.

なお、上記形態において厚み変動について観測する時刻をt=1,2,・・・tdとしてプローブ分の操作量を与え終わる時刻までとしたが、操作量にプローブ分を与えてから実際の厚み変動に影響が出るまでには多少の遅れを伴うから、それよりさらに後の時刻までを観測することとしてもよい。逆に、プローブ分の操作量を与え終わる前に観測を終えたり、変動を与え始めた直後よりも後に観測を始めても、得られる情報が十分であれば問題ない。   In the above embodiment, the time for observing the thickness variation is t = 1, 2,..., Td until the time when the operation amount for the probe is given, but the actual thickness variation is given after the probe amount is given to the operation amount. Since there will be a slight delay before the time is affected, it may be possible to observe until a later time. On the contrary, there is no problem as long as the obtained information is sufficient even if the observation is finished before the operation amount for the probe is finished or the observation is started immediately after the start of the fluctuation.

式(2)で近似される厚み変動を抽出するため、次式(4)を評価関数とし、式(4)の評価関数E1を最小とするg(t)およびΔyを求める。
0+g(t)×Δy ・・・式(2)
In order to extract the thickness fluctuation approximated by the equation (2), g (t) and Δy that minimize the evaluation function E 1 of the equation (4) are obtained by using the following equation (4) as an evaluation function.
y 0 + g (t) × Δy (2)

Figure 0004419615
Figure 0004419615

ここで
|| ||2:ベクトルの大きさの2乗を表す演算子。
t:時刻(t=1,2,・・・td)
y(t):時刻tにおける幅方向厚み分布ベクトル(シートの測定点数個の要素を持つ)
Δy:厚み測定位置で測定された厚み分布ベクトルの空間的変動成分ベクトル(≠零ベクトル)
g(t):時刻tにおける厚み分布ベクトルの時間的変動成分
0:操作量に前記プローブ分を与える前の厚み測定位置での幅方向厚み分布ベクトル
1:y(t)から式(2)で近似される厚み変動を最小2乗法で抽出するための評価関数(未知パラメータはy0、Δy、g(t))
である。
here
|| || 2 : An operator representing the square of the vector size.
t: Time (t = 1, 2,... td)
y (t): width direction thickness distribution vector at time t (having elements of several measurement points on the sheet)
Δy: Spatial variation component vector (≠ zero vector) of the thickness distribution vector measured at the thickness measurement position
g (t): Time variation component of thickness distribution vector at time t y 0 : Width direction thickness distribution vector E 1 at the thickness measurement position before giving the probe amount to the manipulated variable: Equation (2) from y (t) ) For evaluating the thickness fluctuation approximated by the least square method (unknown parameters are y 0 , Δy, g (t))
It is.

式(4)のE1を最小とするΔyを求める手法としては、様々な多変量解析の手法を用いることができる。例えば、y(1)、y(2)、・・・、y(td)の幅方向厚み分布ベクトルに対して、多変量解析の一手法である主成分分析を用いれば良い。主成分分析に関して数多くの文献があり、例えば非特許文献1に記述がある。図16は主成分分析を説明するための模式図である。主成分分析とは、多次元で多数の測定データ(図16で示した測定データ23の分布)をできるだけ情報の損失なしに1個あるいは複数の少ない指標で代表させる方法である。そして代表させる際の重要度の大きいものから第1主成分、第2主成分、・・・と呼ばれる。図16で厚み測定点が2個である場合で説明すると、測定された1回の厚み分布ベクトル23を点で表している。複数の厚み分布ベクトル23の分布を楕円近似した24の長軸(データの分布の分散が最も大きい軸)が第1主成分25となる。式(4)のE1を最小とするΔyを主成分分析で求めるには、幅方向の厚み分布y(t)(t=1、2、・・・、td)をデータ数td個のデータの分布として考えたとき、データの分布の分散が最も大きい軸を第1主成分Δyとして与え、次に分布の分散が大きいΔyに直交する成分を第2主成分とする。そのため、操作量変動に起因する厚み変動の分散が最も大きい時に、第1主成分として厚みの空間的変動成分Δyを求めることができる。また各時刻の幅方向の厚み分布y(t)をΔyに射影することで、時間的変動成分g(t)を求めることができる。主成分分析以外にもg(t)が時間的にノイズやその他のプロセス変動と独立であることを利用した、独立成分分析などの方法を用いることができる。その他各種の適宜統計的手法を用いることができる。 As a method for obtaining Δy that minimizes E 1 in Equation (4), various multivariate analysis methods can be used. For example, the principal component analysis which is one method of multivariate analysis may be used for the width direction thickness distribution vectors of y (1), y (2),..., Y (td). There are a number of documents related to principal component analysis, for example, described in Non-Patent Document 1. FIG. 16 is a schematic diagram for explaining principal component analysis. Principal component analysis is a method in which a large number of measurement data (distribution of the measurement data 23 shown in FIG. 16) in a multidimensional manner is represented by one or a plurality of small indexes without loss of information as much as possible. And it is called the first principal component, the second principal component,... In the case where there are two thickness measurement points in FIG. 16, the measured thickness distribution vector 23 is represented by dots. A major axis of 24 (an axis having the largest distribution of data distribution) obtained by elliptically approximating the distribution of the plurality of thickness distribution vectors 23 is the first principal component 25. In order to obtain Δy that minimizes E 1 in Equation (4) by principal component analysis, the thickness distribution y (t) (t = 1, 2,..., Td) in the width direction is represented by td data. As a first distribution, the axis with the largest distribution of the data distribution is given as the first principal component Δy, and the component orthogonal to Δy with the next largest distribution of the distribution is taken as the second principal component. Therefore, when the variance of the thickness variation caused by the operation amount variation is the largest, the thickness spatial variation component Δy can be obtained as the first main component. Further, the temporal variation component g (t) can be obtained by projecting the thickness distribution y (t) in the width direction at each time onto Δy. In addition to principal component analysis, a method such as independent component analysis that utilizes the fact that g (t) is temporally independent of noise and other process fluctuations can be used. Various other statistical methods can be used as appropriate.

次に抽出した上記厚みの空間的変動成分Δyから選んだ厚み調整手段10−kの厚み測定位置で対応する幅方向位置を算出する。抽出した厚みの空間的変動成分Δyから対応位置と予想される付近のピークを検出する方法、あるいはピークを中心として特定の範囲の厚みの空間的変動成分Δyの重心を求める方法、あるいはピークを中心として特定の範囲の厚みの空間的変動成分Δyを2次多項式で近似した場合の頂点を求める方法などの任意の方法を用いることで厚み調整手段の対応位置を求めることができる。この方法を順次全ての厚み調整手段に適用することで全厚み調整手段の対応位置が得られる。また本方法を同時もしくは逐次に複数の厚み調整手段に適用し、得られたそれぞれの対応位置を線形、2次関数、あるいはスプライン補間等を用いることでも近似的に全ての対応位置を算出することができる。   Next, the position in the width direction corresponding to the thickness measurement position of the thickness adjusting means 10-k selected from the extracted spatial variation component Δy of the thickness is calculated. A method of detecting a peak near the predicted position corresponding to the extracted spatial variation component Δy of the thickness, a method of obtaining the center of gravity of the spatial variation component Δy of a specific range around the peak, or centering the peak The corresponding position of the thickness adjusting means can be obtained by using an arbitrary method such as a method of obtaining the vertex when the spatial variation component Δy of the thickness in a specific range is approximated by a quadratic polynomial. By sequentially applying this method to all the thickness adjusting means, the corresponding position of the total thickness adjusting means can be obtained. In addition, the present method can be applied to a plurality of thickness adjusting means simultaneously or sequentially, and all corresponding positions can be calculated approximately by using linear, quadratic function, spline interpolation or the like for each obtained corresponding position. Can do.

また選んだ厚み調整手段10−kに対して次式(3)を満たす周期的に変化する操作量を与えることも良い方法である。
u(t)=u0+Σi=1 M(h(t+Tφi/(2π))Δui)・・・式(3)
ここで
t:時刻(t=1,2,・・・td’)
td’:操作量ベクトルの前記プローブ分を与える時間、td’=N×Tを満たす
N:操作量ベクトルの前記プローブ分が周期変動する回数
u(t):時刻tにおける前記厚み調整手段に与える操作量ベクトル
M:操作量ベクトルの前記プローブ分に含まれる、前記周期Tで変動する成分の数(1以上の自然数)
Δui:操作量ベクトルの前記プローブ分におけるi番目の成分の幅方向の空間的変動成分ベクトル(ここで、i≠jを満たす任意のi,jにおいてΔui≠Δujであり、また任意のiにおいてΔui≠0である(iおよびj=1,2,・・・,M))
h(t):操作量ベクトルの前記プローブ分における時刻tでの時間的変動成分であり、周期がTである関数
φi:操作量ベクトルの前記プローブ分のi番目の成分の幅方向の空間的変動成分Δuiの位相(ここで、M=2以上の場合、i≠jを満たす任意のi,jにおいてφi≠φjかつ|φi|<πである(iおよびj=1,2,・・・,M))
0:操作量に前記プローブ分を与える前の前記各厚み調整手段に与える操作量ベクトル
ここで式(3)のMは特定の周波数の周期信号に与える際に、位相に情報を与える、言い換えると位相変調する際の情報の数を表している。Mが大きければ、多くの情報を一度に与えることができる一方で、他の位相に変調された情報を分別するために多くの時間を要する。特定の位相で時間的に変動している厚みの空間的変動成分を、他の位相で時間的に変動している厚みの空間的変動成分から分別を容易にするために、各位相φiをその他の位相から離して分布させると良い。操作量に与える周期信号の位相を離すために、Mが2以上である場合、位相φiをφjから2π/M近く離すことも良い方法である。またf(t)が正弦波のような位相がπずれると正負が反転するような関数の場合は、π/M近く離すことも良い方法である。例えばh(t)を周期Tで時間的に変動する正弦波とし、M=2、φ2−φ1=π/2とした、次式(5)を満たす、周期的に変化するプローブ分を含む操作量を与えることも良い方法である。
u(t)=u0+sin{(2πt/T)+φ}×Δus+cos{(2πt/T)+φ}×Δuc ・・・式(5)
ここで
T:操作量に与える操作量の時間変動の振動周期(単位はシートの厚み分布測定回数)
t:時刻(t=1,2,・・・td’)
td’:操作量ベクトルの前記プローブ分を与える時間、td’=N×Tを満たす
N:操作量ベクトルの前記プローブ分が周期変動する回数
u(t):時刻tにおいて前記各厚み調整手段に与える操作量ベクトル
Δus:操作量ベクトルの前記プローブ分の中で時間的にsin波で変動する厚みの空間的変動成分ベクトル
Δuc:操作量ベクトルの前記プローブ分の中で時間的にcos波で変動する厚みの空間的変動成分ベクトル
φ:ΔusとΔucの周期振動の位相(−π<φ≦π)
0:操作量ベクトルの前記プローブ分を与える前の前記各厚み調整手段に与える操作量ベクトル
である。
It is also a good method to give an operation amount that periodically changes to satisfy the following expression (3) to the selected thickness adjusting means 10-k.
u (t) = u 0 + Σ i = 1 M (h (t + Tφ i / (2π)) Δu i ) (3)
Where t: time (t = 1, 2,... Td ′)
td ′: time to give the probe of the operation amount vector, N satisfying td ′ = N × T: number of times the probe of the operation amount vector fluctuates u (t): to the thickness adjusting means at time t Manipulation vector M: Number of components varying in the period T included in the probe of the manipulating vector (a natural number of 1 or more)
Δu i : Spatial variation component vector in the width direction of the i-th component in the probe amount of the manipulated variable vector (where Δu i ≠ Δu j at any i and j satisfying ij , and any Δi i ≠ 0 at i (i and j = 1, 2,..., M))
h (t): a temporal variation component at time t in the probe component of the manipulated variable vector, periodic functions is a T phi i: operation amount the i-th width direction of the spatial component of the probe portion of the vector Phase of the dynamic fluctuation component Δu i (where, if M = 2 or more, φ i ≠ φ j and | φ i | <π at any i, j satisfying i ≠ j (i and j = 1, 2, ..., M))
u 0 : Operation amount vector to be given to each thickness adjusting means before giving the probe amount to the operation amount Here, M in the expression (3) gives information to the phase when giving to the periodic signal of a specific frequency, in other words And the number of information at the time of phase modulation. If M is large, a large amount of information can be given at one time, while it takes a lot of time to separate information modulated to other phases. In order to facilitate the separation of the spatial variation component of the thickness that varies temporally in a specific phase from the spatial variation component of the thickness that varies temporally in another phase, each phase φ i It may be distributed away from other phases. In order to separate the phase of the periodic signal given to the manipulated variable, when M is 2 or more, it is also a good method to separate the phase φ i from φ j by 2π / M. In the case where f (t) is a function in which the positive and negative are reversed when the phase is shifted by π, such as a sine wave, it is also a good method to separate it by π / M. For example, h (t) is a sine wave that fluctuates in time with a period T, and M = 2 and φ 2 −φ 1 = π / 2, and a probe component that periodically changes and satisfies the following equation (5) It is also a good method to give the operation amount including.
u (t) = u 0 + sin {(2πt / T) + φ} × Δu s + cos {(2πt / T) + φ} × Δu c (5)
Where T: vibration period of time variation of the operation amount given to the operation amount (unit: number of sheet thickness distribution measurements)
t: Time (t = 1, 2,... td ′)
td ′: time for supplying the probe of the operation amount vector, and t: satisfying td ′ = N × T: number of times the probe of the operation amount vector fluctuates u (t): to each thickness adjusting unit at time t providing manipulated variable vector Delta] u s: operation amount spatial variation component vector of time-thickness varying from sin wave in the probe component of the vector Delta] u c: temporally cos wave in the probe component of the manipulated variable vector in spatial variation component vector of a thickness varying phi: Delta] u s and Delta] u c a periodic oscillation of the phase (-π <φ ≦ π)
u 0 : An operation amount vector given to each thickness adjusting means before giving the probe amount of the operation amount vector.

また操作量に式(5)で表される正弦波状の時間的な周期変動を与えるのではなく、矩形波状などの高周波成分を含む周期的な変動を与えることも良い方法である。   It is also a good method to give the manipulated variable a periodic fluctuation including a high-frequency component such as a rectangular wave, instead of giving the sinusoidal temporal fluctuation represented by the equation (5).

また上記式(1)を満たす、プローブ分を含む操作量を与える場合と同様に、上記厚み調整手段10−kのみではなく、上記厚み調整手段10−kを中心とする幅方向に連続する厚み調整手段群(たとえば、k−2、k−1、k、k+1およびk+2番目の各厚み調整手段の集まり)に対して式(5)を満たすとともに、上記厚み調整手段10−kを中心として対称で幅方向に滑らかな分布をもつ操作量の空間的変動成分(式(5)におけるΔu)を与えることも、厚み調整手段がヒートボルト方式の場合は厚み調整手段内部に持つひずみエネルギーを小さくし無理な変形をさせないという観点で、リップヒーター方式の場合でも幅方向位置毎でリップ温度の高低差を大きくしないという観点で望ましい形態である。   Similarly to the case of providing an operation amount including the probe that satisfies the above formula (1), not only the thickness adjusting means 10-k but also a thickness continuous in the width direction centering on the thickness adjusting means 10-k. For the adjusting means group (for example, a group of k-2, k-1, k, k + 1 and k + 2th thickness adjusting means), the expression (5) is satisfied, and the thickness adjusting means 10-k is the center of symmetry. In addition, when the thickness adjusting means is a heat bolt system, the strain energy in the thickness adjusting means can be reduced by giving a spatial variation component (Δu in equation (5)) having a smooth distribution in the width direction. From the viewpoint of preventing excessive deformation, even in the case of the lip heater system, this is a desirable form from the viewpoint of not increasing the difference in the lip temperature in each position in the width direction.

ここで時系列パターン中の周期パターンの個数N、周期パターンの周期Tおよび操作量の空間的変動成分Δus、Δucは、製品製造時の重合体の流れと上記操作量変動を与えた時の重合体の流れとの違いが許容値以下であるような厚み変化量、厚み測定器のノイズの大きさ、シートの流れ方向の厚みムラの大きさ、厚み調整手段の応答の速さ、操作量を変化させた時の厚み変化量の割合を表すプロセスゲイン等のプロセスパラメータおよび測定に要する時間と測定の精度から適宜決定すれば良い。 The number N of the periodic pattern of the time series pattern in this case, the spatial variation component Delta] u s period T and the operation amount of the periodic pattern, Delta] u c, when given polymer flow and the operation amount of variation during product manufacture Variation in thickness such that the difference from the polymer flow is less than the allowable value, the noise level of the thickness meter, the thickness unevenness in the sheet flow direction, the speed of response of the thickness adjusting means, the operation What is necessary is just to determine suitably from process parameters, such as a process gain showing the ratio of the amount of thickness changes when changing quantity, time required for measurement, and measurement accuracy.

製品製造時の重合体の流れや操作量変動を与えた時の重合体の流れを調べる方法としては、前述したようなさまざまな方法を用いることができる。製品製造時の重合体の流れと操作量変動を与えた時の重合体の流れの違いの許容値も、前述したように厚み調整手段と測定位置の対応関係の必要精度によって決められる。少なくとも厚み測定位置にて可視化した重合体の流れの変動が、厚み測定位置での厚み調整手段の間隔に換算して、厚み調整手段0.5個分以下の長さであるのがよい。好ましくは、厚み調整手段0.2個分以下の長さにすることが望ましい。   Various methods as described above can be used as a method for examining the flow of the polymer at the time of manufacturing the product and the flow of the polymer when the manipulated variable is changed. The allowable value of the difference between the polymer flow at the time of manufacturing the product and the polymer flow when the manipulated variable is changed is also determined by the required accuracy of the correspondence between the thickness adjusting means and the measurement position as described above. It is preferable that the fluctuation of the polymer flow visualized at least at the thickness measurement position is converted into the interval of the thickness adjustment means at the thickness measurement position and has a length of 0.5 thickness adjustment means or less. Preferably, the length is 0.2 or less.

また望ましい時系列パターンは、厚み調整手段に時系列パターンを操作量として与えた時に、見込まれる厚み変動の大きさが、特定の幅方向位置に固定した厚み測定器から得られる1分から5分間の測定データの標準偏差と比較して2倍以上10倍以下となり、周期パターンが3個以上含まれる時系列パターンである。また、このように周期的に操作量を変更する場合、例え特定の幅方向位置に固定した厚み測定器から得られる1分から5分間の測定データの標準偏差と比較して2倍未満であっても、周期パターンの回数Nを増やすことで精度良く厚みの空間的変動成分を抽出できる。   Further, a desirable time series pattern is that when the time series pattern is given as an operation amount to the thickness adjusting means, the expected thickness variation is 1 minute to 5 minutes obtained from a thickness measuring instrument fixed at a specific position in the width direction. It is a time series pattern that is 2 to 10 times the standard deviation of the measurement data and includes three or more periodic patterns. Further, when the manipulated variable is periodically changed in this way, it is less than twice as large as the standard deviation of the measurement data of 1 to 5 minutes obtained from the thickness measuring instrument fixed at a specific position in the width direction. However, the spatial variation component of the thickness can be extracted with high accuracy by increasing the number N of the periodic patterns.

次に厚み調整手段に式(5)を満たす操作量を与え始めた後の厚みプロファイルから、周期Tで時間的に変動する式(6)で近似される厚みの変動成分を抽出する。なお、この抽出は次式(7)の評価関数E2を最小とするΔysとΔycを求めることと等しい。
0+sin{(2πt/T)+φ−Δφ}×Δys+cos{(2πt/T)+φ−Δφ}×Δyc ・・・式(6)
Next, the thickness fluctuation component approximated by the equation (6) that varies with time in the period T is extracted from the thickness profile after the operation amount satisfying the equation (5) is started to be given to the thickness adjusting means. This extraction is equivalent to obtaining Δy s and Δy c that minimize the evaluation function E 2 of the following equation (7).
y 0 + sin {(2πt / T) + φ−Δφ} × Δy s + cos {(2πt / T) + φ−Δφ} × Δy c (6)

Figure 0004419615
Figure 0004419615

ここで
t:時刻(t=1,2,・・・td’)
td’:操作量ベクトルの前記プローブ分を与える時間、td’=N×Tを満たす
N:操作量ベクトルの前記プローブ分が周期変動する回数
Δys:時間的にsin波状に変動する厚みの幅方向の空間的変動成分ベクトル
Δyc:時間的にcos波状に変動する厚みの幅方向の空間的変動成分ベクトル
φ:ΔusとΔucの周期振動の位相(−π<φ≦π)
Δφ:周期Tにおける操作量変動を基準とした時の厚みの時間的変動成分の位相遅れ
2:y(t)から式(6)で近似される厚み変動を最小2乗法で抽出するための評価関数(未知パラメータはy0、Δys、Δyc)である。Δφは、シートが厚み調整手段を出てから厚み測定器に到達するまでの搬送時間、厚み測定器が厚み測定に要する時間および厚み調整手段の応答の遅れによる周期Tに関する位相遅れ等を考慮したパラメータである。位相遅れΔφは、予め計算や、周期的に与える操作量変動の振幅を大きくしたテストを事前に行うことで、見積もることもできる。
Where t: time (t = 1, 2,... Td ′)
td ′: time for providing the probe of the operation amount vector, N satisfying td ′ = N × T: number of times that the probe of the operation amount vector fluctuates periodically Δy s : width of thickness that varies sinically in time direction spatial variation component vector [Delta] y c of: temporally spatial variation component vector in the width direction of the thickness varies cos wave phi: Delta] u s and Delta] u c a periodic oscillation of the phase (-π <φ ≦ π)
Δφ: Phase delay E 2 of the temporal variation component of thickness when the manipulated variable variation in period T is used as a reference for extracting thickness variation approximated by equation (6) from y (t) by the least square method evaluation function (the unknown parameters y 0, Δy s, Δy c ) is. Δφ takes into account the conveyance time from when the sheet leaves the thickness adjusting means until it reaches the thickness measuring device, the time required for the thickness measuring device to measure the thickness, and the phase delay related to the period T due to the delay in the response of the thickness adjusting means. It is a parameter. The phase delay Δφ can also be estimated by calculating in advance or performing a test in which the amplitude of the manipulated variable fluctuation given periodically is increased.

特定周期Tで時間的に変動する厚みの空間的変動成分の抽出には任意のディジタル信号処理のフィルタリングや最小2乗法や多変量解析による同定を適用すればよい。   For extraction of spatially varying components of thickness that varies with time in a specific period T, arbitrary digital signal processing filtering, identification by least square method or multivariate analysis may be applied.

例えば、次のようにして特定周期で時間的に変動するΔysとΔycを求めても良い。厚み調整手段に式(5)を満たす操作量を与え始めてからの、各厚み測定位置における厚み測定値の時系列データをフーリエ級数展開し、上記特定周期で変動する成分のみを抽出しても良い。ただし、予め位相遅れΔφを計算あるいは実際のテストにより求めておき、フーリエ級数展開では、sin{(2πt/T)+φ−Δφ}とcos{(2πt/T)+φ−Δφ}で展開する。それぞれの測定位置での上記特定周期の厚みの時間変動のsin波成分とcos波成分を求めることができる。求めたそれぞれの測定位置でのsin波成分とcos波成分をベクトル表示したものがΔysとΔycとなる。以上の例ではM=2の場合について説明したが、M=3以上の場合はΔuとΔyの個数がM個になるが、同様の計算で求めることができる。 For example, Δy s and Δy c that vary with time in a specific cycle may be obtained as follows. The time series data of the thickness measurement values at each thickness measurement position after the operation amount satisfying the formula (5) is started to be given to the thickness adjusting means may be Fourier series expanded to extract only the component that fluctuates in the specific period. . However, the phase delay Δφ is obtained in advance by calculation or actual test, and in the Fourier series expansion, it is expanded by sin {(2πt / T) + φ−Δφ} and cos {(2πt / T) + φ−Δφ}. The sin wave component and the cosine wave component of the time fluctuation of the thickness of the specific period at each measurement position can be obtained. Δy s and Δy c are obtained by vector-displaying the sin wave component and the cosine wave component at each obtained measurement position. Although the case where M = 2 has been described in the above example, when M = 3 or more, the number of Δu and Δy is M, but can be obtained by the same calculation.

また、次式のようにM=1の場合、事前にΔφを求めることなく、対応する厚みの幅方向の空間的変動成分Δyを次の方法で求めることができる。
u(t)=u0+h(t+φ)Δu・・・式(3’)
まず、上記の場合と同様に厚み調整手段に式(5)を満たすプローブ分を含む操作量を与え始めてからの、各厚み測定位置における厚み測定値の時系列データをフーリエ級数展開し、上記特定周期で時間的に変動する成分のみを抽出する。ただし、フーリエ級数展開では、sin{(2πt/T)+φ}とcos{(2πt/T)+φ}で展開する。上記と同様にsin{(2πt/T)+φ}の成分とcos{(2πt/T)+φ}の成分をベクトル表示したもの(ΔzsとΔzcとする)が求められる。この時、式(6)の評価関数を最小とするΔyとΔφは、最小2乗法を用いて解くことで、
Further, when M = 1 as in the following equation, the spatial variation component Δy in the width direction of the corresponding thickness can be obtained by the following method without obtaining Δφ in advance.
u (t) = u 0 + h (t + φ) Δu Expression (3 ′)
First, as in the case described above, the time series data of the thickness measurement values at each thickness measurement position after starting to give the operation amount including the probe satisfying the formula (5) to the thickness adjusting means is expanded by Fourier series, Only the components that vary with time in the cycle are extracted. However, in Fourier series expansion, expansion is performed with sin {(2πt / T) + φ} and cos {(2πt / T) + φ}. Similar to the above, a vector display of sin {(2πt / T) + φ} and cos {(2πt / T) + φ} components (referred to as Δz s and Δz c ) is obtained. At this time, Δy and Δφ that minimize the evaluation function of Expression (6) are solved by using the least square method,

Figure 0004419615
Figure 0004419615

ただし、 However,

Figure 0004419615
Figure 0004419615

と求めることができる。 It can be asked.

また操作量のプローブ分の時間的変動成分に矩形状等の高調波成分を含む周期的な信号を与えた場合は、時系列の周期の1/2周期の成分、1/3周期の成分などの高調波で変動する複数の厚みの空間的変動成分を抽出することで、周期的に時間変動する厚みの空間的変動成分を精度良く求めることも良い方法である。   In addition, when a periodic signal including a harmonic component such as a rectangular shape is given to the temporal variation component of the manipulated variable for the probe, a half cycle component, a third cycle component, etc. It is also a good method to accurately obtain the spatial variation component of the thickness that periodically varies with time by extracting a plurality of spatial variation components of the thickness that vary with the higher harmonics.

なお、上記形態においても、厚み変動について観測する時刻をプローブ分の操作量を与え終わる時刻までとしたが、それよりさらに後の時刻までを観測することとしてもよい。逆に、プローブ分の操作量を与え終わる前に観測を終えたり、変動を与え始めた直後よりも後に観測を始めても、得られる情報が十分であれば問題ない。   Also in the above-described embodiment, the time for observing the thickness variation is set to the time at which the operation amount for the probe is given, but it is also possible to observe the time after that. On the contrary, there is no problem as long as the obtained information is sufficient even if the observation is finished before the operation amount for the probe is finished or the observation is started immediately after the start of the fluctuation.

次に抽出した上記厚みの空間的変動成分から厚み調整手段と厚み測定位置とのシート幅方向における相互の位置の対応関係を算出する。前述したように、ピークを検出する方法、重心を求める方法、2次多項式で近似する方法など任意の方法を用いることで厚み調整手段の対応位置を求めることができる。そして、得られたそれぞれの対応位置を線形、2次関数、あるいはスプライン補間等を用いることでも近似的に全ての対応位置を算出することができる。 Next, a correspondence relationship between the thickness adjusting means and the thickness measurement position in the sheet width direction is calculated from the extracted spatial variation component of the thickness. As described above, the corresponding position of the thickness adjusting means can be obtained by using an arbitrary method such as a method of detecting a peak, a method of obtaining a center of gravity, or a method of approximating with a quadratic polynomial. Then, by using linear, quadratic function, spline interpolation or the like for each obtained corresponding position, all the corresponding positions can be calculated approximately.

上記方法では、対応位置を求めたい厚み調整手段を選び、選んだ厚み調整手段もしくは選んだ厚み調整手段を中心とする厚み調整手段の群の対応位置を算出し、得られた対応位置を補間することで全ての厚み調整手段の対応位置を算出するものであった。しかし、上記方法の他に、厚み調整手段に対して次式(3)を満たす周期的に変化する操作量を与える場合は、特定の厚み調整手段を選ぶことなく所望する全ての厚み調整手段の対応位置を、厚み調整手段を操作した時に予想される厚み変化形状との関係を表す干渉行列を既知の情報として用いることで求めることができる。   In the above method, the thickness adjusting means for which the corresponding position is to be obtained is selected, the corresponding position of the selected thickness adjusting means or a group of thickness adjusting means centered on the selected thickness adjusting means is calculated, and the obtained corresponding position is interpolated. As a result, the corresponding positions of all the thickness adjusting means are calculated. However, in addition to the above method, when the operation amount that periodically changes to satisfy the following expression (3) is given to the thickness adjusting means, all desired thickness adjusting means are selected without selecting a specific thickness adjusting means. The corresponding position can be obtained by using, as known information, an interference matrix that represents the relationship with the thickness change shape expected when the thickness adjusting means is operated.

以下にM=2の場合に関して説明する。図3は、全厚み調整手段の厚み測定位置での対応を求める際に用いる2つの操作量の空間的変動成分(ΔusとΔuc)を示したものである。ここで与える操作量変動成分は全幅になるべく独立な情報を持つことが望ましい。ここで独立とはΔusとΔucが重ね合っているときでも、それぞれの成分の量を分別すなわち演算できることである。すなわち、ΔusとΔucのなすrad単位での角度が(π/2)±(π/8)以内、最良の場合(π/2)であることが望ましい。なおMが3以上の場合においても、i≠jを満たす任意のi,jにおいてΔuiとΔujのなすrad単位での角度が(π/2)±(π/8)以内であることが望ましい。Mが大きくなるほど、操作量に矩形状等の高調波成分を含む周期的な信号とすることで、複数の周波数で厚みの空間的変動成分が抽出できることになり、精度向上の点で望ましい。例えば操作量の空間的変動成分がΔus12aとΔuc12bのように幅方向に周期的な形状であり、かつそれぞれの位相が90度ずれたものをとることができる。そして上記の方法で求めたΔysとΔycから次式(10)の評価関数を最小とする対応位置を求める。
E=|| Δys−A(Δp)Δus||2+|| Δyc−A(Δp)Δuc||2+r||D(p0+Δp)||2・・・式(10)
ここで
0:各厚み調整手段の予想される対応位置を1次近似した予想対応位置ベクトル
Δp:予想対応位置p0に対する各厚み調整手段の真の対応位置の差のベクトル
s:sin波状に時間変動する操作量の空間的変動成分ベクトル
c:sin波状に時間変動する操作量の空間的変動成分ベクトル
s:usに対する厚みの空間的変動成分ベクトル
c:ucに対する厚みの空間的変動成分ベクトル
G:単位操作量変更したときの厚み変化量
σ:特定の厚み調整手段を操作したときの干渉量
A(Δp):干渉行列(プロセスの伝達特性をあらわす)
A(Δp)cd=G×exp(−(c−(p0d−Δpd2/σ2)・・・式(11)
(添字はc行d列の要素を表す。ここでc=1,・・・,h、およびd=1,・・・,n)
h:厚みの空間的変動成分ベクトルの要素数、つまり厚みの測定点数
n:厚み調整手段の個数。
D:隣り合う厚み調整手段の対応位置の差を求める行列
The case where M = 2 will be described below. FIG. 3 shows the spatial variation components (Δu s and Δu c ) of the two manipulated variables used when obtaining the correspondence at the thickness measurement position of the total thickness adjusting means. The manipulated variable component given here preferably has independent information as much as possible. Even when Delta] u s and Delta] u c are each other superimposed is independent here, is that it can be separated i.e. calculating the amount of each component. That, Delta] u s and the angle at eggplant rad units Delta] u c is (π / 2) ± (π / 8) within, it is desirable that the best case (π / 2). Even in the case where M is 3 or more, the angle in rad units between Δu i and Δu j may be within (π / 2) ± (π / 8) for any i, j that satisfies i ≠ j. desirable. As M increases, a periodic signal including a harmonic component such as a rectangular shape in the manipulated variable can extract a spatial variation component of thickness at a plurality of frequencies, which is desirable in terms of improving accuracy. For example, the spatial variation component of the manipulated variable can have a periodic shape in the width direction such as Δu s 12a and Δu c 12b, and the respective phases can be shifted by 90 degrees. Then, a corresponding position that minimizes the evaluation function of the following equation (10) is obtained from Δy s and Δy c obtained by the above method.
E = || Δy s −A (Δp) Δu s || 2 + || Δy c −A (Δp) Δu c || 2 + r || D (p 0 + Δp) || 2 Equation (10)
Here, p 0 : predicted corresponding position vector Δp obtained by linear approximation of the expected corresponding position of each thickness adjusting means Δp: vector of difference of true corresponding position of each thickness adjusting means with respect to the predicted corresponding position p 0 u s : sin wave shape operation of the spatial variation component vector u c varying time: sin wave spatial variation component vector operation amount varying time y s: u s spatial variation component of the thickness vector for y c: the thickness to u c Spatial variation component vector G: thickness change amount when unit operation amount is changed σ: interference amount when a specific thickness adjusting means is operated A (Δp): interference matrix (representing process transfer characteristics)
A (Δp) cd = G × exp (− (c− (p 0 ) d −Δp d ) 2 / σ 2 ) (11)
(Subscripts represent elements of c rows and d columns, where c = 1,..., H and d = 1,..., N)
h: Number of elements of the spatial variation component vector of thickness, that is, the number of thickness measurement points n: Number of thickness adjusting means.
D: Matrix for obtaining a difference between corresponding positions of adjacent thickness adjusting means

Figure 0004419615
Figure 0004419615

r:幅方向位置により延伸倍率の分散を表すパラメータ(正の実数)
である。式(11)で定義している干渉行列は特許文献2に記載されているように、厚み調整手段にステップ状に操作量を加えた場合、シートの厚みの空間的変動成分は、前記厚み調整手段に対応する測定位置を中心としたガウス関数になると近似したものである。シートの製造設備に依存して、上記厚みの空間的変動成分は異なるので、ガウス関数の他でも最も良く近似出来る関数を式(11)に用いることが望ましい。
r: parameter (positive real number) representing the dispersion of the draw ratio depending on the position in the width direction
It is. As described in Patent Document 2, the interference matrix defined by the equation (11), when an operation amount is added stepwise to the thickness adjusting means, the spatial variation component of the sheet thickness is the thickness adjustment It approximates a Gaussian function centered on the measurement position corresponding to the means. Since the spatial variation component of the thickness varies depending on the sheet manufacturing equipment, it is desirable to use a function that can be approximated best in addition to the Gaussian function in the formula (11).

式(10)で表される評価関数は、第1項で対応位置をパラメータとして操作量のsin波成分起因の予想される厚み空間的変動成分と抽出された厚みの空間的変動成分との差を表しており、第2項は同じく操作量のcos波成分起因の予想される厚みの空間的変動と抽出された厚みの空間的変動成分との差を定式化してある。測定される幅方向厚み分布にノイズがなく、時間的に周期的な厚み変動を抽出する際に計算誤差もない理想状態においては、第1項と第2項のみからなる評価関数を最小とする真の対応位置に関するパラメータΔpを任意の非線形最適化計算を用いることができる。しかし、上記のような理想状態ではない通常は、第1項と第2項のみの評価関数を最小とするΔpを求めると、Δpの各要素毎のバラツキが大きくなる。このことは、幅方向位置毎に幅方向延伸倍率が異なることを意味している。しかし、実際には実際の幅方向延伸倍率は幅方向位置に依存して緩やかに変わり、隣り合う厚み調整手段に対応する位置の間隔などはほとんど変化しない。このため、式(10)の第3項に対応位置の間隔の分散、すなわち幅方向の延伸のバラツキの大きさに関する評価関数を入れることで、求められる対応位置Δpが緩やかに変化するように求めている。ここでr=0ならば、当然第1項と第2項のみの評価関数を最小とすることになるので、Δpの各要素毎のバラツキが大きくなる一方で、r=+∞とするとΔp=0となり幅方向のどの位置でも均等に延伸されていると求めてしまう。そのため、実際に評価関数に与えるrを設定するには、まず第1項と第2項の大きさすなわち厚みの変化形状をフィッティングした際の2乗誤差の和を見積もっておき、それと第3項の大きさがほぼ同じになるように設定するのが良い。次にその評価関数を用いて対応位置を推定したときに、対応位置の間隔のバラツキが予め見込みに近くなるように、調整することが望ましい。また、あるシート製造プロセスにおいて、一度rを設定した場合、厚み測定器のノイズ、シート厚みの流れ方向の変動の大きさ、延伸方法などが変わらない限り、rは変更することなく用いることができる。   The evaluation function represented by Equation (10) is the difference between the expected thickness spatial variation component caused by the sine wave component of the manipulated variable and the extracted thickness spatial variation component using the corresponding position as a parameter in the first term. Similarly, the second term formulates the difference between the expected spatial variation of the thickness due to the cosine wave component of the manipulated variable and the extracted spatial variation component of the thickness. In an ideal state where there is no noise in the thickness distribution in the width direction to be measured and there is no calculation error when extracting periodic thickness fluctuations, the evaluation function consisting of only the first and second terms is minimized. Arbitrary nonlinear optimization calculation can be used for the parameter Δp regarding the true corresponding position. However, normally, not in the ideal state as described above, when Δp that minimizes the evaluation function of only the first term and the second term is obtained, the variation for each element of Δp increases. This means that the width direction draw ratio is different for each position in the width direction. However, in practice, the actual width direction draw ratio changes gradually depending on the position in the width direction, and the interval between positions corresponding to adjacent thickness adjusting means hardly changes. For this reason, by adding an evaluation function related to the dispersion of the distance between the corresponding positions, that is, the variation in the stretching in the width direction, to the third term of Expression (10), the required corresponding position Δp is obtained so as to change gently. ing. If r = 0, the evaluation function of only the first term and the second term is naturally minimized. Therefore, the variation for each element of Δp becomes large. On the other hand, when r = + ∞, Δp = It becomes 0, and it will be calculated | required that it is extended | stretched equally in any position of the width direction. Therefore, in order to actually set r to be given to the evaluation function, first, the sum of the square errors when fitting the size of the first term and the second term, that is, the thickness variation shape, is estimated, and then the third term. It is good to set so that the size of the is almost the same. Next, when the corresponding position is estimated using the evaluation function, it is desirable to adjust so that the variation in the interval between the corresponding positions is close to the prospect. In addition, in a certain sheet manufacturing process, once r is set, r can be used without being changed unless the noise of the thickness measuring device, the magnitude of fluctuation in the flow direction of the sheet thickness, the stretching method, and the like are changed. .

厚み測定位置との対応関係を求める厚み調整手段の幅方向位置に依存して、与える操作量変化を変更し、中央部よりも端部で操作量変化を小さくすることも好ましい形態である。なぜならシートを延伸する際に端部の厚みを大きく変えた場合、重合体の流れが変わることも起こりうるからである。そのためには例えば、厚み調整手段の位置と加算する操作量の空間的変動成分の絶対値の関係は、台形状、ガウス関数状、上に凸の2次関数状などで設定すれば良い。端部に与える操作量変化を小さくするだけでなく、操作量変化を与える期間を長くすることで、厚み測定値に含まれる厚み測定器からのノイズやシートの流れ方向の厚みムラの影響が増大を防ぐことができる。目安としては操作量変化を1/e倍(eは1より大きい実数)した場合、操作量変化を与える期間をe2倍すればよい。 Depending on the position in the width direction of the thickness adjusting means for obtaining the correspondence with the thickness measurement position, it is also preferable to change the operation amount change to be applied and reduce the operation amount change at the end portion rather than the center portion. This is because the flow of the polymer may change when the thickness of the edge is greatly changed when the sheet is stretched. For this purpose, for example, the relationship between the position of the thickness adjusting means and the absolute value of the spatial variation component of the operation amount to be added may be set in a trapezoidal shape, a Gaussian function, an upward convex quadratic function, or the like. In addition to reducing the amount of change in the amount of operation applied to the edges, increasing the period during which the amount of change in operation is extended increases the effects of noise from the thickness meter included in the thickness measurement value and thickness unevenness in the sheet flow direction. Can be prevented. If a (the e 1 real number greater than) 1 / e times the operating amount change measure was the time to give MV change may be e 2 multiplied by.

以下に本発明をフィルムの製造工程に適用した実施例を示す。
(実施例1)
本実施例では、特許文献1に記載されている特定の厚み調整手段に対して操作量をステップ状に変更による方法で対応関係を算出できなかったシートの製造設備に対して、互いの操作量変化による厚みの空間的変動成分が重ならない間隔だけ離れている4箇所の厚み調整手段を選んで、請求項2に記載のように周期的に操作量を時間的に変化させることで、それらの対応関係を決定した例を示す。
Examples in which the present invention is applied to a film production process are shown below.
Example 1
In the present embodiment, the mutual operation amount for the sheet manufacturing equipment for which the correspondence relationship could not be calculated by the method by changing the operation amount in a stepwise manner with respect to the specific thickness adjusting means described in Patent Document 1. By selecting four thickness adjusting means that are separated by an interval where the spatial variation component of the thickness due to the change does not overlap, the operation amount is changed temporally as described in claim 2, An example in which the correspondence is determined will be shown.

図1に示すシートの製造設備を用いて、厚み40μmのポリプロピレンフィルムを製造した。製膜幅は5.0m、製膜速度は製品部で80m/分である。厚み調整手段10はカートリッジヒーターを内蔵したボルトを熱的に膨張収縮させてギャップ11を調整するヒートボルト方式を用い、厚み制御に使用したヒートボルトの数は45本である。厚み測定器8としてはβ線の吸収現象を利用したβ線厚み測定器を使用した。この厚み測定器は、フィルムの幅方向に70秒の周期(以後、厚み測定の周期をスキャンとする)で走査しながら、フィルムの幅方向に対して20mm間隔でフィルム厚みを測定する。また、制御を行うタイミングは、厚み測定の周期と同じ70秒とした。   A polypropylene film having a thickness of 40 μm was produced using the sheet production facility shown in FIG. The film forming width is 5.0 m and the film forming speed is 80 m / min in the product part. The thickness adjusting means 10 uses a heat bolt system in which a bolt 11 containing a cartridge heater is thermally expanded and contracted to adjust the gap 11, and the number of heat bolts used for thickness control is 45. As the thickness measuring device 8, a β-ray thickness measuring device using a β-ray absorption phenomenon was used. This thickness measuring device measures the film thickness at intervals of 20 mm with respect to the width direction of the film while scanning in the width direction of the film with a period of 70 seconds (hereinafter, the period of thickness measurement is referred to as scanning). Moreover, the timing which performs control was set to 70 seconds, which is the same as the period of thickness measurement.

図4は5,25番目のボルトに与える操作量を示したグラフである。図4に示したように操作量13は5スキャン毎に+10%、マイナス10%と交互に繰り返し、+10%と−10%を1周期とし、3周期の時間的な変動するものを与えた。また、15,35番目のボルトは5,25番目のボルトに与える操作量と正負反転させたもの、すなわち−10%と+10%を交互に繰り返した操作量変動を与えた。なお、予め−10%と+10%交互に操作量変動を与えた時および製品製造時に、口金の先端の間隙から重合体が押し出される位置において、5番の厚み調整手段に該当する位置にケガキ線をつけることで、重合体の流れが変わっていないことを確認した。なお操作量とはヒータに電力が与えられている時間の割合(通電率)の中心値からの偏差をいう。ここでは中心値を通電率50%とする。すなわち操作量が+10%であるとは通電率が60%でヒータに電力が供給されている状態である。得られた厚み測定器からのデータから10スキャン周期で時間的に変動している厚みプロファイルのみをディジタル信号処理を用いて抽出した。その方法として、操作量変化を与えた30スキャンの中で、10スキャン経過した後からの30スキャンまでの計20スキャンの厚みプロファイルの時系列データに対してフーリエ級数展開し、10スキャン周期のsin波成分とcos波成分を求め、式(8)、式(9)を用いて、時間方向に10スキャン周期で変動する厚みの空間的変動成分を求めた。図5は10スキャン周期で変動する求めた厚み空間的変動成分である。図5のように対応位置の候補15aから15dがはっきりとした厚み調整手段の対応関係を算出できる厚みの空間的変動成分を得ることができた。
(比較例1)
比較例として、実施例1と同じシートの製造装置を用いて、厚み40μmのポリプロピレンフィルムを製造した例を示す。同じく5,15,25,35番ボルトに順に−10%、+10%、−10%、+10%の操作量をステップ状に変化させる方法を適用した例を示した。ステップ的に操作量を変更し、厚み形状の変化がほぼ安定した15スキャン後から20スキャンまでの5スキャンの厚みプロファイルの平均厚みプロファイルから操作量を与える前の5スキャンの平均厚みプロファイルの差を算出したところ、図6のような厚みの空間的変動成分となった。図6の空間的変動成分からは35番目のボルトの対応位置の候補16a、16bが2つ生じており、対応関係を算出できるような厚みの空間的変動成分を求めることができなかった。この原因は延伸機2の中で温度分布が変動する外乱がおきることに起因して厚みが局地的に緩やかに変化したためと考えられる。
(実施例2)
本実施例では、全厚み調整手段の対応関係を決定するために時間方向に周期的に変化する操作量の空間的変動成分を与えた例を示す。
FIG. 4 is a graph showing the operation amount given to the fifth and 25th bolts. As shown in FIG. 4, the manipulated variable 13 was alternately repeated with + 10% and −10% every 5 scans, and + 10% and −10% were taken as one period, and a time fluctuation of three periods was given. In addition, the 15th and 35th bolts gave the operation amount fluctuation obtained by reversing the operation amount given to the 5th and 25th bolts, that is, -10% and + 10% alternately. It should be noted that when the manipulated variable is alternately changed by -10% and + 10% in advance and at the time of manufacturing the product, a marking line is placed at the position corresponding to the thickness adjusting means No. 5 at the position where the polymer is pushed out from the gap at the tip of the die. It was confirmed that the flow of the polymer did not change. The manipulated variable is a deviation from the center value of the ratio of time (energization rate) during which power is supplied to the heater. Here, the center value is assumed to be 50% energization rate. That is, the operation amount is + 10% is a state in which power is supplied to the heater with an energization rate of 60%. Only the thickness profile which temporally fluctuates in 10 scan cycles was extracted from the data from the obtained thickness measuring device using digital signal processing. As a method, among 30 scans given a change in operation amount, Fourier series expansion is applied to time series data of a thickness profile of 20 scans in total up to 30 scans after 10 scans have passed, and a sin of 10 scan cycles is obtained. The wave component and the cos wave component were obtained, and the spatially varying component of the thickness that fluctuated in the time direction with 10 scan cycles was obtained using the equations (8) and (9). FIG. 5 shows the obtained thickness spatial variation component that fluctuates in 10 scan cycles. As shown in FIG. 5, the spatial variation component of the thickness that can calculate the correspondence of the thickness adjusting means with clear corresponding position candidates 15a to 15d was obtained.
(Comparative Example 1)
As a comparative example, an example in which a polypropylene film having a thickness of 40 μm is manufactured using the same sheet manufacturing apparatus as in Example 1 is shown. Similarly, an example in which a method of changing the operation amount of −10%, + 10%, −10%, and + 10% in a step shape to the fifth, fifth, fifth, and fifth bolts in order is shown. By changing the operation amount stepwise, the difference between the average thickness profile of 5 scans before giving the operation amount from the average thickness profile of 5 scans from 15 scans to 20 scans after the change of thickness shape is almost stable. As a result of calculation, a spatial variation component of thickness as shown in FIG. 6 was obtained. Two candidate positions 16a and 16b corresponding to the 35th bolt are generated from the spatial variation component of FIG. 6, and the spatial variation component of thickness that can calculate the correspondence relationship cannot be obtained. This is considered to be because the thickness gradually changed locally due to the occurrence of a disturbance in which the temperature distribution fluctuates in the stretching machine 2.
(Example 2)
In the present embodiment, an example is shown in which a spatial variation component of the operation amount that periodically changes in the time direction is given in order to determine the correspondence relationship of the total thickness adjusting means.

図1に示すシートの製造設備を用いて、厚み2.7μmのポリエステルフィルムを製造した。製膜幅は3.5m、製膜速度は製品部で175m/分である。厚み調整手段10はカートリッジヒーターを内蔵したボルトを熱的に膨張収縮させてギャップ11を調整するヒートボルト方式を用い、厚み制御に使用したヒートボルトの数は45本である。厚み測定器8としては光の干渉現象を利用した光干渉式厚み測定器を使用した。この厚み測定器は、フィルムの幅方向に60秒の周期で走査しながら、フィルムの幅方向に対して15mm間隔でフィルム厚みを測定する。また、制御を行うタイミングは、厚み測定の周期と同じ60秒とした。   A polyester film having a thickness of 2.7 μm was produced using the sheet production facility shown in FIG. The film forming width is 3.5 m, and the film forming speed is 175 m / min in the product part. The thickness adjusting means 10 uses a heat bolt system in which a bolt 11 containing a cartridge heater is thermally expanded and contracted to adjust the gap 11, and the number of heat bolts used for thickness control is 45. As the thickness measuring device 8, an optical interference type thickness measuring device using an optical interference phenomenon was used. This thickness measuring device measures the film thickness at intervals of 15 mm in the width direction of the film while scanning in the width direction of the film at a period of 60 seconds. Moreover, the timing which controls is 60 seconds which is the same as the period of thickness measurement.

厚み調整手段に与える操作プロファイル(式(5)におけるΔusとΔuc)として、厚み調整手段7個周期の正弦波のプロファイルと、その位相を90度ずらしたプロファイルの両者に端部で厚みをあまり変化させないようにディジタル信号処理で言うハニング窓w(x)を乗算した操作量の空間的変動成分を与え、20スキャン周期で時間変動させた。ここでハニング窓とはボルト番号をx、全ボルト本数をnとしたとき
w(x)=0.5−0.5×cos(2πx/n)
として表されるもので、端部での振幅を滑らかに0に近づけるために用いる。式(5)でのΔusを図7の17aに、Δucを図7の17bにそれぞれ示した。また操作量の時間的変動は20スキャン周期で変動する図8の波形とした。Δusの時間的変動関数は18a、Δucの時間的変動関数は18bとした。図7の17a式(5)のsin{(2πt/T)+φ}に高調波を含めた成分を19aに、式(5)のcos{(2πt/T)+φ}に高調波を含めた成分を19bに示した。
As the operation profiles (Δu s and Δu c in formula (5)) given to the thickness adjusting means, the thickness is measured at the end portions of both the seven thickness adjusting means sine wave profile and the profile whose phase is shifted by 90 degrees. A spatial variation component of the manipulated variable multiplied by the Hanning window w (x) referred to in digital signal processing was given so as not to change so much, and the time variation was performed in 20 scan cycles. Here, the Hanning window is w (x) = 0.5−0.5 × cos (2πx / n) where x is the bolt number and n is the total number of bolts.
It is used to make the amplitude at the end smoothly approach zero. The Delta] u s in the formula (5) in 17a of FIG. 7, respectively showing Delta] u c in 17b of FIG. Further, the temporal variation of the manipulated variable is the waveform shown in FIG. The time variation function of Δu s was 18a, and the time variation function of Δu c was 18b. 17a in FIG. 7 includes a component including harmonics in sin {(2πt / T) + φ} in 19a, and a component including harmonics in cos {(2πt / T) + φ} in equation (5). Was shown in 19b.

まず厚みプロファイルの時系列データから20スキャン周期で変動しており、ある特定の位相遅れを持つ厚みの空間的変動成分のみをディジタル信号処理を用いて抽出した。位相遅れは、予め実際に実施例1のテストをすることで20スキャン周期で操作量を時間変動させた時の厚みの空間的変動成分の位相遅れを求めた。すなわち式(3)’で表されるM=1で予めテストすることで位相遅れを算出しており、求めた位相遅れを、M=2の本実施例で用いた。そして算出した厚みの空間的変動成分(ΔysとΔyc)を図9、図10に示した。これより、操作量の空間的変動成分17aと17bに対する厚みの空間的変動成分18aと18bを求めることができた。次にこの操作量の空間的変動成分と厚みの空間的変動成分の対応関係から、厚み調整手段の対応関係を求めた。その方法として、前述の式(10)を最小とする各厚み調整手段の対応位置を非線形最適化問題を算出する市販ソフトウェア(MathWorks社の「MATLAB」)を用いた。式(10)において予め決める必要がある以下のパラメータの中でシートの製造装置およびシート材料等に関わるパラメータ(p0、G,σ、A(Δp))は関しては特許文献1に記載の方法により8,18,28,38番目の厚み調整手段に与える通電率10%ステップ状に変更し、厚みを変化させ求めた。また式(10)のkを設定するために、まず第1項と第2項の大きさすなわち厚みの変化形状をフィッティングした際の2乗誤差の和を、シートの流れ方向厚みムラの分散値と見積もった。見積もったシートの流れ方向厚みムラの分散値の大きさに、式(10)の第3項の大きさがほぼ同じになるように設定した。求めたΔpを図11に示した。Δpは元々設定されていた対応位置を基準としてのズレ量である。求めた厚み調整手段の対応関係を制御で用いて製膜した結果と、本実施例を行う前に特許文献1に記載の方法により8,18,28,38番目の厚み調整手段の対応位置を線形補間した対応関係で制御していた場合の厚みムラを比較すると、20回の厚みプロファイルの平均プロファイルの標準偏差で約1割、本実施例で求めた制御を用いた方が小さくなった。
(実施例3)
本実施例では、特許文献1に記載されている方法で厚み調整手段に与える操作量を変更し、請求項1の方法を用いて対応位置を推定した場合と従来方法での厚み変化プロファイルを示す。
First, the thickness profile time-series data fluctuated in 20 scan cycles, and only a spatially varying component of thickness having a specific phase delay was extracted using digital signal processing. As for the phase delay, the phase delay of the spatial variation component of the thickness when the operation amount was temporally varied in 20 scan cycles by actually conducting the test of Example 1 in advance was obtained. That is, the phase lag was calculated by testing in advance with M = 1 represented by the equation (3) ′, and the obtained phase lag was used in the present embodiment where M = 2. And it showed spatial variation component of the calculated thickness of the ([Delta] y s and [Delta] y c) 9, Figure 10. As a result, the spatial variation components 18a and 18b of the thickness with respect to the spatial variation components 17a and 17b of the manipulated variable can be obtained. Next, the correspondence of the thickness adjusting means was obtained from the correspondence between the spatial variation component of the manipulated variable and the spatial variation component of the thickness. As the method, commercially available software ("MATLAB" from MathWorks) that calculates a nonlinear optimization problem for the corresponding position of each thickness adjusting means that minimizes the above-described equation (10) was used. Of the following parameters that need to be determined in advance in Equation (10), parameters (p 0 , G, σ, A (Δp)) related to the sheet manufacturing apparatus and sheet material are described in Patent Document 1. The method was changed to a 10% step ratio for supplying the 8th, 18th, 28th, and 38th thickness adjusting means, and the thickness was changed. In order to set k in equation (10), first, the sum of the square error when fitting the size of the first term and the second term, that is, the thickness variation shape, is the variance value of the thickness unevenness in the sheet flow direction. I estimated. The size of the third term of the equation (10) was set to be approximately the same as the estimated dispersion value of the thickness unevenness in the flow direction of the sheet. The obtained Δp is shown in FIG. Δp is a shift amount with reference to the corresponding position that was originally set. Based on the result of film formation using the correspondence relationship of the obtained thickness adjusting means in the control, and the method described in Patent Document 1 before performing this embodiment, the corresponding positions of the 8, 18, 28, and 38th thickness adjusting means are determined. Comparing the thickness unevenness in the case of controlling with the linearly interpolated correspondence, the standard deviation of the average profile of the 20th thickness profile was about 10%, and the control obtained in this example was smaller.
(Example 3)
In this example, the operation amount given to the thickness adjusting means is changed by the method described in Patent Document 1, and the corresponding position is estimated using the method of claim 1 and the thickness change profile in the conventional method is shown. .

図1に示すシートの製造設備を用いて、厚み2.5μmのポリエステルフィルムを製造した。製膜幅は6.0m、製膜速度は製品部で160m/分である。厚み調整手段10はカートリッジヒーターを内蔵したボルトを熱的に膨張収縮させてギャップ11を調整するヒートボルト方式を用い、厚み制御に使用したヒートボルトの数は84本である。厚み測定器8としては光の干渉現象を利用した光干渉式厚み測定器を使用した。この厚み測定器は、フィルムの幅方向に60秒の周期で走査しながら、フィルムの幅方向に対して12mm間隔でフィルム厚みを測定する。また、制御を行うタイミングは、厚み測定の周期と同じ60秒とした。   A polyester film having a thickness of 2.5 μm was produced using the sheet production facility shown in FIG. The film forming width is 6.0 m, and the film forming speed is 160 m / min in the product part. The thickness adjusting means 10 uses a heat bolt system in which a bolt 11 having a built-in cartridge heater is thermally expanded and contracted to adjust the gap 11, and the number of heat bolts used for thickness control is 84. As the thickness measuring device 8, an optical interference type thickness measuring device using an optical interference phenomenon was used. This thickness measuring device measures the film thickness at 12 mm intervals in the width direction of the film while scanning in the width direction of the film at a period of 60 seconds. Moreover, the timing which controls is 60 seconds which is the same as the period of thickness measurement.

18,38,58番目のボルトに与える操作量を15スキャンの間に初期値に対して+20%とし、同時に28,48,68番目のボルトに与える操作量を15スキャンの間−20%とした。テスト中の厚みプロファイルの時系列データに対して、本発明である主成分分析を適用し厚みの空間的変動成分を抽出した。主成分分析を適用した厚み測定データは操作量を変更する10スキャン前のデータから、操作量を0%に戻してから15スキャン後、すなわち操作量を+20%あるいは−20%に変更してから30スキャン後のデータまで、計40スキャンのデータを用いた。結果を図12に示したように主成分分析の主成分として抽出した厚みの空間的変動成分18bとなった。
(比較例2)
実施例3の比較例として、特許文献1に記載の操作量変更後の厚みプロファイルの5回の平均厚みプロファイルから操作量に変化を与える前の5回の平均厚みプロファイルを差し引いた結果を比較した。結果を図12の18aに示した。本発明である図12の18bは18aと比較してノイズが少なくなっており、正確な対応位置推定が可能となることがわかる。
The operation amount given to the 18th, 38th and 58th bolts is set to + 20% with respect to the initial value during 15 scans, and the operation amount given to the 28th, 48th and 68th bolts is set to −20% during 15 scans at the same time. . The principal component analysis according to the present invention was applied to the time-series data of the thickness profile under test to extract a spatial variation component of the thickness. The thickness measurement data to which the principal component analysis is applied is the data before 10 scans to change the manipulated variable, after the manipulated variable is returned to 0% and after 15 scans, that is, after the manipulated variable is changed to + 20% or -20%. A total of 40 scan data was used up to 30 scans. As a result, as shown in FIG. 12, the spatial variation component 18b of the thickness extracted as the principal component of the principal component analysis was obtained.
(Comparative Example 2)
As a comparative example of Example 3, the result of subtracting five average thickness profiles before changing the operation amount from the five average thickness profiles of the thickness profile after changing the operation amount described in Patent Document 1 was compared. . The result is shown as 18a in FIG. 12b of FIG. 12 according to the present invention has less noise than 18a, and it can be seen that accurate corresponding position estimation is possible.

本発明は、プラスチックフィルムの製造に限らず、紙の製造や金属箔の製造などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be applied not only to the production of plastic films but also to the production of paper and metal foil, but the application range is not limited thereto.

実施例のフィルム製膜プロセスの概略説明図である。It is a schematic explanatory drawing of the film forming process of an Example. 図1に示す口金の要部拡大斜視図である。It is a principal part expansion perspective view of a nozzle | cap | die shown in FIG. 本発明の一形態における、厚み調整手段へ与える操作量の幅方向分布を示す図である。It is a figure which shows the width direction distribution of the operation amount given to the thickness adjustment means in one form of this invention. 本発明の一実施例における、厚み調整手段へ与える操作量の時間変化を示す図である。It is a figure which shows the time change of the operation amount given to the thickness adjustment means in one Example of this invention. 本発明の一実施例における、操作量を周期的に変化させた時に同じ周期で時間変動する厚みの空間的変動成分を抽出した結果を示す図である。It is a figure which shows the result of having extracted the spatial fluctuation component of the thickness which carries out time fluctuation | variation with the same period when the operation amount is changed periodically in one Example of this invention. 本発明の一比較例における、操作量ステップ的に変化させた時の厚みの空間的変動成分を示す図である。It is a figure which shows the spatial fluctuation component of the thickness when it is changed in the operation amount step-wise in one comparative example of the present invention. 本発明の一実施例における、厚み調整手段へ与える操作量の空間的変動成分を示す図である。It is a figure which shows the spatial fluctuation component of the operation amount given to the thickness adjustment means in one Example of this invention. 図7に示した2つの操作量の分布の時間変化を示す図である。It is a figure which shows the time change of distribution of the two manipulated variables shown in FIG. 図7における一つの厚みの空間的変動成分を示す図である。It is a figure which shows the spatial fluctuation component of one thickness in FIG. 図7におけるもう一つの厚み空間的変動成分を示す図である。It is a figure which shows another thickness spatial fluctuation component in FIG. 本発明の一実施例における、求められた厚み調整手段の対応位置を示す図である。It is a figure which shows the corresponding | compatible position of the calculated | required thickness adjustment means in one Example of this invention. 本発明の一実施例および比較例における、抽出した厚みの空間的変動成分を示す図である。It is a figure which shows the spatial fluctuation component of the extracted thickness in one Example and comparative example of this invention. 公知例における予想した厚みプロファイルの時系列パターンを示す図である。It is a figure which shows the time series pattern of the estimated thickness profile in a well-known example. 公知例における厚みプロファイルの時系列パターンを示す図である。It is a figure which shows the time-sequential pattern of the thickness profile in a well-known example. 口金での厚み調整手段の位置と厚み測定器での対応位置との関係を示す図である。It is a figure which shows the relationship between the position of the thickness adjustment means in a nozzle | cap | die, and the corresponding position in a thickness measuring device. 本発明で用いている主成分分析を示す図である。It is a figure which shows the principal component analysis used by this invention. 厚み測定器の走査の軌跡および幅方向位置に依存して厚み測定時刻が異なることを示す図である。It is a figure which shows that thickness measurement time changes depending on the scanning locus | trajectory and width direction position of a thickness measuring device.

符号の説明Explanation of symbols

1 :シート
2 :延伸機
3 :押出機
4 :口金
5 :冷却ロール
6 :巻取機
7 :搬送ロール
8 :厚み測定器
9 :制御手段
10:厚み調整手段
11:間隙
12a、12b:複数の厚み調整手段に与える操作量の時間的にsin波状で変動する厚み変動とcos波状に厚み変動の厚みの空間的変動成分
15a〜d:厚み調整手段の対応位置
16a〜b:厚み調整手段の対応位置の候補
17a〜b:厚み調整手段に加える操作量の空間的変動成分
18a〜b:厚み調整手段に加える操作量の空間的変動成分17aの時間的変動成分と17bの時間的変動成分
21a〜d:口金での厚み調整手段の対応位置
22a〜d:厚み測定位置での厚み調整手段の対応位置
23:測定された1回の厚みプロファイル
24:複数回の厚みプロファイルの分布を楕円近似したもの
25:厚みプロファイルの分布の主成分
26:厚み測定器が1回の走査に要する時間
27a〜c:ある幅方向位置での厚み測定時刻
28a〜c:27とは異なるある幅方向位置での厚み測定時刻
29a〜b:厚みプロファイルとして厚みを測定したと定義する時刻
1: Sheet 2: Stretching machine 3: Extruder 4: Base 5: Cooling roll 6: Winding machine 7: Conveying roll 8: Thickness measuring instrument 9: Control means 10: Thickness adjusting means 11: Gap 12a, 12b: Plurality Thickness fluctuations varying in a sin wave shape with respect to the amount of operation given to the thickness adjusting means, and spatial fluctuation components 15a to d of the thickness fluctuation of the thickness fluctuations in a cos wave shape: corresponding positions 16a and b of the thickness adjusting means, corresponding to the thickness adjusting means Position candidates 17a-b: Spatial variation components 18a-b of the operation amount to be added to the thickness adjusting means: Temporal variation components 17a and 17b of the temporal variation component 17a of the operation amount to be added to the thickness adjustment means 21a- d: Corresponding position 22a to d of the thickness adjusting means at the base: Corresponding position 23 of the thickness adjusting means at the thickness measuring position 23: One measured thickness profile 24: Elliptical distribution of thickness profiles Similar: 25: Main component of thickness profile distribution 26: Time required for the thickness measuring device to perform one scan 27a-c: Thickness measurement time 28a-c at a certain width direction position: A certain width direction position different from 27 Measurement time 29a-b at: Time defined as thickness measurement as thickness profile

Claims (3)

複数個の厚み調整手段を備えたダイを用いて重合体をシート状に押し出し、成形して所望の厚みのシートとなすとともに、そのシート幅方向の厚み分布を測定し、測定値に基づいて各測定位置に対応する前記厚み調整手段に加える操作量を計算し、この操作量によって厚み調整手段を操作してシート厚みを制御するシートの製造方法であって、前記複数の厚み調整手段に次式(1)を満たす、プローブ分を含む操作量を与え、その結果得られたシート厚み分布測定値の時系列データから、次式(2)で近似される厚み分布の変動を抽出し、抽出した厚み変動成分から前記厚み調整手段と厚み測定位置との前記シート幅方向における相互の位置の対応関係を決定し、該対応関係に基づいて前記厚み調整手段を操作することを特徴とする、シートの製造方法。
u(t)=u0+f(t)×Δu ・・・式(1)
0+g(t)×Δy ・・・式(2)
ここで、
t:時刻
u(t):時刻tにおいて前記各厚み調整手段に与える操作量ベクトル
Δu:操作量ベクトルの前記プローブ分の幅方向における空間的変動成分ベクトル
f(t):操作量ベクトルの前記プローブ分の時刻tにおける時間的変動成分
0:操作量に前記プローブ分を与える前の前記各厚み調整手段に与える操作量ベクトル
Δy:操作量に前記プローブ分の操作量を与え始めた後の厚み変動の厚み測定位置での幅方向における空間的変動成分ベクトル
g(t):操作量に前記プローブ分の操作量を与え始めた後の厚み変動の時刻tにおける時間的変動成分
0:操作量に前記プローブ分の操作量を与える前の厚み測定位置での幅方向厚み分布ベクトル
Extrude the polymer into a sheet using a die equipped with a plurality of thickness adjusting means, mold to form a sheet of the desired thickness, measure the thickness distribution in the sheet width direction, each based on the measured value An operation amount to be applied to the thickness adjusting means corresponding to a measurement position is calculated, and a sheet manufacturing method for controlling the sheet thickness by operating the thickness adjusting means according to the operation amount. An operation amount including the probe portion that satisfies (1) is given, and fluctuations in the thickness distribution approximated by the following equation (2) are extracted from the time series data of the sheet thickness distribution measurement values obtained as a result, and extracted. determining the correspondence between the positions of each other in the sheet width direction of the thickness adjusting means and the thickness measuring position from the thickness variation component, characterized by operating the thickness adjusting means based on the correspondence relation, the sheet Manufacturing method.
u (t) = u 0 + f (t) × Δu (1)
y 0 + g (t) × Δy (2)
here,
t: Time u (t): Manipulation vector Δu given to each thickness adjusting means at time t: Spatial variation component vector f (t) of the manipulation vector in the width direction of the probe The probe of the manipulation vector Time fluctuation component u 0 at time t of minutes: Operation amount vector Δy given to each thickness adjusting means before giving the probe amount to the operation amount: Thickness after starting to give the operation amount for the probe to the operation amount spatial variation component vector g in the width direction of the thickness measuring position variation (t): time change at time t of the thickness variation after the beginning to the operation amount of the probe component of the operation amount component y 0: operation amount Thickness distribution vector in the width direction at the thickness measurement position before the operation amount for the probe is given to
複数個の厚み調整手段を備えたダイを用いて重合体をシート状に押し出し、成形して所望の厚みのシートとなすとともに、そのシート幅方向の厚み分布を測定し、測定値に基づいて各測定位置に対応する前記厚み調整手段に加える操作量を計算し、この操作量によって厚み調整手段を操作してシート厚みを制御するシートの製造方法であって、前記複数の厚み調整手段に次式(3)を満たす、周期Tで時間的に変動するプローブ分を含む操作量を与え、その結果得られたシート厚み分布測定値の時系列データから、周期的に時間変動する厚みの幅方向空間的変動成分を抽出し、抽出した厚み変動から前記厚み調整手段と厚み測定位置との前記シート幅方向における相互の位置の対応関係を決定し、該対応関係に基づいて前記厚み調整手段を操作することを特徴とする、シートの製造方法。
u(t)=u0+Σi=1 M(h(t+Tφi/(2π))Δui)・・・式(3)
ここで、
t:時刻
u(t):時刻tにおいて前記各厚み調整手段に与える操作量ベクトル
M:操作量ベクトルの前記プローブ分に含まれる、前記周期Tで変動する成分の数(1以上の自然数)
Δui:操作量ベクトルの前記プローブ分のi番目の成分の幅方向の空間的変動成分ベクトル(ここで、i≠jを満たす任意のi,jにおいてΔui≠Δujであり、また任意のiにおいてΔui≠0である(iおよびj=1,2,・・・,M))
h(t):操作量ベクトルの前記プローブ分の時刻tにおける時間的変動成分であり、周期がTである関数
φi:操作量ベクトルの前記プローブ分のi番目の成分の幅方向の空間的変動成分Δuiの位相(ここで、M=2以上の場合、i≠jを満たす任意のi,jにおいてφi≠φjかつ|φi|<πである(iおよびj=1,2,・・・,M))
0:操作量に前記プローブ分を与える前の前記各厚み調整手段に与える操作量ベクトル
Extrude the polymer into a sheet using a die equipped with a plurality of thickness adjusting means, mold to form a sheet of the desired thickness, measure the thickness distribution in the sheet width direction, each based on the measured value An operation amount to be applied to the thickness adjusting means corresponding to a measurement position is calculated, and a sheet manufacturing method for controlling the sheet thickness by operating the thickness adjusting means according to the operation amount. (3) Satisfying an operation amount including a probe that temporally fluctuates with a period T, and a width direction space of a thickness that fluctuates with time periodically from time series data of sheet thickness distribution measurement values obtained as a result variations to extract components extracted to determine the correspondence between the position of the cross from the thickness variations in the sheet width direction of the thickness adjusting means and the thickness measuring position, steering the thickness adjusting means based on the correspondence relationship Characterized by, a sheet manufacturing method.
u (t) = u 0 + Σ i = 1 M (h (t + Tφ i / (2π)) Δu i ) (3)
here,
t: Time u (t): Manipulation vector M given to each thickness adjusting means at time t: Number of components varying in the period T included in the probe of the manipulating vector (a natural number of 1 or more)
Δu i : Spatial variation component vector in the width direction of the i-th component for the probe of the manipulated variable vector (where Δu i ≠ Δu j at any i and j satisfying ij , and any a Delta] u i ≠ 0 in i (i and j = 1,2, ···, M) )
h (t): a time-varying component of the manipulated variable vector at time t for the probe, and a function φ i having a period of T: spatial in the width direction of the i-th component of the manipulated variable vector for the probe Phase of the fluctuation component Δu i (where M = 2 or more, φ i ≠ φ j and | φ i | <π at any i, j that satisfies i ≠ j (i and j = 1, 2) , ..., M))
u 0 : Operation amount vector to be given to each thickness adjusting means before giving the probe amount to the operation amount
前記プローブ分の空間的変動成分として、シート幅方向の中央部の値よりも端部の値小さなものを用いることを特徴とする請求項1または請求項2に記載のシートの製造方法。 Examples spatial variation component of the probe component, sheet manufacturing method according to claim 1 or claim 2 values of I Rimotan portion of the central portion in the sheet width direction is characterized by using a small.
JP2004070226A 2004-03-12 2004-03-12 Sheet manufacturing method Expired - Fee Related JP4419615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070226A JP4419615B2 (en) 2004-03-12 2004-03-12 Sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070226A JP4419615B2 (en) 2004-03-12 2004-03-12 Sheet manufacturing method

Publications (2)

Publication Number Publication Date
JP2005254647A JP2005254647A (en) 2005-09-22
JP4419615B2 true JP4419615B2 (en) 2010-02-24

Family

ID=35080843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070226A Expired - Fee Related JP4419615B2 (en) 2004-03-12 2004-03-12 Sheet manufacturing method

Country Status (1)

Country Link
JP (1) JP4419615B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800000807A1 (en) 2018-01-12 2019-07-12 Colines Spa Method for adjusting the profile of a film in blown extrusion lines, relative film and reel

Also Published As

Publication number Publication date
JP2005254647A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US6856855B2 (en) Method of manufacturing sheet, device and program for controlling sheet thickness, and sheet
CN111344088B (en) Iterative learning control for periodic disturbances in twin roll strip casting with measurement delay
US7813829B2 (en) Sheet manufacturing method and sheet manufacturing device
Huang et al. Auto-tune system using single-run relay feedback test and model-based controller design
CN105191116B (en) Motor drive
JP6443165B2 (en) State estimation method and state estimation device
JP4419615B2 (en) Sheet manufacturing method
CA2149891C (en) Method for actuator identification during the transverse profile control of a continuous material web
JP3021135B2 (en) Film thickness control device
JP4834946B2 (en) Sheet manufacturing method and sheet thickness control apparatus
JP4719614B2 (en) Position association apparatus and position association method
WO2002024433A1 (en) Method of manufacturing sheet
JP5887679B2 (en) Method for determining thin film viscosity
JP2007030288A (en) Method for producing sheet
JP2002086539A (en) Sheet manufacturing method
JP3994742B2 (en) Sheet manufacturing method
JPS62286723A (en) Control method for profile of film sheet
US20220388220A1 (en) Method for manufacturing a blown film with determination of the profile of a characteristic property of the film
JPS6260163B2 (en)
JPS62256920A (en) Cooling method for controlling transformation rate of steel products
JP2003039525A (en) Sheet and method for manufacturing the sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4419615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees