JP4419223B2 - Vibration control device - Google Patents

Vibration control device Download PDF

Info

Publication number
JP4419223B2
JP4419223B2 JP27883199A JP27883199A JP4419223B2 JP 4419223 B2 JP4419223 B2 JP 4419223B2 JP 27883199 A JP27883199 A JP 27883199A JP 27883199 A JP27883199 A JP 27883199A JP 4419223 B2 JP4419223 B2 JP 4419223B2
Authority
JP
Japan
Prior art keywords
vibration
building
acceleration sensor
weight
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27883199A
Other languages
Japanese (ja)
Other versions
JP2001099225A (en
Inventor
睦広 風間
啓三 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP27883199A priority Critical patent/JP4419223B2/en
Publication of JP2001099225A publication Critical patent/JP2001099225A/en
Application granted granted Critical
Publication of JP4419223B2 publication Critical patent/JP4419223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はビル等の建物の主として強風による振動(揺れ)を抑えるようにするための制振装置に関するものである。
【0002】
【従来の技術】
この種の制振装置として、建物に与えられた振動エネルギーを錘りの運動エネルギーに変え、それを効率よく減衰することにより構造物の振動を少なくすることができるようにしたものが提案されている(特開平2−102945号公報)。これは、単振り子を発展させたもので、図9に概要を示す如く、ベースフレーム1上に、円弧状に湾曲形成した錘り2を、左右の支持ローラ3を介し建物4の振動方向へ単弦振動するように揺動自在に配置して、重力を利用した復元力によるばね系を構成すると共に、上記錘り2の側部中央に設けた突起5がベースフレーム1上の左右のバッファ6に当接する範囲で上記錘り2の揺動領域が規制されるようにし、又、上記錘り2の上面に、揺動方向に沿うようにラック7を設け、該ラック7の上方部にラック7と直交するように配した軸8を減速機を介してモータ9に連結して、該軸8の中間部に上記ラック7と噛合するようにピニオン10を取り付け、モータ9の駆動により軸8を介しピニオン10を回転させてラック7と共に錘り2を所要の周期で揺動させられるようにした制振装置本体11を構成し、更に、建物4の振動を検知する加速度センサーと、該加速度センサーの信号を位相及び変位制御して上記モータ9へ駆動指令を送る制御装置を備えてなる構成として、建物4の振動が加速度センサーによって検知されると、その信号が制御装置で位相及び変位制御されてからモータ9へ送られることにより、錘り2に対し単弦振動として与えられたエネルギーが建物4に対して最適な状態で与えられるため、建物4の振動を素早く抑えることができるものである。
【0003】
しかし、上記制振装置の場合、錘り2の揺動方向を建物4の振動発生頻度の高い方向に合わせるようにしてあるため、発生頻度の低い方向の建物4の振動に対しては、対応することができないという問題がある。
【0004】
そのため、錘りの振動方向が水平面で直交するように上下に重ねた型式の制振装置が提案され(特開平3−33525号公報)、開発されている。
【0005】
【発明が解決しようとする課題】
ところが、上記特開平3−33525号公報に提案された制振装置の場合、錘りを上下2段重ねとしたことにより、建物の前後方向と左右方向のいずれの振動をも速かに抑えることができるものであるが、2つの錘りを使用することから重量が大となったり、装置が階高になって建物の1フロアに納まらなくなるなどの難点がある。
【0006】
そこで、本発明は、建物に発生するあらゆる方向の振動に対応することができるようにし、且つ重量面や装置の高さの面でも有利となるようにしようとするものである。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するために、旋回台上に、錘り駆動装置により錘りを前後又は左右方向に反復移動可能に揺動させるよう支持させてなる制振装置本体を、搭載して、旋回台上に設置してある旋回駆動装置により制振装置本体を旋回台と一体に旋回させるようにし、且つ建物の中央部に配置する1つの左右方向用加速度センサーと建物の左右位置に離隔配置する2つの前後方向用加速度センサーとからなる建物の振動方向を検知するための振動方向検知用加速度センサーと、上記前後方向用加速度センサーのいずれか一方と上記左右方向用加速度センサーの信号を基に建物の振動方向を演算して錘りの移動方向が建物の時々刻々と変化する振動方向に向くように上記旋回台上の旋回駆動装置へ駆動指令を送ると共に上記両前後方向用加速度センサーからの信号を基に建物のねじれ角を求め且つ該ねじれ角が設定値以上のときにねじれを抑える方向に制振装置本体を旋回させるように旋回台上の旋回駆動装置に駆動指令を送る方向制御器と、上記前後方向用加速度センサーのいずれか一方と上記左右方向用加速度センサーの信号を位相及び変位制御して上記錘り駆動装置へ駆動指令を送る位相制御器とからなり、上記ねじれ角が設定値以上のときに直線振動制御に優先させてねじれ振動制御を行わせるようにした制御装置を備えた構成とする。
【0008】
建物に振動が発生すると、その振動が振動方向検知用加速度センサーにより検知され、方向制御器にて演算されることでその振動方向が求められ、方向制御器からの駆動指令が旋回駆動装置へ送られることにより、制振装置本体が旋回させられて錘りの移動方向が建物の振動方向に合わせられ、更に、振動方向検知用加速度センサーの信号を基に位相制御器にて位相及び変位制御された駆動指令が錘り駆動装置に送られることで、錘りが反復移動させられる結果、建物の振動が抑えられる。
【0009】
、振動方向検知用加速度センサーの信号を分岐させて位相制御器へ送るようにし、振動方向検知用加速度センサーの信号を基に位相制御器で位相及び変位制御を行わせるようにして錘り駆動装置へ駆動指令を送るようにする制御装置とした構成としてあるので、振動レベル検知用加速度センサーを不要にできる。
【0010】
更に、振動方向検知用加速度センサーを、建物の中央部に配置する1つの左右方向用加速度センサーと、建物の左右位置に離隔配置する2つの前後方向用加速度センサーとの組み合わせとし、更に、方向制御器に、両前後方向用加速度センサーからの信号を基に建物のねじれ角を求め且つ該ねじれ角が設定値以上のときにねじれを抑える方向に制振装置本体を旋回させるように旋回台上の旋回駆動装置に駆動指令を送る機能をもたせた制御装置とした構成としてあるので、建物のねじれ振動やリサージュ振動にも対応できるようになる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0012】
図1乃至図4は本発明の実施の一形態を示すもので、建物12のたとえば屋上の中央部(重心が通る位置)にベースフレーム13を介して旋回台14を据え付け、該旋回台14上に、左右方向(又は前後方向)に反復移動可能とした錘り15を有する制振装置本体16を搭載し、且つ該制振装置本体16の向き及び錘り15の移動量を制御する制御装置17を備えた構成とする。
【0013】
上記制振装置本体16は、ベースフレーム18上に、左右に所要間隔を隔てて2つ宛の支持ローラ19を左右方向に向けて設置し、該左右の各支持ローラ19上に、左右のレール体20aの内端同士をV字となるように突き合わせてヒンジ21に連結してV字の角度を調整可能としてなるV字型レール20を、左右方向へ揺動自在に載置し、該V字型レール20上に、可動マスとしての錘り15を横方向に長くしてV字型レール20の長手方向と平行となるように載置して、該錘り15の中央部を、上記レール体20a同士を連結したヒンジ21にブラケット22を介して連結すると共に、上記錘り15の左右両端部と、上記V字型レール20の両外端部との間に、固有周期調整用ライナー23を介在させて、該固有周期調整用ライナー23をブラケット24を介しピン25にてV字型レール20に取り付け、上記錘り15がV字型レール20と一体に支持ローラ19上を左右方向へ単弦振動する如く揺動させられるようにして、重力を利用した復元力によるばね系を構成し、一方、上記錘り15の前後両側面の左右側位置に突起26を設け、上記錘り15を挟むようにベースフレーム18上の前後位置に設置した架台27に、上記突起26と対応する左右のバッファ28を取り付けて、上記突起26がバッファ28に当接する範囲で上記錘り15の揺動領域が規制されるようにしてある。又、上記錘り15の下面所要位置にラック29を振動方向に沿って設け、該ラック29と直交するように配した1つの支持ローラ19の軸30を減速機31を介し錘り駆動装置としてのモータ32に連結して、該軸30の中間部に、上記ラック29と噛合するようにピニオン33を取り付け、モータ32の駆動により軸30を介しピニオン33を回転させてラック29と共に錘り15を所要の周期で移動させられるようにしてある。34はV字型レール20の側面に張り付けたライナプレート、35は該ライナプレート34に当接させるようにしたサイドローラである。
【0014】
又、上記旋回台14は、ベースフレーム13上に固定した固定環部40の上端部に旋回環部41を旋回自在に組み付けて、該旋回環部41上に制振装置本体16のベースフレーム18を据え付けるようにし、且つ上記旋回環部41の外周壁部に水平に張り出させたブラケット36上に、旋回駆動装置としてのモータ37を、制振装置本体16と干渉しないようにして下向きに設置し、該モータ37の駆動軸に取り付けたピニオン38を、上記固定環部40の外周面に取り付けた大径のギヤ39に噛合させ、モータ37の駆動でピニオン38を回転させて大径のギヤ39に沿わせて転動させるようにすることにより、旋回環部41と一体に制振装置本体16を旋回させるようにしてある。
【0015】
装置17は、図3及び図4に示す如く、建物12の振動方向を検知するための振動方向検知用加速度センサー42と、該加速度センサー42の信号を基に建物12の振動方向を演算して錘り15の揺動方向が建物12の振動方向に向くように上記旋回駆動装置としてのモータ37へ駆動指令を送る方向制御器44と、建物12の振動方向の振動レベルを検知するための振動レベル検知用加速度センサー43と、該加速度センサー43の信号を位相及び変位制御して上記錘り駆動装置としてのモータ32へ駆動指令を送る位相制御器45とからなる。
【0016】
上記振動方向検知用加速度センサー42は、2軸式の加速度センサーを採用し、建物12の重心位置を通り直交するx軸方向とy軸方向の加速度を検出するようにしてあり、一方、上記振動レベル検知用加速度センサー43は、1軸式の加速度センサーを採用し、制振装置本体16のたとえばベースフレーム18の中央部付近に設置するようにしてある。
【0017】
建物12に風荷重による振動が発生すると、振動方向検知用加速度センサー42によりその振動が加速度信号Ax ,Ay として検知され、方向制御器44にて演算されることで建物12の振動方向が求められて、旋回駆動装置としてのモータ37に駆動指令が送られることにより、制振装置本体16が旋回台14を介して水平方向に旋回させられて、錘り15の揺動方向が建物12の振動方向に向けられる。更に、この際、建物12の振動方向の振動レベル(大きさ)が振動レベル検知用加速度センサー43にて加速度信号As として検知され、その信号に基づいて位相及び変位制御された駆動指令が位相制御器45から錘り駆動装置としてのモータ32に送られることにより、モータ32が正逆に駆動され、減速機31、軸30、ピニオン33、ラック29、V字型レール20を介して錘り15が建物12の振動方向に沿って揺動させられる結果、建物12の振動が抑えられる。
【0018】
上記において、建物12の振動方向を求める場合は、先ず、建物12のx軸方向とy軸方向の加速度から卓越した振動方向を決めるようにする。この場合、図5に一例を示す如く、加速度センサー42にて求めた加速度信号Ax ,Ay の値を、任意に決めておいた設定時間(たとえば、1〜3分)内においてxy座標としてプロットし、これらの値を基に最小2乗法等により、原点0を通る直線y=axを求め、次に、x軸に対する角度θを、θ=tan-1aより算出するようにする。
【0019】
このように、時々刻々と変化する建物12の振動方向に、制振装置本体16の錘り15の揺動方向を合わせることができるので、1台で水平方向のあらゆる方向の振動に対応することができ、重量面及び装置の高さの面でも有利となる。
【0020】
次に、図6は本発明の実施の他の形態を示すもので、上記実施の形態と同様な構成において、振動レベル検知用加速度センサー43の信号を位相制御器45へ送るようにする制御装置17を用いることに代えて、振動方向検知用加速度センサー42の信号を分岐させて位相制御器45へ送るようにし、該位相制御器45で位相及び変位制御を行わせるようにした制御装置17Aとしたものである。
【0021】
図6に示すような制御装置17Aを採用すると、振動レベル検知用加速度センサー43を不要とすることができる。
【0022】
次いで、図7及び図8は本発明の実施の更に他の形態を示すもので、図6の実施の形態と同様な制御装置17Aの構成において、振動方向検知用加速度センサー42を、建物の中央部に配置するようにした1つの1軸式左右方向用(x軸用)加速度センサー42Cと、該左右方向用加速度センサー42Cから等距離lを隔てて建物12の左右位置に離隔配置するようにした2つの1軸式前後方向用加速度センサー42L,42Rとからなる組み合わせとし、更に、方向制御器44に、両前後方向用加速度センサー42L,42Rからの加速度信号Ay1,Ay2を基に建物12のねじれ角を求め且つ該ねじれ角が設定値以上のときにねじれを抑える方向に制振装置本体16を旋回させるようにモータ37に駆動指令を送る機能をもたせた制御装置17Bとしたものである。
【0023】
図7及び図8に示す制御装置17Bでは、建物12にねじれのない振動が発生した場合、加速度信号Ay1又はAy2のいずれかとAx とにより、図6に示す制御装置17Aの場合と同様な制御が行われるが、加速度信号Ay1とAy2の差が設定値を越えると、大きなねじれ振動が発生しているものとしてねじれ振動制御を行わせるようにする。この場合、建物12のねじれ角加速度θ″は、θ″=(Ay2−Ay1)/2lとして求められ、又、建物12のねじれ角変位Aθは、θ″=Aθθ′より、Aθ=θ″/θ′(但し、θ′は既知)として求めることができる。したがって、建物12のねじれ角変位Aθが大きくなったときに、直線振動制御に優先させてねじれ振動制御を行うことができるようになる。又、振動制御とねじれ制御を併用させることにより、建物12にリサージュ振動が発生しても対処することができる。
【0024】
なお、図3及び図4では、振動方向検知用加速度センサー42として2軸式のものを採用した場合を示したが、1軸式のものを2台用いて前後方向と左右方向に配置するようにしてもよいこと、又、実施の形態では、ライナー23の厚みを選定することにより錘り15の周期を建物12の周期に完全に同調させることが可能となるように角度調整可能なV字型レール20を錘り15の下面側に取り付けるようにした型式の制振装置本体16を採用した場合を示したが、図9に示すような円弧状の錘り2を有する制振装置本体11や、錘りを直線的に反復移動させる型式の制振装置本体を採用してもよいこと、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0025】
【発明の効果】
以上述べた如く、本発明の制振装置によれば、旋回台上に、錘り駆動装置により錘りを前後又は左右方向に反復移動可能に揺動させるよう支持させてなる制振装置本体を、搭載して、旋回台上に設置してある旋回駆動装置により制振装置本体を旋回台と一体に旋回させるようにし、且つ建物の中央部に配置する1つの左右方向用加速度センサーと建物の左右位置に離隔配置する2つの前後方向用加速度センサーとからなる建物の振動方向を検知するための振動方向検知用加速度センサーと、上記前後方向用加速度センサーのいずれか一方と上記左右方向用加速度センサーの信号を基に建物の振動方向を演算して錘りの移動方向が建物の時々刻々と変化する振動方向に向くように上記旋回台上の旋回駆動装置へ駆動指令を送ると共に上記両前後方向用加速度センサーからの信号を基に建物のねじれ角を求め且つ該ねじれ角が設定値以上のときにねじれを抑える方向に制振装置本体を旋回させるように旋回台上の旋回駆動装置に駆動指令を送る方向制御器と、上記前後方向用加速度センサーのいずれか一方と上記左右方向用加速度センサーの信号を位相及び変位制御して上記錘り駆動装置へ駆動指令を送る位相制御器とからなり、上記ねじれ角が設定値以上のときに直線振動制御に優先させてねじれ振動制御を行わせるようにした制御装置を備えた構成としてあるので、建物の振動方向に制振装置本体の錘りの移動方向を合わせることができることにより、1台の装置にて建物の任意の方向の振動を低減させることができて、重量面及び装置の高さの面でも有利である。、振動方向検知用加速度センサーの信号を分岐させて位相制御器へ送るようにし、振動方向検知用加速度センサーの信号を基に位相制御器で位相及び変位制御を行わせるようにして錘り駆動装置へ駆動指令を送るようにする制御装置とした構成としてあるので、振動レベル検知用加速度センサーを不要にできる。更に、振動方向検知用加速度センサーを、建物の中央部に配置する1つの左右方向用加速度センサーと、建物の左右位置に離隔配置する2つの前後方向用加速度センサーとの組み合わせとし、更に、方向制御器に、両前後方向用加速度センサーからの信号を基に建物のねじれ角を求め且つ該ねじれ角が設定値以上のときにねじれを抑える方向に制振装置本体を旋回させるように旋回台上の旋回駆動装置に駆動指令を送る機能をもたせた制御装置とした構成としてあるので、建物のねじれ振動やリサージュ振動にも対処することができる、等の優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の制振装置の実施の一形態を示す正面図である。
【図2】図1の平面図である。
【図3】本発明の制振装置における制御装置を示すブロック図である。
【図4】図3に示す制御装置における加速度センサーの配置状況を示す概略図である。
【図5】図3に示す制御装置における方向制御器の制御内の一例を示すイメージ図である。
【図6】本発明の実施の他の形態を示す制御装置のブロック図である。
【図7】本発明の実施の更に他の形態を示す制御装置のブロック図である。
【図8】図7に示す制御装置における加速度センサーの配置状況を示す概略図である。
【図9】従来の制振装置の一例を示す概要図である。
【符号の説明】
12 建物
14 旋回台
15 錘り
16 制振装置本体
17,17A,17B 制御装置
32 モータ(錘り駆動装置)
37 モータ(旋回駆動装置)
42 振動方向検知用加速度センサー
42C 左右方向用加速度センサー
42L,42R 前後方向用加速度センサー
43 振動レベル検知用加速度センサー
44 方向制御器
45 位相制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration damping device for suppressing vibration (swing) mainly due to strong winds in a building such as a building.
[0002]
[Prior art]
As this type of vibration control device, a device that can reduce the vibration of the structure by changing the vibration energy given to the building to the kinetic energy of the weight and effectively attenuating it is proposed. (JP-A-2-102945). This is an extension of a simple pendulum. As schematically shown in FIG. 9, a weight 2 that is curved in an arc shape is formed on a base frame 1 in the vibration direction of a building 4 via left and right support rollers 3. A spring system using a restoring force using gravity is arranged so as to swing freely so as to oscillate in a single string, and a protrusion 5 provided at the center of the side of the weight 2 has left and right buffers on the base frame 1. The swing area of the weight 2 is restricted within the range of contact with the weight 6, and a rack 7 is provided on the upper surface of the weight 2 along the swing direction. A shaft 8 arranged so as to be orthogonal to the rack 7 is connected to a motor 9 through a speed reducer, and a pinion 10 is attached to an intermediate portion of the shaft 8 so as to mesh with the rack 7. Rotate the pinion 10 through 8 to place the weight 2 together with the rack 7 The vibration control device body 11 is configured to be oscillated at a period of, and further, an acceleration sensor that detects vibration of the building 4 and a phase and displacement control of the signal of the acceleration sensor to drive the motor 9 When the vibration of the building 4 is detected by the acceleration sensor, the phase and displacement are controlled by the control device and then sent to the motor 9 so that the weight 2 is controlled. Since the energy given as the single string vibration is given to the building 4 in an optimum state, the vibration of the building 4 can be quickly suppressed.
[0003]
However, in the case of the above vibration damping device, the swinging direction of the weight 2 is set to the direction in which the vibration occurrence frequency of the building 4 is high, so that the vibration of the building 4 in the direction of low occurrence frequency can be dealt with. There is a problem that you can not.
[0004]
For this reason, a vibration damping device of a type in which the vibration direction of the weight is vertically stacked so that the vibration direction of the weight is perpendicular to the horizontal plane has been proposed (JP-A-3-33525) and has been developed.
[0005]
[Problems to be solved by the invention]
However, in the case of the vibration damping device proposed in the above-mentioned Japanese Patent Laid-Open No. 3-33525, the weight is made up of two layers in the upper and lower directions, so that any vibration in the front-rear direction and the left-right direction of the building can be quickly suppressed. However, since two weights are used, there are problems such as an increase in weight and a problem that the device becomes higher than the floor so that it cannot fit on one floor of the building.
[0006]
Therefore, the present invention is intended to be able to cope with vibrations in all directions generated in a building, and to be advantageous in terms of weight and device height.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention mounts a vibration damping device main body, which is supported on a swivel base so that the weight can be repeatedly swung back and forth or left and right by a weight driving device. The vibration control device main body is turned together with the turntable by the turn drive device installed on the turntable, and one left-right direction acceleration sensor disposed in the center of the building and the left and right positions of the building A vibration direction detection acceleration sensor for detecting the vibration direction of a building, which is composed of two longitudinal acceleration sensors separated from each other, a signal from one of the front and rear acceleration sensors and the left and right acceleration sensor for the both longitudinal direction together with calculating the vibration direction of the building based on the direction of movement of the governor weight sends a drive command to the swing drive system on the swivel base to face the vibrating direction changes from moment to moment in the building Based on the signal from the speed sensor, obtain the torsion angle of the building, and when the torsion angle is greater than or equal to the set value, issue a drive command to the swivel drive unit on the swivel so that the main body of the vibration control device is swung in a direction to suppress the twist a direction controller for sending, Ri Do and a phase controller for sending a drive command to the governor weight driving device either the signal of the lateral direction acceleration sensor of the longitudinal direction acceleration sensor phase and displacement control, The control device is configured to perform the torsional vibration control in preference to the linear vibration control when the torsion angle is equal to or larger than a set value .
[0008]
When vibration occurs in a building, the vibration is detected by an acceleration sensor for detecting the vibration direction, and is calculated by a direction controller. The direction of vibration is obtained, and a drive command from the direction controller is sent to the turning drive device. As a result, the main body of the vibration control device is turned so that the moving direction of the weight is adjusted to the vibration direction of the building, and the phase and displacement are controlled by the phase controller based on the signal of the acceleration sensor for detecting the vibration direction. As the drive command is sent to the weight drive device, the weight is repeatedly moved, so that the vibration of the building is suppressed.
[0009]
Also, the signals of vibration direction detecting acceleration sensor is branched to send to the phase controller, so as to perform the phase and displacement controlled by phase controller based on the signal of the vibration direction detecting acceleration sensor governor weight because are the control unit and the structure to send a drive instruction to the driving device, it can be made unnecessary vibration level detecting accelerometer.
[0010]
Furthermore, the acceleration sensor for detecting the vibration direction is a combination of one acceleration sensor for the left and right direction arranged at the center of the building and two acceleration sensors for the front and rear direction arranged at the left and right positions of the building, and direction control. To determine the torsion angle of the building based on the signals from the front and rear acceleration sensors, and to turn the vibration control device body in a direction to suppress the torsion when the torsion angle is equal to or greater than a set value. since remembering function of sending a drive command to the turning drive unit control device and the configuration and then it is also made to accommodate the torsional vibration and Lissajous vibration of the building.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
1 to 4 show an embodiment of the present invention. For example, a swivel base 14 is installed on the center of a building 12 through a base frame 13 at the center of the roof (position where the center of gravity passes). Is mounted with a damping device main body 16 having a weight 15 that can be repeatedly moved in the left-right direction (or front-rear direction), and controls the direction of the damping device main body 16 and the amount of movement of the weight 15. 17 is provided.
[0013]
The vibration damping device main body 16 has two support rollers 19 disposed on the base frame 18 at right and left sides with a required interval facing the left and right directions, and left and right rails on the left and right support rollers 19. The V-shaped rail 20 that can adjust the angle of the V-shape by abutting the inner ends of the body 20a so as to be V-shaped and connected to the hinge 21 is placed so as to be swingable in the left-right direction. A weight 15 as a movable mass is placed on the character-shaped rail 20 so as to be long in the lateral direction and parallel to the longitudinal direction of the V-shaped rail 20, and the central portion of the weight 15 is It connects with the hinge 21 which connected the rail bodies 20a via the bracket 22, and the natural period adjustment liner is provided between the left and right ends of the weight 15 and both outer ends of the V-shaped rail 20. 23, and the natural period adjusting liner 23 is interposed. Attached to the V-shaped rail 20 at pin 25 through a bracket 24, as the governor weight 15 is swung as to single string vibration on the support rollers 19 integral with V-shaped rail 20 in the lateral direction, A spring system using a restoring force using gravity is formed, and on the other hand, protrusions 26 are provided at left and right side positions on both front and rear sides of the weight 15, and are installed at front and rear positions on the base frame 18 so as to sandwich the weight 15. The left and right buffers 28 corresponding to the protrusions 26 are attached to the gantry 27 so that the swinging region of the weight 15 is restricted in a range where the protrusions 26 abut against the buffers 28. Further, a rack 29 is provided at a required position on the lower surface of the weight 15 along the vibration direction, and the shaft 30 of one support roller 19 disposed so as to be orthogonal to the rack 29 is used as a weight driving device via a speed reducer 31. The pinion 33 is attached to the intermediate portion of the shaft 30 so as to mesh with the rack 29, and the pinion 33 is rotated via the shaft 30 by the drive of the motor 32, and the weight 15 together with the rack 29 is attached. Can be moved in a required cycle. Reference numeral 34 denotes a liner plate attached to the side surface of the V-shaped rail 20, and reference numeral 35 denotes a side roller that is brought into contact with the liner plate 34.
[0014]
In addition, the swivel base 14 has a swivel ring portion 41 rotatably mounted on an upper end portion of a fixed ring portion 40 fixed on the base frame 13, and the base frame 18 of the vibration damping device main body 16 is placed on the swivel ring portion 41. And a motor 37 as a turning drive device is installed downward on the bracket 36 horizontally projecting on the outer peripheral wall portion of the turning ring portion 41 so as not to interfere with the vibration control device main body 16. Then, the pinion 38 attached to the drive shaft of the motor 37 is meshed with the large-diameter gear 39 attached to the outer peripheral surface of the fixed ring portion 40, and the pinion 38 is rotated by driving the motor 37 to thereby rotate the large-diameter gear. The vibration damping device main body 16 is swiveled together with the swivel ring portion 41 by rolling along the swivel 39.
[0015]
The control device 17, as shown in FIGS. 3 and 4, operation and vibration direction detecting acceleration sensor 42 for detecting the vibration direction of the building 12, on the basis of a signal acceleration sensors 42 a vibration direction of the building 12 In order to detect the vibration level in the vibration direction of the building 12 and the direction controller 44 that sends a drive command to the motor 37 as the turning drive device so that the swinging direction of the weight 15 is directed to the vibration direction of the building 12. Vibration level detecting acceleration sensor 43 and a phase controller 45 for controlling the phase and displacement of the signal of the acceleration sensor 43 and sending a drive command to the motor 32 as the weight driving device.
[0016]
The acceleration sensor 42 for detecting the vibration direction employs a two-axis acceleration sensor and detects acceleration in the x-axis direction and the y-axis direction orthogonal to each other through the center of gravity of the building 12, while the vibration The level detection acceleration sensor 43 employs a uniaxial acceleration sensor and is installed near the center of the base frame 18 of the vibration damping device main body 16, for example.
[0017]
When vibration due to wind load occurs in the building 12, the vibration is detected as acceleration signals A x and A y by the vibration direction detection acceleration sensor 42 and is calculated by the direction controller 44, thereby determining the vibration direction of the building 12. Thus, when a drive command is sent to the motor 37 as a turning drive device, the vibration damping device main body 16 is turned in the horizontal direction via the turntable 14, and the swinging direction of the weight 15 is changed to the building 12. Directed in the direction of vibration. In addition, this time, the vibration direction of the vibration level of the building 12 (magnitude) is detected as an acceleration signal A s with a vibration level detecting acceleration sensor 43, the phase and displacement controlled drive command phase on the basis of the signal By being sent from the controller 45 to the motor 32 as a weight driving device, the motor 32 is driven in the forward and reverse directions, and the weight is passed through the speed reducer 31, the shaft 30, the pinion 33, the rack 29, and the V-shaped rail 20. As a result of the 15 being swung along the vibration direction of the building 12, the vibration of the building 12 is suppressed.
[0018]
In the above description, when obtaining the vibration direction of the building 12, first, an excellent vibration direction is determined from the acceleration of the building 12 in the x-axis direction and the y-axis direction. In this case, as shown in FIG. 5 as an example, the values of the acceleration signals A x and A y obtained by the acceleration sensor 42 are set as xy coordinates within a predetermined set time (for example, 1 to 3 minutes). Plotting and obtaining a straight line y = ax passing through the origin 0 by the least square method or the like based on these values, and then calculating the angle θ with respect to the x axis from θ = tan −1 a.
[0019]
In this way, the vibration direction of the weight 15 of the vibration damping device body 16 can be matched with the vibration direction of the building 12 that changes from moment to moment, so that one unit can handle vibrations in all directions in the horizontal direction. This is advantageous in terms of weight and height of the apparatus.
[0020]
Next, FIG. 6 shows another embodiment of the present invention. In the same configuration as the above embodiment, a control device for sending the signal of the vibration level detecting acceleration sensor 43 to the phase controller 45 is shown. The control device 17A is configured to branch the signal from the vibration direction detecting acceleration sensor 42 and send it to the phase controller 45, and to control the phase and displacement by the phase controller 45. It is a thing.
[0021]
When the control device 17A as shown in FIG. 6 is employed, the vibration level detecting acceleration sensor 43 can be dispensed with.
[0022]
Next, FIGS. 7 and 8 show still another embodiment of the present invention. In the configuration of the control device 17A similar to the embodiment of FIG. 6, the vibration direction detecting acceleration sensor 42 is connected to the center of the building. One uniaxial left and right direction (x-axis) acceleration sensor 42C arranged at a portion, and spaced apart from the left and right direction acceleration sensor 42C at an equal distance l so as to be separated from each other at the left and right positions of the building 12. two 1-shaft longitudinal direction acceleration sensor 42L that, a combination comprising a 42R, building further on direction controller 44, both longitudinal direction acceleration sensor 42L, based on the acceleration signal a y1, a y2 from 42R 12. A control device having a function of obtaining a torsion angle of 12 and sending a drive command to the motor 37 so as to turn the vibration damping device body 16 in a direction to suppress the torsion when the torsion angle is equal to or larger than a set value. 17B.
[0023]
In the control unit 17B shown in FIGS. 7 and 8, if the torsional free vibration in the building 12 occurs, either of the acceleration signal A y1 or A y2 by the A x, as in the case of a control device 17A shown in FIG. 6 However, if the difference between the acceleration signals A y1 and A y2 exceeds the set value, the torsional vibration control is performed assuming that a large torsional vibration has occurred. In this case, the torsional angular acceleration θ ″ of the building 12 is obtained as θ ″ = (A y2 −A y1 ) / 2l, and the torsional angular displacement A θ of the building 12 is obtained from θ ″ = A θ θ ′. A θ = θ ″ / θ ′ (where θ ′ is known). Accordingly, when the twist angular displacement A theta building 12 is increased, it is possible to perform a torsional vibration control in preference to the linear vibration control. Further, by combining vibration control and torsion control, it is possible to cope with the occurrence of Lissajous vibration in the building 12.
[0024]
3 and 4 show a case where a biaxial sensor is used as the vibration direction detecting acceleration sensor 42, two uniaxial sensors are used and arranged in the front-rear direction and the left-right direction. In addition, in the embodiment, by selecting the thickness of the liner 23, the angle of the V can be adjusted so that the period of the weight 15 can be completely synchronized with the period of the building 12. Although the case where the vibration damping device main body 16 of the type in which the mold rail 20 is attached to the lower surface side of the weight 15 is adopted, the vibration damping device main body 11 having the arc-shaped weight 2 as shown in FIG. Of course, a vibration damping device main body of a type in which the weight is repeatedly moved linearly may be adopted, and various modifications can be made without departing from the scope of the present invention.
[0025]
【The invention's effect】
As described above, according to the vibration damping device of the present invention, the vibration damping device main body, which is supported on the swivel base by the weight driving device so as to rock the weight so that it can be repeatedly moved back and forth or left and right, is provided. The vibration control device main body is made to turn integrally with the turntable by the turning drive device installed and installed on the turntable, and one acceleration sensor for the left and right direction arranged at the center of the building and the building A vibration direction detection acceleration sensor for detecting the vibration direction of a building, which is composed of two acceleration sensors for the front and rear direction that are spaced apart in the left and right positions, and one of the acceleration sensor for the front and rear direction and the acceleration sensor for the left and right direction moving direction the both longitudinal and sends a drive command to said swivel base on the turning drive unit to face the vibrating direction changes every moment in the building signals the governor weight by calculating the direction of vibration of the building based on the Drives the swing drive device on the swivel so that the torsion angle of the building is obtained based on the signal from the direction acceleration sensor and the vibration control device body is swung in a direction to suppress the twist when the torsion angle is equal to or greater than a set value. A direction controller that sends a command, and a phase controller that sends a drive command to the weight drive device by controlling the phase and displacement of one of the longitudinal acceleration sensors and the signal from the left and right acceleration sensors. Therefore, when the torsional angle is equal to or greater than the set value, the control device is configured so that the torsional vibration control is performed in preference to the linear vibration control. by being able to adjust the movement direction of, and it is possible to reduce the vibration of any direction of the building in a single apparatus, Ru advantageously der in terms of the height of the weight surface and equipment. Also, the signals of vibration direction detecting acceleration sensor is branched to send to the phase controller, so as to perform the phase and displacement controlled by phase controller based on the signal of the vibration direction detecting acceleration sensor governor weight because are the control unit and the structure to send a drive instruction to the driving device, Ru can be eliminated the vibration level detecting accelerometer. Furthermore, the acceleration sensor for detecting the vibration direction is a combination of one acceleration sensor for the left and right direction arranged at the center of the building and two acceleration sensors for the front and rear direction arranged at the left and right positions of the building, and direction control. To determine the torsion angle of the building based on the signals from the front and rear acceleration sensors, and to turn the vibration control device body in a direction to suppress the torsion when the torsion angle is equal to or greater than a set value. since turning drive device are a configuration in which a control apparatus remembering function of sending a drive command, to torsional vibration and Lissajous vibration of the building can be addressed, it exhibits excellent effects and the like.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of a vibration damping device of the present invention.
2 is a plan view of FIG. 1. FIG.
FIG. 3 is a block diagram showing a control device in the vibration damping device of the present invention.
4 is a schematic diagram showing an arrangement state of acceleration sensors in the control device shown in FIG. 3;
FIG. 5 is an image diagram showing an example in the control of a direction controller in the control device shown in FIG. 3;
FIG. 6 is a block diagram of a control device showing another embodiment of the present invention.
FIG. 7 is a block diagram of a control device showing still another embodiment of the present invention.
8 is a schematic diagram showing an arrangement state of acceleration sensors in the control device shown in FIG. 7;
FIG. 9 is a schematic diagram showing an example of a conventional vibration damping device.
[Explanation of symbols]
12 Building 14 Swivel Table 15 Weight 16 Damping Device Body 17, 17A, 17B Control Device 32 Motor (Weight Drive Device)
37 Motor (Swivel drive device)
42 Acceleration sensor for vibration direction detection 42C Acceleration sensor for left / right direction 42L, 42R Acceleration sensor for front / rear direction 43 Acceleration sensor for vibration level 44 Direction controller
45 Phase controller

Claims (1)

旋回台上に、錘り駆動装置により錘りを前後又は左右方向に反復移動可能に揺動させるよう支持させてなる制振装置本体を、搭載して、旋回台上に設置してある旋回駆動装置により制振装置本体を旋回台と一体に旋回させるようにし、且つ建物の中央部に配置する1つの左右方向用加速度センサーと建物の左右位置に離隔配置する2つの前後方向用加速度センサーとからなる建物の振動方向を検知するための振動方向検知用加速度センサーと、上記前後方向用加速度センサーのいずれか一方と上記左右方向用加速度センサーの信号を基に建物の振動方向を演算して錘りの移動方向が建物の時々刻々と変化する振動方向に向くように上記旋回台上の旋回駆動装置へ駆動指令を送ると共に上記両前後方向用加速度センサーからの信号を基に建物のねじれ角を求め且つ該ねじれ角が設定値以上のときにねじれを抑える方向に制振装置本体を旋回させるように旋回台上の旋回駆動装置に駆動指令を送る方向制御器と、上記前後方向用加速度センサーのいずれか一方と上記左右方向用加速度センサーの信号を位相及び変位制御して上記錘り駆動装置へ駆動指令を送る位相制御器とからなり、上記ねじれ角が設定値以上のときに直線振動制御に優先させてねじれ振動制御を行わせるようにした制御装置を備えた構成を有することを特徴とする制振装置。On the swivel base, mounted on the swivel base is a vibration control device body that supports the weight drive device so that the weight can be swung back and forth or left and right. The vibration control device main body is swung integrally with the swivel base by the device, and includes one left-right acceleration sensor arranged in the center of the building and two front-rear acceleration sensors arranged separately in the left-right position of the building. The weight of the building is calculated by calculating the vibration direction of the building based on the signal of the vibration direction detection acceleration sensor for detecting the vibration direction of the building, the front-rear direction acceleration sensor and the left-right direction acceleration sensor. movement direction of the building based on a signal from the both longitudinal direction acceleration sensor and sends a drive command to said swivel base on the turning drive unit to face the vibrating direction changes every moment in the building The direction controller and the twist angle seek Gillet angle sends a drive command to the turning drive unit on the swivel slide so as to pivot the damping device body in a direction to suppress the twisting when the set value or more, for the longitudinal direction Ri Do and a phase controller for sending a drive command to the governor weight drive either the signal of the lateral direction acceleration sensor of the acceleration sensor and the phase and displacement control, when the twist angle is larger than a predetermined value What is claimed is: 1. A vibration damping device comprising a control device configured to perform torsional vibration control in preference to linear vibration control .
JP27883199A 1999-09-30 1999-09-30 Vibration control device Expired - Lifetime JP4419223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27883199A JP4419223B2 (en) 1999-09-30 1999-09-30 Vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27883199A JP4419223B2 (en) 1999-09-30 1999-09-30 Vibration control device

Publications (2)

Publication Number Publication Date
JP2001099225A JP2001099225A (en) 2001-04-10
JP4419223B2 true JP4419223B2 (en) 2010-02-24

Family

ID=17602772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27883199A Expired - Lifetime JP4419223B2 (en) 1999-09-30 1999-09-30 Vibration control device

Country Status (1)

Country Link
JP (1) JP4419223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421411A (en) * 2022-08-15 2022-12-02 沈阳工业大学 Active moment drive control system based on rotation principle

Also Published As

Publication number Publication date
JP2001099225A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
JP5824206B2 (en) Suspended load swivel device
JP4419223B2 (en) Vibration control device
JPH0726785A (en) Vibration suppressing method and device for building
CN116513378B (en) Parallel anti-rolling anti-corona seat system and transport tool
JP2000143153A (en) Base isolation device for crane
JPH09264379A (en) Vibration damping device
CN108045481A (en) A kind of electrodynamic balance vehicle automatic balancing arrangement
JP3084905B2 (en) Damping device
JP2723738B2 (en) Vibration control device for structures
JP2583999Y2 (en) Guide system for floating objects
JP3605176B2 (en) Vertical active damping device
JP3707298B2 (en) Vibration control device
JP2512956Y2 (en) Structural vibration control device
JP2841488B2 (en) Structure damping device
JP2689652B2 (en) Damping device
JPH0518142A (en) Damping device
JP3502999B2 (en) Damping device
JP4643803B2 (en) Elevator damping device
JP3067226B2 (en) Damping device
JPH0953679A (en) Direct acting mass type vibration damping device using pendulum-type arm with spring
JPH08226252A (en) Vibration control device with movable rigid mechanism for high-rise building
JP3297378B2 (en) Suspended load damping device
JP2001116083A (en) Vibration control device
JP3119039B2 (en) Offshore structure rocking device
JPH0629192Y2 (en) Vessel superstructure shaking control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4419223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term