JP4418567B2 - Multi-beam scanning optical system and image forming apparatus using the same - Google Patents

Multi-beam scanning optical system and image forming apparatus using the same Download PDF

Info

Publication number
JP4418567B2
JP4418567B2 JP32828099A JP32828099A JP4418567B2 JP 4418567 B2 JP4418567 B2 JP 4418567B2 JP 32828099 A JP32828099 A JP 32828099A JP 32828099 A JP32828099 A JP 32828099A JP 4418567 B2 JP4418567 B2 JP 4418567B2
Authority
JP
Japan
Prior art keywords
scanning direction
optical system
light
sub
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32828099A
Other languages
Japanese (ja)
Other versions
JP2001147388A5 (en
JP2001147388A (en
Inventor
圭一郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP32828099A priority Critical patent/JP4418567B2/en
Publication of JP2001147388A publication Critical patent/JP2001147388A/en
Publication of JP2001147388A5 publication Critical patent/JP2001147388A5/ja
Application granted granted Critical
Publication of JP4418567B2 publication Critical patent/JP4418567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours

Landscapes

  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は光走査装置に関し、特に、光源手段から出射した光束を光偏向器としてのポリゴンミラーにより反射偏向させ、結像光学系を介して被走査面上を光走査して画像情報を記録するようにした電子写真プロセスを有するレーザービームプリンターやデジタル複写機等の画像形成装置に好適なマルチビーム光走査光学系において、光学部品の製造誤差・組立誤差によっても走査線ライン間隔が左右非対称に変化せずピッチムラの無い良好な画像が常に得られる光走査装置に関する。
【0002】
【従来の技術】
図20は、従来のマルチビーム走査装置の主走査方向断面図である。複数の光源手段1から変調され出射した複数の光束は、コリメータレンズ2により略平行光束に変換され、開口絞り3によって前記光束を制限して副走査断面内にのみ所定の屈折力を有するシリンドリカルレンズ4に入射する。シリンドリカルレンズ4に入射した略平行光束のうち主走査断面内においてはそのまま略平行光束の状態で出射する。副走査断面内においては収束してポリゴンミラー5(光偏向器)の偏向反射面5aにほぼ線像として結像する。そしてポリゴンミラーで反射偏向された光束はfθ特性を有する結像光学系6を介して被走査面7(感光体ドラム面)上に導光され、前記ポリゴンミラーを回転させることによって前記被走査面7(感光体ドラム面)上を光走査して画像情報の記録を行っている。
【0003】
【発明が解決しようとする課題】
しかし、光源手段1、ポリゴンミラー5、結像光学系6を構成する光学部品等には製造時や組立時に生じた傾きや平行シフト(製造誤差・組立誤差)があり、被走査面上に導光された複数の光束は設計とは異なる位置を光走査されることになる。具体的には、各光束によって描かれる走査線(ライン)のピッチ間隔についてみると、マルチビームの各光束毎に又被走査面7上の走査位置毎に設計値からのズレ量が異なり、ラインピッチ間隔は走査位置によって広がったり狭まったりして画像上ではピッチムラとなって現れる。
【0004】
一方、各光学部品における製造誤差・組立誤差を小さく抑えて被走査面上を光走査する際に設計値からのズレ量を低減させてラインピッチ間隔の変化量を小さく抑えることはできるが、製造精度及び組立精度を向上させると大幅なコストアップを招く。
【0005】
そこで、本発明は、各光学部品における製造誤差・組立誤差に対する敏感度を低減させてラインピッチ間隔の変化量を小さく抑え、ピッチムラがなく常に良好なる画像を形成させることを課題としている。
【0006】
【課題を解決するための手段】
上記の課題を解決するための本発明は、複数の発光点が主走査方向にある間隔を有して配列された光源手段と、前記光源手段から発せられたマルチビームを集光させる入射光学系と、前記光源手段から発せられたマルチビームを反射偏向する偏向手段と、前記偏向手段によって反射偏向されたマルチビームを感光体である被走査面上にスポットとして結像させる少なくとも1枚の結像レンズによって構成されるfθ結像光学系とを有するマルチビーム走査光学系において、前記マルチビームのうちある一つの光束をMBA、隣の光束をMBBとし、主走査方向において光束MBA、MBBが互いに異なる光路を通って前記被走査面上の同一位置に到達する際、前記光束MBAにおける前記結像レンズの副走査方向の結像倍率をβla、前記結像レンズよりも後ろの光学系の副走査方向の結像倍率をβl'a 、前記光束MBBにおける前記結像レンズの副走査方向の結像倍率をβlb、前記結像レンズよりも後ろの光学系の副走査方向の結像倍率をβl'b 、前記被走査面上の副走査方向の画素密度をA(dpi)としたとき式(1)を満足させるようにしている。
【0007】
【数7】
又、本発明においては、上述したマルチビーム走査光学系において、前記マルチビームのうちある一つの光束をMBA、隣の光束をMBBとし、主走査方向において光束MBA、MBBが互いに異なる光路を通って前記被走査面上の同一位置に到達する際、前記光束MBAにおける前記結像レンズのレンズ面の副走査方向の結像倍率をβsa、前記レンズ面よりも後ろの光学系の副走査方向の結像倍率をβs'a 、前記光束MBBにおける前記結像レンズのレンズ面の副走査方向の結像倍率をβsb、前記レンズ面よりも後ろの光学系の副走査方向の結像倍率をβs'b 、前記被走査面上の副走査方向の画素密度をA(dpi)としたとき式(8)を満足させるようにしている。
【0008】
【数8】
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
【0010】
[実施形態1]
図1は、実施形態1のマルチビーム走査装置の主走査断面図である。1は光源手段である半導体レーザアレイであり、半導体レーザアレイ1から出射した2つの光束は1枚のコリメータレンズ2で平行光束とされて副走査方向の光束幅を規定する絞り3aを通過して副走査方向のみに正の屈折力を有するシリンドリカルレンズ4で主走査方向に長手の線像に結像される。そして、半導体レーザアレイ1から出射された2光束はシリンドリカルレンズ4の後ろに配置された主走査方向の光束幅を規定する絞り3bを通過して前記線像の近傍に偏向反射面5aがくるように配置された偏向手段であるポリゴンミラー5で反射偏向され、2枚の結像レンズ6a,6bで構成される結像光学系6を介して被走査面である感光体ドラム面7上に導光される。ポリゴンミラー5が図中の矢印の方向に回転するに伴い被走査面7上を光走査をしている。
【0011】
図2は、実施形態1のマルチビーム走査装置の具体例を示す表である。ここでは、2つの発光点を有する半導体レーザアレイ1を用いる。この表に示すように、それぞれの発光点から出射した2光束が被走査面7上へ到達した時の副走査方向の間隔が画素密度に相当する間隔と一致するように半導体レーザアレイ1を2.9398deg回転させて調整している。このとき2つの発光点は副走査方向に4.616μmの間隔で配置されると同時に主走査方向においても89.882μmの間隔で配置されている。
【0012】
図3は、主走査方向に対応する母線方向を表す式である。この式においては、光軸との交点を原点とし、光軸方向をx軸、主走査面内において光軸と直交する軸をy軸、副走査面内において光軸と直交する軸をz軸としている。
【0013】
図4は、副走査方向(光軸を含み主走査方向に対して直交する方向)に対応する子線方向を表す式である。
【0014】
図5は、実施形態1のマルチビーム走査装置の副走査断面光路図である。ポリゴンミラーの偏向反射面5aで反射偏向された光束は結像レンズ6a及び結像レンズ6bによって被走査面7上に結像される。このとき、結像レンズ6aに組立誤差による副走査方向の平行シフトΔが生じると、ポリゴンミラーの偏向反射面5aで反射傾向された光束は結像レンズ6aによって点p' へ集光されるように進み、結像レンズ6bによって被走査面7上の点pに結像される。
【0015】
被走査面7上の点pは設計値の結像位置とは副走査方向にZだけズレており結像レンズ6aの副走査方向の結像倍率をβl、結像レンズ6bの副走査方向の結像倍率をβl' としたとき式(10)で表される。
【0016】
【数9】
ここで、2つの発光点から発せられた2光束の一方をA他方をBとしたとき、光束A,Bにおける結像レンズ6aの副走査方向の結像倍率を夫々βla,βlbとし、結像レンズ6bの副走査方向の結像倍率を夫々βl'a ,βl'b としたとき、結像レンズ6aに組立誤差による副走査方向の平行シフトΔが生じた場合における被走査面7上に到達する位置の設計値からのズレ量Za,Zbはそれぞれ式(20)、式(30)で表される。
【0017】
【数10】
【0018】
【数11】
このとき、ラインピッチ間隔の変化量Δdの絶対値は式(40)で与えられる。
【0019】
【数12】
一般的に組立誤差は大きくても0.1(mm)であり、ラインピッチ間隔変化に対する敏感度をρとすると、これが副走査方向の画素密度A(dpi)の10%よりも小さくなるように抑えるためには式(50)が満たされればよい。
【0020】
【数13】
ここでは2枚の結像レンズで構成される結像光学系を例にあげたが、1枚の結像レンズで構成される場合の様に前記結像レンズの後方に光学系が無い場合は前記結像レンズよりも後方の結像倍率βl' =1とすればよく、又前記結像レンズの後方に複数枚の光学部品で構成される光学系がある場合には、それらの合成結像倍率をβl' に与えればよい。又、結像倍率とは各光束の光路に沿った実質的な結像倍率である。
【0021】
製造誤差による各レンズ面の副走査方向の平行シフトに関しても同様であり、光束A,Bにおける結像レンズ6aのポリゴンミラー5側の面の副走査方向の結像倍率を夫々βsa,βsbとし、結像レンズ6aの被走査面7側の面から結像レンズ6bの被走査面7側の面までの合成の副走査方向の結像倍率を夫々βs'a ,βs'b としたとき、結像レンズ6aのポリゴンミラー5側の面の製造誤差によるラインピッチ間隔変化量を副走査方向の画素密度A(dpi)の10%よりも小さくなるように抑えるためには式(60)が満たされればよい。
【0022】
【数14】
図6は、半導体レーザアレイ1からポリゴンミラー5の偏向反射面5aまでの光学系すなわち入射光学系の主走査方向の断面図である。半導体レーザアレイ1の2つの発光点9a,9bから出射した2光束A,Bはコリメータレンズ2によって平行光束とされ絞り3bで主走査方向の光束幅を決定されてポリゴンミラー5の偏向反射面5aへ到達する。このとき発光点9a,9bは主走査方向に間隔を有しているため2つの光束A,Bはある角度でコリメータレンズ2を出射し、絞り3bの中心でお互いの主光線が交差して偏向反射面5aへ到達するので偏向反射面5a上では光束A,Bの主光線はある間隔を有する。
【0023】
発光点の主走査方向の間隔をdms(mm)、コリメータレンズの(主走査方向の)焦点距離をfco(mm)、主走査方向の光束幅を決定する絞りから偏向反射面までの光路長をLap(mm)としたとき、偏向反射面上では光束A,Bの主光線の主走査方向の間隔dmp(mm)は式(70)で表わされる。
【0024】
【数15】
図7は、ポリゴンミラー5から被走査面7までの光学系すなわち結像光学系6の主走査方向の断面図である。偏向反射面5aで反射偏向された光束A(実線)、B(破線)が平行なとき結像光学系6により被走査面7上の主走査方向の同一位置に結像される。しかし、上述したように光束A,Bは異なる角度で偏向反射面5aへ入射するので被走査面7上の同一位置に結像されるためにはポリゴンミラー5を微小角回転させる必要がある。実施形態1の具体例として表で示したマルチビーム走査装置においてはその角度は6.271(分)である。実際には2つの光束A,Bの書き出しのタイミングを微小時間ずらすことでこれを達成している。
【0025】
ポリゴンミラー5後の光束A,Bは平行のままある間隔で結像レンズ面へ入射するが、結像レンズ面へ入射する位置が異なるために主走査方向の入射角θi、光路長Lli及び子線曲率半径Rsに差が生じる。これらは副走査方向の結像倍率を変化させる要因であり、特に結像レンズ面に非球面を使用している場合は主走査方向の入射角差がかなり大きくなる部分があり、それに伴って結像倍率の差も増大する。
【0026】
そこで実施形態1におけるマルチビーム走査装置では、主走査方向の光束幅を決定する絞り3bを偏向反射面5a近傍に配置して2光束A,Bの間隔を狭めて結像レンズ面へ入射する位置における入射角差を小さく抑えることで結像倍率の差を小さくし、各光学部品に製造誤差及び組立誤差が生じた時のラインピッチ間隔変化量に対する敏感度を低減させている。
【0027】
ここで2光束A,Bは結像光学系6によって被走査面7上の主走査方向の同一位置に結像しているので、被走査面7へ入射する際の2光束A,Bの主光線が成す角度aが小さければ結像レンズ面へ入射する位置における入射角差も小さい。そこで、角度aが式(80)を満足するように入射光学系を構成すればよい。
【0028】
【数16】
式(80)に式(70)を代入すると、式(90)が導かれる。
【0029】
【数17】
ここで、kは結像光学系6のfθ係数であり、式(90)を満たすように入射光学系を構成すれば各光学部品に製造誤差及び組立誤差が生じた時のラインピッチ間隔変化量を所定のピッチ間隔の10%以内に抑えることができる。
【0030】
図8は、従来のマルチビーム走査装置と実施形態1のマルチビーム走査装置における入射光学系の構成と被走査面7へ入射する際の2光束A,Bの主光線が成す角度を示す表である。
【0031】
図9は、従来のマルチビーム走査装置と本実施形態のマルチビーム走査装置において、製造誤差によってfθレンズ6bの被走査面7側の面が副走査方向に+10μm平行シフトし、組立誤差によってfθレンズ6aが−10μm平行シフトした場合のラインピッチ間隔の変化量を示すグラフである。走査長SLをk×f×θと表す時のfθ係数kは136.2mmである。
【0032】
主走査方向の光束幅を決定する絞り3bからポリゴンミラー5の反射偏向面5aまでの光路長LapをLap=76.3mmからLap=25.0mmと短くしたことでラインピッチ間隔変化量の最大値を、図に示すように、従来の3.23μmから1.08μmへ低減させた。これを画素密度で決まる所定のラインピッチ間隔(1200dpi時で21.2μm)に対する比率で比較すると、従来のマルチビーム走査装置ではラインピッチ間隔変化量は15.3%に相当していたのに対して実施形態1のマルチビーム走査装置では5.1%に抑えられ、主走査方向の光束幅を決定する絞り3bを反射偏向面5aに近づけて被走査面7へ入射する際の2光束A,Bの主光線が成す主走査方向の角度を小さくした効果が判る。
【0033】
図10は、このときの各光学部品の各像高毎におけるラインピッチ間隔変化に対する敏感度ρのうち最大のものを示す表である。これも又、式(50)、式(60)で示された条件式を満足している。
【0034】
主走査方向の光束幅を決定する絞り3bは偏向反射面5aに近い方が効果的なので入射光学系を構成する光学部品のうちで最もポリゴンミラー5側に配置するのが望ましく、シリンドリカルレンズ4とポリゴンミラー5との間に配置している。
【0035】
又、副走査方向の光束幅を決定する絞り3aは副走査方向のピント調整時に移動するシリンドリカルレンズ4よりも前に配置することが望ましく実施形態1ではコリメータレンズ2とシリンドリカルレンズ4の間に配置している。
【0036】
2光束に限らず、n本の光束を発する光源手段を使用した場合にも、隣り合う光束について上述した各式を満足させればよい。
【0037】
[実施形態2]
図11は、実施形態2のマルチビーム走査装置の主走査方向断面図である。実施形態1と異なる点は、主走査方向の光束幅を決定する絞り3bと副走査方向の光束幅を決定する絞り3aを同一の絞り3としたことであり、絞り3をシリンドリカルレンズ4の直後に配置している点である。
【0038】
前述したように、ピッチムラが目立たない範囲は式(100)で表される。
【0039】
【数18】
ここに、Aは画素密度(dpi)であり、Δdはラインピッチ間隔変化量(mm)である。入射光学系はしき(40)を満足し、主走査方向及び副走査方向の光束幅を1つの絞り3で決定することで、部品点数を減らしコストダウンを図っている。
【0040】
図12は、従来のマルチビーム走査装置と実施形態2のマルチビーム走査装置における入射光学系の構成と被走査面7へ入射する際の2光束A,Bの主光線が成す角度を示す表である。
【0041】
図13は、従来のマルチビーム走査装置と本実施形態のマルチビーム走査装置において、製造誤差によってfθレンズ6bの被走査面7側の面が副走査方向に+10μm平行シフトし、組立誤差によってfθレンズ6aが−10μm平行シフトした場合のラインピッチ間隔の変化量を示すグラフである。実施形態2におけるラインピッチ間隔の変化量の最大値は、このグラフに示すように、2.1μmであり、画素密度で決まるラインピッチ間隔の9.9%に相当する。
【0042】
このように部品点数を削減しても、入射光学系は式(30)を満たしているので、式(100)も満たす。
【0043】
[実施形態3]
実施形態3が実施形態1と異なる点は、光源手段の発光点の主走査方向の間隔を短くすると共にコリメータレンズの主走査方向の焦点距離を伸ばし主走査方向の光束幅を決定する絞り3bへ入射する2光束A,Bの成す角度を狭めた点である。実施形態3においては、主走査方向の光束幅を決定する絞り3bをポリゴンミラー近傍に配置すると共に絞り3bへ入射する2光束A,Bの成す角度を狭めることで、光学部品の製造誤差及び組立誤差のラインピッチ間隔誤差に対する敏感度を低減させている。
【0044】
図14は、従来のマルチビーム走査装置と実施形態3のマルチビーム走査装置における入射光学系の構成と被走査面7へ入射する際の2光束A,Bの主光線が成す角度を示す表である。
【0045】
図15は、実施形態1と実施形態3のマルチビーム走査装置において、製造誤差によってfθレンズ6bの被走査面7側の面が副走査方向に+10μm平行シフトし、組立誤差によってfθレンズ6aが−10μm平行シフトした場合のラインピッチ間隔の変化量を示すグラフである。実施形態3においては、主走査方向の光束幅を決定する絞り3bへ入射する2光束A,Bの成す角度α=6.246(分)であり実施形態1(α=12.542分)の約半分にしたことにより被走査面7へ入射する際の光束A,Bが成す角度aが小さく抑えられ、製造誤差及び組立公差が生じたときのラインピッチ間隔変化量の最大値は、実施形態1では1.08μmであるのに対して、実施形態3においては、0.60μmへ低減されている。又、画素密度に相当する所定間隔に対するラインピッチ間隔の変化量の比率も5.1%から2.6%となり、主走査方向の光束幅を決定する絞り3bへ入射する2光束A,Bの成す角度を狭くしたことによってラインピッチ間隔変化量に対する敏感度を低減させていることが判る。
【0046】
主走査方向の光束幅を決定する絞り3bへ入射する2光束A,Bの成す角度α(rad)としたとき、式(110)の関係がある。
【0047】
【数19】
ここで、式(20)に式(50)を代入すると、式(120)が導かれる。
【0048】
【数20】
又、式(60)を満足させると式(40)を満足させることができる。
【0049】
又、実施形態3のように複数の光束を唯一の入射光学系を介してポリゴンミラーへ入射させているマルチビーム走査装置においては式(130)の関係がある。
【0050】
【数21】
実施形態3では式(130)に示すように、コリメータレンズ2の主走査方向の焦点距離fcoを伸ばして2光束A,Bが絞り3bへ入射する時に成す角度αを狭めて製造誤差及び組立誤差が生じた場合のラインピッチ間隔変化量に対する敏感度を実施形態1から更に低減させている。
【0051】
[実施形態4]
図16は、実施形態4のマルチビーム走査装置の主走査方向断面図である。
【0052】
1は光源手段である半導体レーザアレイであり、半導体レーザアレイ1から出射した2つの光束はコリメータレンズ2で平行光束とされて主走査方向及び副走査方向の光束幅を決定する絞り3を通過して副走査方向のみに正の屈折力を有するシリンドリカルレンズ4で主走査方向に長手の線像に結像される。そして、半導体レーザアレイから出射された2光束は前記線像の近傍に偏向反射面5aがくるように配置された偏向手段であるポリゴンミラー5で反射偏向され、2枚のfθレンズ6a,6bで構成される結像光学系6を介して被走査面である感光体ドラム面7上に導光される。ポリゴンミラー5が図中の矢印の方向に回転することに伴い被走査面7上を光走査をしている。
【0053】
図17は、実施形態4のマルチビーム走査装置の具体例を示す表である。半導体レーザアレイ1のそれぞれの発光点から出射した2光束A,Bが被走査面7上へ到達した時の副走査方向の間隔が画素密度に相当する間隔と一致するように半導体レーザアレイ1を2.97deg回転させて調整している。このとき2つの発光点は副走査方向に2.33μmの間隔で配置されると同時に主走査方向において、この表に示すように、89.879μmの間隔で配置されている。
【0054】
図18は、ポリゴンミラー5で偏向された2光束A,Bがfθレンズ6bの被走査面7側の面へ入射する位置での入射角の差を示すグラフである。
【0055】
図19は、従来例と実施形態4において、製造誤差によってfθレンズ6bの被走査面7側の面が副走査方向に+10μm平行シフトし、組立誤差によってfθレンズ6aが−10μm平行シフトした場合のラインピッチ間隔の変化量を示すグラフである。
【0056】
実施形態4では副走査方向に最も強い屈折力を有するfθレンズ6bの被走査面7側の面の母線形状をコンセントリックとしたことで、2光束A,Bの入射角の差は最大で0.0023(rad)と小さく抑えてライン間隔変化量を−1.19μm(5.6%)まで低減させている。
【0057】
結像レンズ母線傾斜の変化率τを小さくした場合では製造誤差及び組立誤差が生じた場合のラインピッチ間隔変化量の敏感度を低減させることができる。
【0058】
被走査面7上の主走査方向に同じ像高に結像される時の2光束A,Bがfθレンズ面へ入射する位置における入射角の差をΔθiとしたとき式(140)を満足させるように母線形状をコンセントリックとしているので製造誤差及び組立誤差が生じた際のラインピッチ間隔変化量に対する敏感度を低減させている。
【0059】
【数22】
製造誤差及び組立誤差を平行シフトに置き換えたが、傾斜に対しても上述した構成によりラインピッチ間隔変化量を低減させることができる。
【0060】
【発明の効果】
以上説明した本発明によれば、製造誤差及び組立誤差によってレンズやレンズ面の平行シフト及び傾きが生じてもマルチビームが被走査面上に走査される相対位置関係を崩さないようにマルチビーム走査装置を構成することでピッチムラが無く常に良好なる画像が得られるマルチビーム走査装置及びそれを使用した画像形成装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態1のマルチビーム走査装置の主走査方向断面図
【図2】実施形態1のマルチビーム走査装置の具体例を示す表
【図3】主走査方向に対応する母線を表す式
【図4】主走査方向に対応する母線を表す式
【図5】副走査方向に対応する母線を表す式
【図6】実施形態1の入射光学系の主走査方向断面図
【図7】実施形態1の結像光学系の主走査方向断面図
【図8】実施形態1の2つの光束がなす角度を示す表
【図9】実施形態1において、製造・組み立て誤差とラインピッチ変化量との関係を示すグラフ
【図10】実施形態1において、ラインピッチ変化量に対する光学部品の敏感度との関係を示す表
【図11】本発明の実施形態2のマルチビーム走査装置の主走査方向断面図
【図12】実施形態2の2つの光束がなす角度を示す表
【図13】実施形態2において、製造・組み立て誤差とラインピッチ変化量との関係を示すグラフ
【図14】実施形態3の2つの光束がなす角度を示す表
【図15】実施形態3において、製造・組み立て誤差とラインピッチ変化量との関係を示すグラフ
【図16】実施形態4のマルチビーム走査装置の主走査方向断面図
【図17】実施形態4のマルチビーム走査装置の具体例を示す表
【図18】実施形態4の2つの光束がなす角度の差と像高との関係を示すグラフ
【図19】実施形態4において、製造・組み立て誤差とラインピッチ変化量との関係を示すグラフ
【図20】従来のマルチビーム走査装置の主走査方向断面
【符号の説明】
1 半導体レーザアレイ
2 集光レンズ(コリメータレンズ)
3 絞り
3a 副走査方向の光束幅を決定する絞り
3b 主走査方向の光束幅を決定する絞り
4 シリンドリカルレンズ
5 偏向手段(5a:偏向反射面)
6 結像光学系(fθレンズ)
7 感光体ドラム面
[0001]
[Technical field to which the invention belongs]
The present invention relates to an optical scanning device, and in particular, reflects and deflects a light beam emitted from a light source means by a polygon mirror as an optical deflector, and optically scans a surface to be scanned through an imaging optical system to record image information. In a multi-beam optical scanning optical system suitable for image forming apparatuses such as laser beam printers and digital copying machines having an electrophotographic process as described above, the scanning line spacing changes asymmetrically due to manufacturing errors and assembly errors of optical components. The present invention relates to an optical scanning device that can always obtain a good image with no pitch unevenness.
[0002]
[Prior art]
FIG. 20 is a sectional view in the main scanning direction of a conventional multi-beam scanning device. A plurality of light beams modulated and emitted from the plurality of light source means 1 are converted into substantially parallel light beams by a collimator lens 2, and the light beam is limited by an aperture stop 3 to have a predetermined refractive power only in the sub-scan section. 4 is incident. Of the substantially parallel light beam incident on the cylindrical lens 4, the light beam is emitted as it is in a substantially parallel light beam in the main scanning section. In the sub-scan section, the light beam converges and forms a substantially linear image on the deflection reflection surface 5a of the polygon mirror 5 (optical deflector). The light beam reflected and deflected by the polygon mirror is guided to the scanned surface 7 (photosensitive drum surface) via the imaging optical system 6 having the fθ characteristic, and the scanned surface is rotated by rotating the polygon mirror. 7 (photosensitive drum surface) is optically scanned to record image information.
[0003]
[Problems to be solved by the invention]
However, the optical components constituting the light source means 1, polygon mirror 5, and imaging optical system 6 have inclinations and parallel shifts (manufacturing errors and assembly errors) that occur during manufacturing and assembly, and are introduced onto the surface to be scanned. The plurality of emitted light beams are optically scanned at positions different from the design. Specifically, regarding the pitch interval of the scanning lines (lines) drawn by each light beam, the amount of deviation from the design value differs for each light beam of the multi-beam and for each scanning position on the surface to be scanned 7. The pitch interval widens or narrows depending on the scanning position and appears as pitch unevenness on the image.
[0004]
On the other hand, when optical scanning is performed on the surface to be scanned with small manufacturing and assembly errors in each optical component, the amount of deviation from the design value can be reduced and the change in line pitch interval can be kept small. Improving accuracy and assembly accuracy will lead to significant cost increases.
[0005]
In view of this, the present invention has an object to reduce the sensitivity to manufacturing errors and assembly errors in each optical component to suppress the change amount of the line pitch interval to be small and to always form a good image without pitch unevenness.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides light source means in which a plurality of light emitting points are arranged at intervals in the main scanning direction, and an incident optical system for condensing a multi-beam emitted from the light source means. And deflecting means for reflecting and deflecting a multi-beam emitted from the light source means, and at least one image forming the multi-beam reflected and deflected by the deflecting means as a spot on a scanned surface which is a photosensitive member In a multi-beam scanning optical system having an fθ imaging optical system constituted by lenses, one light beam of the multi-beams is MBA, an adjacent light beam is MBB, and the light beams MBA and MBB are different from each other in the main scanning direction. When reaching the same position on the surface to be scanned through the optical path, the imaging magnification in the sub-scanning direction of the imaging lens in the light beam MBA is βla, and the imaging The imaging magnification in the sub-scanning direction of the optical system behind the lens is βl′a, the imaging magnification in the sub-scanning direction of the imaging lens in the light beam MBB is βlb, and the optical system behind the imaging lens is When the imaging magnification in the sub-scanning direction is βl′b and the pixel density in the sub-scanning direction on the surface to be scanned is A (dpi), Expression (1) is satisfied.
[0007]
[Expression 7]
In the present invention, in the above-described multi-beam scanning optical system, one light beam of the multi-beams is MBA and the adjacent light beam is MBB, and the light beams MBA and MBB pass through different optical paths in the main scanning direction. When reaching the same position on the surface to be scanned, the imaging magnification in the sub-scanning direction of the lens surface of the imaging lens in the light beam MBA is βsa, and the optical system behind the lens surface is connected in the sub-scanning direction. The image magnification is βs′a, the imaging magnification in the sub-scanning direction of the lens surface of the imaging lens in the light beam MBB is βsb, and the imaging magnification in the sub-scanning direction of the optical system behind the lens surface is βs′b. When the pixel density in the sub-scanning direction on the surface to be scanned is A (dpi), Expression (8) is satisfied.
[0008]
[Equation 8]
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0010]
[Embodiment 1]
FIG. 1 is a main scanning sectional view of the multi-beam scanning device according to the first embodiment. Reference numeral 1 denotes a semiconductor laser array as a light source means. Two light beams emitted from the semiconductor laser array 1 are converted into parallel light beams by one collimator lens 2 and pass through a diaphragm 3a that defines a light beam width in the sub-scanning direction. A cylindrical lens 4 having a positive refractive power only in the sub-scanning direction forms an image as a line image that is long in the main scanning direction. Then, the two light beams emitted from the semiconductor laser array 1 pass through a diaphragm 3b that defines the light beam width in the main scanning direction disposed behind the cylindrical lens 4 so that the deflecting reflection surface 5a comes near the line image. Is reflected and deflected by a polygon mirror 5 which is a deflecting means disposed on the surface of the photosensitive drum 7 through an imaging optical system 6 composed of two imaging lenses 6a and 6b. Lighted. As the polygon mirror 5 rotates in the direction of the arrow in the figure, the surface to be scanned 7 is optically scanned.
[0011]
FIG. 2 is a table showing a specific example of the multi-beam scanning apparatus according to the first embodiment. Here, a semiconductor laser array 1 having two light emitting points is used. As shown in this table, the semiconductor laser array 1 is arranged so that the interval in the sub-scanning direction when the two light beams emitted from the respective light emitting points reach the surface to be scanned 7 matches the interval corresponding to the pixel density. It is adjusted by rotating 9398 degrees. At this time, the two light emitting points are arranged at an interval of 4.616 μm in the sub-scanning direction and at the same time at an interval of 89.882 μm in the main scanning direction.
[0012]
FIG. 3 is an expression representing the bus direction corresponding to the main scanning direction. In this equation, the intersection with the optical axis is the origin, the optical axis direction is the x axis, the axis orthogonal to the optical axis in the main scanning plane is the y axis, and the axis orthogonal to the optical axis in the sub scanning plane is the z axis. It is said.
[0013]
FIG. 4 is an equation representing a sub-line direction corresponding to the sub-scanning direction (direction including the optical axis and orthogonal to the main scanning direction).
[0014]
FIG. 5 is a sub-scan sectional optical path diagram of the multi-beam scanning device according to the first embodiment. The light beam reflected and deflected by the deflecting / reflecting surface 5a of the polygon mirror is imaged on the scanned surface 7 by the imaging lens 6a and the imaging lens 6b. At this time, if a parallel shift Δ in the sub-scanning direction due to an assembly error occurs in the imaging lens 6a, the light beam that tends to be reflected by the deflecting / reflecting surface 5a of the polygon mirror is condensed to the point p ′ by the imaging lens 6a. The image is formed at a point p on the scanned surface 7 by the imaging lens 6b.
[0015]
The point p on the surface to be scanned 7 is shifted from the design image forming position by Z in the sub scanning direction, the imaging magnification of the imaging lens 6a in the sub scanning direction is β1, and the imaging lens 6b in the sub scanning direction is in the sub scanning direction. When the imaging magnification is βl ′, it is expressed by Expression (10).
[0016]
[Equation 9]
Here, when one of the two light beams emitted from the two light emitting points is A and the other is B, the imaging magnifications in the sub-scanning direction of the imaging lens 6a in the light beams A and B are βla and βlb, respectively. When the imaging magnification of the lens 6b in the sub-scanning direction is set to βl′a and βl′b, respectively, the imaging lens 6a reaches the scanned surface 7 when the parallel shift Δ in the sub-scanning direction due to an assembly error occurs. Deviation amounts Za and Zb from the design value of the position to be expressed are expressed by equations (20) and (30), respectively.
[0017]
[Expression 10]
[0018]
## EQU11 ##
At this time, the absolute value of the change amount Δd of the line pitch interval is given by Expression (40).
[0019]
[Expression 12]
In general, the assembly error is at most 0.1 (mm), and when the sensitivity to the change in the line pitch interval is ρ, this is smaller than 10% of the pixel density A (dpi) in the sub-scanning direction. In order to suppress, it is sufficient that the expression (50) is satisfied.
[0020]
[Formula 13]
Here, an imaging optical system composed of two imaging lenses has been taken as an example. However, when there is no optical system behind the imaging lens as in the case of a single imaging lens, It is only necessary to set the imaging magnification βl ′ = 1 behind the imaging lens, and when there is an optical system composed of a plurality of optical components behind the imaging lens, their combined imaging The magnification may be given to βl ′. The imaging magnification is a substantial imaging magnification along the optical path of each light beam.
[0021]
The same applies to the parallel shift in the sub-scanning direction of each lens surface due to a manufacturing error. The imaging magnifications in the sub-scanning direction of the surface of the imaging lens 6a on the polygon mirror 5 side in the light beams A and B are βsa and βsb, respectively. When the imaging magnifications in the combined sub-scanning direction from the surface on the scanned surface 7 side of the imaging lens 6a to the surface on the scanned surface 7 side of the imaging lens 6b are βs′a and βs′b, respectively, In order to suppress the change amount of the line pitch interval due to the manufacturing error of the surface of the image lens 6a on the polygon mirror 5 side to be smaller than 10% of the pixel density A (dpi) in the sub-scanning direction, Expression (60) is satisfied. That's fine.
[0022]
[Expression 14]
FIG. 6 is a cross-sectional view of the optical system from the semiconductor laser array 1 to the deflecting / reflecting surface 5a of the polygon mirror 5, that is, the incident optical system in the main scanning direction. The two light beams A and B emitted from the two light emitting points 9a and 9b of the semiconductor laser array 1 are converted into parallel light beams by the collimator lens 2 and the light beam width in the main scanning direction is determined by the diaphragm 3b, and the deflecting / reflecting surface 5a of the polygon mirror 5 is determined. To reach. At this time, since the light emitting points 9a and 9b are spaced apart in the main scanning direction, the two light beams A and B exit the collimator lens 2 at a certain angle, and the principal rays intersect each other at the center of the stop 3b and deflect. Since it reaches the reflecting surface 5a, the principal rays of the light beams A and B have a certain interval on the deflecting reflecting surface 5a.
[0023]
The distance between the light emitting points in the main scanning direction is dms (mm), the focal length (in the main scanning direction) of the collimator lens is fco (mm), and the optical path length from the stop to determine the beam width in the main scanning direction to the deflecting reflection surface When Lap (mm) is set, the distance dmp (mm) in the main scanning direction of the principal rays of the light beams A and B on the deflecting reflection surface is expressed by Expression (70).
[0024]
[Expression 15]
FIG. 7 is a cross-sectional view of the optical system from the polygon mirror 5 to the scanned surface 7, that is, the imaging optical system 6, in the main scanning direction. When the light beams A (solid line) and B (broken line) reflected and deflected by the deflecting / reflecting surface 5a are parallel, the imaging optical system 6 forms an image at the same position on the scanned surface 7 in the main scanning direction. However, as described above, since the light beams A and B are incident on the deflecting / reflecting surface 5a at different angles, it is necessary to rotate the polygon mirror 5 by a minute angle in order to form an image at the same position on the scanned surface 7. In the multi-beam scanning device shown in the table as a specific example of the first embodiment, the angle is 6.271 (minutes). Actually, this is achieved by shifting the writing timing of the two light beams A and B by a minute time.
[0025]
Although the light beams A and B after the polygon mirror 5 are incident on the imaging lens surface at a certain interval while being parallel, the incident angle θi in the main scanning direction, the optical path length Lli, and the child are different because the positions incident on the imaging lens surface are different. A difference occurs in the linear curvature radius Rs. These are factors that change the imaging magnification in the sub-scanning direction. In particular, when an aspherical surface is used for the imaging lens surface, there is a portion where the difference in the incident angle in the main scanning direction becomes considerably large. The difference in image magnification also increases.
[0026]
Therefore, in the multi-beam scanning device according to the first embodiment, the stop 3b for determining the light beam width in the main scanning direction is disposed in the vicinity of the deflecting / reflecting surface 5a so that the distance between the two light beams A and B is narrowed and incident on the imaging lens surface. The difference in the imaging magnification is reduced by suppressing the difference in the incident angle at, and the sensitivity to the change amount of the line pitch interval when a manufacturing error and an assembly error occur in each optical component is reduced.
[0027]
Here, since the two light beams A and B are imaged at the same position in the main scanning direction on the scanned surface 7 by the imaging optical system 6, the two light beams A and B are incident on the scanned surface 7. If the angle a formed by the light beam is small, the incident angle difference at the position where it enters the imaging lens surface is also small. Therefore, the incident optical system may be configured so that the angle a satisfies the expression (80).
[0028]
[Expression 16]
Substituting equation (70) into equation (80) leads to equation (90).
[0029]
[Expression 17]
Here, k is the fθ coefficient of the imaging optical system 6, and if the incident optical system is configured so as to satisfy the equation (90), the change amount of the line pitch interval when a manufacturing error and an assembly error occur in each optical component. Can be suppressed within 10% of the predetermined pitch interval.
[0030]
FIG. 8 is a table showing the configuration of the incident optical system in the conventional multi-beam scanning device and the multi-beam scanning device of Embodiment 1 and the angle formed by the principal rays of the two light beams A and B when entering the scanned surface 7. is there.
[0031]
FIG. 9 shows that in the conventional multi-beam scanning device and the multi-beam scanning device of the present embodiment, the surface on the scanning surface 7 side of the fθ lens 6b is shifted by +10 μm in the sub-scanning direction due to manufacturing errors, and the fθ lens is caused by assembly errors. It is a graph which shows the variation | change_quantity of the line pitch space | interval when 6a carries out -10 micrometer parallel shift. The fθ coefficient k when the scanning length SL is expressed as k × f × θ is 136.2 mm.
[0032]
By reducing the optical path length Lap from the stop 3b for determining the light beam width in the main scanning direction to the reflection deflection surface 5a of the polygon mirror 5 from Lap = 76.3 mm to Lap = 25.0 mm, the maximum value of the line pitch interval change amount Was reduced from the conventional 3.23 μm to 1.08 μm, as shown in the figure. When this is compared with a ratio to a predetermined line pitch interval (21.2 μm at 1200 dpi) determined by the pixel density, the change amount of the line pitch interval was equivalent to 15.3% in the conventional multi-beam scanning device. In the multi-beam scanning apparatus according to the first embodiment, the amount of the two light beams A is reduced to 5.1%, and is incident on the scanned surface 7 with the diaphragm 3b that determines the light beam width in the main scanning direction close to the reflection deflection surface 5a. It can be seen that the effect of reducing the angle of the main scanning direction formed by the B principal ray is reduced.
[0033]
FIG. 10 is a table showing the maximum sensitivity ρ with respect to the change in the line pitch interval for each image height of each optical component at this time. This also satisfies the conditional expressions shown in the expressions (50) and (60).
[0034]
The diaphragm 3b that determines the light beam width in the main scanning direction is more effective when it is closer to the deflecting / reflecting surface 5a. Therefore, it is desirable to dispose the diaphragm 3b closest to the polygon mirror 5 among the optical components constituting the incident optical system. It is arranged between the polygon mirror 5.
[0035]
Further, it is desirable that the aperture stop 3a for determining the light beam width in the sub-scanning direction is disposed before the cylindrical lens 4 that moves during focus adjustment in the sub-scanning direction. In the first embodiment, the diaphragm 3a is disposed between the collimator lens 2 and the cylindrical lens 4. is doing.
[0036]
Not only the two light beams but also the light source means that emits n light beams may be used as long as the above formulas are satisfied for the adjacent light beams.
[0037]
[Embodiment 2]
FIG. 11 is a cross-sectional view in the main scanning direction of the multi-beam scanning device according to the second embodiment. The difference from the first embodiment is that the diaphragm 3b for determining the light beam width in the main scanning direction and the diaphragm 3a for determining the light beam width in the sub-scanning direction are the same diaphragm 3, and the diaphragm 3 is located immediately after the cylindrical lens 4. It is the point which is arranged in.
[0038]
As described above, the range in which the pitch unevenness is not noticeable is represented by the formula (100).
[0039]
[Formula 18]
Here, A is the pixel density (dpi), and Δd is the line pitch interval change amount (mm). The incident optical system satisfies the threshold (40), and the width of the light beam in the main scanning direction and the sub-scanning direction is determined by one diaphragm 3, thereby reducing the number of parts and reducing the cost.
[0040]
FIG. 12 is a table showing the configuration of the incident optical system in the conventional multi-beam scanning device and the multi-beam scanning device of Embodiment 2 and the angle formed by the principal rays of the two light beams A and B when entering the scanned surface 7. is there.
[0041]
FIG. 13 shows a conventional multi-beam scanning apparatus and the multi-beam scanning apparatus according to the present embodiment in which the surface on the scanned surface 7 side of the fθ lens 6b is shifted +10 μm in parallel in the sub-scanning direction due to a manufacturing error, It is a graph which shows the variation | change_quantity of the line pitch space | interval when 6a carries out -10 micrometer parallel shift. As shown in this graph, the maximum value of the change amount of the line pitch interval in the second embodiment is 2.1 μm, which corresponds to 9.9% of the line pitch interval determined by the pixel density.
[0042]
Even if the number of parts is reduced in this way, the incident optical system satisfies Expression (30), and therefore Expression (100) is also satisfied.
[0043]
[Embodiment 3]
The third embodiment differs from the first embodiment in that the aperture 3b determines the luminous flux width in the main scanning direction by shortening the interval in the main scanning direction of the light emitting point of the light source means and extending the focal length of the collimator lens in the main scanning direction. This is a point where the angle formed by the incident two light beams A and B is narrowed. In Embodiment 3, the aperture 3b for determining the beam width in the main scanning direction is arranged in the vicinity of the polygon mirror, and the angle formed by the two beams A and B incident on the aperture 3b is reduced, so that manufacturing errors and assembly of optical components are reduced. The sensitivity of the error to the line pitch interval error is reduced.
[0044]
FIG. 14 is a table showing the configuration of the incident optical system in the conventional multi-beam scanning device and the multi-beam scanning device of the third embodiment and the angle formed by the principal rays of the two light beams A and B when entering the scanned surface 7. is there.
[0045]
FIG. 15 shows that in the multi-beam scanning apparatus according to the first and third embodiments, the surface on the surface to be scanned 7 of the fθ lens 6b is shifted by +10 μm in the sub-scanning direction due to a manufacturing error, and the fθ lens 6a is −− due to an assembly error. It is a graph which shows the variation | change_quantity of the line pitch space | interval at the time of 10 micrometers parallel shift. In the third embodiment, the angle α = 6.246 (minutes) formed by the two light beams A and B incident on the stop 3b that determines the light beam width in the main scanning direction, and the first embodiment (α = 12.542 minutes). Since the angle a formed by the light beams A and B when entering the surface to be scanned 7 is reduced by about half, the maximum value of the change amount of the line pitch interval when the manufacturing error and the assembly tolerance occur is the embodiment. 1 is 1.08 μm, but in the third embodiment, it is reduced to 0.60 μm. Further, the ratio of the change amount of the line pitch interval to the predetermined interval corresponding to the pixel density is also changed from 5.1% to 2.6%, and the two light beams A and B incident on the stop 3b that determines the light beam width in the main scanning direction. It can be seen that the sensitivity to the line pitch interval change amount is reduced by narrowing the angle formed.
[0046]
When the angle α (rad) formed by the two light beams A and B that enter the stop 3b that determines the light beam width in the main scanning direction, there is a relationship of Expression (110).
[0047]
[Equation 19]
Here, when Expression (50) is substituted into Expression (20), Expression (120) is derived.
[0048]
[Expression 20]
Further, when Expression (60) is satisfied, Expression (40) can be satisfied.
[0049]
Further, in the multi-beam scanning apparatus in which a plurality of light beams are incident on the polygon mirror via a single incident optical system as in the third embodiment, there is a relationship of Expression (130).
[0050]
[Expression 21]
In the third embodiment, as shown in the equation (130), the focal length fco of the collimator lens 2 in the main scanning direction is extended, and the angle α formed when the two light beams A and B are incident on the stop 3b is reduced to reduce the manufacturing error and the assembly error. The sensitivity to the change amount of the line pitch interval when this occurs is further reduced from the first embodiment.
[0051]
[Embodiment 4]
FIG. 16 is a cross-sectional view in the main scanning direction of the multi-beam scanning device according to the fourth embodiment.
[0052]
Reference numeral 1 denotes a semiconductor laser array as light source means. Two light beams emitted from the semiconductor laser array 1 are converted into parallel light beams by a collimator lens 2 and pass through a diaphragm 3 that determines the light beam width in the main scanning direction and the sub scanning direction. Thus, a cylindrical lens 4 having a positive refractive power only in the sub-scanning direction forms a line image that is long in the main scanning direction. Then, the two light beams emitted from the semiconductor laser array are reflected and deflected by the polygon mirror 5 which is a deflecting means arranged so that the deflecting and reflecting surface 5a is in the vicinity of the line image, and the two fθ lenses 6a and 6b. The light is guided onto the photosensitive drum surface 7 which is a surface to be scanned through the imaging optical system 6 configured. As the polygon mirror 5 rotates in the direction of the arrow in the figure, the surface to be scanned 7 is optically scanned.
[0053]
FIG. 17 is a table showing a specific example of the multi-beam scanning apparatus according to the fourth embodiment. The semiconductor laser array 1 is adjusted so that the interval in the sub-scanning direction when the two light beams A and B emitted from the respective light emitting points of the semiconductor laser array 1 reach the surface to be scanned 7 coincides with the interval corresponding to the pixel density. It is adjusted by rotating 2.97 degrees. At this time, the two light emitting points are arranged at intervals of 2.33 μm in the sub-scanning direction, and at the same time, at intervals of 89.879 μm in the main scanning direction as shown in this table.
[0054]
FIG. 18 is a graph showing a difference in incident angle at a position where the two light beams A and B deflected by the polygon mirror 5 are incident on the surface of the fθ lens 6b on the scanning surface 7 side.
[0055]
FIG. 19 shows a case where the surface on the scanned surface 7 side of the fθ lens 6b is shifted by +10 μm in parallel in the sub-scanning direction due to manufacturing errors and the fθ lens 6a is shifted by −10 μm in parallel due to assembly errors in the conventional example and the fourth embodiment. It is a graph which shows the variation | change_quantity of a line pitch space | interval.
[0056]
In Embodiment 4, the difference between the incident angles of the two light beams A and B is 0 at the maximum because the generatrix shape of the surface on the scanned surface 7 side of the fθ lens 6b having the strongest refractive power in the sub-scanning direction is concentric. The line spacing change amount is reduced to −1.19 μm (5.6%) while keeping it as small as .0023 (rad).
[0057]
When the rate of change τ of the imaging lens bus slope is reduced, the sensitivity of the change amount of the line pitch interval when a manufacturing error and an assembly error occur can be reduced.
[0058]
Equation (140) is satisfied when Δθi is the difference in incident angle at the position where the two light beams A and B are incident on the fθ lens surface when they are formed at the same image height in the main scanning direction on the scanned surface 7. Thus, since the bus shape is concentric, the sensitivity to the change amount of the line pitch interval when the manufacturing error and the assembly error occur is reduced.
[0059]
[Expression 22]
Although the manufacturing error and the assembly error are replaced with the parallel shift, the change amount of the line pitch interval can be reduced by the above-described configuration with respect to the inclination.
[0060]
【The invention's effect】
According to the present invention described above, the multi-beam scanning is performed so that the relative positional relationship in which the multi-beam is scanned on the surface to be scanned is not destroyed even if the parallel shift and tilt of the lens and the lens surface occur due to the manufacturing error and the assembly error. By configuring the apparatus, it is possible to provide a multi-beam scanning apparatus capable of always obtaining a good image without pitch unevenness and an image forming apparatus using the same.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in the main scanning direction of the multi-beam scanning apparatus according to the first embodiment of the present invention. FIG. 2 is a table showing a specific example of the multi-beam scanning apparatus according to the first embodiment. FIG. 4 is a formula showing a bus corresponding to the main scanning direction. FIG. 5 is a formula showing a bus corresponding to the sub-scanning direction. FIG. 6 is a cross-sectional view of the incident optical system of Embodiment 1 in the main scanning direction. 7 is a cross-sectional view in the main scanning direction of the imaging optical system according to the first embodiment. FIG. 8 is a table showing angles formed by the two light beams according to the first embodiment. FIG. 10 is a table showing the relationship between the sensitivity of an optical component and the amount of change in line pitch in the first embodiment. FIG. 11 is a main scan of the multi-beam scanning apparatus according to the second embodiment of the present invention. Cross-sectional view of direction [FIG. 12] formed by the two light beams of the second embodiment FIG. 13 is a graph showing the relationship between the manufacturing / assembly error and the line pitch change amount in the second embodiment. FIG. 14 is a table showing the angle formed by the two light beams in the third embodiment. FIG. 16 is a cross-sectional view in the main scanning direction of the multi-beam scanning device according to the fourth embodiment. FIG. 17 is a cross-sectional view of the multi-beam scanning device according to the fourth embodiment. Table showing a specific example. FIG. 18 is a graph showing the relationship between the difference in angle between the two light beams of the fourth embodiment and the image height. FIG. 19 shows the relationship between the manufacturing / assembly error and the line pitch variation in the fourth embodiment. FIG. 20 is a graph showing the relationship. FIG. 20 is a cross section in the main scanning direction of a conventional multi-beam scanning apparatus.
1 Semiconductor laser array 2 Condensing lens (collimator lens)
3 Diaphragm 3a Diaphragm 3b for determining the beam width in the sub-scanning direction Diaphragm 4 for determining the beam width in the main scanning direction 4 Cylindrical lens 5 Deflection means (5a: deflection reflection surface)
6 Imaging optical system (fθ lens)
7 Photosensitive drum surface

Claims (4)

主走査方向及び副走査方向共に間隔を有して配置された複数の発光点を備えた光源手段と、前記複数の発光点から出射された複数の光束を偏向走査する偏向手段と、前記複数の発光点から出射された複数の光束を前記偏向手段に導く入射光学系と、前記偏向手段の偏向面にて偏向走査された複数の光束を被走査面上に結像させる結像光学系と、を有するマルチビーム走査光学系であって、
前記入射光学系は、前記光源手段から順に、前記複数の発光点から出射された複数の光束の各々を集光する集光レンズと、前記複数の発光点から出射された複数の光束の各々の主走査方向の光束幅を決定する絞りと、を備え、
前記複数の光束のうち任意の光束を第一の光束MBAとし、前記第一の光束MBAに主走査方向において隣接し前記第一の光束MBAと前記被走査面上において主走査方向に同一位置に到達する光束を第二の光束MBBと定義した場合、前記第一の光束MBAが通過する前記結像光学系を構成する最も前記偏向手段に近い位置に配置された第1の結像光学素子の副走査方向の結像倍率をβ1a、前記第一の光束MBAが通過する前記結像光学系を構成する最も前記偏向手段に近い位置に配置された第1の結像光学素子よりも後側の光学系の副走査方向の結像倍率をβ1’a、前記第二の光束MBBが通過する前記結像光学系を構成する最も前記偏向手段に近い位置に配置された第1の結像光学素子の副走査方向の結像倍率をβ1b、前記第二の光束MBBが通過する前記結像光学系を構成する最も前記偏向手段に近い位置に配置された第1の結像光学素子よりも後側の光学系の副走査方向の結像倍率をβ1’b、前記被走査面上の副走査方向の画素密度A(dpi)、前記絞りから前記偏向手段の偏向面までの光路長をLap(mm)、前記光源手段の主走査方向の間隔をdms(mm)、前記集光レンズの主走査方向の焦点距離をfco(mm)、前記結像光学系のfθ係数をk(mm/rad)、としたとき、
を満足することを特徴とするマルチビーム走査光学系。
A light source means having a plurality of light emitting points arranged at intervals in both the main scanning direction and the sub-scanning direction; a deflecting means for deflecting and scanning a plurality of light beams emitted from the plurality of light emitting points; An incident optical system that guides a plurality of light beams emitted from a light emitting point to the deflecting unit; an imaging optical system that forms an image on the scanned surface by deflecting and scanning a plurality of light beams deflected by the deflection surface of the deflecting unit; A multi-beam scanning optical system comprising:
The incident optical system includes, in order from the light source means, a condensing lens that collects each of the plurality of light beams emitted from the plurality of light emission points, and each of the plurality of light beams emitted from the plurality of light emission points. A diaphragm for determining the beam width in the main scanning direction,
An arbitrary light beam among the plurality of light beams is defined as a first light beam MBA, adjacent to the first light beam MBA in the main scanning direction, and at the same position in the main scanning direction on the surface to be scanned and the first light beam MBA. When the reaching light beam is defined as the second light beam MBB, the first image forming optical element disposed at a position closest to the deflecting means constituting the image forming optical system through which the first light beam MBA passes is provided. The imaging magnification in the sub-scanning direction is β1a, and is located behind the first imaging optical element disposed at a position closest to the deflecting means constituting the imaging optical system through which the first light beam MBA passes. An imaging magnification in the sub-scanning direction of the optical system is β1′a, and the first imaging optical element disposed at a position closest to the deflecting means constituting the imaging optical system through which the second light beam MBB passes. The imaging magnification in the sub-scanning direction is β1b, and the second light The imaging magnification in the sub-scanning direction of the optical system on the rear side of the first imaging optical element arranged closest to the deflecting means constituting the imaging optical system through which the bundle MBB passes is β1′b , The pixel density A (dpi) in the sub-scanning direction on the surface to be scanned, the optical path length from the stop to the deflection surface of the deflection means, Lap (mm), and the distance in the main scanning direction of the light source means to dms (mm) ), When the focal length of the condenser lens in the main scanning direction is fco (mm), and the fθ coefficient of the imaging optical system is k (mm / rad) ,
Multibeam scanning optical system characterized by satisfying
前記結像光学系は、前記偏向手段側から順に、前記第1の結像光学素子と、前記第1の結像光学素子より副走査方向のパワーが大きい第2の結像光学素子とから成請求項1記載のマルチビーム走査光学系。The imaging optical system includes, in order from the deflection unit side, the first imaging optical element and a second imaging optical element having a power in the sub-scanning direction larger than that of the first imaging optical element. multi-beam scanning optical system according to claim 1 that. 主走査断面内において、前記第2の結像光学素子の母線形状がコンセントリックである請求項2に記載のマルチビーム走査光学系。The multi-beam scanning optical system according to claim 2, wherein a bus bar shape of the second imaging optical element is concentric in a main scanning section. 請求項1乃至の何れか一項記載のマルチビーム走査光学系を備えたレーザビームプリンタ。A laser beam printer having a multi-beam scanning optical system according to any one of claims 1 to 3.
JP32828099A 1999-11-18 1999-11-18 Multi-beam scanning optical system and image forming apparatus using the same Expired - Lifetime JP4418567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32828099A JP4418567B2 (en) 1999-11-18 1999-11-18 Multi-beam scanning optical system and image forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32828099A JP4418567B2 (en) 1999-11-18 1999-11-18 Multi-beam scanning optical system and image forming apparatus using the same

Publications (3)

Publication Number Publication Date
JP2001147388A JP2001147388A (en) 2001-05-29
JP2001147388A5 JP2001147388A5 (en) 2006-12-28
JP4418567B2 true JP4418567B2 (en) 2010-02-17

Family

ID=18208472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32828099A Expired - Lifetime JP4418567B2 (en) 1999-11-18 1999-11-18 Multi-beam scanning optical system and image forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP4418567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517637B2 (en) 2014-06-24 2016-12-13 Canon Kabushiki Kaisha Imaging optical element and optical scanning apparatus including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261894B2 (en) * 2006-07-24 2013-08-14 株式会社リコー Optical scanning apparatus and image forming apparatus
JP5489612B2 (en) * 2008-11-10 2014-05-14 キヤノン株式会社 Scanning optical device and image forming apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517637B2 (en) 2014-06-24 2016-12-13 Canon Kabushiki Kaisha Imaging optical element and optical scanning apparatus including the same

Also Published As

Publication number Publication date
JP2001147388A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
JP3895416B2 (en) Multi-beam optical scanning device
JP5489612B2 (en) Scanning optical device and image forming apparatus using the same
JP3825995B2 (en) Optical scanning device, multi-beam scanning device, and image forming apparatus using the same
JP3518765B2 (en) Multi-beam optical scanning optical element, multi-beam optical scanning apparatus and image forming apparatus using this optical element
JP5566068B2 (en) Optical scanning device and image forming apparatus having the same
JP2524567B2 (en) Multiple beam scanning optics
JP2009008896A (en) Multi-beam optical scanning device and image forming apparatus using the same
KR20070054343A (en) Multi-beam scanning unit
US6519070B2 (en) Optical scanning apparatus, multi-beam optical scanning apparatus, and image forming apparatus using the same
US6650454B2 (en) Multi-beam scanning optical system and image forming apparatus using the same
JP4418567B2 (en) Multi-beam scanning optical system and image forming apparatus using the same
JP4174171B2 (en) Multi-beam scanning optical system and image forming apparatus using the same
JP3197804B2 (en) Multi-beam scanner
JP2003107382A (en) Scanning optical system
JP5269000B2 (en) Multi-beam scanning optical apparatus and laser beam printer having the same
JP4006208B2 (en) Multi-beam scanning device and image forming apparatus using the same
JP4404667B2 (en) Optical scanning device
US7253938B2 (en) Laser scanning apparatus
JP5930679B2 (en) Optical scanning device
JP2811988B2 (en) Optical scanning device in image forming apparatus
JP2000292719A (en) Multi-beam optical scanner
JP2002148546A5 (en)
JPH112769A (en) Optical scanner
JP2001125033A (en) Scanning optical system and image forming device
JP3527366B2 (en) Multi-beam scanner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Ref document number: 4418567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

EXPY Cancellation because of completion of term