JP4418287B2 - Optimization method for increasing the fracture strength of spot welds - Google Patents

Optimization method for increasing the fracture strength of spot welds Download PDF

Info

Publication number
JP4418287B2
JP4418287B2 JP2004118200A JP2004118200A JP4418287B2 JP 4418287 B2 JP4418287 B2 JP 4418287B2 JP 2004118200 A JP2004118200 A JP 2004118200A JP 2004118200 A JP2004118200 A JP 2004118200A JP 4418287 B2 JP4418287 B2 JP 4418287B2
Authority
JP
Japan
Prior art keywords
width
spot
nugget diameter
strength
nugget
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004118200A
Other languages
Japanese (ja)
Other versions
JP2005297023A (en
Inventor
博司 吉田
成彦 野村
朗弘 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004118200A priority Critical patent/JP4418287B2/en
Publication of JP2005297023A publication Critical patent/JP2005297023A/en
Application granted granted Critical
Publication of JP4418287B2 publication Critical patent/JP4418287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、自動車用の構造部材のスポット溶接に利用して好適な、より詳しくは衝突変形時に部材のスポット溶接部が破断する強度を大きくする部材形状、板厚、材料強度、及びスポット溶接のナゲット径を求めるためのスポット溶接部の破断強度増大のための最適化方法に関する。   The present invention is suitable for spot welding of structural members for automobiles. More specifically, the member shape, plate thickness, material strength, and spot welding for increasing the strength at which a spot welded portion of a member breaks at the time of collision deformation are described. The present invention relates to an optimization method for increasing the breaking strength of a spot weld for obtaining a nugget diameter.

近年、自動車業界では、衝突時の乗員への傷害を低減しうる車体構造の開発が急務の課題となっている。そのような衝突安全性に優れた車体構造は、衝突時の衝撃エネルギーを客室部以外の構造部材で吸収させ、客室部の変形を最小限とし生存空間を確保することにより実現できる。つまり、構造部材により衝撃エネルギーを吸収させることが重要である。   In recent years, in the automobile industry, the development of a vehicle body structure that can reduce injury to passengers during a collision has become an urgent issue. Such a vehicle body structure excellent in collision safety can be realized by absorbing the impact energy at the time of collision by a structural member other than the passenger compartment to ensure the living space by minimizing the deformation of the passenger compartment. That is, it is important to absorb impact energy by the structural member.

自動車のフルラップ衝突やオフセット衝突での衝撃エネルギーを吸収させる主要な構造部材はフロントサイドメンバーである。フロントサイドメンバーは、プレス成形等で部材成形後、スポット溶接により部材を閉断面化している。通常このフロントサイドメンバーを座屈させることで、衝撃エネルギーを吸収させる。衝撃エネルギーの吸収を向上させるためには、座屈形態を安定化させ、途中で折れ曲りや破断をさせないことが重要である。   The main structural member that absorbs impact energy in automobile full-wrap collision and offset collision is the front side member. The front side member has a closed cross-section by spot welding after forming the member by press molding or the like. Usually, this front side member is buckled to absorb impact energy. In order to improve the absorption of impact energy, it is important to stabilize the buckling form and not to bend or break along the way.

前記の部材のスポット溶接に関して、座屈を安定化させるためにはスポット溶接間隔やナゲット径や溶接条件を最適化しないと、座屈時に溶接点からの破断が起きてしまい、安定した座屈形態にならず衝撃エネルギーの吸収が低下するという問題がある。   With regard to spot welding of the above-mentioned members, if the spot welding interval, nugget diameter and welding conditions are not optimized in order to stabilize the buckling, fracture from the weld point will occur at the time of buckling, and a stable buckling form There is a problem that the absorption of impact energy is not reduced.

解説論文No.9705JSAE SYMPOSIUM「新しい車体構造成形技術」Explanation paper No. 9705JSAE SYMPOSIUM “New Body Structure Molding Technology” JIS Z3136JIS Z3136 JIS Z3137JIS Z3137 特開平6−182561号公報JP-A-6-182561 特開2002−31627号公報JP 2002-31627 A

従来からこの問題の解決のため、例えば非特許文献1にあるように、スポット溶接間隔をいろいろと変えて部材を試作し、座屈試験をして溶接点で破断せず安定に座屈する条件を調べていた。しかしながら、この方法では自動車ごと、また部材ごとに試作をつくり試験を行うという試行錯誤が必要となり、製作コストがかかり、設計にも時間を要するという問題を抱えていた。   Conventionally, in order to solve this problem, for example, as described in Non-Patent Document 1, a sample is made by changing the spot welding interval in various ways, a buckling test is performed, and conditions for stable buckling without breaking at the welding point are set. I was investigating. However, this method has a problem that trial and error such as making a prototype for each automobile and each member and performing a test is necessary, which requires a manufacturing cost and takes time for designing.

また、特許文献1には、フロアパネルでの荷重のかかるところの溶接部の剥離防止構造が提案されているがフロアパネルについてのみの構造であり、すべての衝撃吸収部材で溶接点の剥離を防ぎ安定座屈により衝撃エネルギーを吸収するスポット溶接法には試作による試行錯誤になっていた。   Further, Patent Document 1 proposes a structure for preventing the peeling of the welded portion where the load is applied to the floor panel, but it is a structure only for the floor panel and prevents the peeling of the welding point with all the impact absorbing members. The spot welding method that absorbs impact energy by stable buckling has been trial and error by trial production.

さらに、特許文献2では、スポット溶接間隔の最適化が提案されているが、個々のスポット溶接強度については、単純な指標でしかなく、破断そのものの正確な予測になっていないため、精度の良いスポット溶接部破断の予測にもとづく設計ができない問題があった。   Further, Patent Document 2 proposes optimization of the spot welding interval, but the individual spot welding strength is only a simple index and is not an accurate prediction of the fracture itself, so it has high accuracy. There was a problem that the design based on the prediction of spot weld fracture could not be made.

スポット溶接部の強度の指標は、非特許文献2、3に規定される、せん断引張試験及び十字形引張試験が代表的である。この他にも多様な荷重状態を想定した多様な試験形態での報告例はあるが、一般には、JISで規定された2種の試験により、せん断引張試験値を溶接部のせん断強度として、また、十字形引張試験値を溶接部の剥離強度として扱っている。   Typical strength indicators for spot welds are the shear tensile test and the cross-shaped tensile test defined in Non-Patent Documents 2 and 3. There are other examples of reports in various test forms that assume various load conditions. Generally, the two types of tests specified by JIS are used to determine the shear tensile test value as the shear strength of the welded part. The cross-shaped tensile test value is treated as the peel strength of the weld.

しかし、試験により得られたスポット溶接のせん断強度及び剥離強度が、幅等の構造影響を受けることから、実部材では、試験値を様様な観点から補正して推定せざるを得ない。近年飛躍的に進歩してきた計算機上で自動車の衝突のシミュレーションによる最適設計を行うシステムにおいては、この推定精度が十分とは言えず、衝突安全の最適な設計の信頼性を低下させていた。   However, since the shear strength and peel strength of spot welding obtained by the test are affected by the structure such as the width, the actual member must be corrected and estimated from various viewpoints. In systems that perform optimal design by simulation of automobile collisions on computers that have made great strides in recent years, this estimation accuracy is not sufficient, reducing the reliability of optimal design for collision safety.

本発明は、部材の試作・衝突試験によらず、形状、幅、板厚、材料強度、荷重負荷方法、及びスポット溶接のナゲット径を変化させた試験片レベルのスポット溶接強度のデータ表、又は、そのデータ表を基に作成されるスポット溶接強度の予測式に基づいて、衝撃変形時に任意の部材のスポット溶接部における破断強度を大きくする幅、板厚、材料強度、スポット溶接部のナゲット径のうち1種以上を算出し、部材の衝撃時の溶接部破断を防ぎ、変形座屈モードの適正化を図り、衝撃エネルギーの吸収を向上させることを目的とするものである。   The present invention is a specimen-level spot welding strength data table in which the shape, width, plate thickness, material strength, load loading method, and spot welding nugget diameter are changed, regardless of the trial production / impact test of the member, or Based on the prediction formula of spot welding strength created based on the data table, width, plate thickness, material strength, spot welded nugget diameter to increase the fracture strength at the spot welded portion of any member during impact deformation One or more of them are calculated, and the purpose is to prevent welding part breakage at the time of impact of the member, to optimize the deformation buckling mode, and to improve the absorption of impact energy.

本発明のスポット溶接部の最適化方法は、十字型引張試験における様々な試験片の材料強度TS(MPa)、板厚t(mm)、スポット溶接のナゲット径d(mm)、継ぎ手の板幅W(mm)、破断時の最大荷重Fcts(N)、及び十字型引張試験の継ぎ手の回転角θ、並びに/又はせん断型引張試験における様々な試験片の材料強度TS(MPa)、板厚t(mm)、スポット溶接のナゲット径d(mm)、継ぎ手の板幅W(mm)、及び破断時の最大荷重Ftss(N)を測定し、(1)式若しくは(4)式に基づいて、又は(1)式若しくは(4)式により定義した応力集中係数αと、ナゲット径dと幅Wの比d/Wの関係式に基づいて、前記応力集中係数αを算出してデータベースを作成し、前記データベースに基づいて、任意の部材のスポット溶接部における破断限界荷重を最大にするように、スポット溶接部の幅、板厚、材料強度、ナゲット径のうち1種以上を決定する点に特徴を有する。
α=TS・W・t/Ftss・・・(1)
α=2・TS・W・t・sinθ/Fcts・・・(4)
ただし、α:十字型引張及び/又はせん断型引張でのスポット溶接部のナゲットの端部と母材における応力集中係数
The method for optimizing the spot welded portion of the present invention is the material strength TS (MPa), plate thickness t (mm), spot weld nugget diameter d (mm), and joint width of the joint in the cross-type tensile test. W (mm), maximum load at break Fcts (N), rotation angle θ of the joint of the cross-type tensile test, and / or material strength TS (MPa) of various specimens in the shear-type tensile test, sheet thickness t (Mm), spot welding nugget diameter d (mm), joint plate width W (mm), and maximum load Ftss (N) at the time of breakage are measured, based on the formula (1) or (4), Alternatively, a database is created by calculating the stress concentration factor α based on the relational expression of the stress concentration factor α defined by the equation (1) or (4) and the ratio d / W of the nugget diameter d and the width W. , Any part based on the database Of the breaking limit load so as to maximize the spot weld has a width of a spot weld, the plate thickness, material strength, characterized in that determining the one or more of the nugget diameter.
α = TS · W · t / Ftss (1)
α = 2 · TS · W · t · sinθ / Fcts (4)
Where α is the stress concentration factor at the end of the nugget of the spot weld and the base metal in cross-type tension and / or shear-type tension

本発明によれば、任意の部材でのスポット溶接部の破断強度を正確に予測することができるので、例えば実際の自動車の部材での衝突試験時のスポット溶接部破断の検証を省略したり、検証試験の回数を大幅に削減したりすることができる。また、自動車の部材のスポット溶接条件を変えた試作・衝突試験の大規模な実験によるスポット溶接破断を防ぐ部材設計を省略し、部材の負荷方法が決まったときの破断強度が最大となるように、形状、幅、板厚、材料強度、及びスポット溶接のナゲット径を簡単に決定することができるので、大幅なコスト削減・設計開発期間の短縮に寄与することができる。   According to the present invention, it is possible to accurately predict the breaking strength of a spot welded portion in an arbitrary member.For example, verification of spot welded portion breakage during a collision test on an actual automobile member may be omitted, The number of verification tests can be greatly reduced. In addition, the design of members that prevent spot welding breakage by large-scale experiments in trial production and collision tests with different spot welding conditions for automobile members is omitted, so that the fracture strength when the load method of the member is decided is maximized Since the shape, width, plate thickness, material strength, and spot welding nugget diameter can be easily determined, it is possible to greatly reduce the cost and shorten the design development period.

以下、図面を参照して、本発明の好適な実施形態について説明する。図1は、せん断型引張試験の概要を示す図である。試験片は、図のように母材2である2枚の鋼板を重ねてスポット溶接し、ナゲット1を形成する。この試験片を矢印3で示す方向に試験片が破断するまで引張試験を行う。このとき、引張方向3における試験片の変位と荷重を測定する。ナゲット1の周りで破断が発生し、このときに、最大荷重となり、これを破断限界荷重Ftss(N)とする。この限界荷重Ftssとなったとき、母材2の幅W(mm)、板厚t(mm)から、母材内の平均応力σo(MPa)は、Ftss/W・tである。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a shear-type tensile test. As shown in the drawing, the test piece is formed by spot welding two steel plates as the base material 2 to form the nugget 1. A tensile test is performed on the test piece in the direction indicated by the arrow 3 until the test piece breaks. At this time, the displacement and load of the test piece in the tensile direction 3 are measured. A rupture occurs around the nugget 1, and at this time, the maximum load is obtained, which is defined as a rupture limit load Ftss (N). When this limit load Ftss is reached, the average stress σo (MPa) in the base material is Ftss / W · t from the width W (mm) of the base material 2 and the plate thickness t (mm).

破断の起点となるナゲット1の周りにおいては、最大応力が引張強さTS(MPa)に達したと仮定すれば、ナゲット1の端部と母材2における応力集中係数αを、母材の引張強さTSと母材の平均引張応力σoの比として(1)式のように定義できる。
α=TS/σo=TS・W・t/Ftss・・・(1)
Assuming that the maximum stress has reached the tensile strength TS (MPa) around the nugget 1 that is the starting point of the fracture, the stress concentration coefficient α at the end of the nugget 1 and the base material 2 is determined as the tensile strength of the base material. The ratio of the strength TS and the average tensile stress σo of the base material can be defined as shown in equation (1).
α = TS / σo = TS · W · t / Ftss (1)

様々な引張り強さTSの材料で、様々な試験片幅W、板厚t、ナゲットの直径d(mm)で、破断限界荷重Ftssを測定することで、この応力集中係数αを、(1)式から算出してデータベースとして表を作成しておく。これから、任意の引張り強さTS、板厚t、幅W、ナゲット径dでの破断限界荷重Ftssは、表の応力集中係数αを用いて、(2)式で予測できる。
Ftss=TS・W・t/α・・・(2)
By measuring the fracture limit load Ftss with various specimen widths W, sheet thickness t, nugget diameter d (mm) with various tensile strength TS materials, this stress concentration factor α is expressed as (1) Calculate from the formula and create a table as a database. From this, the fracture limit load Ftss at an arbitrary tensile strength TS, plate thickness t, width W, and nugget diameter d can be predicted by equation (2) using the stress concentration factor α in the table.
Ftss = TS · W · t / α (2)

また、応力集中係数αは、ナゲット径dと幅Wの比d/Wで整理すると一つの曲線になることから、(3)式から算出したαを用いて、(2)式からもFtssを予測しても良い。
α=k/(p・d/W−q)n+r・・・(3)
ここで、k、p、q、n、及びrは、αとd/Wの曲線の関係を(3)式でフィッティングするためのパラメータである。曲線をフィッティングする式は、必ずしも(3)式の形でなくても良く、曲線関係をフィッティングできる式であれば良い。また、(3)式を用いなくても、曲線のグラフから直接αを読み取っても良い。
Moreover, since the stress concentration factor α becomes a single curve when arranged by the ratio d / W of the nugget diameter d and the width W, Ftss is also calculated from the equation (2) using α calculated from the equation (3). You may predict.
α = k / (p · d / W−q) n + r (3)
Here, k, p, q, n, and r are parameters for fitting the relationship between the curve of α and d / W by equation (3). The equation for fitting the curve does not necessarily have the form of equation (3), and any equation that can fit the curve relationship may be used. Further, α may be read directly from the curve graph without using the equation (3).

(2)式、(3)式から任意のナゲット径d、幅W、板厚t、材料強度TSでの破断限界荷重Ftssを求めることができる。これは、逆に、例えば部材に使用する材料の板厚tと材料強度TSが決まれば、破断限界荷重を最大にするナゲット径dと幅Wの組合せを求めることができることを示す。すなわち、(2)式、(3)式から生成される曲面の破断限界荷重Ftssが極大となるナゲット径、幅、板厚、材料強度の組合せが得られ、目的に応じて、その中から最適な組合せを選べばよい。   From the formulas (2) and (3), an arbitrary nugget diameter d, width W, plate thickness t, and fracture limit load Ftss at the material strength TS can be obtained. Conversely, for example, if the thickness t and the material strength TS of the material used for the member are determined, a combination of the nugget diameter d and the width W that maximizes the fracture limit load can be obtained. That is, a combination of nugget diameter, width, plate thickness, and material strength at which the fracture limit load Ftss of the curved surface generated from the equations (2) and (3) is maximized is obtained, and the optimum is selected according to the purpose. Choose the right combination.

また、曲面の極大値でなくとも、その極大値を含む、Ftssの変化率が最大及び最小となるナゲット径、幅、板厚、材料強度の変化率の組合せを求め、その範囲をFtssが安定して強度を保つ範囲として使用しても良い。ここで、幅Wは、試験片幅Wの他に、例えば、図2に示すように部材では、ハット型断面のフランジ幅4、断面長5、座屈ビードの間隔6、スポット溶接ピッチ7の何れかに相当する。このように、実際の部材は様々な形状になるため、それの都度、スポット溶接周りの寸法や、座屈形態を決める寸法を幅Wに対応する寸法として、評価すればよい。   Moreover, even if it is not the maximum value of the curved surface, the combination of the change rate of the nugget diameter, width, plate thickness, and material strength at which the change rate of Ftss including the maximum value is maximum and minimum is obtained, and Ftss is stable within the range. Then, it may be used as a range for maintaining strength. Here, in addition to the test piece width W, for example, as shown in FIG. 2, the width W includes a hat-shaped section flange width 4, a section length 5, a buckling bead interval 6, and a spot welding pitch 7. It corresponds to either. As described above, since the actual members have various shapes, the dimensions around the spot welding and the dimensions that determine the buckling form may be evaluated as the dimensions corresponding to the width W each time.

図3は、十字型引張試験方法の概要を示す図である。試験片は、図のように母材2である2枚の鋼板を重ねてスポット溶接し、ナゲット1を形成する。この試験片を矢印3で示す方向に試験片が破断するまで引張試験を行う。このとき、引張方向3の試験片の変位と荷重を測定する。ナゲット1の周りで破断が発生し、このときに、最大荷重となり、これを破断限界荷重Fcts(N)とする。この限界荷重Fctsとなったとき、母材2の幅W(mm)、板厚t(mm)から、母材の板面内の平均応力σoは、図4に示す角度θを用いて、Fcts/(2W・t・sinθ)である。   FIG. 3 is a diagram showing an outline of the cross-shaped tensile test method. As shown in the drawing, the test piece is formed by spot welding two steel plates as the base material 2 to form the nugget 1. A tensile test is performed on the test piece in the direction indicated by the arrow 3 until the test piece breaks. At this time, the displacement and load of the test piece in the tensile direction 3 are measured. A fracture occurs around the nugget 1, and at this time, the maximum load is obtained, and this is defined as a fracture limit load Fcts (N). When the limit load Fcts is reached, the average stress σo in the plate surface of the base material 2 is calculated from the width W (mm) of the base material 2 and the thickness t (mm) using the angle θ shown in FIG. / (2 W · t · sin θ).

破断の起点となるナゲット1の周りにおいては、最大応力が引張強さTS(MPa)に達したと仮定すれば、ナゲット1の端部と母材2における応力集中係数αを、母材の引張強さTS(MPa)と母材の平均引張応力σo(MPa)の比として(4)式のように定義できる。
α=TS/σo=2・TS・W・t・sinθ/Fcts・・・(4)
Assuming that the maximum stress has reached the tensile strength TS (MPa) around the nugget 1 that is the starting point of the fracture, the stress concentration coefficient α at the end of the nugget 1 and the base material 2 is determined as the tensile strength of the base material. The ratio of the strength TS (MPa) to the average tensile stress σo (MPa) of the base material can be defined as in the formula (4).
α = TS / σo = 2 · TS · W · t · sinθ / Fcts (4)

これは、せん断型引張試験で求めた(1)式と全く同形式であり、引張方向が違うため、角度補正θが入る。従って、せん断型引張りと同じ方法で、任意の幅、板厚、材料強度、ナゲット径に基づいて、破断限界荷重Fctsは、(5)式から算出できる。
Fcts=2・TS・W・t・sinθ/α・・・(5)
This is exactly the same as the equation (1) obtained in the shear type tensile test, and the angle direction θ is entered because the tensile direction is different. Therefore, the fracture limit load Fcts can be calculated from the equation (5) based on an arbitrary width, plate thickness, material strength, and nugget diameter in the same manner as the shear type tension.
Fcts = 2 ・ TS ・ W ・ t ・ sinθ / α (5)

(4)式、(5)式から、せん断型引張試験と同様の考え方で、破断限界荷重Fctsを求めることができる。破断限界荷重FtssとFctsは、どちらか小さい方を設計上の破断限界荷重としても良いし、部材形状と負荷条件から、スポット溶接部の変形様式がどちらに対応するか分っている場合は、対応する方の破断限界荷重を使用しても良い。   From the formulas (4) and (5), the fracture limit load Fcts can be obtained in the same way as the shear type tensile test. The smaller one of the fracture limit loads Ftss and Fcts may be set as the design fracture limit load, and if the deformation mode of the spot weld is known from the member shape and load conditions, The corresponding breaking limit load may be used.

この方法は、鉄鋼材料だけでなく、あらゆる材料に適用することができる。また、スポット溶接だけなく、レーザー溶接、アーク溶接、シーム溶接、マッシュシーム溶接等のあらゆる溶接、さらには、TOX接合、リベット接合等のあらゆる機械接合、摩擦接合や拡散接合、摩擦拡散接合、接着剤による接合すべてに応用することができる。   This method can be applied to any material, not just steel materials. In addition to spot welding, all welding such as laser welding, arc welding, seam welding, mash seam welding, etc., and all mechanical bonding such as TOX bonding, rivet bonding, friction bonding, diffusion bonding, friction diffusion bonding, adhesives It can be applied to all joints.

実験による応力集中係数αの算出方法も、上記のせん断型引張試験、十字型引張試験に限らず、あらゆる試験片形状、荷重負荷方法で、算出することができる。   The calculation method of the stress concentration coefficient α by experiment is not limited to the above-described shear type tensile test and cross-type tensile test, and can be calculated by any test piece shape and load application method.

上記の破断判定の予測は、自動車全体、部材の衝突解析だけでなく、自動車以外の部品にも適用でき、衝突以外の準静的な変形での解析にも適用できることは言うまでもない。   Needless to say, the above-described prediction of fracture determination can be applied not only to the collision analysis of the entire automobile and members, but also to parts other than automobiles, and can also be applied to analysis using quasi-static deformation other than collision.

図7は、本発明の最適化方法を実行可能なコンピュータシステムの一例を示すブロック図である。同図において、1200はコンピュータPCである。PC1200は、CPU1201を備え、ROM1202又はハードディスク(HD)1211に記憶された、或いはフレキシブルディスクドライブ(FD)1212より供給されるデバイス制御ソフトウェアを実行し、システムバス1204に接続される各デバイスを総括的に制御する。   FIG. 7 is a block diagram showing an example of a computer system capable of executing the optimization method of the present invention. In the figure, reference numeral 1200 denotes a computer PC. The PC 1200 includes a CPU 1201, executes device control software stored in the ROM 1202 or the hard disk (HD) 1211, or supplied from the flexible disk drive (FD) 1212, and collects all devices connected to the system bus 1204. To control.

前記PC1200のCPU1201、ROM1202又はハードディスク(HD)1211に記憶されたプログラムにより、本実施形態の各機能手段が構成される。   Each function unit of the present embodiment is configured by a program stored in the CPU 1201, ROM 1202, or hard disk (HD) 1211 of the PC 1200.

1203はRAMで、CPU1201の主メモリ、ワークエリア等として機能する。1205はキーボードコントローラ(KBC)であり、キーボード(KB)1209から入力される信号をシステム本体内に入力する制御を行う。1206は表示コントローラ(CRTC)であり、表示装置(CRT)1210上の表示制御を行う。1207はディスクコントローラ(DKC)で、ブートプログラム(起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラム)、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記憶するハードディスク(HD)1211、及びフレキシブルディスク(FD)1212とのアクセスを制御する。   A RAM 1203 functions as a main memory, work area, and the like for the CPU 1201. Reference numeral 1205 denotes a keyboard controller (KBC), which controls to input a signal input from the keyboard (KB) 1209 into the system main body. Reference numeral 1206 denotes a display controller (CRTC), which performs display control on the display device (CRT) 1210. Reference numeral 1207 denotes a disk controller (DKC), which is a hard disk (boot program (startup program: a program for starting execution (operation) of personal computer hardware and software)), a plurality of applications, editing files, user files, a network management program, and the like. HD) 1211 and flexible disk (FD) 1212 are controlled.

1208はネットワークインタフェースカード(NIC)で、LAN1220を介して、ネットワークプリンタ、他のネットワーク機器、或いは他のPCと双方向のデータのやり取りを行う。   Reference numeral 1208 denotes a network interface card (NIC) that exchanges data bidirectionally with a network printer, another network device, or another PC via the LAN 1220.

上述した実施形態の機能は、コンピュータがコンピュータプログラムを実行することによっても実現される。また、コンピュータプログラムをコンピュータに供給するための手段、例えばかかるプログラムを記録したCD−ROM等のコンピュータ読み取り可能な記録媒体又はかかるプログラムを伝送するインターネット等の伝送媒体も本発明の実施形態として適用することができる。また、前記のプログラムを記録したコンピュータ読み取り可能な記録媒体等のコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。前記のコンピュータプログラム、記録媒体、伝送媒体及びコンピュータプログラムプロダクトは、本発明の範疇に含まれる。記録媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、磁気テープ、不揮発性のメモリ、ROM等を用いることができる。   The functions of the above-described embodiments can also be realized by a computer executing a computer program. Further, means for supplying a computer program to a computer, for example, a computer-readable recording medium such as a CD-ROM in which such a program is recorded, or a transmission medium such as the Internet for transmitting such a program is also applied as an embodiment of the present invention. be able to. A computer program product such as a computer-readable recording medium in which the program is recorded can also be applied as an embodiment of the present invention. The computer program, recording medium, transmission medium, and computer program product are included in the scope of the present invention. As the recording medium, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory, a ROM, or the like can be used.

(実施例)
上記の破断予測モデルを使い、せん断型引張試験における破断限界荷重Ftssの極大となる領域を調べた。980MPa級の厚さt=1.4mmの鋼板で、せん断型引張試験片での極大となる破断限界荷重Ftssを求めるために、スポット溶接のナゲット径d、幅Wを変化させた。(2)式、(3)式で使用する他のパラメータは、この980MPa級の特定の鋼板に限定することにより、簡易的に求めたパラメータで、TS=1050(MPa),t=1.4(mm),p=0.8013,q=0.06712,r=1.0614,k=0.02695,n=2.3759とした。これらは、材料が変われば変化するが、その都度求めるか、材料とパラメータの関係式を別途使用しても良い。
(Example)
Using the rupture prediction model, the maximum region of the rupture limit load Ftss in the shear type tensile test was examined. A spot welding nugget diameter d and width W were varied in order to obtain a rupture limit load Ftss that is a maximum in a shear type tensile test piece with a steel plate of 980 MPa thickness t = 1.4 mm. The other parameters used in the equations (2) and (3) are parameters obtained simply by limiting to this specific steel plate of 980 MPa class, TS = 1050 (MPa), t = 1.4. (Mm), p = 0.8013, q = 0.06712, r = 1.0614, k = 0.02695, n = 2.3759. These change if the material changes, but may be obtained each time or a relational expression between the material and the parameter may be used separately.

図5は、この予測モデルの検証例であり、ナゲット径dを7.1mmに固定すると、幅40mm付近で、破断限界荷重が極大となっており、ナゲット径まで決めれば、最大の破断限界荷重とそのときの幅を求めることができることがわかる。   FIG. 5 is an example of verification of this prediction model. When the nugget diameter d is fixed to 7.1 mm, the breaking limit load is maximum in the vicinity of the width of 40 mm. If the nugget diameter is determined, the maximum breaking limit load is obtained. It can be seen that the width at that time can be obtained.

また、極大値を含み、破断限界荷重が、その変化率が最大となる点と最小となる点の間の範囲とは、20mm以上で60mm以下であるので、この範囲を破断限界荷重が安定して高い領域として、使用することが出来る。 In addition, the range between the point where the breaking limit load includes the maximum value and the rate of change is the maximum and the minimum is 20 mm or more and 60 mm or less. Can be used as a high area.

図6は、図5の幅だけでなく、ナゲット径も変化させたときの破断限界荷重の変化を示す曲面である。破断限界荷重が極大値を示す幅Wが、ナゲット径を変化させると、より大きい側にシフトすることが分り、目的に応じて、幅とナゲット径の最適な組合せを選ぶことができる。すなわち、破断限界荷重をより大きくしたいのであれば、幅は約70mm、ナゲット径は約13mmとすることができるし、部材の別の設計要件から幅が50mmに決まるのであれば、極大となる破断限界荷重のときのナゲット径は約11mmと決めることができる。   FIG. 6 is a curved surface showing changes in the breaking limit load when not only the width of FIG. 5 but also the nugget diameter is changed. It can be seen that the width W at which the breaking limit load has a maximum value shifts to a larger side when the nugget diameter is changed, and an optimum combination of the width and the nugget diameter can be selected according to the purpose. That is, if it is desired to increase the breaking limit load, the width can be about 70 mm, the nugget diameter can be about 13 mm, and if the width is determined to be 50 mm from another design requirement of the member, the maximum breaking The nugget diameter at the limit load can be determined to be about 11 mm.

このように、基本的な試験でスポット溶接での、極大となる破断限界荷重を予測し、材料、板厚、ナゲット径、幅の最適条件を決定することができた。また、部品レベルでの衝突変形時のスポット溶接破断の予測について実験・予測モデルから検証しており、予測モデルでの破断が実験と一致することを確かめている。以上から、スポット溶接部の破断の極大値を求めることにより、部材の変形モード、吸収エネルギーの制御・設計が可能なことが確かめられた。   As described above, the maximum fracture limit load in spot welding was predicted in the basic test, and the optimum conditions for the material, the plate thickness, the nugget diameter, and the width could be determined. In addition, the prediction of spot weld rupture at the time of collision deformation at the part level is verified from an experiment / prediction model, and it is confirmed that the rupture in the prediction model matches the experiment. From the above, it was confirmed that the deformation mode of the member and the absorbed energy can be controlled and designed by obtaining the maximum value of the fracture of the spot weld.

せん断型引張試験の概要を示す図である。It is a figure which shows the outline | summary of a shear type tensile test. 実部材でのフランジ幅、断面長、座屈ビードの間隔、スポット溶接ピッチを示す図である。It is a figure which shows the flange width in an actual member, cross-sectional length, the space | interval of a buckling bead, and a spot welding pitch. 十字型引張試験方法の概要を示す図である。It is a figure which shows the outline | summary of a cross-shaped tension test method. 十字型引張試験の試験時における側面図である。It is a side view at the time of the test of a cross-type tension test. せん断型引張試験の破断限界荷重の幅Wに対する変化を示す図である。It is a figure which shows the change with respect to the width | variety W of the breaking limit load of a shear type tensile test. せん断型引張試験での破断限界荷重の幅W及びナゲット径dに対する変化を示す図である。It is a figure which shows the change with respect to the width W and the nugget diameter d of the breaking limit load in a shear type | mold tensile test. 最適化方法を実行可能なコンピュータシステムの一例を示すブロック図である。It is a block diagram which shows an example of the computer system which can perform the optimization method.

符号の説明Explanation of symbols

1 ナゲット
2 母材
3 試験片両端部の引張方向
4 ハット型断面のフランジ幅
5 断面長
6 座屈ビードの間隔
7 スポット溶接ピッチ
DESCRIPTION OF SYMBOLS 1 Nugget 2 Base material 3 Tensile direction of both ends of test piece 4 Flange width of hat-shaped section 5 Section length 6 Spacing between buckling beads 7 Spot welding pitch

Claims (1)

十字型引張試験における様々な試験片の材料強度TS(MPa)、板厚t(mm)、スポット溶接のナゲット径d(mm)、継ぎ手の板幅W(mm)、破断時の最大荷重Fcts(N)、及び十字型引張試験の継ぎ手の回転角θ、並びに/又はせん断型引張試験における様々な試験片の材料強度TS(MPa)、板厚t(mm)、スポット溶接のナゲット径d(mm)、継ぎ手の板幅W(mm)、及び破断時の最大荷重Ftss(N)を測定し、(1)式若しくは(4)式に基づいて、又は(1)式若しくは(4)式により定義した応力集中係数αと、ナゲット径dと幅Wの比d/Wの関係式に基づいて、前記応力集中係数αを算出してデータベースを作成し、前記データベースに基づいて、任意の部材のスポット溶接部における破断限界荷重を最大にするように、スポット溶接部の幅、板厚、材料強度、ナゲット径のうち1種以上を決定することを特徴とするスポット溶接部の破断強度増大のための最適化方法。
α=TS・W・t/Ftss・・・(1)
α=2・TS・W・t・sinθ/Fcts・・・(4)
ただし、α:十字型引張及び/又はせん断型引張でのスポット溶接部のナゲットの端部と母材における応力集中係数
Material strength TS (MPa), plate thickness t (mm), spot welding nugget diameter d (mm), joint plate width W (mm) of joints, maximum load Fcts at break ( N), and the rotation angle θ of the joint in the cross-type tensile test, and / or the material strength TS (MPa), plate thickness t (mm), spot weld nugget diameter d (mm) of various test pieces in the shear-type tensile test ), The plate width W (mm) of the joint, and the maximum load Ftss (N) at the time of breaking, and defined based on the formula (1) or (4) or by the formula (1) or (4) Based on the relational expression of the stress concentration factor α and the ratio d / W between the nugget diameter d and the width W, a database is created by calculating the stress concentration factor α, and the spot of an arbitrary member based on the database Fracture limit load at weld zone So as to maximize the width of the spot weld, the plate thickness, material strength, optimization method for increasing the breaking strength of the spot weld, characterized by determining one or more of the nugget diameter.
α = TS · W · t / Ftss (1)
α = 2 · TS · W · t · sinθ / Fcts (4)
Where α is the stress concentration factor at the end of the nugget of the spot weld and the base metal in cross-type tension and / or shear-type tension
JP2004118200A 2004-04-13 2004-04-13 Optimization method for increasing the fracture strength of spot welds Expired - Lifetime JP4418287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004118200A JP4418287B2 (en) 2004-04-13 2004-04-13 Optimization method for increasing the fracture strength of spot welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118200A JP4418287B2 (en) 2004-04-13 2004-04-13 Optimization method for increasing the fracture strength of spot welds

Publications (2)

Publication Number Publication Date
JP2005297023A JP2005297023A (en) 2005-10-27
JP4418287B2 true JP4418287B2 (en) 2010-02-17

Family

ID=35329200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118200A Expired - Lifetime JP4418287B2 (en) 2004-04-13 2004-04-13 Optimization method for increasing the fracture strength of spot welds

Country Status (1)

Country Link
JP (1) JP4418287B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024788A (en) * 2005-07-20 2007-02-01 Toyota Motor Corp Rupture determination device and collision simulation device
JP4826311B2 (en) * 2006-03-29 2011-11-30 Jfeスチール株式会社 Collision analysis apparatus, collision analysis method and collision analysis program using finite element method
JP4700559B2 (en) * 2006-05-12 2011-06-15 新日本製鐵株式会社 Fracture prediction apparatus, method, computer program, and computer-readable recording medium for spot welds
JP5742685B2 (en) * 2010-12-01 2015-07-01 新日鐵住金株式会社 Method for predicting fracture determination value of spot welded portion, prediction system, and method for manufacturing member having spot welded portion
JP5742755B2 (en) * 2012-03-12 2015-07-01 新日鐵住金株式会社 Method for predicting fracture strain of welded portion, prediction system, and method for manufacturing member having welded portion
JP6558249B2 (en) * 2016-01-12 2019-08-14 日本製鉄株式会社 Tensile test method for spot welded cross joints

Also Published As

Publication number Publication date
JP2005297023A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4150383B2 (en) Fracture prediction apparatus, method, computer program, and computer-readable recording medium for spot welds
JP4700559B2 (en) Fracture prediction apparatus, method, computer program, and computer-readable recording medium for spot welds
EP1908539B1 (en) Method and device for designing member, computer program, and computer-readable recording medium
JP4980503B2 (en) Fracture analysis method, apparatus, program and computer-readable recording medium for spot welded portion
JP5053164B2 (en) Fracture prediction method and apparatus, program, and recording medium
KR20170105112A (en) Fracture prediction method, fracture prediction apparatus, program and recording medium, and fracture criterion calculation method
BRPI0707682B1 (en) METHOD FOR FRACTURE PREDICTION
KR102198584B1 (en) Fracture prediction method and apparatus, and recording medium
JP4418287B2 (en) Optimization method for increasing the fracture strength of spot welds
Khalkhali et al. The application of equivalent modeling of joints for bending simulation of hybrid aluminum/high strength steel thin-walled sections joined by clinching
JP3911134B2 (en) Spot welding method with excellent collision safety
Mucha et al. Research on the influence of the aw 5754 aluminum alloy state condition and sheet arrangements with aw 6082 aluminum alloy on the forming process and strength of the clinchrivet joints. Materials. 2021; 14: 2980
Dong et al. Investigation on shearing and local formability of hot-rolled high-strength plates
Gupta Using CAE to evaluate a structural foam design for increasing roof strength
JP6645228B2 (en) Evaluation method and apparatus, and program and recording medium
Tang Spot weld failure prediction and simulation in crash analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R151 Written notification of patent or utility model registration

Ref document number: 4418287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350