JP4417806B2 - Hydrogen storage material and method for producing the same - Google Patents

Hydrogen storage material and method for producing the same Download PDF

Info

Publication number
JP4417806B2
JP4417806B2 JP2004236210A JP2004236210A JP4417806B2 JP 4417806 B2 JP4417806 B2 JP 4417806B2 JP 2004236210 A JP2004236210 A JP 2004236210A JP 2004236210 A JP2004236210 A JP 2004236210A JP 4417806 B2 JP4417806 B2 JP 4417806B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage material
hydrogen
heat treatment
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004236210A
Other languages
Japanese (ja)
Other versions
JP2006028633A (en
Inventor
完 上田
誠 塚原
良久 神谷
潮美 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMRA Material R&D Co Ltd
Original Assignee
IMRA Material R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMRA Material R&D Co Ltd filed Critical IMRA Material R&D Co Ltd
Priority to JP2004236210A priority Critical patent/JP4417806B2/en
Publication of JP2006028633A publication Critical patent/JP2006028633A/en
Application granted granted Critical
Publication of JP4417806B2 publication Critical patent/JP4417806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、Mgの水素吸蔵特性を利用した水素吸蔵材料およびその製造方法に関する。  The present invention relates to a hydrogen storage material using the hydrogen storage characteristics of Mg and a method for producing the same.

近年、環境への影響が大きい石油やガス等の化石燃料に代わるクリーンなエネルギー源として水素が注目されている。水素は通常の環境(常温・常圧下)では気体であり、強い爆発性を有する。従って、安全に水素を貯蔵し利用するための媒体が必要となる。  In recent years, hydrogen has attracted attention as a clean energy source to replace fossil fuels such as oil and gas, which have a large impact on the environment. Hydrogen is a gas in a normal environment (normal temperature and normal pressure) and has a strong explosive property. Therefore, there is a need for a medium for safely storing and using hydrogen.

かかる媒体として、Mgは最大で自重の7.6wt%もの水素を吸蔵するという特性を有するために、次世代の水素吸蔵材料として期待されている。しかしながらMg単体を水素吸蔵材料として使用する場合、水素との化合物(水素化物)が熱力学的に安定であり、一般的なMgバルク単体では300℃以下の温度域では水素放出反応が起こりにくい。そのため、Mgをベースとして、水素化物を不安定化するための処理を施した材料が各種開発・研究されている。  As such a medium, Mg is expected to be a next-generation hydrogen storage material because it has the property of storing up to 7.6 wt% of its own weight of hydrogen. However, when Mg simple substance is used as a hydrogen storage material, a compound with hydrogen (hydride) is thermodynamically stable, and a general Mg bulk simple substance hardly causes a hydrogen releasing reaction in a temperature range of 300 ° C. or lower. For this reason, various materials based on Mg that have been treated to destabilize hydrides have been developed and studied.

Mgベースの水素吸蔵材料における水素化物の不安定化の方策として、主に触媒機能を有する元素との合金化と、ナノ組織の導入との二つの観点から種々の研究開発が行われてきた。また、ナノ組織の導入の観点では従来の製造手法として、粉末プロセスと蒸着やスパッタリングによる積層プロセス(特許文献1,非特許文献1参照)が挙げられる。
特開2002−105576号公報 “Nanocrystalline magnesium for hydrogen storage”by A.Zaluska,L.Zaluski and J.
As measures for destabilizing hydrides in Mg-based hydrogen storage materials, various research and development have been conducted mainly from the two viewpoints of alloying with elements having a catalytic function and introduction of nanostructures. Moreover, from the viewpoint of introducing a nanostructure, a conventional manufacturing method includes a powder process and a lamination process by vapor deposition or sputtering (see Patent Document 1 and Non-Patent Document 1).
JP 2002-105576 A “Nanocrystalline magnesium for hydrogen storage” by A. Zaluska, L .; Zaluski and J.M.

しかしながら、触媒機能を有する元素との合金化においては、Mgを含む多くの系で液相からの冷却・凝固による単相化合物の合成が困難であることが知られている。ナノ組織の導入においては、極めて強い加工を伴う粉末プロセスを用いて強制固溶・合金化や多相化を行えるものの、一般的には形成された相の水素との反応における可逆性が乏しい。また蒸着やスパッタリングによる積層プロセスは積層構造を緻密に制御することが可能であるが、これまで水素吸蔵放出過程での組織の変化を伴う例が存在せず、反応の可逆性を維持することが困難である。  However, it is known that in alloying with an element having a catalytic function, it is difficult to synthesize a single-phase compound by cooling and solidification from a liquid phase in many systems containing Mg. In the introduction of nanostructures, forced solid solution, alloying, and multiphase formation can be performed using a powder process with extremely strong processing, but generally reversibility in the reaction of the formed phase with hydrogen is poor. In addition, the lamination process by vapor deposition and sputtering can precisely control the lamination structure, but there has been no example of the structure change in the process of hydrogen storage / release so far, and the reversibility of the reaction can be maintained. Have difficulty.

本発明は上記問題点に鑑みてなされたもので、水素吸蔵・放出過程の可逆性に優れる水素吸蔵材料を提供することを目的とする。  The present invention has been made in view of the above problems, and an object thereof is to provide a hydrogen storage material that is excellent in reversibility of the hydrogen storage / release process.

発明者等は前記課題を解決するために鋭意検討を行い、以下の手段で著しい作用効果を発揮することを見出した。  The inventors have conducted intensive studies in order to solve the above-mentioned problems, and have found that the following means exert significant effects.

本発明の請求項1において講じた技術的手段は、Mgからなる層とPdからなる層の少なくとも一方と、Mg Pd (1−x) (xは0.25,0.45〜0.5,0.6,0.75,5/7,6/7)相からなる層とを積層してなる積層構造の組織を有することを特徴とする水素吸蔵材料である。 The technical means taken in claim 1 of the present invention includes at least one of a layer made of Mg and a layer made of Pd, and Mg x Pd (1-x) (x is 0.25, 0.45-0.5. , 0.6, 0.75, 5/7, 6/7) a layered structure formed by laminating layers composed of phases .

本発明の請求項2において講じた技術的手段は、上記積層構造の層間隔が1マイクロメートル未満であることを特徴とする請求項1に記載の水素吸蔵材料である。 The technical means taken in claim 2 of the present invention is the hydrogen storage material according to claim 1, wherein the layer interval of the laminated structure is less than 1 micrometer .

本発明の請求項3において講じた技術的手段は、200℃以下の温度域において可逆的に水素を吸蔵・放出し得るように構成したことを特徴とする請求項1または2に記載の水素吸蔵材料である。 The technical means taken in claim 3 of the present invention is configured to reversibly absorb and desorb hydrogen in a temperature range of 200 ° C. or less. Material.

本発明の請求項4において講じた技術的手段は、薄板または箔のMgからなる層とPdからなる層とを積層した積層体、もしくは、MgとPdとを含有する粉末混合体一体化させたバルクに対して、塑性変形を伴う強加工と加工後の材料の圧縮一体化成型を反復することにより、1マイクロメートル未満の間隔の積層構造を有する組織を形成することを特徴とする水素吸蔵材料の製造方法である。 The technical means taken in claim 4 of the present invention is to integrate a laminated body in which a layer made of Mg and a layer made of Pd or a powder mixture containing Mg and Pd are integrated. A structure having a laminated structure with an interval of less than 1 micrometer is formed by repeating strong processing with plastic deformation and compression-integrated molding of the processed material with respect to the bulk. It is a manufacturing method of material.

本発明の請求項5において講じた技術的手段は、間接圧延法と200℃〜400℃での熱処理とを併用することを特徴とする請求項4に記載の水素吸蔵材料の製造方法である。  The technical means taken in claim 5 of the present invention is the method for producing a hydrogen storage material according to claim 4, wherein the indirect rolling method and heat treatment at 200 ° C to 400 ° C are used in combination.

本発明の請求項6において講じた技術的手段は、請求項4,5のいずれか一項に記載の方法で作成した水素吸蔵材料に、水素雰囲気中250〜350℃で熱処理を施し、前記熱処理中に固相間の相互拡散による合金化と水素化に伴う解離反応とを同時に行うことによって、MgPd(1−x)(x0.25,0.45〜0.5,0.6,0.75,5/7,6/7相を生成させることを特徴とする水素吸蔵材料の製造方法である。 The technical means taken in claim 6 of the present invention is that the hydrogen storage material prepared by the method according to any one of claims 4 and 5 is subjected to heat treatment in a hydrogen atmosphere at 250 to 350 ° C. By simultaneously carrying out alloying by interdiffusion between solid phases and dissociation reaction accompanying hydrogenation, Mg x Pd (1-x) (x is 0.25, 0.45-0.5, 0. 6, 0.75, 5/7, 6/7 ) phase is produced, which is a method for producing a hydrogen storage material.

本発明の請求項9において講じた技術的手段は、200℃以下の温度域において可逆的に水素を吸蔵・放出し得るように構成した請求項7,8のいずれか一項に記載の水素吸蔵材料である。  The technical means taken in claim 9 of the present invention is configured to absorb and release hydrogen reversibly in a temperature range of 200 ° C. or lower, and the hydrogen storage according to claim 7 or 8. Material.

本発明によれば、水素の吸蔵・放出反応の可逆性に優れる、実用性に優れた水素吸蔵材料となる。しかも、水素吸蔵・解離圧がMg単体より高く、Mg単体などの従来の水素吸蔵材料より低い温度で水素の吸蔵・放出を行えることとなる。また、本発明にかかる水素吸蔵材料は、圧延機や雰囲気を制御した加熱炉などのような簡単な機材を用いて製造可能であり、生産性に優れる。また、熱処理温度をMgの蒸発が起こる温度より低くできるから、材料の汚染、とりわけ酸化と組成偏倚が生じにくく、高純度・高品質な水素吸蔵合金が得られる。  According to the present invention, a hydrogen storage material that is excellent in reversibility of hydrogen storage / release reaction and excellent in practicality is obtained. In addition, hydrogen storage / dissociation pressure is higher than that of Mg alone, and hydrogen can be stored / released at a temperature lower than that of conventional hydrogen storage materials such as Mg alone. Moreover, the hydrogen storage material concerning this invention can be manufactured using simple equipments, such as a rolling mill and the heating furnace which controlled atmosphere, and is excellent in productivity. In addition, since the heat treatment temperature can be lower than the temperature at which Mg evaporates, contamination of the material, in particular, oxidation and composition deviation hardly occur, and a high-purity and high-quality hydrogen storage alloy can be obtained.

以下、本発明を実施するための最良の形態を、図面を参照して説明する。  The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明による水素吸蔵材料の製造方法の概略を図1に示す。ここで、Mgからなる層と、少なくとも1種類のMg以外の元素を含む層と、Mg含有合金を含む層のうち、少なくとも2種類が交互に積層した構造を持つように水素吸蔵材料を製造するために、例えばMgおよびPdを出発材料として用いる場合について説明する。製造プロセスは積層・圧延プロセスと熱処理プロセスとにより構成される。  An outline of a method for producing a hydrogen storage material according to the present invention is shown in FIG. Here, the hydrogen storage material is manufactured so as to have a structure in which at least two of a layer made of Mg, a layer containing at least one element other than Mg, and a layer containing an Mg-containing alloy are alternately stacked. Therefore, for example, a case where Mg and Pd are used as starting materials will be described. The manufacturing process includes a lamination / rolling process and a heat treatment process.

まず積層・圧延プロセスについて説明する。前記出発材料のMgおよびPdは、それぞれ薄板状もしくは箔状のMg層1およびPd層2として形成されている。前記出発材料の前記Mg層1および前記Pd層2を交互に積層し、積層体(バルク)3の両面を保護板4,4で挟み込み接合する。さらに前記積層体3を圧延(塑性変形を伴う強加工)する。圧延は、前記積層体3の両面を前記保護板4,4で挟みこみながら一対の回転ロール5,5で圧縮・延伸を行う間接圧延法である。圧延した前記積層体3から前記保護板4,4を剥離し、前記積層体3を折り返すか他の圧延した積層体と重ねるかした後、再度前記保護板4,4で挟みこみながら圧延を行う。このように圧延と圧延後の圧縮一体化成型とを必要に応じて反復することにより、MgとPdの微細積層体3が形成される。  First, the lamination / rolling process will be described. The starting materials Mg and Pd are formed as a thin plate-like or foil-like Mg layer 1 and Pd layer 2, respectively. The Mg layer 1 and the Pd layer 2 of the starting material are alternately laminated, and both surfaces of the laminate (bulk) 3 are sandwiched and joined by protective plates 4 and 4. Further, the laminate 3 is rolled (strong processing with plastic deformation). Rolling is an indirect rolling method in which compression and stretching are performed with a pair of rotating rolls 5 and 5 while sandwiching both surfaces of the laminate 3 with the protective plates 4 and 4. The protective plates 4 and 4 are peeled off from the rolled laminate 3 and the laminate 3 is folded or overlapped with another rolled laminate, and then rolled while being sandwiched between the protective plates 4 and 4 again. . In this way, the Mg and Pd fine laminate 3 is formed by repeating rolling and compression-integrated molding after rolling as necessary.

前記積層体3の内部組織が所望の微細構造となるまで前記圧延を繰り返した後、前記積層体3は電気炉等の加熱装置6を用い酸化しないように雰囲気を制御した状態で熱処理される。前記熱処理は200℃〜400℃の温度範囲の所定温度で行われる。このとき、200℃未満では反応が進行せず、また400℃以上ではMgの蒸気圧が高く組成偏倚が生ずるため、実用的ではない。  After repeating the rolling until the internal structure of the laminated body 3 has a desired microstructure, the laminated body 3 is heat-treated in a controlled atmosphere so as not to be oxidized using a heating device 6 such as an electric furnace. The heat treatment is performed at a predetermined temperature in a temperature range of 200 ° C to 400 ° C. At this time, the reaction does not proceed at temperatures lower than 200 ° C., and at 400 ° C. or higher, the vapor pressure of Mg is high and compositional deviation occurs.

また、前記熱処理は水素雰囲気下、250℃〜350℃の温度範囲の所定温度で行うことがより好ましい。この際、250℃以下の温度では水素の吸蔵・放出が進行せず、350℃以上の温度で熱処理した場合には低温での水素吸蔵放出特性が悪化する。  The heat treatment is more preferably performed at a predetermined temperature in a temperature range of 250 ° C. to 350 ° C. in a hydrogen atmosphere. At this time, hydrogen occlusion / release does not proceed at a temperature of 250 ° C. or lower, and when it is heat-treated at a temperature of 350 ° C. or higher, hydrogen storage / release characteristics at a low temperature deteriorate.

前記熱処理により強制固溶・化学反応が進行し、金属間化合物相が生成する。また、水素雰囲気下で前記熱処理した場合には、水素吸蔵放出を行わせることにより、強制固溶・化合物化にともなう金属間化合物相の生成、ならびに水素化反応に伴う化合物相の解離による2次的な微細組織の形成がなされる。  By the heat treatment, forced solid solution / chemical reaction proceeds, and an intermetallic compound phase is generated. In addition, when the heat treatment is performed in a hydrogen atmosphere, by performing hydrogen absorption and desorption, generation of an intermetallic compound phase due to forced solid solution / compounding and secondary generation due to dissociation of the compound phase accompanying the hydrogenation reaction are performed. A fine microstructure is formed.

前記圧延プロセスにおいて、前記保護板4,4に前記積層体3を挟んで圧縮・延伸する間接圧延法を用いたために、前記回転ロール5,5による圧縮時の応力集中が分散される。従って、前記圧延プロセスにおいて応力集中による材質の損傷や、セッティングの僅かな誤差等により引き起こされる不均一の発生が緩和される。  In the rolling process, since the indirect rolling method in which the laminate 3 is sandwiched and stretched between the protective plates 4 and 4 is used, the stress concentration during the compression by the rotary rolls 5 and 5 is dispersed. Accordingly, non-uniformity caused by material damage due to stress concentration, slight setting errors, etc., is alleviated in the rolling process.

また、圧延後の材料を折り返すなどして積層し、再度圧延するというプロセスを反復するため、所望のMg−Pd層間隔を前記積層体3の内部に極めて容易に形成し得る。例えば、ナノメートルオーダー(1マイクロメートル未満)の層間隔も容易に得られる。尚、折り返し積層と圧延の反復に関しては、前記積層体3の初期厚みを増やすことや多段圧延を行うことによっても同様の効果が得られる。  In addition, since a process of stacking materials after rolling, for example, folding and rolling again is repeated, a desired Mg—Pd layer interval can be formed very easily in the laminate 3. For example, layer spacing on the order of nanometers (less than 1 micrometer) can be easily obtained. Note that the same effect can be obtained by increasing the initial thickness of the laminated body 3 or performing multi-stage rolling with respect to the repeated lamination and rolling.

また、前記積層体3の作製方法は、前記手法や粉末材料を混合して温間押出加工やプレスで一体化させる手法が望ましいが、スパッタリング等によって多層膜を作製するなどの手法でも可能である。  In addition, the method of manufacturing the laminate 3 is preferably the method or a method of mixing powder materials and integrating them by warm extrusion or pressing, but a method of manufacturing a multilayer film by sputtering or the like is also possible. .

上記積層体3の作製方法は、圧延機や雰囲気制御熱処理炉等の一般的な機材を用いるだけで実現可能であり、一般に、蒸着やスパッタリング等のような高真空の密閉空間を必要としない。  The manufacturing method of the said laminated body 3 is realizable only by using general equipments, such as a rolling mill and an atmosphere control heat treatment furnace, and generally does not require high vacuum sealed space like vapor deposition, sputtering, etc.

また、MgとPdの比率は各々のモル体積から初期積層厚比を決めることにより、組織の微細度は初期板厚、圧延回数および焼鈍回数等の熱処理条件により制御可能である。  The ratio of Mg and Pd determines the initial lamination thickness ratio from each molar volume, and the fineness of the structure can be controlled by heat treatment conditions such as the initial plate thickness, the number of rollings, and the number of annealings.

また、化合物の形成度は熱処理条件で設定可能であるために、熱処理後の化合物相、もしくは化合物相と残存する金属相からなる組織を設計・制御することが極めて容易である。これにより、単一相の金属間化合物だけではなく、触媒効果をもつPdを、あるいは水素吸蔵量の大きな水素吸蔵材料を得るためにMgを相内に分散させた水素吸蔵複合合金の作製も可能となる。  In addition, since the degree of compound formation can be set under heat treatment conditions, it is very easy to design and control the structure of the compound phase after the heat treatment or the compound phase and the remaining metal phase. This makes it possible to produce not only single-phase intermetallic compounds, but also hydrogen-absorbing composite alloys in which Pd, which has a catalytic effect, or Mg is dispersed in the phase to obtain a hydrogen-absorbing material with a large hydrogen-absorbing capacity. It becomes.

また、熱処理前の積層体は金属混合物であるために塑性加工が可能であり、形状の自由度も大きい。  Moreover, since the laminated body before heat treatment is a metal mixture, plastic working is possible and the degree of freedom in shape is large.

また、本発明における反応過程の熱処理温度は最高でも400℃程度であるが、この温度域は一般的な加熱炉で処理が可能である。この温度域ではMgの蒸気圧も十分に低く、組成の偏倚や酸化、汚染も少ない。  Further, the heat treatment temperature in the reaction process in the present invention is about 400 ° C. at the maximum, but this temperature range can be treated in a general heating furnace. In this temperature range, the vapor pressure of Mg is sufficiently low, and there is little compositional deviation, oxidation, and contamination.

(実施例) 以下,本発明の一実施例について詳細に説明する。市販Mgインゴットより5mm厚の薄板を切り出し、温間圧延、冷間圧延の各過程を経て、65μmの厚さのMg箔を作製した。このMg箔と市販のPd箔(20μm厚)とを母材として、これらを長方形(2×3cm)に切り出したものをMg,Pd,Mg,Pd…のように交互に積層し、前記保護板(ステンレス板)に挟んで油圧プレス(700kgf/cm)にて接合した。この場合、積層したMgとPdのモル比はほぼ2:1である。(Example) Hereinafter, an example of the present invention will be described in detail. A thin plate having a thickness of 5 mm was cut out from a commercially available Mg ingot, and a 65 μm-thick Mg foil was produced through each process of warm rolling and cold rolling. Using this Mg foil and a commercially available Pd foil (20 μm thick) as a base material, these were cut into rectangles (2 × 3 cm) and stacked alternately as Mg, Pd, Mg, Pd, etc. It was joined with a hydraulic press (700 kgf / cm 2 ) sandwiched between (stainless steel plate). In this case, the molar ratio of the stacked Mg and Pd is approximately 2: 1.

この積層体を2枚の前記保護板に挟み、2ロール圧延機にて初期厚みの約半分の厚さになるまで圧延し、圧延後の前記積層体を半分に折りたたんで再度前記保護板に挟み圧延した。この過程を約40回反復し、Mg−Pd混合積層体を作製した。作製した前記混合積層体の断面の模式図を図2に示す。これを水素雰囲気の加熱装置中、300℃で24時間保持し、拡散・水素化熱処理を行った。  The laminate is sandwiched between the two protective plates, rolled to a thickness of about half of the initial thickness with a two-roll rolling mill, the rolled laminate is folded in half and sandwiched between the protective plates again. Rolled. This process was repeated about 40 times to produce a Mg—Pd mixed laminate. A schematic view of a cross section of the prepared mixed laminate is shown in FIG. This was held at 300 ° C. for 24 hours in a heating apparatus in a hydrogen atmosphere to perform diffusion / hydrogenation heat treatment.

熱処理後の水素吸蔵合金を真空引きして水素を脱離した後にCu−Kα線を用いたX線回折を行い、RIETAN−2000にてリートベルト解析により相同定・定量化を行った結果を図3に示す。熱処理後の材料中には単体のMgは検出されず、金属間化合物の解離によって生じたPdと化合物相(即ち、MgPd(1−x)のxが0,0.75,5/7,6/7の生成物)で構成されている。また単離したPd相に対して電子線回折を行った結果(図4示)、単体Pdでは観察され得ない規則格子反射を確認した。このことは、Pd中にはX線回折では検出し難いほど微量の、Pdリッチの化合物相(即ち、Mgpd(1−x)のxが0.25,0.45〜0.5,0.6の生成物)が形成されていることを示す。Fig. 2 shows the results of X-ray diffraction using Cu-Kα rays after vacuuming the hydrogen storage alloy after heat treatment, and phase identification and quantification by Rietveld analysis using Rietan-2000. 3 shows. In the material after the heat treatment, single Mg is not detected, and Pd generated by dissociation of the intermetallic compound and the compound phase (that is, x of Mg x Pd (1-x) is 0,0.75,5 / 7. , 6/7 product). In addition, as a result of electron beam diffraction performed on the isolated Pd phase (shown in FIG. 4), regular lattice reflection that cannot be observed with single Pd was confirmed. This is because the amount of Pd-rich compound phase (that is, x of Mg x pd (1-x) is 0.25, 0.45-0.5, 0.6 product) is formed.

熱処理により二次的に形成された微細組織の透過型電子顕微鏡(TEM)写真を図5に示す。図中記号Aで示されるPd相、記号Cで示される化合物相に加え、その界面には記号Bで示されるような微結晶領域が形成されていることがわかる。また、前記記号Cの化合物相も結晶粒径がナノメートルオーダーの超微細粒で構成されていることがわかる。  FIG. 5 shows a transmission electron microscope (TEM) photograph of the microstructure formed secondarily by the heat treatment. It can be seen that in addition to the Pd phase indicated by symbol A and the compound phase indicated by symbol C, a microcrystalline region indicated by symbol B is formed at the interface. It can also be seen that the compound phase of the symbol C is composed of ultrafine grains having a crystal grain size of the order of nanometers.

これらの結果から、本実施例の水素吸蔵材料を用いた水素の吸蔵放出反応でMgとMg以外の構成元素(本実施例においてはPd)との組成比の変化が伴うことが確認された。このことは、水素の吸蔵反応により水素吸蔵合金が不安定化することを示す。  From these results, it was confirmed that a change in the composition ratio of Mg and a constituent element other than Mg (Pd in this example) was accompanied by a hydrogen storage / release reaction using the hydrogen storage material of this example. This indicates that the hydrogen storage alloy is destabilized by the hydrogen storage reaction.

以上説明したように、本実施例では機械加工(積層・圧延プロセス)と、溶解に比して低い温度域での熱処理(熱処理プロセス)を行うだけで合金化・二次的微細組織形成が行われる。従って、他の方法では避けられない合金の汚染、特に酸化と組成偏倚が非常に少ない。つまり高純度合金を特別な設備を用いることなしに作製することが可能である。  As described above, in this embodiment, alloying and secondary microstructure formation are performed simply by performing machining (lamination / rolling process) and heat treatment (heat treatment process) in a lower temperature range than melting. Is called. Therefore, alloy contamination, especially oxidation and compositional deviation, which cannot be avoided by other methods, is very small. That is, it is possible to produce a high purity alloy without using special equipment.

また、本実施例では、積層・圧延プロセスと熱処理プロセスを経て作製した熱処理済み水素吸蔵材料をSUS316製容器(容積3.5ml)中に約0.5g入れ、200℃でジーベルツ法によるPCT特性評価(最大圧力3.3MPa)を行った。  Further, in this example, about 0.5 g of the heat-treated hydrogen storage material produced through the lamination / rolling process and the heat treatment process is put into a SUS316 container (volume 3.5 ml), and PCT characteristic evaluation is performed at 200 ° C. by the Siebelz method. (Maximum pressure 3.3 MPa) was performed.

前記PCT特性評価の結果を図6に示す。この温度域においては、Mgの水素化物であるMgHが熱力学的に安定であるにも関わらず、本手法で作製した試料においては、水素の吸蔵・放出反応が可逆的に進行している。更に、この水素吸蔵放出過程における水素吸蔵解離圧がMgより上昇している。これは、前述のように水素の吸蔵反応でMgとMg以外の構成元素(本実施例においてはPd)との組成比の変化が伴い、水素吸蔵合金が不安定化することによるものである。即ち、合金中に導入された複雑な二次的微細組織が、水素吸蔵放出過程を活性化したことを示すものであり、従来の水素吸蔵合金と比較してはるかに低い温度で可逆的に高解離圧、高吸蔵量での水素の吸蔵放出が行われていることを示している。The results of the PCT characteristic evaluation are shown in FIG. In this temperature range, although the Mg hydride MgH 2 is thermodynamically stable, the hydrogen occlusion / release reaction proceeds reversibly in the sample prepared by this method. . Furthermore, the hydrogen storage / dissociation pressure in this hydrogen storage / release process is higher than that of Mg. This is because the hydrogen storage alloy is destabilized due to a change in the composition ratio between Mg and a constituent element other than Mg (Pd in this embodiment) in the hydrogen storage reaction as described above. That is, the complex secondary microstructure introduced into the alloy indicates that the hydrogen storage and release process has been activated, and it is reversibly high at a much lower temperature compared to conventional hydrogen storage alloys. This shows that hydrogen is stored and released at a dissociation pressure and a high storage capacity.

本発明の一実施例における、水素吸蔵材料の製造プロセスを示す説明図。  Explanatory drawing which shows the manufacturing process of the hydrogen storage material in one Example of this invention. 本発明の一実施例における、Mg−Pd系積層体の断面の模式図。  The schematic diagram of the cross section of the Mg-Pd type laminated body in one Example of this invention. 本発明の一実施例における、熱処理後の積層体のX線回折プロファイルおよびリートベルト解析の結果を示す説明図。  Explanatory drawing which shows the result of the X-ray-diffraction profile and Rietveld analysis of the laminated body in one Example of this invention after heat processing. 本発明の一実施例における、熱処理後の積層体のPd相の電子線回折パターン。  The electron-diffraction pattern of the Pd phase of the laminated body in one Example of this invention after heat processing. 本発明の一実施例における、熱処理後の積層体の微細構造写真。  The micro structure photograph of the laminated body after heat processing in one Example of this invention. 本発明の一実施例における、熱処理後の積層体の等温水素吸蔵特性(ジーベルツ法によるPCT特性評価結果)を示す説明図。  Explanatory drawing which shows the isothermal hydrogen storage characteristic (PCT characteristic evaluation result by the Siebelz method) of the laminated body after heat processing in one Example of this invention.

符号の説明Explanation of symbols

1…Mg層、2…Pd層、3…積層体、4…保護板、5…回転ロール、6…加熱装置DESCRIPTION OF SYMBOLS 1 ... Mg layer, 2 ... Pd layer, 3 ... Laminated body, 4 ... Protection board, 5 ... Rotating roll, 6 ... Heating device

Claims (6)

Mgからなる層とPdからなる層の少なくとも一方と、Mg Pd (1−x) (xは0.25,0.45〜0.5,0.6,0.75,5/7,6/7)相からなる層とを積層してなる積層構造の組織を有することを特徴とする水素吸蔵材料。 At least one of a layer made of Mg and a layer made of Pd, and Mg x Pd (1-x) (x is 0.25, 0.45-0.5, 0.6, 0.75, 5/7, 6 / 7) A hydrogen storage material characterized by having a layered structure formed by laminating layers composed of phases . 上記積層構造の層間隔が1マイクロメートル未満であることを特徴とする請求項1に記載の水素吸蔵材料。  2. The hydrogen storage material according to claim 1, wherein the layer interval of the laminated structure is less than 1 micrometer. 200℃以下の温度域において可逆的に水素を吸蔵・放出し得るように構成したことを特徴とする請求項1または2に記載の水素吸蔵材料。  3. The hydrogen storage material according to claim 1, wherein the hydrogen storage material is configured to reversibly store and release hydrogen in a temperature range of 200 ° C. or lower. 薄板または箔のMgからなる層とPdからなる層とを積層した積層体、もしくは、MgとPdとを含有する粉末混合体一体化させたバルクに対して、塑性変形を伴う強加工と加工後の材料の圧縮一体化成型を反復することにより、1マイクロメートル未満の間隔の積層構造を有する組織を形成することを特徴とする水素吸蔵材料の製造方法。 Strong processing and processing accompanied by plastic deformation for a laminated body in which a layer made of Mg and a layer made of Pd are laminated, or a bulk in which a powder mixture containing Mg and Pd is integrated A method for producing a hydrogen storage material, characterized in that a structure having a laminated structure with a layer interval of less than 1 micrometer is formed by repeating subsequent compression-integral molding of the material. 間接圧延法と200℃〜400℃での熱処理とを併用することを特徴とする請求項4に記載の水素吸蔵材料の製造方法。   The method for producing a hydrogen storage material according to claim 4, wherein an indirect rolling method and a heat treatment at 200 ° C. to 400 ° C. are used in combination. 請求項4,5のいずれか一項に記載の方法で作成した水素吸蔵材料に、水素雰囲気中250〜350℃で熱処理を施し、前記熱処理中に固相間の相互拡散による合金化と水素化に伴う解離反応とを同時に行うことによって、MgPd(1−x)(x0.25,0.45〜0.5,0.6,0.75,5/7,6/7相を生成させることを特徴とする水素吸蔵材料の製造方法。 The hydrogen storage material prepared by the method according to any one of claims 4 and 5 is subjected to heat treatment at 250 to 350 ° C in a hydrogen atmosphere, and alloying and hydrogenation by interdiffusion between solid phases during the heat treatment. By simultaneously carrying out the dissociation reaction associated with Mg x Pd (1-x) (x is 0.25, 0.45-0.5, 0.6, 0.75, 5/7, 6/7 ) A method for producing a hydrogen storage material, comprising generating a phase.
JP2004236210A 2004-07-16 2004-07-16 Hydrogen storage material and method for producing the same Expired - Fee Related JP4417806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236210A JP4417806B2 (en) 2004-07-16 2004-07-16 Hydrogen storage material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236210A JP4417806B2 (en) 2004-07-16 2004-07-16 Hydrogen storage material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006028633A JP2006028633A (en) 2006-02-02
JP4417806B2 true JP4417806B2 (en) 2010-02-17

Family

ID=35895334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236210A Expired - Fee Related JP4417806B2 (en) 2004-07-16 2004-07-16 Hydrogen storage material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4417806B2 (en)

Also Published As

Publication number Publication date
JP2006028633A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
Takeichi et al. Hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure
JPH11503489A (en) Nanocrystalline Mg-based material and its use for hydrogen transport and hydrogen storage
JP2000159503A (en) Hydrogen separating film of niobium alloy
Huot et al. Effect of cold rolling on metal hydrides
Asselli et al. The role of morphology and severe plastic deformation on the hydrogen storage properties of magnesium
JP2004154837A (en) Mg HYDROGEN-STORAGE ALLOY AND ITS PRODUCING METHOD
Tao et al. First-principles predictions of potential hydrogen storage materials: nanosized Ti (core)/Mg (shell) hydrides
Tanaka et al. The effect of initial structures of Mg/Cu super-laminates on hydrogen absorption/desorption properties
Tanaka et al. Formation of Mg2Cu at low temperature in Mg/Cu super-laminate composites during initial hydrogenation
Tan et al. Strategies to enhance hydrogen storage performances in bulk Mg-based hydrides
JP4417806B2 (en) Hydrogen storage material and method for producing the same
Suganuma et al. Hydrogen storage properties of Mg-Al alloy prepared by super lamination technique
Amira et al. Hydrogen sorption properties of Ti–Cr alloys synthesized by ball milling and cold rolling
JP5855649B2 (en) Method for producing a hydrogen storage material including a hyperplastic deformation operation
JP4742269B2 (en) Method for producing double-phase hydrogen permeable alloy and double-phase hydrogen permeable alloy
JP4482321B2 (en) Method for producing Mg-Cu composite material
Mori et al. Hydrogenation characteristics of Mg based alloy prepared by super lamination technique
US20110091352A1 (en) Light metal solid solution alloys for hydrogen storage
JP2004066653A (en) Multi-ply structured hydrogen storage body
JP4139804B2 (en) Method for producing metal foam
Révész et al. The effect of severe plastic deformation on the hydrogen storage properties of metal hydrides
Kudriashova et al. Effect of cold rolling on magnesium-based metal hydrides
Tanaka et al. Competitive Reactions and Formation Mechanism of Microstructures in Mg/Cu Super-Laminate Composites during Initial Hydrogenation
JP4367084B2 (en) Method for producing Mg-Li-based hydrogen storage alloy
JP2002105576A (en) Hydrogen occluding laminated structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees