JP4417613B2 - Method and apparatus for crystallizing semiconductor thin film - Google Patents

Method and apparatus for crystallizing semiconductor thin film Download PDF

Info

Publication number
JP4417613B2
JP4417613B2 JP2002188412A JP2002188412A JP4417613B2 JP 4417613 B2 JP4417613 B2 JP 4417613B2 JP 2002188412 A JP2002188412 A JP 2002188412A JP 2002188412 A JP2002188412 A JP 2002188412A JP 4417613 B2 JP4417613 B2 JP 4417613B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
glass substrate
mask
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002188412A
Other languages
Japanese (ja)
Other versions
JP2004031810A (en
Inventor
田 有 親 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mobile Display Co Ltd filed Critical Toshiba Mobile Display Co Ltd
Priority to JP2002188412A priority Critical patent/JP4417613B2/en
Publication of JP2004031810A publication Critical patent/JP2004031810A/en
Application granted granted Critical
Publication of JP4417613B2 publication Critical patent/JP4417613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置や有機エレクトロルミネッセンス(OELD)表示装置等において、画素表示用トランジスタや駆動回路用トランジスタの活性層として用いられる半導体薄膜の結晶化方法及び結晶化装置に関する。
【0002】
【従来の技術】
ガラス基板上のポリシリコンTFTにより駆動回路を形成する液晶表示装置やOELD表示装置が実用化されている。ポリシリコンTFTの活性層であるポリシリコン膜の形成方法として、ガラス基板上に形成された非晶質シリコン膜にエキシマレーザー光を照射して溶融結晶化させる、いわゆるエキシマレーザーアニール法が広く用いられている。
【0003】
図6はエキシマレーザーアニールの原理図である。ガラス基板21上に形成された非晶質シリコン膜22に、パルス発振しているエキシマレーザー光を照射して溶融結晶化させる。エキシマレーザー光のパルスごとに基板への照射位置を変え、膜全面を結晶化させる。この際、エキシマレーザー光のエネルギーが過剰になると、膜はポリシリコンとはならず非晶質化する。これは、エキシマレーザーアニールの成長時に、ガラス基板21と非晶質シリコン22の界面に残った核から結晶が成長するためである。過剰なエネルギーを照射して膜を完全に溶融させると、膜を急冷させる際に、核発生する前に固化してしまい、結晶質にはならない。
【0004】
一方、ポリシリコンの粒径を大きくして膜中のキャリア移動度を向上させるために、膜を完全溶融させる方法の研究が進められている。図7はこの種の方法を説明する原理図である。予め一部が結晶化している膜に、マスク23を介して、シリコンが完全に溶融する程度のエネルギーのエキシマレーザー光を照射する。この際、レーザー光の照射エッジが急峻になり、膜の溶融している部分と溶融していない部分との境界を核として、横方向に結晶が成長する。エキシマレーザーの照射エリアをパルスごとに横方向にずらして照射することで、粒径を大きくして膜の全面を結晶化させる。
【0005】
【発明が解決しようとする課題】
このような結晶化方法は、1980年代にSOIデバイスのための結晶化方法として研究され、公知である。この方法をガラス基板上に適用する場合、基板全面にわたって結晶化させるのは困難である。その理由を以下に説明する。膜を完全溶融させる図7の結晶化方法では、光路の中途で、マスクを介して焦点深度の浅いレンズでエキシマレーザー光を集光させたパターン光を膜に照射する。その理由は、このような完全溶融を行う結晶化方法では、パルス1回あたりの成長長さが2μm以下程度であるため、固体〜液体の界面を作るレーザー光のエッジ位置を、高精度に制御する必要があるためである。
【0006】
しかしながら、通常のガラス基板の板厚には数10μm程度のうねりがある。基板ステージの平面度を高めてガラス基板を吸着しても、ガラス基板の板厚のうねりにより、フォーカスがずれてパターン光がぼけてしまう。うねりに対処するには、オートフォーカスを使用することが容易に考えられるが、オートフォーカスの精度を上げるには、レーザー光の1パルス当たりの照射面積を小さくしなければならず、ガラス基板全面にレーザー光を照射するのに時間がかかることから、生産性が著しく低下する。また、研磨等によりガラスの板厚のうねりを除去すると、その分だけ製造コストが高くなる。
【0007】
このように、従来の手法では、ガラス基板全面を生産性よく結晶化させることは困難である。
【0008】
本発明は、このような点に鑑みてなされたものであり、その目的は、半導体薄膜を高品質に結晶化できる半導体薄膜の結晶化方法及び結晶化装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の一態様によれば、掃引方向に直交する方向で板厚が変動するガラス基板上に形成された半導体薄膜に対して、マスクのスリットを通過したエネルギービームを投射レンズで集光して照射し、照射位置周辺の半導体薄膜を溶融させて結晶化させる半導体薄膜の結晶化方法であって、
前記マスクのスリットを通過したエネルギービームの長手方向がガラス基板の成形時の掃引方向と略平行な方向になるように前記マスクを配置することを特徴とする半導体薄膜の結晶化方法が提供される。
【0010】
本発明では、マスクのスリットを通過したエネルギービームの長手方向がガラス基板の成形時の掃引方向と略平行な方向になるようにマスクを配置するため、ガラス基板に凹凸があっても、ガラス基板の全面にわたって投射レンズの焦点を合わせることができる。
【0011】
また、本発明の一態様によれば、掃引方向に直交する方向で板厚が変動するガラス基板上に形成された半導体薄膜に対して、マスクの複数のスリットを通過したエネルギービームを投射レンズで集光して照射し、照射位置周辺の半導体薄膜を溶融させて結晶化させる半導体薄膜の結晶化方法において、
前記マスクの複数のスリットを通過した複数のエネルギービームの長手方向がガラス基板の成形時の掃引方向と略平行な方向になるように前記マスクを配置することを特徴とする半導体薄膜の結晶化方法が提供される
【0012】
【発明の実施の形態】
以下、本発明に係る半導体薄膜の結晶化方法および結晶化装置について、図面を参照しながら具体的に説明する。
【0013】
本発明者は、ガラス基板の板厚のばらつきによって発生する焦点誤差に対処するため、ガラス基板の板厚のばらつきを測定した。図1は典型的なガラスの板厚の目標板厚からのズレをμmで示している。図示のように、ガラスの板厚の変動は、ひだ状に分布しており、板の一方向に向かっては均一な板厚であることがわかる。
【0014】
多数のガラスを調査したところ、この分布は大型の薄板ガラスの製造工程に固有の分布であることがわかった。
【0015】
図2は大型の薄板ガラスの製造工程を示す図である。大型の薄板ガラスの製造工程においては、溶融したガラス1を炉2から流し出して、板状に成形し(図2(a))、これに引き続き、板状に成形したガラス1をローラ3間で圧延して成形する場合(図2(b))がある。
【0016】
以下、この図を用いて薄板ガラスの製造方法を説明する。まず、溶融したガラス1を炉2から流し出して、板状に成形する(図2(a))。次に、板状に成形したガラス1をローラ3間で圧延して成形する(図2(b))。
【0017】
図2(a)の場合も図2(b)の場合も、同一方向(図示の矢印Aの方向)にガラスを掃引している。このため、ガラスを炉2から流し出す際に炉2の端部の微妙な形状変化の影響により、あるいは圧延ローラ3の微妙な変化の影響により、掃引方向に直交する方向Bで、図2(c)に示すように板厚が変動してしまう。
【0018】
一方、ガラス1の掃引方向に平行な方向Aに対しては、ガラス一枚程度の短い距離では大きな変動はなく、板厚は略均一である。
【0019】
本実施形態では、このようなガラス基板の板厚の変動方向を考慮に入れてレーザー光を照射するものである。
【0020】
(第1の実施形態)
図3は本発明に係る半導体薄膜の結晶化装置の第1の実施形態を示す概略的なブロック図である。図3の結晶化装置は、2次元(XY)方向に移動可能なステージ11と、ステージ11に真空吸着されるガラス基板1と、ステージ11の移動を制御するステージ移動制御部12と、エキシマレーザー光を放射するレーザー光源13と、エキシマレーザー光を屈折させる屈折光学系14と、スリット15が形成されたマスク16と、マスク16のスリット15を通過したレーザー光を集光させるレンズ17と、レンズ17の焦点調節を行う焦点調節部18とを備えている。レンズ17の焦点深度は、1μm程度の解像度を得るためには5μm程度である。
【0021】
ステージ11の表面精度は±1μm以内に仕上げられているが、ステージ11に吸着されたガラス基板1は上述したように板厚にばらつきがあるため、ステージ11面からの高さが不均一である。
【0022】
マスク16に形成されたスリット15は、図3に示すように細長状である。本実施形態では、スリット15の長手方向をガラス基板1の成形時の掃引方向(図3の方向X)に略平行に配置する点に特徴がある。このように配置することで、ガラス基板1に照射されるレーザー光の全長にわたって焦点を合わせることができる。
【0023】
レーザー光源13は、レーザー光を一定周波数でパルス状に発信する。ステージ移動制御部12は、スリット15を通過したレーザー光の長手方向と略直交する方向にステージ11を一定の速度で動かす。このとき、焦点調節部18は、ガラス基板1の表面と投影レンズ17との距離を測定し、その距離を一定に保つようにステージ11と投影レンズ17との間の距離を調整する。
【0024】
1回で照射されるレーザー光の全長にわたって、ガラス基板1の板厚は略一定であるため、レーザー光の照射面積を大きくても、レーザー光の全長にわたって焦点がずれなくなる。
【0025】
これに対して、ガラスの成形時の掃引方向に対してレーザー光の照射方向を制御しなかった場合、1回に照射されるレーザー光の照射面積内でガラス基板1の高さにばらつきが生じ、レーザー光の全長にわたって焦点を合わせることができなくなる。このため、図4のようにスリット15の長手方向をガラス基板1の成形時の掃引方向と略直交する方向に配置した場合は、レーザー光の照射面積を小さくせざるを得ない。ところが、レーザー光の照射面積を小さくすると、ガラス基板1の全面にレーザー光を照射するのに時間がかかり、生産性が著しく低下する。
【0026】
このように、本実施形態では、マスク16に細長状のスリット15を形成し、このスリット15の長手方向をガラス基板1の成形時の掃引方向に略平行な方向に配置し、ステージ11をガラス基板1の成形時の掃引方向に略直角に移動させるようにしたため、ガラス基板1の凹凸の影響を受けることなく、ガラス基板1の全面にわたってレーザー光の焦点を合わせることができる。したがって、レーザー光の照射面積を大きくでき、生産性の向上が図れる。
【0027】
第1の実施形態では、細長状のスリット15を有するマスク16を用いてポリシリコン膜を形成する例を説明したが、一回に照射するエリアの縦横比が異なるスリット15であれば、スリット15の形状は特に問わない。例えば、図5は結晶粒の位置制御の目的でV字形のスリット15を一列に並べて配置したマスク16を用いる例を示している。図5の場合、複数のスリット15の並ぶ方向をガラス基板1の成形時の掃引方向に対して略平行な方向に配置し、ステージ11をガラス基板1の成形時の掃引方向に略直角に移動させる。これにより、第1の実施形態と同様に、ガラス基板1の凹凸の影響を受けなくなり、生産性の向上が図れる。
【0028】
【発明の効果】
以上詳細に説明したように、本発明によれば、マスクのスリットを通過したエネルギービームの長手方向がガラス基板の成形時の掃引方向と略平行な方向になるようにマスクを配置するため、ガラス基板に凹凸があっても、その影響を受けることなく、ガラス基板の全面にわたって投射レンズの焦点を合わせることができる。したがって、投射レンズの照射面積を大きく設定でき、短時間で効率的に半導体薄膜を結晶化させることができるため、生産性が向上する。
【図面の簡単な説明】
【図1】典型的なガラスの板厚の目標板厚からのズレを示す図。
【図2】大型の薄板ガラスの製造工程を示す図。
【図3】本発明に係る半導体薄膜の結晶化装置の第1の実施形態を示す概略的なブロック図。
【図4】スリットの長手方向をガラス基板の成形時の掃引方向と略直交する方向に配置した例を示すブロック図。
【図5】結晶粒の位置制御の目的でV字形のスリットを一列に並べて配置したマスクを用いた例を示す図。
【図6】エキシマレーザーアニールの原理図。
【図7】ポリシリコンの粒径を大きくして膜中のキャリア移動度を向上させるために、膜を完全溶融させる方法を説明する原理図。
【符号の説明】
1 ガラス
2 炉
3 ローラ
11 ステージ
12 ステージ移動制御部
13 レーザー光源
14 屈折光学系
15 スリット
16 マスク
17 レンズ
18 焦点調節部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystallization method and a crystallization apparatus for a semiconductor thin film used as an active layer of a pixel display transistor and a drive circuit transistor in a liquid crystal display device, an organic electroluminescence (OELD) display device, and the like.
[0002]
[Prior art]
Liquid crystal display devices and OELD display devices in which drive circuits are formed by polysilicon TFTs on a glass substrate have been put into practical use. As a method for forming a polysilicon film which is an active layer of a polysilicon TFT, a so-called excimer laser annealing method is widely used in which an amorphous silicon film formed on a glass substrate is irradiated with excimer laser light to be melted and crystallized. ing.
[0003]
FIG. 6 shows the principle of excimer laser annealing. The amorphous silicon film 22 formed on the glass substrate 21 is irradiated with pulsed excimer laser light to be melted and crystallized. The irradiation position on the substrate is changed for each pulse of excimer laser light to crystallize the entire surface of the film. At this time, if the energy of the excimer laser light becomes excessive, the film becomes amorphous instead of polysilicon. This is because crystals grow from nuclei remaining at the interface between the glass substrate 21 and the amorphous silicon 22 during the excimer laser annealing growth. When the film is completely melted by irradiation with excessive energy, when the film is rapidly cooled, it solidifies before nucleation and does not become crystalline.
[0004]
On the other hand, in order to increase the particle size of polysilicon and improve the carrier mobility in the film, research on a method for completely melting the film is underway. FIG. 7 is a principle diagram for explaining this type of method. Excimer laser light having such an energy that silicon is completely melted is irradiated through a mask 23 onto a film partially crystallized in advance. At this time, the irradiation edge of the laser beam becomes steep, and a crystal grows in the lateral direction with the boundary between the melted portion and the unmelted portion of the film as a nucleus. By irradiating the excimer laser irradiation area in the horizontal direction for each pulse, the particle size is increased and the entire surface of the film is crystallized.
[0005]
[Problems to be solved by the invention]
Such a crystallization method was studied and known as a crystallization method for SOI devices in the 1980s. When this method is applied on a glass substrate, it is difficult to crystallize the entire surface of the substrate. The reason will be described below. In the crystallization method of FIG. 7 in which the film is completely melted, the film is irradiated with pattern light obtained by condensing excimer laser light with a lens having a shallow depth of focus through a mask in the middle of the optical path. The reason is that in such a crystallization method that performs complete melting, the growth length per pulse is about 2 μm or less, so the edge position of the laser beam that forms the solid-liquid interface is controlled with high precision. It is necessary to do.
[0006]
However, the plate thickness of a normal glass substrate has a wave of about several tens of μm. Even if the glass substrate is attracted by increasing the flatness of the substrate stage, the focus is shifted due to the undulation of the thickness of the glass substrate and the pattern light is blurred. To deal with the undulations, it is easy to use autofocus. However, in order to increase the accuracy of autofocus, the irradiation area per pulse of the laser beam must be reduced, and the entire surface of the glass substrate must be reduced. Since it takes time to irradiate the laser beam, the productivity is significantly reduced. Further, if the waviness of the glass plate thickness is removed by polishing or the like, the manufacturing cost increases accordingly.
[0007]
As described above, it is difficult to crystallize the entire surface of the glass substrate with high productivity by the conventional method.
[0008]
This invention is made | formed in view of such a point, The objective is to provide the crystallization method and crystallization apparatus of the semiconductor thin film which can crystallize a semiconductor thin film with high quality.
[0009]
[Means for Solving the Problems]
According to one aspect of the present invention, an energy beam that has passed through a slit of a mask is condensed by a projection lens on a semiconductor thin film formed on a glass substrate whose thickness varies in a direction orthogonal to the sweep direction. A method for crystallizing a semiconductor thin film, wherein the semiconductor thin film is irradiated and melted and crystallized around the irradiation position,
There is provided a method for crystallizing a semiconductor thin film, characterized in that the mask is arranged so that the longitudinal direction of the energy beam that has passed through the slit of the mask is substantially parallel to the sweep direction when the glass substrate is formed. .
[0010]
In the present invention, since the mask is arranged so that the longitudinal direction of the energy beam that has passed through the slit of the mask is substantially parallel to the sweep direction when the glass substrate is molded, the glass substrate The projection lens can be focused over the entire surface.
[0011]
Further , according to one aspect of the present invention , an energy beam that has passed through a plurality of slits of a mask is applied to a semiconductor thin film formed on a glass substrate whose thickness varies in a direction orthogonal to the sweep direction by a projection lens. In the method for crystallizing a semiconductor thin film in which the semiconductor thin film around the irradiation position is melted and crystallized by condensing and irradiating,
A method for crystallizing a semiconductor thin film, characterized in that the mask is arranged so that the longitudinal directions of the plurality of energy beams that have passed through the plurality of slits of the mask are substantially parallel to the sweep direction when the glass substrate is formed. Is provided .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a semiconductor thin film crystallization method and a crystallization apparatus according to the present invention will be described in detail with reference to the drawings.
[0013]
The present inventor measured the variation in the thickness of the glass substrate in order to deal with the focus error caused by the variation in the thickness of the glass substrate. FIG. 1 shows the deviation of the typical glass plate thickness from the target plate thickness in μm. As shown in the figure, the variation in the plate thickness of the glass is distributed in a pleat shape, and it can be seen that the plate thickness is uniform toward one direction of the plate.
[0014]
As a result of investigating a large number of glasses, it was found that this distribution is unique to the manufacturing process of large thin glass sheets.
[0015]
FIG. 2 is a diagram showing a manufacturing process of a large thin glass sheet. In the manufacturing process of the large thin glass, the molten glass 1 is poured out from the furnace 2 and formed into a plate shape (FIG. 2A). Subsequently, the glass 1 formed into a plate shape is placed between the rollers 3. In some cases (FIG. 2B).
[0016]
Hereinafter, the manufacturing method of thin glass is demonstrated using this figure. First, the molten glass 1 is poured out from the furnace 2 and formed into a plate shape (FIG. 2A). Next, the glass 1 formed into a plate shape is rolled and formed between rollers 3 (FIG. 2B).
[0017]
In both the case of FIG. 2A and FIG. 2B, the glass is swept in the same direction (the direction of arrow A in the figure). For this reason, when the glass is poured out of the furnace 2, due to the influence of a subtle shape change at the end of the furnace 2 or the influence of a subtle change of the rolling roller 3, in the direction B perpendicular to the sweep direction, FIG. As shown in c), the plate thickness varies.
[0018]
On the other hand, with respect to the direction A parallel to the sweep direction of the glass 1, there is no large fluctuation at a short distance of about one glass, and the plate thickness is substantially uniform.
[0019]
In the present embodiment, the laser light is irradiated in consideration of such a fluctuation direction of the thickness of the glass substrate.
[0020]
(First embodiment)
FIG. 3 is a schematic block diagram showing a first embodiment of a semiconductor thin film crystallization apparatus according to the present invention. The crystallization apparatus of FIG. 3 includes a stage 11 that can be moved in a two-dimensional (XY) direction, a glass substrate 1 that is vacuum-sucked on the stage 11, a stage movement control unit 12 that controls the movement of the stage 11, and an excimer laser. A laser light source 13 that radiates light, a refractive optical system 14 that refracts excimer laser light, a mask 16 in which a slit 15 is formed, a lens 17 that condenses the laser light that has passed through the slit 15 of the mask 16, and a lens And a focus adjustment unit 18 that performs 17 focus adjustments. The focal depth of the lens 17 is about 5 μm in order to obtain a resolution of about 1 μm.
[0021]
Although the surface accuracy of the stage 11 is finished within ± 1 μm, the glass substrate 1 adsorbed on the stage 11 has uneven thickness as described above, so the height from the surface of the stage 11 is not uniform. .
[0022]
The slits 15 formed in the mask 16 are elongated as shown in FIG. This embodiment is characterized in that the longitudinal direction of the slit 15 is arranged substantially parallel to the sweep direction (direction X in FIG. 3) when the glass substrate 1 is formed. By arrange | positioning in this way, focus can be adjusted over the full length of the laser beam irradiated to the glass substrate 1. FIG.
[0023]
The laser light source 13 transmits laser light in a pulse shape at a constant frequency. The stage movement control unit 12 moves the stage 11 at a constant speed in a direction substantially orthogonal to the longitudinal direction of the laser light that has passed through the slit 15. At this time, the focus adjusting unit 18 measures the distance between the surface of the glass substrate 1 and the projection lens 17 and adjusts the distance between the stage 11 and the projection lens 17 so as to keep the distance constant.
[0024]
Since the plate thickness of the glass substrate 1 is substantially constant over the entire length of the laser beam irradiated at one time, the focus is not shifted over the entire length of the laser beam even if the irradiation area of the laser beam is increased.
[0025]
On the other hand, if the irradiation direction of the laser beam is not controlled with respect to the sweep direction at the time of forming the glass, the height of the glass substrate 1 varies within the irradiation area of the laser beam irradiated at one time. It becomes impossible to focus on the entire length of the laser beam. For this reason, when the longitudinal direction of the slit 15 is arranged in a direction substantially orthogonal to the sweep direction when the glass substrate 1 is formed as shown in FIG. 4, the irradiation area of the laser light has to be reduced. However, if the irradiation area of the laser beam is reduced, it takes time to irradiate the entire surface of the glass substrate 1 with the laser beam, and the productivity is significantly reduced.
[0026]
As described above, in the present embodiment, the elongated slit 15 is formed in the mask 16, the longitudinal direction of the slit 15 is arranged in a direction substantially parallel to the sweep direction when the glass substrate 1 is formed, and the stage 11 is made of glass. Since the substrate 1 is moved substantially at right angles to the sweep direction when the substrate 1 is formed, the laser light can be focused on the entire surface of the glass substrate 1 without being affected by the unevenness of the glass substrate 1. Therefore, the irradiation area of the laser beam can be increased and productivity can be improved.
[0027]
In the first embodiment, the example in which the polysilicon film is formed using the mask 16 having the elongated slit 15 has been described. However, if the slit 15 has a different aspect ratio of the area irradiated at one time, the slit 15 The shape is not particularly limited. For example, FIG. 5 shows an example using a mask 16 in which V-shaped slits 15 are arranged in a line for the purpose of controlling the position of crystal grains. In the case of FIG. 5, the direction in which the plurality of slits 15 are arranged is arranged in a direction substantially parallel to the sweep direction when the glass substrate 1 is formed, and the stage 11 is moved substantially perpendicular to the sweep direction when the glass substrate 1 is formed. Let Thereby, like the first embodiment, it is not affected by the unevenness of the glass substrate 1, and the productivity can be improved.
[0028]
【The invention's effect】
As described above in detail, according to the present invention, since the mask is arranged so that the longitudinal direction of the energy beam that has passed through the slit of the mask is substantially parallel to the sweep direction when the glass substrate is formed, Even if the substrate is uneven, the projection lens can be focused over the entire surface of the glass substrate without being affected by the unevenness. Therefore, the irradiation area of the projection lens can be set large, and the semiconductor thin film can be efficiently crystallized in a short time, so that productivity is improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a deviation of a typical glass plate thickness from a target plate thickness.
FIG. 2 is a diagram showing a manufacturing process of a large thin glass sheet.
FIG. 3 is a schematic block diagram showing a first embodiment of a semiconductor thin film crystallization apparatus according to the present invention.
FIG. 4 is a block diagram showing an example in which the longitudinal direction of the slit is arranged in a direction substantially perpendicular to the sweep direction when the glass substrate is formed.
FIG. 5 is a diagram showing an example using a mask in which V-shaped slits are arranged in a line for the purpose of controlling the position of crystal grains.
FIG. 6 is a principle diagram of excimer laser annealing.
FIG. 7 is a principle diagram illustrating a method for completely melting a film in order to increase the particle size of polysilicon and improve carrier mobility in the film.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass 2 Furnace 3 Roller 11 Stage 12 Stage movement control part 13 Laser light source 14 Refractive optical system 15 Slit 16 Mask 17 Lens 18 Focus adjustment part

Claims (4)

掃引方向に直交する方向で板厚が変動するガラス基板上に形成された半導体薄膜に対して、マスクのスリットを通過したエネルギービームを投射レンズで集光して照射し、照射位置周辺の半導体薄膜を溶融させて結晶化させる半導体薄膜の結晶化方法であって、
前記マスクのスリットを通過したエネルギービームの長手方向がガラス基板の成形時の掃引方向と略平行な方向になるように前記マスクを配置することを特徴とする半導体薄膜の結晶化方法。
The semiconductor thin film formed on the glass substrate whose thickness varies in the direction perpendicular to the sweep direction is irradiated with the energy beam that has passed through the slit of the mask condensed by the projection lens, and the semiconductor thin film around the irradiation position A method for crystallizing a semiconductor thin film by melting and crystallizing
A method of crystallizing a semiconductor thin film, characterized in that the mask is arranged so that the longitudinal direction of the energy beam that has passed through the slit of the mask is substantially parallel to the sweep direction when the glass substrate is formed.
掃引方向に直交する方向で板厚が変動するガラス基板上に形成された半導体薄膜に対して、マスクの複数のスリットを通過したエネルギービームを投射レンズで集光して照射し、照射位置周辺の半導体薄膜を溶融させて結晶化させる半導体薄膜の結晶化方法において、
前記マスクの複数のスリットを通過した複数のエネルギービームの長手方向がガラス基板の成形時の掃引方向と略平行な方向になるように前記マスクを配置することを特徴とする半導体薄膜の結晶化方法。
The semiconductor thin film formed on the glass substrate whose thickness varies in the direction orthogonal to the sweep direction is irradiated with the energy beam that has passed through the slits of the mask and condensed by the projection lens. In the semiconductor thin film crystallization method, the semiconductor thin film is melted and crystallized.
A method for crystallizing a semiconductor thin film, characterized in that the mask is arranged so that the longitudinal directions of the plurality of energy beams that have passed through the plurality of slits of the mask are substantially parallel to the sweep direction when the glass substrate is formed. .
前記ガラス基板を前記ガラス基板の成形時の掃引方向と略直角の方向に所定距離ずつ移動させるステップと、
各移動位置で前記投射レンズの焦点調節を行うステップと、
前記焦点調節後に、前記マスクを通過したエネルギービームを前記投射レンズで集光させて前記前記半導体薄膜を溶融させるステップと、を備えることを特徴とする請求項1または2に記載の半導体薄膜の結晶化方法。
Moving the glass substrate by a predetermined distance in a direction substantially perpendicular to a sweeping direction at the time of forming the glass substrate;
Adjusting the focus of the projection lens at each moving position;
3. The semiconductor thin film crystal according to claim 1, further comprising: condensing an energy beam that has passed through the mask after the focus adjustment by the projection lens to melt the semiconductor thin film. 4. Method.
前記エネルギービームは、エキシマレーザービームであり、
非晶質シリコンからなる前記半導体薄膜に前記エキシマレーザービームを照射してポリシリコン膜を形成することを特徴とする請求項1及至3のいずれかに記載の半導体薄膜の結晶化方法。
The energy beam is an excimer laser beam;
4. The semiconductor thin film crystallization method according to claim 1, wherein the semiconductor thin film made of amorphous silicon is irradiated with the excimer laser beam to form a polysilicon film.
JP2002188412A 2002-06-27 2002-06-27 Method and apparatus for crystallizing semiconductor thin film Expired - Fee Related JP4417613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188412A JP4417613B2 (en) 2002-06-27 2002-06-27 Method and apparatus for crystallizing semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188412A JP4417613B2 (en) 2002-06-27 2002-06-27 Method and apparatus for crystallizing semiconductor thin film

Publications (2)

Publication Number Publication Date
JP2004031810A JP2004031810A (en) 2004-01-29
JP4417613B2 true JP4417613B2 (en) 2010-02-17

Family

ID=31183170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188412A Expired - Fee Related JP4417613B2 (en) 2002-06-27 2002-06-27 Method and apparatus for crystallizing semiconductor thin film

Country Status (1)

Country Link
JP (1) JP4417613B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547866B2 (en) * 2004-04-28 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method for manufacturing semiconductor device including an autofocusing mechanism using the same
JP2005340788A (en) * 2004-04-28 2005-12-08 Semiconductor Energy Lab Co Ltd Laser irradiation method, and semiconductor device formation method using the same
JP2007208015A (en) * 2006-02-02 2007-08-16 Shimadzu Corp Crystallization device
KR101894785B1 (en) * 2011-02-11 2018-09-05 삼성디스플레이 주식회사 Organic light emitting display apparatus
JP5899533B2 (en) * 2011-11-29 2016-04-06 株式会社Joled Method for forming crystalline thin film and method for manufacturing thin film transistor
JP2015050282A (en) * 2013-08-30 2015-03-16 株式会社日立情報通信エンジニアリング Laser annealing device and laser annealing method

Also Published As

Publication number Publication date
JP2004031810A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US7357963B2 (en) Apparatus and method of crystallizing amorphous silicon
US6573163B2 (en) Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
US6495405B2 (en) Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
TWI524384B (en) High throughput crystallization of thin films
US20090242805A1 (en) Systems and methods for uniform sequential lateral solidification of thin films using high frequency lasers
KR20070064262A (en) Laser crystallization apparatus and crystallization method
US20020102821A1 (en) Mask pattern design to improve quality uniformity in lateral laser crystallized poly-Si films
US20060166469A1 (en) Method of laser beam maching and laser beam machining apparatus
KR100913618B1 (en) Crystallization apparatus and crystallization method
JP4417613B2 (en) Method and apparatus for crystallizing semiconductor thin film
US8598050B2 (en) Laser annealing method and apparatus
JP2008227077A (en) Masking structure for laser light, laser processing method, tft element, and laser processing apparatus
KR20050050716A (en) Method for crystallizing amorphous si film
JP7154592B2 (en) Laser annealing method and laser annealing apparatus
US10937651B2 (en) Laser annealing method
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JP3186114B2 (en) Semiconductor thin film manufacturing method
JP2004281771A (en) Crystal growth method and crystal growth device for semiconductor thin film and manufacturing method for thin film transistor
JP2005259981A (en) Crystallizing method and crystallizing system
KR100579199B1 (en) Method of fabricating polysilicon thin film for display device and display device using the polysilicon thin film
JP3534069B2 (en) Semiconductor thin film, manufacturing method thereof, and semiconductor thin film manufacturing apparatus
JP2008147236A (en) Crystallizing apparatus and laser processing method
JP2008199042A (en) Method of manufacturing image display device using thin-film semiconductor device
JP2007208015A (en) Crystallization device
WO2006073165A1 (en) Semiconductor device, and method and apparatus for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4417613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees