JP4414837B2 - Method for producing self-digesting yeast extract - Google Patents
Method for producing self-digesting yeast extract Download PDFInfo
- Publication number
- JP4414837B2 JP4414837B2 JP2004227761A JP2004227761A JP4414837B2 JP 4414837 B2 JP4414837 B2 JP 4414837B2 JP 2004227761 A JP2004227761 A JP 2004227761A JP 2004227761 A JP2004227761 A JP 2004227761A JP 4414837 B2 JP4414837 B2 JP 4414837B2
- Authority
- JP
- Japan
- Prior art keywords
- yeast
- self
- slurry
- cell
- enzyme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012138 yeast extract Substances 0.000 title claims description 52
- 229940041514 candida albicans extract Drugs 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 37
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 65
- 210000004027 cell Anatomy 0.000 claims description 64
- 102000004190 Enzymes Human genes 0.000 claims description 54
- 150000002500 ions Chemical class 0.000 claims description 51
- 239000002002 slurry Substances 0.000 claims description 50
- 108090000790 Enzymes Proteins 0.000 claims description 49
- 210000005253 yeast cell Anatomy 0.000 claims description 29
- 208000035404 Autolysis Diseases 0.000 claims description 24
- 206010057248 Cell death Diseases 0.000 claims description 24
- 230000028043 self proteolysis Effects 0.000 claims description 24
- 150000007522 mineralic acids Chemical class 0.000 claims description 23
- 238000006911 enzymatic reaction Methods 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 3
- 230000002358 autolytic effect Effects 0.000 claims 2
- 230000001079 digestive effect Effects 0.000 claims 1
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 61
- 229940088598 enzyme Drugs 0.000 description 51
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 42
- 239000000284 extract Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 21
- 229910052757 nitrogen Inorganic materials 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 20
- 108091005804 Peptidases Proteins 0.000 description 19
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- 102000035195 Peptidases Human genes 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 13
- 230000001580 bacterial effect Effects 0.000 description 12
- 150000001413 amino acids Chemical class 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 238000011084 recovery Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000012153 distilled water Substances 0.000 description 10
- 150000007524 organic acids Chemical class 0.000 description 10
- 239000004365 Protease Substances 0.000 description 9
- 230000000813 microbial effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000007515 enzymatic degradation Effects 0.000 description 7
- 235000019640 taste Nutrition 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000000593 degrading effect Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 235000019419 proteases Nutrition 0.000 description 5
- 101710180012 Protease 7 Proteins 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 210000003850 cellular structure Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000019833 protease Nutrition 0.000 description 3
- 235000019583 umami taste Nutrition 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- -1 fatty acid ester Chemical class 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 108010043393 protease N Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000235646 Cyberlindnera jadinii Species 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108010019160 Pancreatin Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 108010056079 Subtilisins Proteins 0.000 description 1
- 102000005158 Subtilisins Human genes 0.000 description 1
- 241000006364 Torula Species 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 238000000184 acid digestion Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- YZIYKJHYYHPJIB-UUPCJSQJSA-N chlorhexidine gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O.C1=CC(Cl)=CC=C1NC(=N)NC(=N)NCCCCCCNC(=N)NC(=N)NC1=CC=C(Cl)C=C1 YZIYKJHYYHPJIB-UUPCJSQJSA-N 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 235000013402 health food Nutrition 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229940055695 pancreatin Drugs 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 238000009931 pascalization Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108010043535 protease S Proteins 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 235000019607 umami taste sensations Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Seasonings (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本発明は低コストかつ高収率で、うま味およびコク味が強く、風味良好な酵母エキスを得ることができる自己消化酵母エキスの製造方法に関するものである。 The present invention relates to a method for producing a self-digesting yeast extract capable of obtaining a yeast extract having a low cost, a high yield, a strong umami taste and a rich taste, and a good flavor.
酵母エキスには遊離アミノ酸、ペプチド、糖質、有機酸、更に核酸系呈味成分が豊富に含まれているため、うま味やコク味などの呈味力が強い。そして、味の質がビーフなどの畜肉エキスに類似していること、天然酵母から調製され、天然系調味料に属することなどの由で、近来、天然・健康志向の高まる加工食品業界において幅広く利用されている。
酵母エキスの製造方法としては、塩酸を用いて菌体全体を加水分解する酸分解法、菌体スラリーのpHや温度などの条件を生育に不適当な特定範囲内に設定することで自己消化を誘発せしめる自己消化法、微生物や動植物由来の外来酵素等を添加し、酵母菌体成分を分解せしめる酵素分解法、及びこれらの方法を組み合わせた各種方法等が知られている。
Yeast extract is rich in free amino acids, peptides, saccharides, organic acids, and nucleic acid-based taste components, so it has a strong taste such as umami and richness. It has been widely used in the processed food industry, which has recently become more natural and health-oriented due to the fact that the quality of taste is similar to beef and other livestock meat extracts and that it is prepared from natural yeast and belongs to natural seasonings. Has been.
The yeast extract can be produced by acid digestion using hydrochloric acid to hydrolyze the entire cell, or by setting the conditions such as pH and temperature of the cell slurry within a specific range unsuitable for growth. Known are the self-digesting method for inducing, the enzyme decomposing method for degrading yeast cell components by adding foreign enzymes such as microorganisms and animals and plants, and various methods combining these methods.
上述の製造方法のうち、自己消化法は、酵母菌体自身の酵素を利用して菌体内成分を分解する方法である。この方法で調製された酵母エキスには遊離アミノ酸やペプチドの含量が多く、旨味が強く重厚なコク味がある。そして酵母に含まれた各種天然物成分があまり破壊されていないこと、製造コストも酵素分解法より安くなることなどの利点があるので、現在この方法が広く利用されている。しかしながら、通常の生酵母菌体、特に培養して得られた新鮮な菌体はそのままでは自己消化されにくいため、特定の条件で原料酵母を前処理したり、各種自己消化促進剤を添加したりして自己消化を誘発させる必要がある。例えば、超高圧の静水圧処理、超音波処理や高圧ホモジナイザー処理等の機械的刺激を与える方法(例えば、特許文献1〜3参照)、酵母菌体スラリーに食塩、酢酸エチル、脂肪酸エステル、有機酸、有機溶媒、キチン・キトサンなど、いずれかの一種類を自己消化促進剤として添加して自己消化を誘発させる方法(例えば、特許文献4〜9参照)、などが公表されている。 Among the above-described production methods, the self-digestion method is a method of degrading the intracellular components using the yeast cells' own enzymes. The yeast extract prepared by this method has a high content of free amino acids and peptides, and has a strong and heavy taste. And this method is widely used now because there are advantages such that various natural product components contained in yeast are not destroyed so much and the production cost is cheaper than the enzymatic decomposition method. However, normal live yeast cells, especially fresh cells obtained by culturing, are difficult to self-digest as they are, so pre-treatment of raw material yeast under specific conditions or addition of various self-digestion promoters It is necessary to induce autolysis. For example, a method of applying mechanical stimulation such as ultra-high hydrostatic pressure treatment, ultrasonic treatment or high-pressure homogenizer treatment (for example, refer to Patent Documents 1 to 3), salt, ethyl acetate, fatty acid ester, organic acid in yeast cell slurry , Organic solvents, chitin / chitosan and the like, and methods for inducing self-digestion by adding any one of them as self-digestion promoters (for example, see Patent Documents 4 to 9) have been published.
一方、酵素分解法は外来の各種酵素を添加して菌体成分を分解せしめる方法である。この方法では添加された酵素の種類、濃度によって、原料からのエキス収率が高いという利点があるほか、人為的にエキス成分のコントロールも可能である。しかし、酵母菌体は不溶性の主としてβ‐1,3‐グルカンのマトリックス構造より成る機械的に強固な細胞壁とそのすぐ内側に存在している細胞膜で覆われているため、外部からプロテアーゼなどの酵素を作用させても容易には菌体内部にまで浸透できない。その解決策として、予め酵母菌体を高温加熱変性して酵素分解を受けやすくしてから、更に細胞壁分解酵素、プロテアーゼなどを順次に作用させる必要がある(特許文献10参照)。
上述の自己消化法の場合には、各種物理、化学的な処理工程を加えることで、製造工程が煩雑になり、製造コストが高くなることは避けられないほか、添加された添加剤によって添加物の表示も必要となり、より広い食品分野への使用が制限される場合がある。 In the case of the above-mentioned self-digestion method, it is inevitable that the manufacturing process becomes complicated by adding various physical and chemical treatment steps, and the manufacturing cost is unavoidable. Labeling is also required, and its use in wider food fields may be restricted.
そして、酵母菌体内に含まれている蛋白質分解酵素は主に酸性プロテアーゼが中心であるので、自己消化のみの製造法では菌体成分が完全には分解されていないため、原料からのエキス収率はそれほど高く得られないという欠点もある。
また、酵素分解法の場合には、加熱によって菌体内に含まれている自己消化酵素がほぼ全て失活され、これら酵素の有効利用ができなくなる。原料からのエキス収率を上げるためにより多量の外来酵素の添加が必要となり、製造コストが高くなる。更に余分の加熱工程によって、得られる酵母エキスの色調が褐色化しやすく、商品としての価値が低下するという欠点もある。
And since the proteolytic enzymes contained in the yeast cells are mainly acidic proteases, the components of the cells are not completely decomposed by the autolysis-only production method. Has the disadvantage of not being so expensive.
In addition, in the case of the enzymatic decomposition method, almost all of the self-digesting enzymes contained in the cells are inactivated by heating, so that these enzymes cannot be effectively used. In order to increase the extract yield from the raw material, it is necessary to add a larger amount of exogenous enzyme, which increases the production cost. Furthermore, there is also a disadvantage that the color tone of the resulting yeast extract is easily browned by an extra heating step, and the value as a product is reduced.
本発明は、上述の自己消化法及び酵素分解法にかかる各種の問題点を鑑みてなされたものであり、酵母原料の予備処理や自己消化促進剤などを使用せずに簡便に自己消化を有効に誘発できる方法であって、酵素分解法よりも菌体成分をさらに分解でき、低コストかつ高収率で、遊離アミノ酸やペプチドを豊富に含有する酵母エキスを製造する方法を提供することを課題とする。 The present invention has been made in view of the various problems associated with the above-mentioned self-digestion method and enzymatic digestion method, and is effective for simple self-digestion without using pretreatment of yeast raw materials or self-digestion promoters. The present invention provides a method for producing a yeast extract that is capable of further degrading bacterial cell components than enzyme degrading methods, is low in cost and high in yield, and is rich in free amino acids and peptides. And
本発明者らは、上記の課題を解決すべく鋭意検討した結果、自己消化を有効に誘発させるために、酵母菌体スラリーに、無機酸を用いて菌体乾物重量当たりに一定量のH+イオンを添加して自己消化させることが効果的であることを見出した。また、酵母菌体スラリーを、無機酸を用いてpHを1.2以上3未満に調整して自己消化させることが効果的であることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that a certain amount of H + per dry cell weight of the bacterial cell using an inorganic acid is used in the yeast cell slurry to effectively induce autolysis. It has been found that it is effective to add ions to cause self-digestion. In addition, the inventors found that it is effective to self-digest the yeast cell slurry by adjusting the pH to 1.2 or more and less than 3 using an inorganic acid, and completed the present invention.
すなわち、本発明の第1の発明は、酵母菌体スラリーを40〜60℃にした後、該酵母菌体スラリーに、無機酸を、菌体乾物100kg当たりH+イオンとして10〜60mol添加して、酵母を自己消化させることを特徴とする自己消化酵母エキスの製造方法である。
また、本発明の第2の発明は、酵母菌体スラリーに、無機酸を、菌体乾物100kg当たりH + イオンとして10〜60mol添加した後、酵母菌体スラリーを40〜60℃にして、酵母を自己消化させることを特徴とする自己消化酵母エキスの製造方法である。
That is, the first invention of the present invention, after the yeast cells slurry 40 to 60 ° C., in the yeast cells slurry, inorganic acids, and 10~60mol added as H + ions per cell dry matter 100kg A method for producing a self-digesting yeast extract characterized by self-digesting yeast.
Moreover, after adding 10-60 mol of inorganic acids as H <+> ion per 100 kg of microbial cell dry matter to yeast cell slurry, 2nd invention of this invention makes yeast microbial cell slurry 40-60 degreeC, yeast, Is a method for producing a self-digesting yeast extract.
以上説明したように、本発明の製造方法によると、従来よりも菌体成分をさらに分解することができ、低コスト高収率で酵母エキスを製造することができる。本発明の製造方法により得られた酵母エキスには遊離アミノ酸やペプチドの含量が高く、旨みとコク味が強く、食品工業、特に天然健康食品分野において広く使用することができる。 As described above, according to the production method of the present invention, the bacterial cell component can be further decomposed than before, and the yeast extract can be produced at low cost and high yield. The yeast extract obtained by the production method of the present invention has a high content of free amino acids and peptides, has a strong taste and richness, and can be widely used in the food industry, particularly in the field of natural health foods.
本発明で用いられる酵母菌体は生酵母であり、食用酵母であるサッカロミセス属(Saccharomyces)、ハンセニュラ属(hansenula)、カンジダ属(Candida)酵母等が挙げられる。例えば清酒、パン製造に用いられるサッカロミセス・セレビシエ(Saccharomyces cerevisiae)の醸造酵母、パン酵母、酵母エキスの製造によく用いられるカンジダ・ユーテイリス(Candida utilis)の培養酵母、溶解パルプ製造時に副生する糖質を栄養源とするトルラ(torula)の培養酵母などが挙げられる。また、酵母エキス製造のために新たに培養された生酵母だけでなく、ビール、清酒等の醸造に排出された廃棄酵母も、本発明の酵母エキスの製造方法の原料として使用できる。 The yeast cells used in the present invention are live yeasts, and examples thereof include edible yeasts such as Saccharomyces, Hansenula and Candida. For example, Saccharomyces cerevisiae brewing yeast, baker's yeast, cultured yeast of Candida utilis, which is often used in the manufacture of yeast extract, and sugars produced as a by-product during dissolution of pulp Examples include cultured yeast of torula that uses as a nutrient source. Moreover, not only live yeast newly cultured for yeast extract production, but also waste yeast discharged to brew such as beer and sake can be used as raw materials for the method for producing yeast extract of the present invention.
次に、本発明の第1の発明の酵母エキスの製造方法を説明する。まず、上記の原料酵母菌体に適量の蒸留水を加え、酵母菌体スラリーを調製する。菌体スラリーの濃度は、10〜30g/ dl、さらに10〜18g/ dlであることが好ましい。この範囲内であると、自己消化をより進めることができるため好ましい。 Next, the manufacturing method of the yeast extract of 1st invention of this invention is demonstrated. First, an appropriate amount of distilled water is added to the raw material yeast cells to prepare a yeast cell slurry. The concentration of the cell slurry is preferably 10 to 30 g / dl, more preferably 10 to 18 g / dl. Within this range, it is preferable because autolysis can be further promoted.
次いで、この菌体スラリーに、無機酸を用いて、H+イオンを菌体乾物100kg当たり10〜60mol、好ましくは15〜45mol添加して自己消化させる。H+イオンを添加するのは、酵母はH+イオンを消費して自己消化の活性化を起こすからである。10〜60mol添加することにより、原料酵母菌体をより完全に分解でき、低コスト高収率で酵母エキスを製造することができる。 Subsequently, 10-60 mol, preferably 15-45 mol, of H + ions are added per 100 kg of the microbial cell dry matter and self-digested to the microbial cell slurry using an inorganic acid. The reason for adding H + ions is that yeast consumes H + ions and activates autolysis. By adding 10 to 60 mol, the raw yeast cells can be more completely decomposed, and a yeast extract can be produced at a low cost and a high yield.
本発明の製造方法においては、菌体スラリーにH+イオンを添加するために、無機酸を用いる。本発明に使える無機酸は、食品製造用剤としての使用が認められた無機酸であれば特に限定されないが、例えば、塩酸、硫酸、リン酸等が好ましく、特に塩酸が好ましい。
無機酸を用いると、反応液に添加された後に完全に解離するので、計算通りのH+イオン量を正確に添加することが可能である。これに対して、有機酸を用いる場合は、H+イオンの放出は反応液の成分組成や溶液のpH状態、特に有機酸自身のpK値(例えば、乳酸pKa=3.76、クエン酸pKα1=3.01、リンゴ酸pKα1=3.36)など、さまざまな要因によって左右されるため、正しく計算し難い。また、添加された有機酸から解離してきたマイナスイオンが何らかの形で自己消化反応に悪影響を及ぼす恐れもあるため好ましくない。
In the production method of the present invention, an inorganic acid is used to add H + ions to the bacterial cell slurry. The inorganic acid that can be used in the present invention is not particularly limited as long as it is an inorganic acid that has been approved for use as a food production agent. For example, hydrochloric acid, sulfuric acid, phosphoric acid, and the like are preferable, and hydrochloric acid is particularly preferable.
When an inorganic acid is used, it is completely dissociated after being added to the reaction solution, so that it is possible to accurately add the amount of H + ions as calculated. On the other hand, when an organic acid is used, the release of H + ions is caused by the component composition of the reaction solution and the pH state of the solution, particularly the pK value of the organic acid itself (for example, lactate pK a = 3.76, citric acid pK α1 = 3.01 and malic acid pK α1 = 3.36), and so on, so it is difficult to calculate correctly. In addition, the negative ions dissociated from the added organic acid may be adversely affected in some way to the self-digestion reaction, which is not preferable.
H+イオン添加量は、菌体乾物100 kg当たり10〜60molの範囲であり、さらに15〜45molであることが好ましい。H+イオン添加量がこの範囲内であれば、高収率で酵母エキスを製造することができる。さらに、最適なH+イオン添加量は、原料酵母の種類や酵母の前処理状態等によって若干異なるが、通常、予め使用酵母原料に対して、そのH+イオン添加量と得られたエキス収率との関係を調べ、実験データより容易に決めることができる。本発明では後記試験例1〜試験例3に示すように、例えばサッカロミセス・セレビシエ属のパン酵母及び海洋酵母を原料とした場合の最適添加量は、菌体乾物100 kgあたりに約15〜45mol、特に約15〜30molの範囲内であった。 The amount of H + ion added is in the range of 10 to 60 mol, and more preferably 15 to 45 mol, per 100 kg of the dry cell material. If the H + ion addition amount is within this range, the yeast extract can be produced in high yield. Furthermore, the optimum H + ion addition amount varies slightly depending on the type of raw yeast, the pretreatment state of the yeast, etc., but usually, the H + ion addition amount and the obtained extract yield with respect to the yeast raw material used in advance. Can be easily determined from experimental data. In the present invention, as shown in Test Example 1 to Test Example 3 below, for example, the optimal addition amount when using Saccharomyces cerevisiae baker's yeast and marine yeast as raw materials is about 15 to 45 mol per 100 kg of cell dry matter, In particular, it was within the range of about 15 to 30 mol.
本発明の製造方法において、H+イオンの添加は、菌体スラリーを撹拌しながら行うことが好ましい。H+イオンの添加を撹拌しながら行うことにより、局部的にpHの下がりすぎることによる菌体内酵素の変性を防ぎ、酵母菌体スラリー全体をより均一に自己消化することができる。 In the production method of the present invention, it is preferable to add H + ions while stirring the cell slurry. By adding H + ions while stirring, denaturation of intracellular enzymes due to excessively low pH can be prevented, and the entire yeast cell slurry can be self-digested more uniformly.
このH+イオン添加の作用は、恐らくH+イオンが酵母細胞壁のトンネルから細胞内部に入り込み、酵母菌体の生体としての正常秩序を乱すことによって自己消化を誘発させるのではないかと考えられる。従って、所定量のH+イオンは、自己消化反応の活性化に不可欠な物質であると考えられる。
上記の所定量のH+イオンを添加せず、ただ酵母スラリーを最適消化温度に長時間保持するなら、自己消化をほとんど誘発できない。例えば、新鮮なパン生酵母に蒸留水を添加して、菌体濃度約15g/ dlの酵母スラリーを調製したところ、この時点の酵母スラリーのpH は大体4.8〜5.2の微酸性範囲内にあるが、そのまま50℃において24時間自己消化させても、酵母原料からの窒素回収率(原料酵母の窒素総量に対するエキス化液中の窒素総量の比率)はわずか14%程度しか得られなかった。従って、所定量のH+イオンを添加しなければエキス化することがほとんど不可能であることがわかった。
The action of this H + ion addition probably causes H + ions to enter the cell through the tunnel of the yeast cell wall, and to induce autolysis by disturbing the normal order of the yeast cells as a living organism. Therefore, it is considered that a predetermined amount of H + ion is an indispensable substance for activating the autolysis reaction.
If the predetermined amount of H + ions is not added and the yeast slurry is kept at the optimal digestion temperature for a long time, autolysis is hardly induced. For example, when distilled water was added to fresh baker's yeast to prepare a yeast slurry having a cell concentration of about 15 g / dl, the pH of the yeast slurry at this time was in a slightly acidic range of about 4.8 to 5.2. However, even if it is self-digested at 50 ° C for 24 hours, the nitrogen recovery rate from the yeast material (ratio of the total amount of nitrogen in the extract to the total amount of nitrogen in the raw yeast) is only about 14%. It was. Therefore, it was found that extraction is almost impossible without adding a predetermined amount of H + ions.
なお、本発明の第1の製造方法においては、通常の酸処理の方法と異なり、必ずしもH+イオン添加後の反応液のpH調節を行う必要がない。例えば、後記試験例1及び試験例2に示されるように、パン酵母及び海洋酵母のスラリーにそれぞれ菌体乾物100 kgあたりに15〜45mol範囲内のH+イオンを添加すると、反応液のpHはH+イオン添加直後に3.0以下に大きく低下したが、その後加温とともにじりじりと上昇しつつ、5時間後の反応液のpHはパン酵母と海洋酵母ともにH+イオン添加直前の溶液のpHより±0.5程度の範囲内に上昇し、ほぼH+イオン添加前のpH状態に戻ってきた。この事実は自己消化を誘発するには、酵母に一定量のH+イオンを吸い込ませる必要があることを示唆した。なお、上記範囲内のH+イオン量を添加した場合、反応5時間目のそれぞれエキス中の窒素溶出率はまだ低かったが、そのまま同温度に保持し続ければ、24時間目の反応液のpHは5時間目時点のpHと大差がないものの、窒素溶出率は大きく増加し、それぞれ50%以上に上昇してきた。この時点で得られたエキスの旨みとコク味も強くなった。 In the first production method of the present invention, unlike the usual acid treatment method, it is not always necessary to adjust the pH of the reaction solution after addition of H + ions. For example, as shown in Test Example 1 and Test Example 2 below, when H + ions in a range of 15 to 45 mol per 100 kg of dry matter of the microbial cell are added to the slurry of baker's yeast and marine yeast, respectively, the pH of the reaction solution is The pH dropped to 3.0 or less immediately after the addition of H + ions, but then gradually increased with heating, and the pH of the reaction solution after 5 hours was the pH of the solution immediately before the addition of H + ions for both baker's yeast and marine yeast. It rose within the range of about ± 0.5 and returned to the pH state before the addition of H + ions. This fact suggested that yeast must be inhaled with a certain amount of H + ions to induce autolysis. In addition, when the amount of H + ions within the above range was added, the nitrogen elution rate in each extract at the 5th reaction was still low, but if kept at the same temperature, the pH of the reaction solution at the 24th hour Although there was no significant difference from the pH at the 5th hour, the nitrogen elution rate increased greatly, and each increased to 50% or more. The umami and rich taste of the extract obtained at this time became stronger.
酵母を自己消化させる際に、無機酸の添加前又は添加後に菌体酵母スラリーを40〜60℃に加温することが好ましい。40〜60℃に加温することにより、自己消化を効率的に進めることができる。さらに、加温される温度は、前記範囲内の最適な自己消化温度であることが好ましい。ここに言う最適な自己消化温度とは、原料酵母の種類や酵母の前処理状態によって若干異なるが、通常、自己消化の反応温度と最終的に得られたエキス収率との関係を予め調べ、実験データより容易に決められる。本発明の製造方法では、例えばサッカロミセス・セレビシエ属のパン酵母、海洋酵母を原料として使用する場合の自己消化最適温度は約50〜55℃である。 When yeast is self-digested, it is preferable to warm the bacterial cell yeast slurry to 40-60 ° C. before or after the addition of the inorganic acid. By heating to 40-60 ° C., autolysis can be efficiently promoted. Furthermore, the temperature to be heated is preferably an optimum autolysis temperature within the above range. The optimal self-digestion temperature referred to here is slightly different depending on the type of raw yeast and the pretreatment state of the yeast, but usually the relationship between the reaction temperature of the self-digestion and the yield of the extract finally obtained is examined in advance, It is easily determined from experimental data. In the production method of the present invention, for example, the optimum autolysis temperature when using Saccharomyces cerevisiae baker's yeast or marine yeast as a raw material is about 50 to 55 ° C.
なお、無機酸の添加前に加熱する場合、H+イオンの添加量は、菌体乾物100kg当たり15〜30molであることが特に好ましい。15〜30molであれば、きわめて高い収率で酵母エキスを製造することができる。
また、無機酸の添加後に加熱する場合は、添加後速やかに、好ましくは2時間以内、より好ましくは1時間以内、特に好ましくは30分以内に、所定の温度まで昇温させる。所定量のH+イオン添加直後の菌体スラリーのpHはおおよそ1.2〜3.0であるが、これを直ちに加温すればpHは上昇して比較的速やかに5付近に達する。このため自己消化に関する酵素の変性が少なく、自己消化の効率が高い。これに対し、直ちに加温しないと、長期間低pHを維持される結果、自己消化に関する酵素が変性していまい、自己消化の効率が悪くなり易い。
従って、工場等で実製造を行う場合には、加温に比較的長時間を要することを考慮すると、菌体酵母スラリーを加温してから無機酸を添加することが好ましい。
In addition, when heating before addition of an inorganic acid, it is especially preferable that the addition amount of H <+> ion is 15-30 mol per 100 kg of microbial cell dry matter. If it is 15-30 mol, a yeast extract can be manufactured with a very high yield.
In the case of heating after the addition of the inorganic acid, the temperature is raised to a predetermined temperature immediately after the addition, preferably within 2 hours, more preferably within 1 hour, particularly preferably within 30 minutes. The pH of the cell slurry immediately after the addition of a predetermined amount of H + ions is about 1.2 to 3.0, but if this is immediately heated, the pH rises and reaches around 5 relatively quickly. For this reason, there is little enzyme modification | denaturation regarding self-digestion, and the efficiency of self-digestion is high. On the other hand, if it is not immediately heated, as a result of maintaining a low pH for a long period of time, the enzyme relating to self-digestion is denatured and the efficiency of self-digestion tends to deteriorate.
Therefore, when actual production is performed in a factory or the like, it is preferable to add the inorganic acid after warming the cell yeast slurry in consideration of the fact that it takes a relatively long time for warming.
次に、本発明の第2の発明の製造方法を説明する。まず、上述の第1の発明と同様に、酵母菌体スラリーを調製する。次いで、無機酸を添加してpHを1.2以上3未満に調整して自己消化させる。pHを1.2以上3未満に調整することにより、酵母菌体をより高効率で分解することができる。
第2の発明においても、第1の発明の場合と同様に、無機酸の添加前又は添加後に菌体酵母スラリーを40〜60℃に加温することが好ましい。40〜60℃に加温することにより、自己消化を効率的に進めることができる。さらに、加温される温度は、前記範囲内の最適な自己消化温度であることが好ましい。また、工場等で実製造を行う場合には、加温に比較的長時間を要することを考慮すると、菌体酵母スラリーを加温してから無機酸を添加することが好ましい。
Next, the manufacturing method of the 2nd invention of this invention is demonstrated. First, a yeast cell slurry is prepared in the same manner as in the first invention. Then, an inorganic acid is added to adjust the pH to 1.2 or more and less than 3, and self-digest. By adjusting the pH to 1.2 or more and less than 3, yeast cells can be decomposed with higher efficiency.
Also in 2nd invention, it is preferable to heat a microbial cell yeast slurry to 40-60 degreeC before the addition of an inorganic acid or after addition similarly to the case of 1st invention. By heating to 40-60 ° C., autolysis can be efficiently promoted. Furthermore, the temperature to be heated is preferably an optimum autolysis temperature within the above range. In addition, when actual production is performed in a factory or the like, it is preferable to add the inorganic acid after warming the bacterial cell yeast slurry, considering that a relatively long time is required for heating.
本発明の第1の製造方法または第2の製造方法によれば、外来酵素を追加せずに自己消化のみで行う場合でも高収率の酵母エキスを調製することが可能である。この場合は、上述の所定量のH+イオンを添加した後、そのまま攪拌しながら同温度において更に5〜24時間保持すると、高収率の酵母エキスを得ることができる。 According to the first production method or the second production method of the present invention, it is possible to prepare a high-yield yeast extract even when performing only autolysis without adding an exogenous enzyme. In this case, a high yield of yeast extract can be obtained by adding the above-mentioned predetermined amount of H + ions and holding the mixture for 5 to 24 hours at the same temperature while stirring as it is.
発明の第1の発明または第2の発明の製造方法においては、上述の自己消化を行った後、さらに、中性またはアルカリ性の酵素を1種類または2種類以上添加して酵素反応させて、酵母菌体をさらに分解せしめることが好ましい。自己消化と併せて外来酵素を追加することにより、原料酵母からのエキス収率及びエキス化液中の遊離アミノ酸とペプチドの含量を更に大きく増加させることができる。
酵素反応を行う場合、あらかじめ上述の所定量のH+イオンを添加し加温すること、または所定のpHに調整し加温することにより自己消化を誘発させ、次いで酵素反応を行う。あらかじめ自己消化がある程度に進められることによって、菌体細胞が崩壊し、菌体たんぱく質が容易に外来酵素により作用されやすくなり、菌体スラリーを加熱変性せずにそのまま少量の外来酵素を追加するだけで、高収率で酵母エキスを製造できる。
この場合の自己消化の工程は2〜6時間程度内でよいが、その後、菌体スラリーのpHを追加される酵素の最適pH に再調整し、所定の中性或いはアルカリ性酵素の1種類、或いは2種類以上を組み合わせて添加し、同温度、或は酵素の最適反応温度において更に2〜18時間酵素反応させることが好ましい。この場合は菌体内に含まれている酵素も働き続け、これらの酵素と外来酵素の総合作用で菌体はさらに分解される。なお、外来酵素の添加量は酵素の力価にもよるが、おおむね菌体乾物の0.1〜1.0%範囲内であればよい。
In the production method of the first invention or the second invention of the invention, after carrying out the above-mentioned self-digestion, one or more neutral or alkaline enzymes are further added and subjected to an enzymatic reaction to obtain yeast. It is preferable to further decompose the cells. By adding a foreign enzyme together with self-digestion, the extract yield from the raw yeast and the content of free amino acids and peptides in the extract can be further increased.
When an enzyme reaction is performed, autolysis is induced by adding and heating the above-described predetermined amount of H + ions in advance or adjusting to a predetermined pH and heating, and then the enzyme reaction is performed. By proceeding to some extent in advance, self-digestion breaks down the cells, making it easier for the proteins to be acted on by foreign enzymes, and just adding a small amount of foreign enzyme without heat-denaturing the cell slurry. Thus, yeast extract can be produced with high yield.
In this case, the self-digestion process may be within 2 to 6 hours, but after that, the pH of the cell slurry is readjusted to the optimum pH of the enzyme to be added, and one kind of predetermined neutral or alkaline enzyme, or It is preferable to add two or more types in combination and carry out the enzyme reaction for another 2 to 18 hours at the same temperature or the optimum reaction temperature of the enzyme. In this case, the enzymes contained in the cells continue to work, and the cells are further decomposed by the combined action of these enzymes and foreign enzymes. In addition, although the addition amount of a foreign enzyme is based also on the titer of an enzyme, it should just be in the 0.1 to 1.0% of range of a microbial cell dry matter.
添加する酵素は動物、植物、微生物由来に関わらず、食品用で異臭のないもの、そして酵母エキスの収率を更に上げられるものであれば本発明に使われる。例えば、天野エンザイム(株)のプロテアーゼP、プロテアーゼA、プロテアーゼS、プロテアーゼN、ウマミザイムG、パンクレアチンF、パパインW-40、ペプチダーゼRなど、科研製薬(株)のアクチナーゼAS、三共(株)のコクラーゼP、エイチビィアイ(株)のオリエンターゼ90A、オリエンターゼ10NL、オリエンターゼ22BF、ヌクレイシンなど、ノボザイムズ・ジャパン(株)のアルカラーゼ2.4L FG、フレーバーザイム、ニュートラーゼ0.8Lなどが挙げられる。
上記酵素はペプチダーゼを含んでいるプロテアーゼであれば、1種類のみで添加すればよいが、エンド型のみの酵素なら、ペプチダーゼ等エキソ型の酵素と2種類以上を組み合わせて添加する方が好ましい。
本発明の製造方法において、自己消化を行った後、あるいはさらに所定時間に酵素分解した後、通常エキス製造工程と同じように、酵母スラリーを95℃に15〜30分間程度で加熱失活させ、更に遠心分離、減圧濃縮を通じて、高収率で酵母エキスを製造することができる。また、使用目的に応じて、粉末状及びペースト状のものにも加工できる。
Regardless of the origin of the animal, plant, or microorganism, the enzyme to be added can be used in the present invention as long as it is for food and has no off-flavor, and can further increase the yield of yeast extract. For example, protease P, protease A, protease S, protease N, equinezyme G, pancreatin F, papain W-40, peptidase R of Amano Enzyme Co., Ltd., actinase AS of Sanken Co., Ltd., Sankyo Co., Ltd. Examples include cochlase P, orientase 90A, orientase 10NL, orientase 22BF, and nuclease, and Alkalase 2.4L FG, flavorzyme, and neutraase 0.8L from Novozymes Japan.
If the enzyme is a protease containing a peptidase, it may be added by only one type, but if it is an endo-type enzyme, it is preferable to add two or more types of exo-type enzymes such as peptidases.
In the production method of the present invention, after self-digestion, or after further enzymatic degradation in a predetermined time, the yeast slurry is deactivated by heating to 95 ° C. for about 15 to 30 minutes, as in the normal extract production process, Furthermore, a yeast extract can be produced with high yield through centrifugation and concentration under reduced pressure. Moreover, according to the intended purpose, it can be processed into powder and paste.
(実施例)
以下、試験例及び実施例を用いて本発明を更に具体的に説明するが、本発明はこれらの実施例等に限定されるものではない。
(試験例1)
500ml容のビーカ8個にそれぞれ市販パン酵母フレーク150g(オリエンタル酵母工業(株)製品、水分68.7%)及び蒸留水200 mlを加え、乾燥菌体濃度約13.4%の菌体スラリー各350gを調製した。これらのビーカを50℃の恒温水槽に入れ、菌体スラリーの温度が50℃まで上昇した時点で、攪拌しながら各ビーカに所定のH+イオン量(本試験では2N塩酸溶液を用いて所定のH+イオン量を算出した)を、それぞれの菌体スラリーに1回で全量添加した。その後、攪拌しながら同温度において24時間自己消化させた。なお、反応中の窒素回収率を調べるために、5時間目及び24時間目の時点でそれぞれの反応液から液100gを取り出して、加熱失活、遠心分離してエキス86gを調製し、窒素回収率(TN回収率(%);原料酵母の窒素総量に対するエキス化液中の窒素総量の比率)、分解率(試料中の可溶化窒素総量に対する遊離アミノ態窒素の比率(%))及びエキス中の遊離アミノ酸溶出総量(全自動アミノ酸分析機によって測定されたエキス中の各遊離アミノ酸含量の総和))の分析に供した。さらに、H+イオンを添加した後の各反応液のpH変化を調べるため、反応時間ごとのpH値も測定した。
結果を表1および表2に示す。
(Example)
Hereinafter, the present invention will be described more specifically using test examples and examples, but the present invention is not limited to these examples.
(Test Example 1)
150 g of commercial baker's yeast flakes (Oriental Yeast Industry Co., Ltd. product, moisture 68.7%) and 200 ml of distilled water were added to eight 500 ml beakers, and 350 g of each cell slurry having a dry cell concentration of about 13.4% was prepared. . When these beakers are placed in a constant temperature water bath at 50 ° C. and the temperature of the cell slurry rises to 50 ° C., a predetermined amount of H + ions are added to each beaker while stirring (a predetermined amount of 2N hydrochloric acid solution is used in this test). The amount of H + ions was calculated) was added to each bacterial cell slurry all at once. Thereafter, the mixture was self-digested at the same temperature for 24 hours with stirring. In addition, in order to investigate the nitrogen recovery rate during the reaction, 100 g of the liquid was taken out from each reaction solution at the time of 5th and 24th hours, deactivated by heating, and centrifuged to prepare 86 g of extract to recover nitrogen. Rate (TN recovery rate (%); ratio of total amount of nitrogen in extract to total amount of nitrogen in raw yeast), decomposition rate (ratio of free amino nitrogen to total amount of solubilized nitrogen in sample (%)) and extract The total amount of free amino acids eluted (total amount of free amino acids in the extract measured by a fully automatic amino acid analyzer). Furthermore, in order to investigate the pH change of each reaction solution after adding H + ions, the pH value for each reaction time was also measured.
The results are shown in Tables 1 and 2.
以上の結果より、原料酵母としてパン酵母を用いた場合は、菌体乾物100kgあたりにH+イオンを15〜45mol添加すると原料からの窒素溶出率は50%以上であり、15〜30mol添加した場合に特に優れた結果が得られることがわかった。 From the above results, when baker's yeast is used as the raw material yeast, when 15 to 45 mol of H + ions are added per 100 kg of dry cell matter, the nitrogen elution rate from the raw material is 50% or more, and 15 to 30 mol is added. It was found that particularly excellent results were obtained.
(試験例2)
原料パン酵母として海洋酵母の“三共イースト・M”(三共フーズ(株)製、水分67.1%)を使用した以外は、上記試験例1と全く同じ条件で海洋酵母エキスをそれぞれ8タイプ調製した。窒素回収率及びH+イオン添加後の各酵母スラリーpHの経時変化を表3及び表4に示す。
(Test Example 2)
Eight types of marine yeast extracts were prepared under exactly the same conditions as in Test Example 1, except that marine yeast “Sankyo East M” (manufactured by Sankyo Foods Co., Ltd., moisture 67.1%) was used as the raw bread yeast. Tables 3 and 4 show the changes over time in the pH of each yeast slurry after addition of nitrogen recovery and H + ions.
以上の結果より、海洋酵母の場合は、菌体乾物100 kgあたりにH+イオンを10〜60mol添加すると、原料からの窒素溶出率は40%以上得られ、20〜45mol添加した場合に50%以上、さらに30mol添加した場合には60%以上得られることがわかった。 From the above results, in the case of marine yeast, when 10 to 60 mol of H + ions are added per 100 kg of dry cell matter, the nitrogen elution rate from the raw material is 40% or more, and when 20 to 45 mol is added, 50%. As described above, it was found that when 30 mol was further added, 60% or more was obtained.
(試験例3)
試験例2と同様に、海洋酵母スラリーを8タイプ調製した。これらの菌体スラリーを加熱する前に、それぞれ撹拌しながら試験例2と同じ量のH+イオンを添加した。その後、それぞれの菌体スラリーを15分で50℃まで加温し、さらに同温度で24時間自己消化させた。その後、試験例2と同様に、加熱失活、遠心分離して、酵母エキスを調製した。窒素回収率及びH+イオン添加後の各菌体スラリーのpHの経時変化を表5及び表6に示す。
(Test Example 3)
As in Test Example 2, eight types of marine yeast slurry were prepared. Before heating these bacterial cell slurries, the same amount of H + ions as in Test Example 2 was added with stirring. Thereafter, each bacterial cell slurry was heated to 50 ° C. in 15 minutes, and further self-digested at the same temperature for 24 hours. Thereafter, in the same manner as in Test Example 2, the yeast extract was prepared by heat inactivation and centrifugation. Tables 5 and 6 show the changes over time in the pH of each bacterial cell slurry after nitrogen recovery and addition of H + ions.
上記の試験例1、試験例2及び試験例3より、パン酵母及び海洋酵母の場合、菌体乾物100kgあたりにH+イオン量(無機酸から解離したもの)を15〜45mol範囲内に添加した場合の窒素回収率が特に高いこと、また、これら範囲内のH+イオンを添加した直後の反応液のpHはすべて1.2以上3.0未満に大きく低下したことがわかった。 From the above Test Example 1, Test Example 2 and Test Example 3, in the case of baker's yeast and marine yeast, the amount of H + ions (dissociated from the inorganic acid) was added within a range of 15 to 45 mol per 100 kg of dry cell matter. It was found that the nitrogen recovery rate in this case was particularly high, and that the pH of the reaction liquid immediately after the addition of H + ions within these ranges was greatly reduced to 1.2 or more and less than 3.0.
また、試験例1、試験例2では、特にH+イオン添加量が菌体乾物100kg当たり15〜30molである場合に酵母エキスの製造効率が高いことがわかった。
また、試験例3では、試験例2と比べて酵母エキスの製造効率に大きな差異が見られなかった。試験例3では、菌体乾物100kg当たり20〜45mol添加した場合に、原料からの窒素溶出率が50%以上となることがわかった。
Moreover, in Test Example 1 and Test Example 2, it was found that the production efficiency of the yeast extract was high particularly when the H + ion addition amount was 15 to 30 mol per 100 kg of the dry cell material.
In Test Example 3, no significant difference was observed in the production efficiency of yeast extract compared to Test Example 2. In Test Example 3, it was found that the nitrogen elution rate from the raw material was 50% or more when 20 to 45 mol was added per 100 kg of the dried bacterial cell.
(比較試験例1)
本比較試験例では、無機酸の替わりに有機酸を使用した場合について試験を行った。ただし、有機酸から解離してくるH+イオンの量を正確に計算し難いため、試験例1の15 mol 量のH+イオン添加直後のpH 2.8と同じpHになるように有機酸を添加した。すなわち、乾燥菌体濃度約13.4%のパン酵母スラリー各350gを調製し、50℃まで加熱してから、それぞれ有機酸の乳酸、クエン酸、リンゴ酸及び酢酸を添加し、有機酸添加直後のpHを2.8に調節した。その後、そのまま50℃において24時間自己消化させた。得られたエキスを蒸留水で同じ450gに調製し、窒素回収率及び分解率の分析に供した。結果を表7に示す。
(Comparative Test Example 1)
In this comparative test example, the test was performed for the case where an organic acid was used instead of the inorganic acid. However, since it is difficult to accurately calculate the amount of H + ions dissociated from the organic acid, the organic acid should be adjusted so as to have the same pH as 2.8 immediately after the addition of 15 mol of H + ions in Test Example 1. Added. Specifically, 350 g of baker's yeast slurry each having a dry cell concentration of about 13.4% was prepared and heated to 50 ° C., and then each of the organic acids lactic acid, citric acid, malic acid and acetic acid was added. Was adjusted to 2.8. Thereafter, it was self-digested at 50 ° C. for 24 hours. The obtained extract was prepared to the same 450 g with distilled water and subjected to analysis of nitrogen recovery rate and decomposition rate. The results are shown in Table 7.
以上の結果より、有機酸を使用する場合は、無機酸の場合と同程度のpH3.0以下に調節しても、無機酸の場合のような高い窒素回収率が得られないことがわかった。 From the above results, it was found that when using an organic acid, a high nitrogen recovery rate as in the case of the inorganic acid cannot be obtained even when the pH is adjusted to about 3.0 or less, which is the same as that of the inorganic acid. .
市販パン酵母150gに蒸留水200gを加え、乾燥菌体濃度約13.4%の菌体スラリー350gを調製した。この菌体スラリーの温度を50℃まで加熱してから、2N塩酸4.7 mlを添加し(菌体乾物100 kgあたりのH+イオン添加量は約20 molである)、同温度に3時間保持して自己消化させた。次いで、溶液のpHを7.0に調節してから酵素プロテアーゼA(天野エンザイム(株)製)0.35gを添加し、50℃においてさらに15時間酵素分解させて、酵母エキスを調製した。 200 g of distilled water was added to 150 g of commercially available baker's yeast to prepare 350 g of a cell slurry having a dry cell concentration of about 13.4%. After heating the cell slurry to 50 ° C, add 4.7 ml of 2N hydrochloric acid (addition amount of H + ions per 100 kg of cell dry matter is about 20 mol) and hold at that temperature for 3 hours. And self-digested. Next, after adjusting the pH of the solution to 7.0, 0.35 g of enzyme protease A (manufactured by Amano Enzyme Co., Ltd.) was added, and the mixture was further enzymatically degraded at 50 ° C. for 15 hours to prepare a yeast extract.
自己消化後にpHを5.5に調整し、酵素としてコクラーゼP(三共(株)製)0.35gを用いた他は、実施例1と同様にして酵母エキスを調製した。 A yeast extract was prepared in the same manner as in Example 1 except that the pH was adjusted to 5.5 after autolysis and 0.35 g of cochlase P (manufactured by Sankyo Co., Ltd.) was used as the enzyme.
自己消化後にpHを8.0に調整し、酵素としてプロテアーゼP3(天野エンザイム(株)製) 0.35gを用いた他は、実施例1と同様にして酵母エキスを調製した。 A yeast extract was prepared in the same manner as in Example 1 except that pH was adjusted to 8.0 after autolysis and 0.35 g of protease P3 (manufactured by Amano Enzyme) was used as the enzyme.
(比較例1)
本比較例では、自己消化を行わずに酵素分解のみを行って酵母エキスを調製した。まず、市販パン酵母150gに蒸留水200gを加え、乾燥菌体濃度約13.4%の菌体スラリー350gを調製した。次いで、生酵母では酵素分解されにくいため、95℃にて15分間加熱し、菌体蛋白質を変性させた。そして、溶液のpHを7.0に調節し、酵素プロテアーゼA0.35gを添加し、50℃において18時間反応させて酵母エキスを調製した。
(Comparative Example 1)
In this comparative example, yeast extract was prepared by performing only enzymatic degradation without autolysis. First, 200 g of distilled water was added to 150 g of commercially available baker's yeast to prepare 350 g of a cell slurry having a dry cell concentration of about 13.4%. Next, since it was difficult for enzymatic degradation in live yeast, the protein was denatured by heating at 95 ° C. for 15 minutes. Then, the pH of the solution was adjusted to 7.0, 0.35 g of enzyme protease A was added, and the mixture was reacted at 50 ° C. for 18 hours to prepare a yeast extract.
(比較例2)
溶液のpHを5.5に調整し、酵素としてコクラーゼP0.35gを用いた他は、比較例1と同様にして酵母エキスを調製した。
(Comparative Example 2)
A yeast extract was prepared in the same manner as in Comparative Example 1 except that the pH of the solution was adjusted to 5.5, and 0.35 g of cochlase P was used as the enzyme.
(比較例3)
溶液のpHを8.0に調整し、酵素としてプロテアーゼP3 0.35gを用いた他は、比較例1と同様にして酵母エキスを調製した。
上記の実施例1〜3および比較例1〜3の酵母エキスについて、窒素回収率及び分解率を表8に示す。
(Comparative Example 3)
A yeast extract was prepared in the same manner as in Comparative Example 1 except that the pH of the solution was adjusted to 8.0 and 0.35 g of protease P3 was used as the enzyme.
Table 8 shows nitrogen recovery rates and decomposition rates of the yeast extracts of Examples 1 to 3 and Comparative Examples 1 to 3.
また、実施例3と比較例3で得られた最終エキス化液中の遊離アミノ酸成分組成の比較を図1に示す。
以上の結果より、自己消化と酵素分解法の併用によって通常の酵素分解法より高い窒素回収率が得られたほか、エキス化液中の遊離アミノ酸含量も大きく増加したことがわかった。
Moreover, the comparison of the free amino acid component composition in the final extract obtained in Example 3 and Comparative Example 3 is shown in FIG.
From the above results, it was found that the combined use of autolysis and enzymatic degradation resulted in higher nitrogen recovery than the usual enzymatic degradation, and the free amino acid content in the extract was greatly increased.
市販海洋酵母“三共イースト・M”250g(三共フーズ(株)製、水分67.1%)に500 mlの蒸留水を添加し、乾燥菌体濃度約11.0%の菌体スラリー750gを調製した。これらの菌体スラリーの温度を50℃まで加熱してから、2N塩酸12.3 ml(乾燥菌体100 kgあたりにH+イオンの添加量は約30molである)を添加し、同50℃にて5時間自己消化させた。次いで、pH調節は行わず、そのまま同温度において更に19時間自己消化させた後、95℃で15分間加熱失活し、遠心分離した。上清液を取り出した後の残査に蒸留水150gを添加し洗浄してから、更に2回目の遠心分離をした。1回目と2回目の上清液を合わせて減圧濃縮し、Bx.40%の濃縮エキスを調製した。 500 ml of distilled water was added to 250 g of commercial marine yeast “Sankyo East M” (manufactured by Sankyo Foods Co., Ltd., moisture 67.1%) to prepare 750 g of a cell slurry having a dry cell concentration of about 11.0%. After heating the temperature of these cell slurries to 50 ° C., 12.3 ml of 2N hydrochloric acid (the amount of H + ions added is about 30 mol per 100 kg of dry cells), and 5 ° C. at 5 ° C. Self-digested for hours. Subsequently, the pH was not adjusted, and the mixture was further self-digested at the same temperature for 19 hours, then deactivated by heating at 95 ° C. for 15 minutes, and centrifuged. 150 g of distilled water was added to the residue after the supernatant was taken out and washed, followed by a second centrifugation. The first and second supernatants were combined and concentrated under reduced pressure to prepare a Bx.40% concentrated extract.
市販海洋酵母“三共イースト・M”250g(三共フーズ(株)製、水分67.1%)に500 mlの蒸留水を添加し、乾燥菌体濃度約11.0%の菌体スラリー750gを調製した。これらの菌体スラリーの温度を50℃まで加熱してから、2N塩酸12.3 ml(乾燥菌体100 kgあたりにH+イオンの添加量は約30 molである)を添加し、同50℃にて5時間自己消化させた。次いで、液のpHを8.0に調節してから、酵素ウマミザイム(天野エンザイム(株)製)0.3gを添加した。その後、同50℃において更に19時間反応させた後、95℃に15分間加熱失活し、遠心分離した。上清液を取り出した後の残査に蒸留水150gを添加し洗浄してから、更に2回目の遠心分離をした。1回目と2回目の上清液を合わせて減圧濃縮し、Bx.40%の濃縮酵母エキスを調製した。 500 ml of distilled water was added to 250 g of commercial marine yeast “Sankyo East M” (manufactured by Sankyo Foods Co., Ltd., moisture 67.1%) to prepare 750 g of a cell slurry having a dry cell concentration of about 11.0%. After heating the temperature of these cell slurries to 50 ° C, add 12.3 ml of 2N hydrochloric acid (the amount of H + ions added is approximately 30 mol per 100 kg of dry cells) at 50 ° C. Self-digested for 5 hours. Next, the pH of the solution was adjusted to 8.0, and 0.3 g of an enzyme equinezyme (Amano Enzyme Co., Ltd.) was added. Thereafter, the mixture was further reacted at 50 ° C. for 19 hours, then deactivated by heating to 95 ° C. for 15 minutes, and centrifuged. 150 g of distilled water was added to the residue after the supernatant was taken out and washed, followed by a second centrifugation. The first and second supernatants were combined and concentrated under reduced pressure to prepare a Bx.40% concentrated yeast extract.
酵素として、プロテアーゼA0.3g及び補助酵素ペプチダーゼR(天野エンザイム(株)製)0.1gを用いたほかは、実施例5と同様にして、濃縮酵母エキスを調製した。 A concentrated yeast extract was prepared in the same manner as in Example 5 except that 0.3 g of protease A and 0.1 g of auxiliary enzyme peptidase R (manufactured by Amano Enzyme Co., Ltd.) were used as the enzymes.
酵素として、プロテアーゼP3 0.3g及び補助酵素ペプチダーゼR0.1gを用いたほかは、実施例5と同様にして、濃縮酵母エキスを調製した。 A concentrated yeast extract was prepared in the same manner as in Example 5 except that 0.3 g of protease P3 and 0.1 g of auxiliary enzyme peptidase R were used as enzymes.
酵素として、プロテアーゼN(天野エンザイム(株)製)0.3g及び補助酵素ペプチダーゼR0.1gを用いたほかは、実施例5と同様にして、濃縮酵母エキスを調製した。 A concentrated yeast extract was prepared in the same manner as in Example 5 except that 0.3 g of protease N (manufactured by Amano Enzyme Co., Ltd.) and 0.1 g of auxiliary enzyme peptidase R were used as enzymes.
酵素として、オリエンターゼ90N(エイチビィアイ(株)製)0.3g及び補助酵素ペプチダーゼR0.1gを用いたほかは、実施例5と同様にして、濃縮酵母エキスを調製した。 A concentrated yeast extract was prepared in the same manner as in Example 5 except that 0.3 g of orientase 90N (manufactured by HIBI) and 0.1 g of auxiliary enzyme peptidase R were used as the enzymes.
酵素として、ヌクレイシン(エイチビィアイ(株)製)0.3g及び補助酵素ペプチダーゼR0.1gを用いたほかは、実施例5と同様にして、濃縮酵母エキスを調製した。 A concentrated yeast extract was prepared in the same manner as in Example 5 except that 0.3 g of nucleicin (manufactured by HIBI Co., Ltd.) and 0.1 g of auxiliary enzyme peptidase R were used as the enzymes.
酵素として、アクチナーゼ(科研製薬(株)製)0.3g及び補助酵素ペプチダーゼR0.1gを用いたほかは、実施例5と同様にして、濃縮酵母エキスを調製した。 A concentrated yeast extract was prepared in the same manner as in Example 5 except that 0.3 g of actinase (manufactured by Kaken Pharmaceutical Co., Ltd.) and 0.1 g of the auxiliary enzyme peptidase R were used as the enzymes.
酵素として、アルカラーゼ2.4L FG(ノボザイムズ・ジャパン(株)製)0.9g及び補助酵素ペプチダーゼR0.1gを用いたほかは、実施例5と同様にして、濃縮酵母エキスを調製した。
以上のように調製された実施例4〜12の酵母エキスについて、測定した窒素回収率を表9に示す。
A concentrated yeast extract was prepared in the same manner as in Example 5 except that 0.9 g of Alcalase 2.4 L FG (manufactured by Novozymes Japan) and 0.1 g of auxiliary enzyme peptidase R were used as the enzymes.
Table 9 shows the measured nitrogen recovery rates of the yeast extracts of Examples 4 to 12 prepared as described above.
各実施例の結果より、本発明の所定量のH+イオンを添加することによって、自己消化を有効に誘発できること、更に少量の市販酵素を追加することによって、エキスの収率を更にアップでき、低コスト高収率で品質のよい酵母エキスを調製できることが確認された。 From the results of each example, the addition of a predetermined amount of H + ions of the present invention can effectively induce autolysis, and the addition of a small amount of commercially available enzyme can further increase the yield of the extract, It was confirmed that a high-quality yeast extract could be prepared at low cost and high yield.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004227761A JP4414837B2 (en) | 2004-08-04 | 2004-08-04 | Method for producing self-digesting yeast extract |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004227761A JP4414837B2 (en) | 2004-08-04 | 2004-08-04 | Method for producing self-digesting yeast extract |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006042674A JP2006042674A (en) | 2006-02-16 |
JP4414837B2 true JP4414837B2 (en) | 2010-02-10 |
Family
ID=36021925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004227761A Expired - Fee Related JP4414837B2 (en) | 2004-08-04 | 2004-08-04 | Method for producing self-digesting yeast extract |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4414837B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008007667A1 (en) * | 2006-07-10 | 2008-01-17 | Kyowa Hakko Food Specialties Co., Ltd. | Chicken extract and method for production of chicken extract |
KR20140012086A (en) * | 2011-02-17 | 2014-01-29 | 디에스엠 아이피 어셋츠 비.브이. | Process for the production of yeast extracts having low turbidity |
CN108185388A (en) * | 2017-12-28 | 2018-06-22 | 天津百利食品有限公司 | A kind of method that low sodium yeast extract is prepared using radio-frequency technique |
CN108522781A (en) * | 2018-03-21 | 2018-09-14 | 杭州早稻田生物技术有限公司 | A kind of yeast albumen powder and preparation method thereof rich in free amino acid |
CN111154752A (en) * | 2020-02-12 | 2020-05-15 | 黑龙江八一农垦大学 | Preparation method of PCR template DNA of yeast monoclonal colony |
-
2004
- 2004-08-04 JP JP2004227761A patent/JP4414837B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006042674A (en) | 2006-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6569476B2 (en) | Production of hydrolysate seasoning | |
JP6301947B2 (en) | Production method of natural kokumi seasoning material | |
CN102845710A (en) | Method for preparing a proteinaceous vegetable flavor enhancer | |
CN104161259A (en) | Method of breaking yeast cell wall and preparing yeast extract | |
EA018646B1 (en) | Yeast autolysate, process for preparing and use thereof, flavor aromatic improver in food applications based thereon | |
CN102845711B (en) | Production technology for producing nutrient seasoning paste by enzymatic method using avian skeleton | |
KR101440363B1 (en) | Manufacturing Method for Fermented Soy Sauce with Short Aging Pereod | |
CA2301314C (en) | Production of hydrolysate | |
US5888561A (en) | Seasoning production | |
US20130280376A1 (en) | Enzyme preparation from koji fermentation | |
JP4414837B2 (en) | Method for producing self-digesting yeast extract | |
US5427921A (en) | Method of preparing yeast extract containing hydrolyzed non-yeast protein with yeast autolytic enzymes | |
CN101984854A (en) | Method for producing purely natural monosodium glutamate by using low-value marine fishes | |
KR101707064B1 (en) | Salt-tolerant Yeast Isolated from Soybean Paste and Manufacturing Method of Yeast Salt | |
WO2007094317A1 (en) | Vinegar and method of producing the same | |
SK134796A3 (en) | A process for the production of a seasoning sauce | |
JP2014079179A (en) | Seasoning derived from yeast protein | |
JP2022074430A (en) | Non-acidic amino acid-containing yeast seasoning | |
WO1998017127A1 (en) | Method of using enzymes and yeast fermentation for production of a fermentation-type savory flavored product | |
JPH11318383A (en) | Production of fish sauce | |
JPH0347051A (en) | Preparation of raw solution of seasoning | |
JPH06125734A (en) | Production of protein seasoning solution | |
JPH084472B2 (en) | Protein hydrolyzate and method for producing the same | |
CN108606270B (en) | Production method for improving delicate flavor of kelp juice | |
JP5458536B2 (en) | Method for producing lactic acid and additive for lactic acid fermentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061010 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20061010 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061016 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080520 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091005 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091027 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091120 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4414837 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |