JP4414256B2 - Galvanic anode device for cathodic protection and method for cathodic protection of metal structure using said device - Google Patents

Galvanic anode device for cathodic protection and method for cathodic protection of metal structure using said device Download PDF

Info

Publication number
JP4414256B2
JP4414256B2 JP2004082215A JP2004082215A JP4414256B2 JP 4414256 B2 JP4414256 B2 JP 4414256B2 JP 2004082215 A JP2004082215 A JP 2004082215A JP 2004082215 A JP2004082215 A JP 2004082215A JP 4414256 B2 JP4414256 B2 JP 4414256B2
Authority
JP
Japan
Prior art keywords
galvanic anode
current measuring
metal structure
terminal
galvanic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004082215A
Other languages
Japanese (ja)
Other versions
JP2005264286A (en
Inventor
義雄 森嶌
千代子 小磯
一夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP2004082215A priority Critical patent/JP4414256B2/en
Publication of JP2005264286A publication Critical patent/JP2005264286A/en
Application granted granted Critical
Publication of JP4414256B2 publication Critical patent/JP4414256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、港湾構造物及び河川構造物等の金属構造物の水中部分に設置され、陽極が発生する防食電流の測定が容易な流電陽極装置、及びこの流電陽極装置を用いた金属構造物の電気防食方法に関するものである。   The present invention relates to a galvanic anode device that is installed in an underwater part of a metal structure such as a harbor structure and a river structure, and that can easily measure the anticorrosion current generated by the anode, and a metal structure using the galvanic anode device The present invention relates to a method for cathodic protection of objects.

桟橋及び護岸等の港湾施設、道路橋、並びに鉄道橋等の基礎部を構成する鋼管杭及び鋼矢板が、海水及び/又は河川水によって腐食することを防止する方法として、主としてアルミニウム合金を用いた流電陽極方式による電気防食法が広く用いられている。   Mainly aluminum alloy was used as a method to prevent the steel pipe piles and steel sheet piles that make up the foundations of harbor facilities such as piers and revetments, road bridges, and railway bridges from being corroded by seawater and / or river water. The cathodic protection method by the galvanic anode method is widely used.

港湾施設及び橋等は50年以上の長期間にわたって利用される施設であるため、これらの金属製の基礎部を防食するために流電防食法を用いる場合、一般に寿命が10年〜30年程度の寿命を有する流電電極が用いられている。また、最近では構造物の巨大化に伴い、50年以上の耐用年数を有する大型の流電陽極を取り付けることが必要とされる場合もある。   Because harbor facilities and bridges are facilities that are used for a long period of 50 years or more, when the galvanic corrosion protection method is used to protect these metal foundations, the life span is generally about 10 to 30 years. An galvanic electrode having a lifetime of 1 mm is used. In recent years, with the enlargement of structures, it may be necessary to attach a large galvanic anode having a service life of 50 years or more.

流電防食法を用いる場合、設計したとおりの防食電流を流電陽極が発生しているか否かを監視しておくことは、設備の維持管理にとって非常に重要である。流電陽極の消耗はファラデーの法則に従って発生電流と時間との積(電気量)に比例するため、流電陽極が発生する電流を経時的に測定しておくことにより、流電陽極の消耗量を推定することができる。   When the galvanic corrosion prevention method is used, it is very important for the maintenance and management of the facility to monitor whether or not the galvanic anode generates the anticorrosion current as designed. Since the consumption of the galvanic anode is proportional to the product of the generated current and time (the amount of electricity) according to Faraday's law, the consumption of the galvanic anode is measured by measuring the current generated by the galvanic anode over time. Can be estimated.

この流電陽極の消耗量が、当初の電気防食設計値とほぼ一致している場合は問題ない。しかし、長期間防食を行っている間には水温、水質汚染度、及び水の抵抗率等の構造物を取り巻く環境の変化、構造物に施された塗膜の予想を超える劣化、並びに他の構造物との接続等の構造物自体の構造変化などの要因が設計当初の予想を超えて変化し、その変化が流電陽極の寿命に影響を与えることがある。   There is no problem if the consumption amount of the galvanic anode is substantially the same as the original anticorrosion design value. However, during long-term anticorrosion, changes in the environment surrounding the structure, such as water temperature, water pollution, and water resistivity, unforeseen deterioration of the coating applied to the structure, and other Factors such as the structural change of the structure itself, such as connection with the structure, may change beyond the initial expectations, and the change may affect the life of the galvanic anode.

また、大型構造物及び複雑な構造物では防食条件が構造物全体で均一にならず、構造物のある個所の流電陽極は防食設計値よりも消耗速度が速く、別の個所の流電陽極は防食設計値よりも消耗速度が遅いという場合もある。   In addition, in large structures and complex structures, the anticorrosion conditions are not uniform throughout the structure, and the galvanic anode at one location of the structure is faster than the anticorrosion design value, and the galvanic anode at another location. In some cases, the consumption rate is slower than the anticorrosion design value.

このため、流電陽極と構造物の間にシャント抵抗を挿入するとともに、流電陽極の芯金を構造物から切り離し、電圧降下法により流電陽極が発生する防食電流を測定する方法が知られている(例えば、非特許文献1参照)。   For this reason, a method is known in which a shunt resistor is inserted between the galvanic anode and the structure, the core metal of the galvanic anode is separated from the structure, and the anticorrosion current generated by the galvanic anode is measured by the voltage drop method. (For example, refer nonpatent literature 1).

流電陽極が発生する防食電流を、電圧降下法を用いて測定する装置の具体例を図4に示した。図4に示した装置は、金属構造物1に溝型鋼6が固定され、電気絶縁体3を介して溝型鋼6と流電陽極2の芯金(以下、陽極芯金または単に芯金とも記す)21が絶縁ボルトナット41で固定されている。さらに、片方の陽極芯金21及び溝型鋼6は、それぞれ直流電流測定器5の端子43及び端子44と接続されている。直流電流測定器5内にはシャント抵抗があり、そのシャント抵抗の両端にはケーブル7の芯線が接続されるとともに、ケーブル7は地上まで導かれている。   A specific example of an apparatus for measuring the anticorrosion current generated by the galvanic anode using the voltage drop method is shown in FIG. In the apparatus shown in FIG. 4, a grooved steel 6 is fixed to the metal structure 1, and a cored bar of the grooved steel 6 and the galvanic anode 2 (hereinafter also referred to as an anode cored bar or simply a cored bar) through an electrical insulator 3. ) 21 is fixed with an insulating bolt nut 41. Further, the one anode core 21 and the grooved steel 6 are connected to the terminal 43 and the terminal 44 of the DC current measuring device 5, respectively. There is a shunt resistor in the DC current measuring device 5, and the core wire of the cable 7 is connected to both ends of the shunt resistor, and the cable 7 is led to the ground.

また、電気防食された水中の金属構造物に金属構造物と同種の金属で作製されたセンシング電極を取り付け、このセンシング電極と金属構造物とを絶縁被覆されたリードワイヤにより無抵抗電流計測器を介して接続してなる電気防食電流モニターが知られている(例えば、特許文献1参照)。   In addition, a sensing electrode made of the same kind of metal as the metal structure is attached to an underwater metal structure that is electrically protected, and a non-resistance current measuring instrument is connected to the sensing electrode and the metal structure with a lead wire that is insulated. An anti-corrosion current monitor is known which is connected via a cable (see, for example, Patent Document 1).

特開平8−283969号公報JP-A-8-283969 港湾技研資料 No.475 港湾構造物の電気防食調査(その1) 運輸省港湾技術研究所 1984年3月発行Material of Port Engineering Lab. No.475 Electric Corrosion Protection Survey of Port Structures (Part 1) Port Technology Research Institute, Ministry of Transport Issued in March 1984

しかし、流電電極と金属構造物との間にシャント抵抗を挿入し、さらに陽極芯金を金属構造物から切り外し電圧降下法を用いて、流電陽極が発生する電流(流電防食方式とは、この電流により金属構造物を防食するものであり、以下この電流を発生電流とも記す)を測定する上記の方法は、陽極芯金を金属構造物から切り外すために長時間を要し、かつそのための作業費用も高額になる。また、図4に示した従来一般的な発生電流の測定装置は、直流電流測定器5及びケーブル7が一体となっているため、ケーブル7の芯線が切断した場合、またはシャント抵抗に破損が生じた場合等、その一部に不具合が生じた場合でも装置全体の交換が必要であり、補修費用が高額になっていた。   However, a shunt resistor is inserted between the galvanic electrode and the metal structure, and the anode core is cut off from the metal structure, and the current generated by the galvanic anode using the voltage drop method ( The above-mentioned method for measuring the corrosion resistance of the metal structure by this current (hereinafter, this current is also referred to as generated current) takes a long time to disconnect the anode core from the metal structure, And the work cost for that is also expensive. In addition, since the DC current measuring device 5 and the cable 7 are integrated in the conventional general generated current measuring device shown in FIG. 4, the core wire of the cable 7 is cut or the shunt resistance is damaged. Even if a defect occurs in a part of the equipment, it is necessary to replace the entire device, and the repair cost is high.

また、上記特許文献1(特開平8−283969号公報)に開示されている電気防食電流モニターは、金属構造物に流入する防食電流を測定しモニターするものであり、この装置によっては発生電流を正確に測定することはできない。   Further, the cathodic protection current monitor disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 8-283969) measures and monitors the corrosion protection current flowing into the metal structure. It cannot be measured accurately.

すなわち、本発明は従来技術が有する問題点を解決し、陽極芯金を構造物から切り離すことなく発生電流を測定でき、かつ装置の一部に不具合が生じた場合でも装置全体を交換する必要がない流電陽極装置、及びその流電陽極装置を用いた防食方法を提供しようとするものである。   That is, the present invention solves the problems of the prior art, can measure the generated current without detaching the anode core from the structure, and it is necessary to replace the entire apparatus even when a malfunction occurs in a part of the apparatus. The present invention seeks to provide a non-fluidic anode device and a corrosion prevention method using the galvanic anode device.

本発明の流電陽極装置は、流電陽極と金属構造物との取り付け部分の構造及び構成に特徴を有するものである。
すなわち、本発明の流電陽極装置は、金属構造物の電気防食方法に用いる流電陽極装置であって、
前記金属構造物と電気的に接続するための端子、及び前記流電陽極と電気的に接続するための端子を有する直流電流測定器を用い、
前記直流電流測定器の端子の挿入口を設けた電気絶縁体を介して前記金属構造物上に前記流電陽極の芯金を固定するとともに、
前記挿入口に前記端子を挿入した際に、前記金属構造物と電気的に接続するための前記端子が前記金属構造物と電気的に接続され、かつ前記芯金と電気的に接続するための前記端子が前記芯金に電気的に接続されることにより、前記直流電流測定器による防食電流の測定を可能にしたことを特徴とするものである。
The galvanic anode device of the present invention is characterized by the structure and configuration of the attachment portion between the galvanic anode and the metal structure.
That is, the galvanic anode device of the present invention is a galvanic anode device used in a method for preventing corrosion of a metal structure,
Using a direct current measuring instrument having a terminal for electrical connection with the metal structure and a terminal for electrical connection with the galvanic anode,
While fixing the core metal of the galvanic anode on the metal structure via an electrical insulator provided with an insertion port of the terminal of the direct current measuring device,
When the terminal is inserted into the insertion port, the terminal for electrically connecting to the metal structure is electrically connected to the metal structure and electrically connected to the metal core The terminal is electrically connected to the core bar, whereby the anticorrosion current can be measured by the DC current measuring device.

前記流電陽極装置においては、前記直流電流測定器にさらに電流測定用ケーブルを着脱可能に接続することが好ましい。   In the galvanic anode device, it is preferable that a current measuring cable is further detachably connected to the direct current measuring device.

前記各流電陽極装置においては、前記直流電流測定器に、前記流電陽極の発生電流値を測定時刻とともに記録するためのデータロガーをさらに接続することが好ましい。   In each of the galvanic anode devices, it is preferable that a data logger for recording a current value generated by the galvanic anode together with a measurement time is further connected to the direct current measuring device.

前記直流電流測定器にデータロガーをさらに接続する場合、防水構造を有する容器内に前記データロガーを格納するとともに、前記容器を前記直流電流測定器の近傍に配置することが好ましい。   When a data logger is further connected to the DC current measuring device, it is preferable that the data logger is stored in a container having a waterproof structure, and the container is disposed in the vicinity of the DC current measuring device.

本発明の別の態様の流電陽極装置は、上記各流電陽極装置において、前記直流電流測定器の端子を挿入するために設けた前記電気絶縁体の挿入口に、前記直流電流測定器に代えて前記直流電流測定器の端子と同形状の端子を有する導電体を挿入することにより、前記金属構造物と前記芯金とを前記導電体によって電気的に接続したことを特徴とするものである。   In the galvanic anode device according to another aspect of the present invention, in each of the galvanic anode devices, the DC current measuring device is inserted into an insertion port of the electrical insulator provided for inserting a terminal of the DC current measuring device. Instead, the metal structure and the metal core are electrically connected by the conductor by inserting a conductor having the same shape as the terminal of the direct current measuring device. is there.

本発明の電気防食方法は、金属構造物の水中部分に二以上の流電陽極を配置して前記金属構造物の電気防食を行うに際し、前記流電陽極のうち少なくとも一つとして上述した流電陽極装置の少なくとも一種を用いることを特徴とするものである。   When the two or more galvanic anodes are disposed in the underwater portion of the metal structure to perform the galvanic protection of the metal structure, the galvanic protection method of the present invention is the above-described galvanic current as at least one of the galvanic anodes. At least one of the anode devices is used.

本発明の別の態様の電気防食方法は、金属構造物の水中部分に二以上の流電陽極を配置して前記金属構造物の電気防食を行うに際し、前記流電陽極のうち少なくとも一つとして上記いずれかの流電陽極装置を用いて前記流電陽極の発生電流を測定する際に、前記直流電流測定器の端子と同形状の端子を有する導電体を取り外すとともに直流電流測定器の端子を前記電気絶縁体の挿入口に挿入して前記発生電流を測定することを特徴とするものである。   According to another aspect of the present invention, there is provided an electrocorrosion protection method, wherein two or more galvanic anodes are disposed in an underwater portion of a metal structure to perform electrocorrosion protection of the metal structure. When measuring the generated current of the galvanic anode using any one of the galvanic anode devices, a conductor having the same shape as the terminal of the DC current measuring device is removed and the terminal of the DC current measuring device is removed. The generated current is measured by inserting into the insertion port of the electrical insulator.

本発明の流電陽極装置は、陽極の発生電流を測定する際に、陽極の芯金を切断する等の作業を必要とせず、芯金と金属構造物との間に配置した電気絶縁体の挿入口に直流電流測定器の端子を挿入することによって極めて容易に陽極の発生電流を測定できる。また、発生電流を測定しない場合は、直流電流測定器に代えて所定の端子を有する導電体を電気絶縁体の挿入口に挿入することによって、流電陽極方式による電気防食を行うことができる。また、上記直流電流測定器に着脱可能に電流測定用ケーブルを接続できるようにすることにより、直流電流測定器又は電流測定用ケーブルの交換を容易に行うことができるという効果が得られる。また、上記電流測定器にデータロガーを接続することによって陽極寿命等を管理するデータを容易に取得することができる。   The galvanic anode device of the present invention does not require an operation such as cutting the core metal of the anode when measuring the generated current of the anode, and is an electric insulator disposed between the core metal and the metal structure. The current generated at the anode can be measured very easily by inserting the terminal of the direct current measuring device into the insertion slot. Further, when the generated current is not measured, the galvanic anode method can be performed by inserting a conductor having a predetermined terminal into the insertion port of the electric insulator instead of the direct current measuring device. Further, by allowing the current measuring cable to be detachably connected to the DC current measuring device, it is possible to easily exchange the DC current measuring device or the current measuring cable. Further, data for managing the anode life and the like can be easily obtained by connecting a data logger to the current measuring instrument.

以下、図1〜3に基づいて本発明をさらに具体的に説明するが、これらの図に示した装置は本発明を説明するために本発明の装置を模式的に示したものであり、さらに所望により必要な構成を適宜付与し、及び/又は変形して用いることができ、本発明はこれらの図に示したものに限定されない。   Hereinafter, the present invention will be described more specifically with reference to FIGS. 1 to 3, but the apparatus shown in these drawings schematically shows the apparatus of the present invention in order to explain the present invention. Necessary structures can be appropriately given and / or modified as desired, and the present invention is not limited to those shown in these drawings.

図1は、本発明の流電陽極装置が金属構造物1と結合されている部分を模式的に示した図である。なお、金属構造物1はその形状を明示していないが、図4に示したものと同様に溝型鋼6と結合している。図1には、流電陽極2が有する2つの芯金21のうち一方のみを示した。図示しない他方の芯金と溝型鋼との結合部の構成は、図4左側に示す結合部の構成と同じである。金属構造物1に溝型鋼6が溶接されて配置され、溝型鋼6と芯金21は電気絶縁体3を介して絶縁ボルトナット41により結合されており、これにより流電陽極2は金属構造物1上に固定されている。電気絶縁体3には、空隙31及び空隙32の2つの空隙が設けられている。5は直流電流測定器であり、その側面には端子51及び端子52を有する。直流電流測定器5は、レセプタクル55を有し、一方ケーブル7は、コネクタシェル56及びコネクタカバー72を有し、レセプタクル55にコネクタシェル56を接続することによって、直流電流測定器5とケーブル7が電気的に着脱可能に接続できるようにされている。実際には、直流電流測定器5はあらかじめケーブル7と接続してから水中に配置することが好ましい。ケーブル7は、金属構造物1の上部構造部まで伸ばされ、計測器(図示しない)に接続される。   FIG. 1 is a diagram schematically showing a portion where a galvanic anode device of the present invention is coupled to a metal structure 1. In addition, although the shape of the metal structure 1 is not clearly shown, it is combined with the grooved steel 6 in the same manner as that shown in FIG. FIG. 1 shows only one of the two core bars 21 included in the galvanic anode 2. The configuration of the coupling portion between the other core metal (not shown) and the grooved steel is the same as the configuration of the coupling portion shown on the left side of FIG. The grooved steel 6 is welded to the metal structure 1 and the grooved steel 6 and the cored bar 21 are joined together by an insulating bolt nut 41 via an electrical insulator 3, whereby the galvanic anode 2 is connected to the metal structure. 1 is fixed. The electric insulator 3 is provided with two gaps, a gap 31 and a gap 32. Reference numeral 5 denotes a direct current measuring instrument having a terminal 51 and a terminal 52 on its side surface. The DC current measuring instrument 5 has a receptacle 55, while the cable 7 has a connector shell 56 and a connector cover 72. By connecting the connector shell 56 to the receptacle 55, the DC current measuring instrument 5 and the cable 7 are connected. It is designed to be electrically detachable. Actually, it is preferable that the direct current measuring instrument 5 is placed in water after being connected to the cable 7 in advance. The cable 7 extends to the upper structure portion of the metal structure 1 and is connected to a measuring instrument (not shown).

図1において、直流電流測定器5の端子51及び52をそれぞれ電気絶縁体3の空隙31及び32に挿入することにより、端子51は芯金21と接触して電気的に接続され、端子52は溝型鋼6と接触して電気的に接続される。このようにして、芯金21、直流電流測定器5、及び溝型鋼6が電気的に接続されることにより、流電陽極2が発生する電流を直流電流測定器5によって測定することができる。測定された電流値はケーブル7によって計測器に送られる。   In FIG. 1, by inserting the terminals 51 and 52 of the DC current measuring device 5 into the gaps 31 and 32 of the electrical insulator 3, respectively, the terminal 51 contacts and is electrically connected to the core metal 21, and the terminal 52 is The grooved steel 6 is in contact with and electrically connected. In this way, the current generated by the galvanic anode 2 can be measured by the direct current measuring device 5 by electrically connecting the core metal 21, the direct current measuring device 5, and the grooved steel 6. The measured current value is sent to the measuring instrument through the cable 7.

図2には、図1に示した流電陽極装置とは別の態様の流電陽極装置の部分構造を示した。金属構造物1、溝型鋼6、流電陽極2、芯金21、及び電気絶縁体3については図1に示した装置と同様の構成を有する。但し、図2の装置においては、絶縁ボルト42が空隙31及び32を貫通するように配置される。さらに絶縁ボルト42を挿入可能な形状を有する切れ込み部を端子の先端に設けた直流電流測定器5の端子53及び54を、それぞれ空隙31及び32に挿入し、絶縁ボルト42及びナットで締め付けることによって、直流電流測定器5の端子53を芯金21と、また端子54を溝型鋼6と強固に結合することができる。   FIG. 2 shows a partial structure of the galvanic anode device in a mode different from the galvanic anode device shown in FIG. The metal structure 1, the grooved steel 6, the galvanic anode 2, the cored bar 21, and the electrical insulator 3 have the same configuration as the apparatus shown in FIG. However, in the apparatus of FIG. 2, the insulating bolt 42 is disposed so as to penetrate the gaps 31 and 32. Further, by inserting the terminals 53 and 54 of the direct current measuring instrument 5 having a notch having a shape into which the insulating bolt 42 can be inserted at the tip of the terminal into the gaps 31 and 32, respectively, and tightening with the insulating bolt 42 and the nut. The terminal 53 of the direct current measuring instrument 5 can be firmly connected to the core metal 21 and the terminal 54 can be firmly connected to the grooved steel 6.

図2に示した装置においては、図1に示したように直流電流測定器5のレセプタクル55にケーブル7を接続することもできるし、また図2に示したようにボルト65を用いるなどして溝型鋼6の側面に、データロガーを内蔵した防水構造を有する容器(データロガー内蔵容器とも記す)60を固定し、さらにレセプタクル55及びコネクタシェル56を用いてデータロガー内蔵容器60に接続されたケーブル75を直流電流測定器5と着脱可能に接続することもできる。このようにして流電陽極2が発生する電流を直流電流測定器5によって測定し、得られた電流値を測定時刻とともにデータロガーによって記録することができる。なお、図1に示した装置においても図2に示した方法と同様の方法を用い、データロガー内蔵容器60を配置し、それに直流電流測定器5を接続することもできる。   In the apparatus shown in FIG. 2, the cable 7 can be connected to the receptacle 55 of the direct current measuring instrument 5 as shown in FIG. 1, or the bolt 65 is used as shown in FIG. A cable having a waterproof structure (also referred to as a data logger built-in container) 60 with a built-in data logger fixed to the side surface of the grooved steel 6, and a cable connected to the data logger built-in container 60 using a receptacle 55 and a connector shell 56 75 can also be detachably connected to the DC current measuring device 5. In this way, the current generated by the galvanic anode 2 can be measured by the DC current measuring device 5, and the obtained current value can be recorded together with the measurement time by the data logger. In the apparatus shown in FIG. 1, the same method as that shown in FIG. 2 can be used to arrange the data logger built-in container 60 and connect the DC current measuring device 5 to it.

図3に示した装置は、図1に示した装置における直流電流測定器5に代えて、直流電流測定器5の端子と同形状の端子81及び82を有する導電体8を用いるものである。図3において、電気絶縁体3の空隙31及び32に導電体8の端子81及び82をそれぞれ挿入することにより、芯金21と端子81が電気的に接続され、かつ溝型鋼6と端子82が電気的に接続され、結局芯金21が溝型鋼6と電気的に接続される。   The apparatus shown in FIG. 3 uses a conductor 8 having terminals 81 and 82 having the same shape as the terminals of the DC current measuring instrument 5 instead of the DC current measuring instrument 5 in the apparatus shown in FIG. In FIG. 3, by inserting the terminals 81 and 82 of the conductor 8 into the gaps 31 and 32 of the electrical insulator 3, respectively, the core metal 21 and the terminal 81 are electrically connected, and the groove steel 6 and the terminal 82 are connected. The core metal 21 is electrically connected to the channel steel 6 after all.

本発明に用いる上記流電陽極は公知のものを用いることができるが、例えばアルミニウム合金、亜鉛合金、およびマグネシウム合金などから選ばれる材料からなり、陽極2及び芯金21が一体に形成されたものが一般的である。絶縁体3は電気伝導性を有しない材料であれば良く、例えば、ポリ塩化ビニル樹脂、アクリル樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、セラミックス、石材、およびベークライトなどから選ばれる材料を用いることができる。電流測定装置5の端子51、52、53、及び54、並びに端子81及び82を含む導電体8としては、鋼、銅および銅合金、ならびにステンレス鋼などから選ばれる材料を用いることができる。直流電流測定器5は公知のものを用いることができ、例えば、電流シャント型を挙げることができる。データロガーは公知のものを用いることができる。ただし、上記材料等は例示であり、これ以外の材料を用いてもよい。   The galvanic anode used in the present invention may be a known one, but is made of a material selected from, for example, an aluminum alloy, a zinc alloy, and a magnesium alloy, and the anode 2 and the core metal 21 are integrally formed. Is common. The insulator 3 may be any material that does not have electrical conductivity. For example, a material selected from polyvinyl chloride resin, acrylic resin, polypropylene resin, polycarbonate resin, ceramics, stone, and bakelite can be used. As the conductor 8 including the terminals 51, 52, 53, and 54 and the terminals 81 and 82 of the current measuring device 5, a material selected from steel, copper, a copper alloy, stainless steel, and the like can be used. As the direct current measuring instrument 5, a known one can be used, for example, a current shunt type. A known data logger can be used. However, the said material etc. are illustrations and you may use materials other than this.

通常は図3に示した態様で流電陽極装置を用いることによって流電陽極2から防食電流を発生させるとともに、流電陽極の発生電流を測定する必要が生じた場合には、流電陽極装置の電気絶縁体3から導電体8を取り外し、導電体8に代えて図1に示したように直流電流測定器5の端子51及び52を電気絶縁体3に挿入することによって発生電流を測定できる。   Normally, when the galvanic anode device is used in the form shown in FIG. 3 to generate a corrosion-proof current from the galvanic anode 2, and it is necessary to measure the generated current of the galvanic anode, the galvanic anode device The electric current 8 can be measured by removing the electric conductor 8 from the electric insulator 3 and inserting the terminals 51 and 52 of the DC current measuring device 5 into the electric insulator 3 as shown in FIG. .

以上のように構成した流電陽極装置を用いることによって、流電陽極の芯金を金属構造物から切り離すことなく、流電陽極の発生電流を測定することができ、作業が楽になりかつ作業費用を低減することができる。さらに流電陽極装置の一部に不具合が生じた場合に装置全体を交換することなく、不良個所のみを交換でき、補修が容易にできかつそのための費用も低減できる。また、上述のようにデータロガーを用いることによって、流電陽極の発生電流とともに測定時刻をデータとして収集でき、コンピュータによって長期間にわたるデータ処理を容易に行うことができることから、陽極の寿命の予想を正確に行うことができる。   By using the galvanic anode device configured as described above, the generated current of the galvanic anode can be measured without separating the core metal of the galvanic anode from the metal structure, which makes the work easier and the operation cost. Can be reduced. Furthermore, when a malfunction occurs in a part of the galvanic anode device, only the defective portion can be replaced without replacing the entire device, so that the repair can be facilitated and the cost for that can be reduced. In addition, by using a data logger as described above, the measurement time can be collected as data together with the current generated by the galvanic anode, and data processing over a long period of time can be easily performed by a computer. Can be done accurately.

図2に示した流電陽極装置においては、直流電流測定器5とデータロガー内蔵容器60を接続するためのケーブル75が短くて済むことから、この装置が配置される海中等において、ケーブルが潮流及び波浪から受ける応力を小さくでき、ケーブル内の導体の破損事故を少なくできる。本発明の流電陽極装置を用い、流電陽極の発生電流を測定することにより流電陽極の寿命が予想でき、また流電陽極装置の故障の有無を知ることができるため、金属構造物の電気防食の管理が容易になる。さらに、通常は図3に示した導電体8を用い、流電陽極の発生電流を測定する場合に導電体8を図1または図2に示した直流電流測定器5と交換することによって必要な場合に容易に発生電流を測定することができる。   In the galvanic anode device shown in FIG. 2, the cable 75 for connecting the DC current measuring device 5 and the data logger built-in container 60 can be shortened. In addition, the stress received from the waves can be reduced, and the damage to the conductor in the cable can be reduced. Since the lifetime of the galvanic anode can be predicted by measuring the current generated by the galvanic anode using the galvanic anode device of the present invention, and the presence or absence of failure of the galvanic anode device can be known. Management of cathodic protection becomes easy. Further, it is usually necessary to use the conductor 8 shown in FIG. 3 and replace the conductor 8 with the DC current measuring device 5 shown in FIG. 1 or 2 when measuring the current generated by the galvanic anode. In this case, the generated current can be easily measured.

金属構造物を電気防食する場合、金属構造物の水中部分に二以上の流電陽極装置を配置して流電陽極方式による電気防食を行うこともできる。この場合、前記二以上の流電陽極装置のそのうちの少なくとも一つに上述した本発明の流電陽極装置を用い、本発明の流電陽極装置を用い、上述したようにして流電陽極の発生電流を測定することが好ましい。特に、図3に示した導電体8の端子81及び82をそれぞれ電気絶縁体3の空隙31及び32に挿入し、陽極芯金21及び溝型鋼6を電気的に接続した状態で電気防食を行うとともに、流電陽極が発生する電流を測定する場合は、前記導電体8を取り外し、図1又は図2に示した直流電流測定器5の各端子を電気絶縁体3の空隙に挿入して陽極が発生する発生電流を測定することもできる。この方法を用いることにより、(1)少ない直流電流測定器5で多くの流電陽極2の発生電流を測定できる、(2)必要に応じて発生電流を測定する流電陽極2を変更することができるので、当初から直流電流測定器を備えた流電陽極でしか発生電流を容易に測定できなかった従来の方法と異なり、いつでも所望の流電陽極2の発生電流を測定でき、測定結果に応じて流電陽極2の交換や流電陽極2の数及び配置等の見直し等をすることにより、金属構造物全体の防食をいっそう有効に行うことができる。   When a metal structure is subjected to electrocorrosion protection, two or more galvanic anode devices can be arranged in the underwater portion of the metal structure to perform galvanic protection by the galvanic anode method. In this case, the galvanic anode device of the present invention described above is used for at least one of the two or more galvanic anode devices, and the galvanic anode device of the present invention is used to generate the galvanic anode as described above. It is preferable to measure the current. In particular, the terminals 81 and 82 of the conductor 8 shown in FIG. 3 are respectively inserted into the gaps 31 and 32 of the electrical insulator 3, and the anticorrosion is performed with the anode core 21 and the grooved steel 6 being electrically connected. At the same time, when measuring the current generated by the galvanic anode, the conductor 8 is removed, and the terminals of the DC current measuring device 5 shown in FIG. It is also possible to measure the generated current at which is generated. By using this method, (1) it is possible to measure the generated current of many galvanic anodes 2 with a small number of DC current measuring instruments 5, and (2) changing the galvanic anode 2 for measuring the generated current as required. Therefore, unlike the conventional method in which the generated current can be easily measured only with the galvanic anode equipped with a direct current measuring instrument from the beginning, the generated current of the desired galvanic anode 2 can be measured at any time. Accordingly, the corrosion prevention of the entire metal structure can be performed more effectively by replacing the electroplating anode 2 and reviewing the number and arrangement of the electroplating anodes 2.

流電陽極装置及び金属構造物の接続構造部分の一態様を示す模式図Schematic diagram showing one embodiment of the connecting structure portion of the galvanic anode device and metal structure 流電陽極装置及び金属構造物の接続構造部分の別の一態様を示す模式図Schematic diagram showing another embodiment of the connecting structure portion of the galvanic anode device and metal structure 流電陽極装置及び金属構造物の接続構造部分のさらに別の一態様を示す模式図The schematic diagram which shows another one aspect | mode of the connection structure part of a galvanic anode apparatus and a metal structure 従来の流電陽極装置を示す参考図Reference diagram showing a conventional galvanic anode device

符号の説明Explanation of symbols

1…金属構造物、2…流電陽極、21…芯金、3…電気絶縁体、31及び32…空隙、41…絶縁ボルトナット、42…絶縁ボルト 、5…直流電流測定器、43、44、51、52、53、及び54…直流電流測定器の端子、55…レセプタクル、56…カップリングシェル、6…溝型鋼、60…データロガー内蔵容器、65…ボルト、72…シェルカバー、7,75…ケーブル、8…導電体、81及び82…導電体の端子

DESCRIPTION OF SYMBOLS 1 ... Metal structure, 2 ... Current-flow anode, 21 ... Core metal, 3 ... Electrical insulator, 31 and 32 ... Air gap, 41 ... Insulation bolt nut, 42 ... Insulation bolt, 5 ... DC current measuring device, 43, 44 , 51, 52, 53, and 54 ... DC current measuring device terminals, 55 ... Receptacle, 56 ... Coupling shell, 6 ... Channel steel, 60 ... Container with built-in data logger, 65 ... Bolt, 72 ... Shell cover, 7, 75 ... Cable, 8 ... Conductor, 81 and 82 ... Terminals of the conductor

Claims (7)

金属構造物の電気防食方法に用いる流電陽極装置であって、
前記金属構造物と電気的に接続するための端子、及び前記流電陽極と電気的に接続するための端子を有する直流電流測定器を用い、
前記直流電流測定器の端子の挿入口を設けた電気絶縁体を介して前記金属構造物上に前記流電陽極の芯金を固定するとともに、
前記挿入口に前記端子を挿入した際に、前記金属構造物と電気的に接続するための前記端子が前記金属構造物と電気的に接続され、かつ前記芯金と電気的に接続するための前記端子が前記芯金に電気的に接続されることにより、前記直流電流測定器による防食電流の測定を可能にしたことを特徴とする流電陽極装置。
A galvanic anode device for use in a method for cathodic protection of metal structures,
Using a direct current measuring instrument having a terminal for electrical connection with the metal structure and a terminal for electrical connection with the galvanic anode,
While fixing the core metal of the galvanic anode on the metal structure via an electrical insulator provided with an insertion port of the terminal of the direct current measuring device,
When the terminal is inserted into the insertion port, the terminal for electrically connecting to the metal structure is electrically connected to the metal structure and electrically connected to the metal core The terminal is electrically connected to the metal core, thereby enabling measurement of the anticorrosion current by the DC current measuring device.
前記直流電流測定器にさらに電流測定用ケーブルを着脱可能に接続したことを特徴とする請求項1に記載の流電陽極装置。   The galvanic anode device according to claim 1, wherein a current measuring cable is further detachably connected to the DC current measuring device. 前記直流電流測定器に、前記流電陽極の発生電流値を測定時刻とともに記録するためのデータロガーをさらに接続したことを特徴とする請求項1又は2に記載の流電陽極装置。   The galvanic anode device according to claim 1 or 2, further comprising a data logger connected to the DC current measuring device for recording a current value generated by the galvanic anode together with a measurement time. 防水構造を有する容器内に前記データロガーを格納するとともに、前記容器を前記直流電流測定器の近傍に配置したことを特徴とする請求項3に記載の流電陽極装置。   4. The galvanic anode device according to claim 3, wherein the data logger is stored in a container having a waterproof structure, and the container is disposed in the vicinity of the direct current measuring device. 請求項1〜4のいずれか一項に記載の流電陽極装置において、前記直流電流測定器の端子を挿入するために設けた前記電気絶縁体の挿入口に、前記直流電流測定器に代えて前記直流電流測定器の端子と同形状の端子を有する導電体を挿入することにより、前記金属構造物と前記芯金とを前記導電体によって電気的に接続したことを特徴とする流電陽極装置。   In the galvanic anode device according to any one of claims 1 to 4, in place of the DC current measuring device, an insertion port of the electrical insulator provided for inserting a terminal of the DC current measuring device. A galvanic anode device in which the metal structure and the metal core are electrically connected by the conductor by inserting a conductor having a terminal having the same shape as the terminal of the direct current measuring device. . 金属構造物の水中部分に二以上の流電陽極を配置して前記金属構造物の電気防食を行うに際し、前記流電陽極のうち少なくとも一つとして請求項1〜5のいずれか一項に記載の流電陽極装置を用いることを特徴とする金属構造物の電気防食方法。   When arranging two or more galvanic anodes in an underwater portion of a metal structure and performing the anticorrosion of the metal structure, at least one of the galvanic anodes is according to any one of claims 1 to 5. An anticorrosion method for a metal structure, characterized by using a galvanic anode device. 金属構造物の水中部分に二以上の流電陽極を配置して前記金属構造物の電気防食を行うに際し、前記流電陽極のうち少なくとも一つとして請求項5に記載の流電陽極装置を用いて前記流電陽極装置の発生電流を測定する際に、前記直流電流測定器の端子と同形状の端子を有する導電体を取り外すとともに直流電流測定器の端子を前記電気絶縁体の挿入口に挿入して前記発生電流を測定することを特徴とする金属構造物の電気防食方法。

When the two or more galvanic anodes are arranged in the underwater portion of the metal structure to perform the anticorrosion of the metal structure, the galvanic anode device according to claim 5 is used as at least one of the galvanic anodes. When measuring the generated current of the galvanic anode device, the conductor having the same shape as the terminal of the DC current measuring device is removed and the terminal of the DC current measuring device is inserted into the insertion port of the electrical insulator. And measuring the generated current.

JP2004082215A 2004-03-22 2004-03-22 Galvanic anode device for cathodic protection and method for cathodic protection of metal structure using said device Expired - Lifetime JP4414256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082215A JP4414256B2 (en) 2004-03-22 2004-03-22 Galvanic anode device for cathodic protection and method for cathodic protection of metal structure using said device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082215A JP4414256B2 (en) 2004-03-22 2004-03-22 Galvanic anode device for cathodic protection and method for cathodic protection of metal structure using said device

Publications (2)

Publication Number Publication Date
JP2005264286A JP2005264286A (en) 2005-09-29
JP4414256B2 true JP4414256B2 (en) 2010-02-10

Family

ID=35089137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082215A Expired - Lifetime JP4414256B2 (en) 2004-03-22 2004-03-22 Galvanic anode device for cathodic protection and method for cathodic protection of metal structure using said device

Country Status (1)

Country Link
JP (1) JP4414256B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061336B2 (en) * 2018-07-20 2022-04-28 日本防蝕工業株式会社 Sacrificial anode structure and wear state discriminating device and discriminating method for sacrificial anode

Also Published As

Publication number Publication date
JP2005264286A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP6770046B2 (en) Cathode anticorrosion monitoring probe
JP2008096398A (en) Cathode corrosion preventing system and cathode corrosion preventing method by galvanic anode system, pipeline soundness evaluating system and soundness evaluating method
US20150198518A1 (en) Cathodic protection reference cell article and method
JP7061336B2 (en) Sacrificial anode structure and wear state discriminating device and discriminating method for sacrificial anode
Håkansson et al. Galvanic corrosion of high temperature low sag aluminum conductor composite core and conventional aluminum conductor steel reinforced overhead high voltage conductors
WO2008110625A1 (en) Apparatus for measuring sacrificial anode wear
JP2007132010A (en) Corrosion detection method of inside of coating corrosion-protective body
US4489277A (en) Cathodic protection monitoring system
JP4414256B2 (en) Galvanic anode device for cathodic protection and method for cathodic protection of metal structure using said device
US9441307B2 (en) Cathodic protection automated current and potential measuring device for anodes protecting vessel internals
JP4847307B2 (en) Cathodic protection system and cathode protection method
JP2008121061A (en) Corrosion protection system and method for cathode by galvanic anode system
US4639677A (en) Cathodic protection monitoring system
JP4374598B2 (en) Feeding cable monitoring device
JP2017128769A (en) Sacrificial anode unit and electric protection structure of concrete structure using the same
US9856566B1 (en) Methods and apparatus for monitoring a sacrificial anode
WO2014174253A1 (en) Method and apparatus for evaluating cathodic protection
JP4008891B2 (en) Pretreatment method of cathodic protection
KR200343324Y1 (en) Stray current measurement sensor of subway and power line
JP2009235512A (en) Method for deciding spacing in installment of anode for electrical protection, and electrode device used therefor
Saunders Electrolysis of lead sheathed cables
JP3123406U (en) Potentiometer
JP2008297593A (en) Structure for fixing terminal for electrolytic protection of concrete structure
Franco et al. Aft Anode Sled Failure at a Floating Production Unit Hull
CN116288371A (en) Integrated composite probe for cathodic protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070312

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4414256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250