JP4413910B2 - Jet pump flow rate measurement method and device for pipe breakage - Google Patents

Jet pump flow rate measurement method and device for pipe breakage Download PDF

Info

Publication number
JP4413910B2
JP4413910B2 JP2006299077A JP2006299077A JP4413910B2 JP 4413910 B2 JP4413910 B2 JP 4413910B2 JP 2006299077 A JP2006299077 A JP 2006299077A JP 2006299077 A JP2006299077 A JP 2006299077A JP 4413910 B2 JP4413910 B2 JP 4413910B2
Authority
JP
Japan
Prior art keywords
differential pressure
jet pump
diffuser
breakage
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006299077A
Other languages
Japanese (ja)
Other versions
JP2008116296A (en
Inventor
公夫 井上
知道 上形
明 牧
修 久保田
Original Assignee
株式会社テプコシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テプコシステムズ filed Critical 株式会社テプコシステムズ
Priority to JP2006299077A priority Critical patent/JP4413910B2/en
Publication of JP2008116296A publication Critical patent/JP2008116296A/en
Application granted granted Critical
Publication of JP4413910B2 publication Critical patent/JP4413910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

この発明は、沸騰水型原子炉の圧力容器内のアニュラス部から下部プレナムへ冷却水を送るジェットポンプの流量計測用に、そのジェットポンプのディフーザ内と下部プレナムとの差圧を計測するための配管のうち、ディフーザからアニュラス部内に配設された配管の切損を判定する方法および、その方法に用いられるジェットポンプ流量計測配管切損判定装置に関するものである。 This invention is for measuring a differential pressure between a diffuser of a jet pump and a lower plenum for measuring a flow rate of a jet pump that sends cooling water from an annulus portion in a pressure vessel of a boiling water reactor to a lower plenum . The present invention relates to a method for determining a breakage of a pipe disposed in an annulus portion from a diffuser, and a jet pump flow measurement pipe breakage determination apparatus used in the method.

沸騰水型原子炉(BWR)においては、図4に示すように、圧力容器1内に、炉心2と、その炉心2を下方から支持する支持板3と、炉心2を側方から囲むシュラウド4と、シュラウド4の周囲のアニュラス部1aにシュラウド4を囲むように配置されてそのアニュラス部1a内の冷却水を支持板3の下方の下部プレナム1bへ送る多数の大型のジェットポンプ5とが設けられており、それらのジェットポンプ5は、それらのうちの2台について図5に詳細に示すように、冷却水を吸入する上向きに開いた吸入口5aと、外部のポンプから圧力容器1内に送られた加圧水をその吸入口5a内に下向きに吹き込んでアニュラス部1a内の冷却水を吸入口5a内に引き込むノズル5bと、吸入口5a内に吸入された冷却水を下部プレナム1bへ送る裁頭円錐状のディフーザ5cとを有している。 In a boiling water reactor (BWR), as shown in FIG. 4, in a pressure vessel 1, a core 2, a support plate 3 that supports the core 2 from below, and a shroud 4 that surrounds the core 2 from the side. And a large number of large jet pumps 5 arranged around the shroud 4 so as to surround the shroud 4 and for sending the cooling water in the annulus 1a to the lower plenum 1b below the support plate 3. These jet pumps 5 are, as shown in detail in FIG. 5 for two of them, an upwardly opened suction port 5a for sucking cooling water, and an external pump into the pressure vessel 1 feeding a nozzle 5b to draw sent pressurized cooling water annulus portion 1a to the suction port in 5a is blown downward into the suction port in 5a, the cooling water sucked into the suction port within 5a to the lower plenum 1b Court head and a cone-shaped diffuser 5c.

沸騰水型原子炉(BWR)においてはまた、図4および図5に示すように、各ジェットポンプ5が送る水の流量を計測するために、各ジェットポンプ5のディフーザ5c内の水圧を取り出す小口径配管6および、下部プレナム1b内の水圧を取り出す小口径配管7と、それらの小口径配管6,7で取り出した水圧の差圧を計測する、各ジェットポンプ5に対応するジェットポンプ差圧計8とが設けられ、さらに圧力容器1内の各部の差圧を検出するために、シュラウド4内の炉心2の下方の位置1cの水圧を取り出す小口径配管9と、小口径配管7,9で取り出した水圧の差圧を計測する支持板差圧計10と、シュラウド4内の炉心2の上方の位置1dの水圧を取り出す小口径配管11と、小口径配管9,11で取り出した水圧の差圧を計測する炉心差圧計12とが設けられている。 In the boiling water reactor (BWR), as shown in FIGS. 4 and 5, in order to measure the flow rate of water sent by each jet pump 5, a small water pressure is taken out from the diffuser 5 c of each jet pump 5. The jet pump differential pressure gauge 8 corresponding to each jet pump 5 that measures the differential pressure between the bore pipe 6 and the small bore pipe 7 for taking out the water pressure in the lower plenum 1b and the water pressure taken out through the small bore pipes 6 and 7. And a small-diameter pipe 9 for extracting water pressure at a position 1c below the core 2 in the shroud 4 and small-diameter pipes 7 and 9 for detecting the differential pressure of each part in the pressure vessel 1 The differential pressure of the water pressure extracted by the support plate differential pressure gauge 10 that measures the differential pressure of the water pressure, the small-diameter pipe 11 that extracts the water pressure at the position 1d above the core 2 in the shroud 4, and the small-diameter pipes 9 and 11 measurement And the core differential pressure gauge 12 is provided that.

ところで近年、ジェットポンプ5のディフーザ5c内の水圧を取り出す上記小口径配管6の何れかが、ディフーザ5cからアニュラス部1a内に配設された例えば図中符号BKで示す如き部分で、原子炉の運転中の振動の影響等を受けて切損する事象が散見されている。当該事象が原子炉の運転中に発生した場合、先ず、信号レベルの変化として発見できる場合もあるが、その場合でも、他の原因との区別は必ずしも明確にできない。このため原因が当該小口径配管6の切損であることの確認については、原子炉を停止させて圧力容器1の蓋を開放した後、水中テレビカメラを圧力容器1内に入れて行う必要がある。   Incidentally, in recent years, any of the small-diameter pipes 6 for taking out the water pressure in the diffuser 5c of the jet pump 5 is disposed in the annulus portion 1a from the diffuser 5c, for example, at a portion indicated by symbol BK in the figure. There are some events that are broken due to the influence of vibration during operation. If this event occurs during the operation of the reactor, it may be first detected as a change in signal level, but even in that case, it is not always clear from other causes. For this reason, it is necessary to confirm that the cause is the cut of the small-diameter pipe 6 by placing the underwater television camera in the pressure vessel 1 after stopping the reactor and opening the lid of the pressure vessel 1. is there.

すなわち従来、ジェットポンプ5のディフーザ5c内の水圧を取り出す小口径配管6が切損する事象が原子炉の運転中に発生し、ジェットポンプ差圧計8の信号レベルに変化が現れても、それだけでは原因が当該小口径配管6の切損であるのか、あるいはそれ以外の要因(例えば当該小口径配管6への異物詰まり等)なのかは判別できず、対策を講じるにしても切損以外の要因の場合も考慮して準備しなければならなかったため、必ずしも効率の良い点検・補修作業の準備ができなかった。   That is, conventionally, an event that the small-diameter pipe 6 for taking out the water pressure in the diffuser 5c of the jet pump 5 is broken during the operation of the nuclear reactor, and even if the signal level of the jet pump differential pressure gauge 8 changes, that is the cause. Is a failure of the small-diameter pipe 6 or other factors (for example, clogging of foreign matter into the small-diameter pipe 6). Because we had to prepare in consideration of the case, we could not always prepare for efficient inspection and repair work.

従って、ジェットポンプ5の流量レベルに有意な変化が現れた際に、その原因がディフーザ5c内の水圧を取り出す小口径配管6の切損であるか否かを明確に判定できること、また原子炉の運転中に定期的に繰り返して当該切損事象が発生していないことの確認ができることは、原子力プラントの効率的な運用・保守に繋がる課題であった。   Therefore, when a significant change appears in the flow rate level of the jet pump 5, it can be clearly determined whether or not the cause is a breakage in the small-diameter pipe 6 that takes out the water pressure in the diffuser 5c. Being able to confirm that the cutting event has not occurred repeatedly during operation was an issue that led to efficient operation and maintenance of the nuclear power plant.

この発明は、上記課題を有利に解決することを目的とするものであり、この発明のジェットポンプ流量計測配管切損判定方法は、沸騰水型原子炉内の炉心を囲むシュラウドの周囲のアニュラス部に設けられて、そのアニュラス部から、前記炉心を下方から支持する支持板の下の下部プレナムへ冷却水を送るジェットポンプの流量計測用に、そのジェットポンプのディフーザ内と前記下部プレナムとの差圧を計測するための配管のうち、前記ディフーザから前記アニュラス部内に配設された配管の切損を判定するに際し、前記ディフーザ内と前記下部プレナムとの差圧である第1の差圧と、前記シュラウド内の前記炉心と前記下部プレナムとの差圧である第2の差圧とをそれぞれ計測し、それら計測した第1の差圧と第2の差圧との間の相関を評価して、相関が見られる場合に、前記ディフーザから前記アニュラス部内に配設された配管の切損が有ると判定することを特徴とするものである。 SUMMARY OF THE INVENTION An object of the present invention is to advantageously solve the above-described problem, and a jet pump flow measurement pipe breakage determination method according to the present invention includes an annulus portion around a shroud surrounding a core in a boiling water reactor. For measuring the flow rate of a jet pump that sends cooling water from its annulus part to the lower plenum below the support plate that supports the core from below, the difference between the inside of the diffuser of the jet pump and the lower plenum A first differential pressure that is a differential pressure between the diffuser and the lower plenum when determining the breakage of the pipe disposed in the annulus portion from the diffuser among the pipes for measuring pressure; a second differential pressure is a differential pressure between the reactor core and the lower plenum in the shroud to measure respectively, the correlation between the first differential pressure and a second pressure difference that they measured And valence, when the correlation is observed, is characterized in determining that Setsuson pipe disposed within the annulus from the diffuser there.

そして上記方法に用いられるこの発明のジェットポンプ流量計測配管切損判定装置は、前記ディフーザ内と前記下部プレナムとの差圧である第1の差圧を計測する第1の差圧計と、前記シュラウド内の前記炉心と前記下部プレナムとの差圧である第2の差圧を計測する第2の差圧計と、それら第1の差圧計が計測した第1の差圧と第2の差圧計が計測した第2の差圧との間の相関を評価して、相関が見られる場合に、前記ディフーザから前記アニュラス部内に配設された配管の切損が有ると判定する切損判定手段と、を具えることを特徴とするものである。 The jet pump flow measurement pipe breakage determination device of the present invention used in the above method includes a first differential pressure gauge that measures a first differential pressure that is a differential pressure between the diffuser and the lower plenum, and the shroud. A second differential pressure gauge that measures a second differential pressure that is a differential pressure between the core in the core and the lower plenum, and a first differential pressure gauge and a second differential pressure gauge that are measured by the first differential pressure gauge. A breakage determining means that evaluates a correlation between the measured second differential pressure and determines that there is a breakage of a pipe disposed in the annulus portion from the diffuser when the correlation is found; It is characterized by comprising.

ジェットポンプの流量は、ジェットポンプのディフーザ内と下部プレナムとの差圧である第1の差圧から換算して計測しているので、そのディフーザ内と下部プレナムとの差圧を計測するための配管のうち、ディフーザからアニュラス部内に配設された配管に切損が起こった場合、切損部分でその配管がアニュラス部内に開放されて、本来はディフーザ内と下部プレナムとの差圧であるはずの第1の差圧を示す第1の差圧計の出力信号が、実質的にはアニュラス部と下部プレナムとの差圧を示していることになる。この場合、アニュラス部とシュラウドの内側の炉心の上下方の位置とはシュラウドの上方を経由して連通していることから、その第1の差圧(第1の差圧計の出力信号)は、それまで特に相関の見られなかった、シュラウド内の前記炉心と前記下部プレナムとの差圧である第2の差圧(第2の差圧計の出力信号)との間に有意な相関を示現するようになる。 Since the flow rate of the jet pump is converted from the first differential pressure that is the differential pressure between the diffuser and the lower plenum of the jet pump, the differential pressure between the diffuser and the lower plenum is measured. If a pipe breaks from the diffuser into the annulus, the pipe is opened into the annulus at the cut, and should be the pressure difference between the diffuser and the lower plenum. The output signal of the first differential pressure gauge indicating the first differential pressure substantially indicates the differential pressure between the annulus portion and the lower plenum . In this case, since the annulus portion and the position above and below the core inside the shroud communicate with each other via the top of the shroud, the first differential pressure (the output signal of the first differential pressure gauge) is A significant correlation is shown between the second differential pressure (the output signal of the second differential pressure gauge), which is the differential pressure between the core in the shroud and the lower plenum , which has not been particularly correlated until then. It becomes like this.

しかしてこの発明のジェットポンプ流量計測配管切損判定方法によれば、それら第1の差圧計が計測した第1の差圧と第2の差圧計が計測した第2の差圧との間の相関を評価して、相関が見られる場合に、ディフーザからアニュラス部内に配設された配管の切損が有ると判定するので、その配管が切損している状態にあるか否かを明確に判定することができる。   Therefore, according to the jet pump flow measurement pipe breakage determination method of the present invention, the difference between the first differential pressure measured by the first differential pressure gauge and the second differential pressure measured by the second differential pressure gauge. When the correlation is evaluated and the correlation is found, it is determined that the pipe disposed in the annulus from the diffuser is broken, so it is clearly determined whether or not the pipe is broken. can do.

またこの発明のジェットポンプ流量計測配管切損判定装置によれば、切損判定手段が、それら第1の差圧計が計測した第1の差圧と第2の差圧計が計測した第2の差圧との間の相関を評価して、相関が見られる場合に、ディフーザからアニュラス部内に配設された配管の切損が有ると判定するので、その配管が切損している状態にあるか否かを自動的に明確に判定することができる。   Further, according to the jet pump flow measurement pipe breakage judging device of the present invention, the breakage judging means has the first differential pressure measured by the first differential pressure gauge and the second difference measured by the second differential pressure gauge. When the correlation between the pressure and the pressure is evaluated and a correlation is seen, it is determined that the pipe disposed in the annulus portion is broken from the diffuser, so whether or not the pipe is broken. Can be automatically and clearly determined.

なお、この発明においては、前記相関の評価に、コヒーレンス値を指標として用いても良い。   In the present invention, a coherence value may be used as an index for the correlation evaluation.

また。この発明においては、前記第2の差圧は、前記シュラウド内の前記炉心の下方の部位と前記下部プレナムとの差圧としても良い。 Also. In the present invention, the second differential pressure may be a differential pressure between a portion of the shroud below the core and the lower plenum .

以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1は、この発明のジェットポンプ流量計測配管切損判定方法の一実施例およびそこに用いられるこの発明のジェットポンプ流量計測配管切損判定装置の構成を示す構成図、図2は、その実施例のジェットポンプ流量計測配管切損判定装置が上記実施例の方法に基づき切損を判定する場合のコヒーレンス値の求め方を示すフローチャート、図3は、上記実施例のジェットポンプ流量計測配管切損判定装置が上記実施例の方法に基づき切損有りと判定する場合のコヒーレンス値の変化状態を例示するグラフを示すカラー写真である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an embodiment of the jet pump flow measurement pipe breakage determination method of the present invention and the configuration of the jet pump flow measurement pipe breakage determination apparatus of the present invention used therein, and FIG. FIG. 3 is a flowchart showing how to obtain a coherence value when the jet pump flow measurement pipe breakage determination apparatus of the embodiment determines a breakage based on the method of the embodiment, and FIG. 3 shows the jet pump flow measurement of the embodiment. It is a color photograph which shows the graph which illustrates the change state of a coherence value in case a pipe breakage determination apparatus determines with a cut based on the method of the said Example.

この実施例のジェットポンプ流量計測配管切損判定装置は、図4および図5に示す従来のものと同様の原子炉に設けられているものであり、図1中、図4および図5におけると同様の部分は、それと同一の符号にて示す。   The jet pump flow measurement pipe breakage judgment device of this embodiment is provided in the same nuclear reactor as the conventional one shown in FIGS. 4 and 5, and in FIG. 1 and FIG. Similar parts are denoted by the same reference numerals.

すなわち、この実施例のジェットポンプ流量計測配管切損判定装置が設けられた沸騰水型原子炉(BWR)も、図4および図5に示すように、圧力容器1内に、炉心2と、図1では図示しないが、その炉心2を下方から支持する支持板3と、炉心2を側方から囲むシュラウド4と、シュラウド4の周囲のアニュラス部1aにシュラウド4を囲むように配置されてそのアニュラス部1a内の冷却水を支持板3の下方の下部プレナム1bへ送る多数の大型のジェットポンプ5とが設けられており、それらのジェットポンプ5は、冷却水を吸入する上向きに開いた吸入口5aと、外部のポンプから圧力容器1内に送られた加圧水をその吸入口5a内に下向きに吹き込んでアニュラス部1a内の冷却水を吸入口5a内に引き込むノズル5bと、吸入口5a内に吸入された冷却水を下部プレナム1bへ送る裁頭円錐状のディフーザ5cとを有している。 That is, the boiling water reactor (BWR) provided with the jet pump flow measurement pipe breakage determination device of this embodiment is also provided in the pressure vessel 1 with the core 2 and the figure as shown in FIGS. Although not shown in FIG. 1, a support plate 3 that supports the core 2 from below, a shroud 4 that surrounds the core 2 from the side, and an annulus that surrounds the shroud 4 in an annulus portion 1 a around the shroud 4. A large number of large-scale jet pumps 5 for sending the cooling water in the section 1a to the lower plenum 1b below the support plate 3 are provided. These jet pumps 5 are suction ports opened upward for sucking the cooling water. 5a, a nozzle 5b for blowing the pressurized water sent from the external pump into the pressure vessel 1 downward into the suction port 5a and drawing the cooling water in the annulus portion 1a into the suction port 5a, and the suction port The cooling water sucked into a and a diffuser 5c frusto conical sent to the lower plenum 1b.

この沸騰水型原子炉においてはまた、各ジェットポンプ5が送る水の流量を計測するために、各ジェットポンプ5のディフーザ5c内の水圧を取り出す小口径配管6および、下部プレナム1b内の水圧を取り出す小口径配管7と、第1の差圧としての、それらの小口径配管6,7で取り出した水圧の差圧を計測する、第1の差圧計としての、各ジェットポンプ5に対応するジェットポンプ差圧計8とが設けられ、さらに圧力容器1内の各部の差圧を検出するために、シュラウド4内の炉心2の下方の位置1cの水圧を取り出す小口径配管9と、この実施例では第2の差圧としての、小口径配管7,9で取り出した水圧の差圧を計測する、第2の差圧計としての支持板差圧計10と、シュラウド4内の炉心2の上方の位置1dの水圧を取り出す小口径配管11と、小口径配管9,11で取り出した水圧の差圧を計測する炉心差圧計12とが設けられており、それらジェットポンプ差圧計8と支持板差圧計10と炉心差圧計12とは計測系13を構成している。 In this boiling water reactor, in order to measure the flow rate of the water sent by each jet pump 5, the small-diameter pipe 6 for taking out the water pressure in the diffuser 5c of each jet pump 5 and the water pressure in the lower plenum 1b are used. A jet corresponding to each jet pump 5 as a first differential pressure gauge that measures the differential pressure between the small-diameter pipe 7 to be taken out and the water pressure taken out by the small-diameter pipes 6 and 7 as the first differential pressure. A pump differential pressure gauge 8 is provided, and a small-diameter pipe 9 for taking out water pressure at a position 1c below the core 2 in the shroud 4 in order to detect the differential pressure of each part in the pressure vessel 1, and in this embodiment A support plate differential pressure gauge 10 as a second differential pressure gauge for measuring the differential pressure of the water pressure taken out by the small-diameter pipes 7 and 9 as the second differential pressure, and a position 1d above the core 2 in the shroud 4 Take out the water pressure of There are provided a core pipe 11 and a core differential pressure gauge 12 for measuring the differential pressure of the water pressure taken out by the small diameter pipes 9, 11. These jet pump differential pressure gauge 8, support plate differential pressure gauge 10, and core differential pressure gauge 12 Constitutes the measurement system 13.

この沸騰水型原子炉においてはさらに、計測系13のジェットポンプ差圧計8と支持板差圧計10と炉心差圧計12とがそれぞれ計測したアナログの差圧信号を高頻度でデジタル信号に変換して実質上連続的に記録するデータ記録処理装置としての、例えばハードディスクドライブ装置を有する過渡現象記録装置14と、その過渡現象記録装置14からこの実施例ではジェットポンプ差圧計8の差圧信号と支持板差圧計10の差圧信号とをデジタルデータとして読み出して解析する、切損判定手段としての、通常のパーソナルコンピュータで構成されたデータ解析装置15とが設けられている。従って、この実施例ではジェットポンプ差圧計8と支持板差圧計10とデータ解析装置15とが、ジェットポンプ流量計測配管切損判定装置を構成している。   In this boiling water reactor, the analog differential pressure signals respectively measured by the jet pump differential pressure gauge 8, the support plate differential pressure gauge 10, and the core differential pressure gauge 12 of the measurement system 13 are converted into digital signals at a high frequency. As a data recording processing device for recording substantially continuously, for example, a transient phenomenon recording device 14 having a hard disk drive device, and from the transient phenomenon recording device 14 in this embodiment, a differential pressure signal and a support plate of the jet pump differential pressure gauge 8 There is provided a data analysis device 15 constituted by a normal personal computer as a breakage determination means for reading and analyzing the differential pressure signal of the differential pressure gauge 10 as digital data. Therefore, in this embodiment, the jet pump differential pressure gauge 8, the support plate differential pressure gauge 10, and the data analysis device 15 constitute a jet pump flow measurement pipe breakage determination device.

この沸騰水型原子炉においては、各ジェットポンプ5の流量は、ジェットポンプ5のディフーザ5c内と下部プレナム1bとの差圧である第1の差圧から換算して計測しているので、そのディフーザ5c内と下部プレナム1bとの差圧を計測するための配管6,7のうち、ディフーザ5c内の水圧を取り出す小口径配管6の、ディフーザ5cからアニュラス部1a内に配設された部分に切損が起こった場合、切損部分でその配管6がアニュラス部1a内に開放されて、本来はディフーザ5c内と下部プレナム1bとの差圧であるはずの第1の差圧を示すジェットポンプ差圧計8の出力信号が、実質的にはアニュラス部1aと下部プレナム1bとの差圧を示していることになる。 In this boiling water reactor, the flow rate of each jet pump 5 is measured in terms of the first differential pressure that is the differential pressure between the diffuser 5c of the jet pump 5 and the lower plenum 1b. Of the pipes 6 and 7 for measuring the differential pressure between the diffuser 5c and the lower plenum 1b, a portion of the small-diameter pipe 6 for taking out the water pressure in the diffuser 5c from the diffuser 5c into the annulus portion 1a. When a cut occurs, the pipe 6 is opened into the annulus portion 1a at the cut portion , and the jet pump showing the first differential pressure that should be the differential pressure between the diffuser 5c and the lower plenum 1b. The output signal of the differential pressure gauge 8 substantially indicates the differential pressure between the annulus portion 1a and the lower plenum 1b.

この場合、アニュラス部1aとシュラウド4の内側の炉心2の上方および下方の位置とはシュラウド4の上方を経由して連通していることから、その第1の差圧(ジェットポンプ差圧計8の出力信号)は、それまで特に相関の見られなかった、シュラウド4内の炉心2の下方の部位と下部プレナム1bとの差圧である第2の差圧(支持板差圧計10の出力信号)との間に有意な相関を示現するようになる。 In this case, since the annulus portion 1a and the position above and below the core 2 inside the shroud 4 communicate with each other via the top of the shroud 4, the first differential pressure (jet pump differential pressure gauge 8 Output signal) is a second differential pressure (output signal of the support plate differential pressure gauge 10), which is a differential pressure between the lower portion of the core 2 in the shroud 4 and the lower plenum 1b, which has not been particularly correlated until then. A significant correlation is exhibited.

しかしてこの実施例のジェットポンプ流量計測配管切損判定方法では、この実施例のジェットポンプ流量計測配管切損判定装置の一部をなすデータ解析装置15が、あらかじめ与えられたプログラムに基づき、それらジェットポンプ差圧計8の出力信号である第1の差圧と支持板差圧計10の出力信号である第2の差圧とを過渡現象記録装置14から高頻度(例えば数十ミリ秒間隔)で読み出してそれら第1の差圧と第2の差圧との間の相関を評価して、所定レベル以上の相関が見られる場合に、ディフーザ5cからアニュラス部1a内に配設された小口径配管6の切損が有ると判定する。   However, in the jet pump flow measurement pipe breakage determination method of this embodiment, the data analysis device 15 that forms a part of the jet pump flow measurement pipe breakage determination apparatus of this embodiment is based on a program given in advance. The first differential pressure that is an output signal of the jet pump differential pressure gauge 8 and the second differential pressure that is an output signal of the support plate differential pressure gauge 10 are frequently transmitted from the transient recording device 14 (for example, at intervals of several tens of milliseconds). When the correlation between the first differential pressure and the second differential pressure is read out and a correlation of a predetermined level or more is found, the small-diameter pipe disposed in the annulus portion 1a from the diffuser 5c It is determined that there are 6 cuts.

ここで、第1の差圧と第2の差圧との間の相関の評価は、例えば図2に示す如き手順でコヒーレンス値を求め、それを用いることで行うことができる。先ず、例えば第1の差圧を表す時系列信号x(t)のノイズ成分を分析するために、その時系列信号を三角波の和として近似する(フーリエ変換を行う)。   Here, the evaluation of the correlation between the first differential pressure and the second differential pressure can be performed, for example, by obtaining a coherence value by a procedure as shown in FIG. 2 and using it. First, in order to analyze the noise component of the time series signal x (t) representing the first differential pressure, for example, the time series signal is approximated as a sum of triangular waves (Fourier transform is performed).

次いで、フーリエ成分X(f)から、下式により時系列信号x(t)に対応するパワースペクトル密度分布Px(f)が定義される。   Next, a power spectral density distribution Px (f) corresponding to the time series signal x (t) is defined from the Fourier component X (f) by the following equation.

同様に、例えば第2の差圧を表す他の時系列信号y(t)に対してもフーリエ成分Y(f)からパワースペクトル密度分布Py(f)が定義でき、合わせてクロススペクトル密度分布S(f)も定義できる。   Similarly, the power spectral density distribution Py (f) can be defined from the Fourier component Y (f) for other time series signals y (t) representing the second differential pressure, for example, and the cross spectral density distribution S is combined. (F) can also be defined.

上述した式を用いて次式でコヒーレンス値Coh(f)を定義し、これを相関を示す指標として用いる。   The coherence value Coh (f) is defined by the following equation using the above-described equation, and this is used as an index indicating the correlation.

図3は、この実施例のジェットポンプ流量計測配管切損判定装置がこの実施例のジェットポンプ流量計測配管切損判定方法に基づき切損有りと判定する場合のコヒーレンス値の変化状態を例示しており、具体的にはJP−01〜20の20台のジェットポンプ5のうち、図中曲線Aで示すJP−16のコヒーレンス値が、周波数1Hz以下の領域で他のジェットポンプより極めて大きくなっている。この図からも明らかなように、データ解析装置15は、例えば周波数10−1Hzあるいはそれ以下の領域において例えばコヒーレンス値0.5および0.8を閾値として、求めたコヒーレンス値が0.5以上で0.8未満の場合は切損の徴候有り、求めたコヒーレンス値が0.8以上の場合は切損有り、求めたコヒーレンス値が0.5未満の場合は切損なしと判定することにより、JP−01〜20の20台のジェットポンプ5の小口径配管6が各々切損している状態にあるか否かを、切損の徴候を含めて自動的に明確に判定することができる。 FIG. 3 exemplifies the change state of the coherence value when the jet pump flow measurement pipe breakage determination device of this embodiment determines that there is breakage based on the jet pump flow measurement pipe breakage determination method of this embodiment. Specifically, among the 20 jet pumps 5 of JP-01 to JP-01, the coherence value of JP-16 indicated by the curve A in the figure is much larger than that of other jet pumps in the frequency region of 1 Hz or less. Yes. As is apparent from this figure, the data analysis device 15 has a coherence value of 0.5 or more, for example, in the region of the frequency 10 −1 Hz or lower with the coherence values 0.5 and 0.8 as threshold values, for example. If it is less than 0.8, there is a sign of cutting, and if the calculated coherence value is 0.8 or more, there is cutting, and if the calculated coherence value is less than 0.5, it is determined that there is no cutting. It can be automatically and clearly determined whether or not the small-diameter pipes 6 of the 20 jet pumps 5 of JP-01 to 20 are broken, including signs of breakage.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、例えば、切損判定手段は、コヒーレンス値を用いる代わりに相関係数を用いて所定以上の相関があるか否かを評価しても良い Although the present invention has been described based on the illustrated example, the present invention is not limited to the above-described example. For example, the cut determination unit has a correlation greater than a predetermined value using a correlation coefficient instead of using a coherence value. It may be evaluated whether or not .

かくしてこの発明のジェットポンプ流量計測配管切損判定方法およびそこに用いられる装置によれば、原子炉の運転中においても、ジェットポンプ流量計測配管が切損状態にあるか否かを明確に判定することができ、これにより、原子炉停止中の水中テレビカメラによる撮影を待たなくても修理・補修の準備を開始することができる。   Thus, according to the jet pump flow measurement pipe breakage determination method and the apparatus used therefor according to the present invention, it is clearly determined whether or not the jet pump flow measurement pipe is broken even during the operation of the nuclear reactor. This makes it possible to start preparations for repairs and repairs without having to wait for underwater television camera shooting while the reactor is stopped.

また、ジェットポンプ流量計測配管が切損していないことを、原子炉の運転中に定期的に繰り返して確認することができる。   In addition, it can be confirmed periodically during operation of the reactor that the jet pump flow rate measurement piping is not broken.

この発明のジェットポンプ流量計測配管切損判定方法の一実施例およびそこに用いられるこの発明のジェットポンプ流量計測配管切損判定装置の構成を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows one Example of the jet pump flow measurement piping breakage determination method of this invention, and the structure of the jet pump flow measurement pipe breakage determination apparatus of this invention used there. 上記実施例のジェットポンプ流量計測配管切損判定装置が上記実施例の方法に基づき切損を判定する場合のコヒーレンス値の求め方を示すフローチャートである。It is a flowchart which shows how to obtain | require a coherence value in case the jet pump flow measurement piping breakage determination apparatus of the said Example determines a breakage based on the method of the said Example. 上記実施例のジェットポンプ流量計測配管切損判定装置が上記実施例の方法に基づき切損有りと判定する場合のコヒーレンス値の変化状態を例示するグラフを示すカラー写真である。It is a color photograph which shows the graph which illustrates the change state of a coherence value when the jet pump flow measurement piping breakage determination apparatus of the said Example determines with a breakage based on the method of the said Example. 原子炉の圧力容器内の構成を示す断面図である。It is sectional drawing which shows the structure in the pressure vessel of a nuclear reactor. 上記圧力容器内のジェットポンプを示す斜視図である。It is a perspective view which shows the jet pump in the said pressure vessel.

1 圧力容器
1a アニュラス部
1b 下部プレナム
1c 炉心の下方の位置
1d 炉心の上方の位置
2 炉心
3 支持板
4 シュラウド
5 ジェットポンプ
5a 吸入口
5b ノズル
5c ディフーザ
6,7,9,11 小口径配管
8 ジェットポンプ差圧計
10 支持板差圧計
12 炉心差圧計
13 計測系
14 過渡現象記録装置
15 データ解析装置
DESCRIPTION OF SYMBOLS 1 Pressure vessel 1a Annulus part 1b Lower plenum 1c Position below the core 1d Position above the core 2 Core 3 Support plate 4 Shroud 5 Jet pump 5a Inlet 5b Nozzle 5c Diffuser 6, 7, 9, 11 Small bore piping 8 Jet Pump differential pressure gauge 10 Support plate differential pressure gauge 12 Core differential pressure gauge 13 Measurement system 14 Transient phenomenon recording device 15 Data analysis device

Claims (4)

沸騰水型原子炉の圧力容器内の炉心を囲むシュラウドの周囲のアニュラス部に設けられて、そのアニュラス部から、前記炉心を下方から支持する支持板の下の下部プレナムへ冷却水を送るジェットポンプの流量計測用に、そのジェットポンプのディフーザ内と前記下部プレナムとの差圧を計測するための配管のうち、前記ディフーザから前記アニュラス部内に配設された配管の切損を判定するに際し、
前記ディフーザ内と前記下部プレナムとの差圧である第1の差圧と、前記シュラウド内の前記炉心と前記下部プレナムとの差圧である第2の差圧とをそれぞれ計測し、
それら計測した第1の差圧と第2の差圧との間の相関を評価して、相関が見られる場合に、前記ディフーザから前記アニュラス部内に配設された配管の切損が有ると判定することを特徴とする、ジェットポンプ流量計測配管切損判定方法。
A jet pump that is provided in an annulus around a shroud surrounding a core in a pressure vessel of a boiling water reactor, and sends cooling water from the annulus to a lower plenum below a support plate that supports the core from below. Among the pipes for measuring the differential pressure between the diffuser of the jet pump and the lower plenum for the flow rate measurement of, when determining the breakage of the pipe disposed in the annulus portion from the diffuser,
Measuring a first differential pressure that is a differential pressure between the diffuser and the lower plenum, and a second differential pressure that is a differential pressure between the core and the lower plenum in the shroud ,
The correlation between the measured first differential pressure and the second differential pressure is evaluated, and when the correlation is found, it is determined that there is a breakage in the pipe disposed in the annulus portion from the diffuser. A jet pump flow rate measurement method for determining pipe breakage.
前記相関の評価には、コヒーレンス値を指標として用いる、請求項1記載のジェットポンプ流量計測配管切損判定方法。   The jet pump flow measurement pipe breakage determination method according to claim 1, wherein a coherence value is used as an index for the evaluation of the correlation. 前記第2の差圧は、前記シュラウド内の前記炉心の下方の部位と前記下部プレナムとの差圧である、請求項1または2記載のジェットポンプ流量計測配管切損判定方法。 3. The jet pump flow measurement pipe breakage determination method according to claim 1, wherein the second differential pressure is a differential pressure between a portion of the shroud below the core and the lower plenum . 前記ディフーザ内と前記下部プレナムとの差圧である第1の差圧を計測する第1の差圧計と、
前記シュラウド内の前記炉心と前記下部プレナムとの差圧である第2の差圧を計測する第2の差圧計と、
それら第1の差圧計が計測した第1の差圧と第2の差圧計が計測した第2の差圧との間の相関を評価して、相関が見られる場合に、前記ディフーザから前記アニュラス部内に配設された配管の切損が有ると判定する切損判定手段と、
を具えることを特徴とする、請求項1から3までの何れか記載のジェットポンプ流量計測配管切損判定方法に用いられるジェットポンプ流量計測配管切損判定装置。
A first differential pressure gauge that measures a first differential pressure that is a differential pressure between the diffuser and the lower plenum ;
A second differential pressure gauge that measures a second differential pressure that is a differential pressure between the core in the shroud and the lower plenum ;
The correlation between the first differential pressure measured by the first differential pressure gauge and the second differential pressure measured by the second differential pressure gauge is evaluated, and when a correlation is found, the diffuser determines the annulus. A breakage judging means for judging that there is a breakage of the pipe disposed in the section;
A jet pump flow rate measurement pipe breakage judging device used in the jet pump flow rate measurement pipe breakage judgment method according to any one of claims 1 to 3.
JP2006299077A 2006-11-02 2006-11-02 Jet pump flow rate measurement method and device for pipe breakage Active JP4413910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299077A JP4413910B2 (en) 2006-11-02 2006-11-02 Jet pump flow rate measurement method and device for pipe breakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299077A JP4413910B2 (en) 2006-11-02 2006-11-02 Jet pump flow rate measurement method and device for pipe breakage

Publications (2)

Publication Number Publication Date
JP2008116296A JP2008116296A (en) 2008-05-22
JP4413910B2 true JP4413910B2 (en) 2010-02-10

Family

ID=39502347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299077A Active JP4413910B2 (en) 2006-11-02 2006-11-02 Jet pump flow rate measurement method and device for pipe breakage

Country Status (1)

Country Link
JP (1) JP4413910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201320202D0 (en) * 2013-11-15 2014-01-01 Caltec Ltd A flowmeter

Also Published As

Publication number Publication date
JP2008116296A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US9791416B2 (en) Furnace structural integrity monitoring systems and methods
FR2907255A1 (en) INTEGRATED MONITORING METHOD FOR A NUCLEAR DEVICE AND SYSTEM USING THE SAME
JP2011157894A (en) Method and device for predicting cavitation erosion quantity
CN105806948B (en) Cut deal supersonic detection method based on local water logging coupled modes straight probe of single crystal
CA2695464C (en) System and method for the acoustic monitoring of tapblocks and similar elements
US10018596B2 (en) System and method for monitoring component health using resonance
BRPI0709701A2 (en) Pipe Scanning Method and System
KR101841806B1 (en) Apparatus and method for monitoring water level in pipe
JP2009079906A (en) Vibration evaluation device and method
BR102016025788B1 (en) acoustic emission system and method for predicting an influx of the smelter in a dissolution tank
MX2007003531A (en) Method and system for displaying scanning data for oil well tubing based on scanning speed .
JP4413910B2 (en) Jet pump flow rate measurement method and device for pipe breakage
JP2011060012A (en) Plant monitoring apparatus and plant monitoring method
JP2010169465A (en) Defect detection method and defect detection device of structure
CN109594970A (en) Tubing string erosion on-line monitoring method and system
CN115684349A (en) Pipeline wearing-through real-time early warning method based on vibration signals
JP2006009581A (en) Damage detecting method and device for impeller
RU2688810C1 (en) Flaw detection of cracks in tubular elements in boreholes of wells under high pressure using acoustic emission
JP2008275358A (en) Device and method for detecting damage in nuclear reactor
JP5098169B2 (en) Cavitation bubble impact pressure detector
JP2007271375A (en) Acceptance decision system of material to be inspected in its flaw using ultrasonic flaw detection and acceptance decision method therefor
CN116181636B (en) Intelligent detection method, system and storage medium for sealing performance of air compressor
Shao et al. Compressor Blade Fault Diagnosis Based on Image Processing
JP5190282B2 (en) LPRM signal cable misconnection determination method and apparatus
CN113027690B (en) Tower foundation cracking detection method and detection device of wind generating set

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090812

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250