JP4413823B2 - Dispersion compensating fiber and optical transmission line - Google Patents

Dispersion compensating fiber and optical transmission line Download PDF

Info

Publication number
JP4413823B2
JP4413823B2 JP2005187994A JP2005187994A JP4413823B2 JP 4413823 B2 JP4413823 B2 JP 4413823B2 JP 2005187994 A JP2005187994 A JP 2005187994A JP 2005187994 A JP2005187994 A JP 2005187994A JP 4413823 B2 JP4413823 B2 JP 4413823B2
Authority
JP
Japan
Prior art keywords
dispersion
fiber
core
band
normalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005187994A
Other languages
Japanese (ja)
Other versions
JP2007010729A (en
Inventor
和秀 中島
隆 松井
泉 三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005187994A priority Critical patent/JP4413823B2/en
Publication of JP2007010729A publication Critical patent/JP2007010729A/en
Application granted granted Critical
Publication of JP4413823B2 publication Critical patent/JP4413823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、分散補償ファイバ及び光伝送路に関し、特に波長1310nm帯を用いた高速・大容量光通信に供して好適な分散補償ファイバ及び光伝送路に関する。   The present invention relates to a dispersion compensating fiber and an optical transmission line, and more particularly to a dispersion compensating fiber and an optical transmission line suitable for high-speed and large-capacity optical communication using a wavelength of 1310 nm band.

高速光伝送システムでは、光伝送中の累積分散の補償が必要不可欠となる。このため、各種光ファイバの波長分散特性の補償を目的とし、様々な分散補償ファイバが提案されている。例えば、特許文献1では、分散シフトファイバ(DSF:Dispersion Shifted Fiber)光伝送路を用いた、波長1.5μm帯、または波長1.6μm帯における伝送特性の向上を目的とし、分散シフトファイバ光伝送路の波長分散を補償する光ファイバが提案されており、当該特許文献1では、分散シフトファイバ光伝送路中の累積分散を±200ps/nm・km以下に補償する分散補償ファイバ、及び光伝送路に関する技術が開示されている。   In high-speed optical transmission systems, it is essential to compensate for the accumulated dispersion during optical transmission. For this reason, various dispersion compensating fibers have been proposed for the purpose of compensating the chromatic dispersion characteristics of various optical fibers. For example, Patent Document 1 aims at improving transmission characteristics in a wavelength band of 1.5 μm or 1.6 μm using a dispersion-shifted fiber (DSF) optical transmission line. An optical fiber that compensates the chromatic dispersion of a path has been proposed. In Patent Document 1, a dispersion compensating fiber that compensates the accumulated dispersion in a dispersion-shifted fiber optical transmission path to ± 200 ps / nm · km or less, and the optical transmission path The technology regarding is disclosed.

再公表特許(A1) WO00/17685Republished patent (A1) WO00 / 17685

しかしながら、従来の分散補償ファイバは主に1400nm帯から1600nm帯における分散特性の補償を目的としており、波長1310nm帯に適用可能な分散補償ファイバに関しては十分に明らかになっていなかった。また、一般に波長1310nmにて負の波長分散特性を有する光ファイバの分散補償を行う場合、当該波長帯域において十分大きな正の波長分散を有する分散補償ファイバが必要となる。しかし、従来のように、添加材料により屈折率分布を形成して、光ファイバの波長分散特性を制御する場合、波長1400nm帯より短波長側において、光ファイバの波長分散特性における材料分散の影響が支配的となるため、波長1310nm帯において十分大きな正の波長分散を実現することが困難になってしまう、という課題があった。   However, the conventional dispersion compensating fiber is mainly intended for compensation of dispersion characteristics in the 1400 nm band to 1600 nm band, and the dispersion compensating fiber applicable to the wavelength 1310 nm band has not been sufficiently clarified. In general, when performing dispersion compensation of an optical fiber having negative chromatic dispersion characteristics at a wavelength of 1310 nm, a dispersion compensating fiber having sufficiently large positive chromatic dispersion in the wavelength band is required. However, when the refractive index distribution is formed by the additive material and the chromatic dispersion characteristic of the optical fiber is controlled as in the conventional case, the influence of the material dispersion on the chromatic dispersion characteristic of the optical fiber is shorter than the wavelength 1400 nm band. Since it becomes dominant, there is a problem that it becomes difficult to realize sufficiently large positive wavelength dispersion in the wavelength 1310 nm band.

そこで、本発明は、上述した課題に鑑み提案されたもので、従来の屈折率分布による波長分散特性の制御に加え、空孔構造を適切に配置して、波長分散が波長1310nm帯にて十分大きな正の値、具体的には、+30ps/nm・km以上となる分散補償ファイバ及び光伝送路を提供することを目的とする。   Therefore, the present invention has been proposed in view of the above-described problems. In addition to the conventional control of chromatic dispersion characteristics by the refractive index distribution, the hole structure is appropriately arranged so that the chromatic dispersion is sufficient in the wavelength 1310 nm band. An object of the present invention is to provide a dispersion compensating fiber and an optical transmission line having a large positive value, specifically, +30 ps / nm · km or more.

上述した課題を解決する第1の発明に係る分散補償ファイバは、
半径がaで比屈折率差がΔであるコア部と、前記コア部を覆うクラッド部と、前記コア部の中心から所定の距離Λ等間隔にて形成された少なくとも4個の直径dの空孔部とを有し、
前記所定の距離Λを前記コア半径aで規格化した規格化空孔位置Λ/aと、前記空孔直径dを前記コア部のコア直径2aで規格化した規格化空孔直径d/2aと、前記コア半径aと、前記コア部の比屈折率差Δが、それぞれ(0.4≦Λ/a≦0.5)と(0.2≦d/2a≦0.3)、及び(4.0μm≦a≦6.5μm)と(0.7%≦Δ≦1.5%)の範囲、または(1.0≦Λ/a≦1.4)と(0.4≦d/2a≦1.2)、及び(1.5μm≦a≦2.5μm)と(0.7%≦Δ≦1.5%)の範囲であり、波長1310nmにおける波長分散を+30ps/nm・km以上とした
ことを特徴とする。
The dispersion compensating fiber according to the first invention for solving the above-described problem is
A core portion a radius of the relative refractive index difference a is delta, and a cladding portion covering the core portion, a predetermined distance Λ from the center of the core portion, at least four diameters d which are formed at equal intervals And a hole portion of
A normalized hole position Λ / a in which the predetermined distance Λ is normalized by the core radius a, and a normalized hole diameter d / 2a in which the hole diameter d is normalized by the core diameter 2a of the core portion. The core radius a and the relative refractive index difference Δ of the core part are (0.4 ≦ Λ / a ≦ 0.5), (0.2 ≦ d / 2a ≦ 0.3), and (4, respectively). 0.0 μm ≦ a ≦ 6.5 μm) and (0.7% ≦ Δ ≦ 1.5%), or (1.0 ≦ Λ / a ≦ 1.4) and (0.4 ≦ d / 2a ≦). 1.2), and (1.5 μm ≦ a ≦ 2.5 μm) and (0.7% ≦ Δ ≦ 1.5%), and the chromatic dispersion at a wavelength of 1310 nm is set to +30 ps / nm · km or more. It is characterized by that.

上述した課題を解決する第の発明に係る光伝送路は、
1310nm帯にて負の波長分散を有する1310nm帯負分散ファイバと、前記1310nm帯負分散ファイバの前段、後段、またはその両方に配置された第1発明に記載の分散補償ファイバとを有する
ことを特徴とする。
The optical transmission line according to the second invention for solving the above-described problem is as follows.
And 1310nm band negative dispersion fiber having a negative chromatic dispersion at 1310nm band, front of the 1310nm band negative dispersion fiber, to have a dispersion compensating fiber according to the first invention, which is disposed downstream, or both, Features.

本発明に係る分散補償ファイバによれば、規格化空孔位置Λ/a、規格化空孔直径d/2a、コア半径a、及びクラッド部に対するコア部の比屈折率差Δをそれぞれ所定の範囲にすることにより、1310nm帯にて波長分散が十分大きな正の値、具体的には、+30ps/nm・km以上となる。   According to the dispersion compensating fiber according to the present invention, the normalized hole position Λ / a, the normalized hole diameter d / 2a, the core radius a, and the relative refractive index difference Δ of the core part with respect to the cladding part are each in a predetermined range. By doing so, the chromatic dispersion becomes a positive value sufficiently large in the 1310 nm band, specifically, +30 ps / nm · km or more.

本発明に係る光伝送路によれば、波長1310nm帯における累積分散を低減し、その高速光伝送特性、及び伝送距離制限を改善することができる。   According to the optical transmission line according to the present invention, the cumulative dispersion in the wavelength 1310 nm band can be reduced, and the high-speed optical transmission characteristic and the transmission distance limitation can be improved.

以下に、本発明に係る分散補償ファイバを実施するための最良の形態を図に基づき具体的に説明する。   The best mode for carrying out the dispersion compensating fiber according to the present invention will be specifically described below with reference to the drawings.

図1は、本発明の最良の形態に係る分散補償ファイバの断面図であり、図1(a)に、空孔部がコア部の領域に形成される場合の断面、図1(b)に空孔部がクラッド部の領域に形成される場合の断面を示す。   FIG. 1 is a cross-sectional view of a dispersion compensating fiber according to the best mode of the present invention. FIG. 1 (a) shows a cross section when a hole is formed in the core region, and FIG. The cross section when a void | hole part is formed in the area | region of a clad part is shown.

本発明の最良の形態に係る分散補償ファイバは、屈折率が均一なクラッド部と、前記クラッド部に対して所定の比屈折率差を有するコア部と、前記コア部の中心から所定の距離に等間隔にて形成された少なくとも4個の空孔部とを有する。すなわち、このような分散補償ファイバとして、図1(a)に示すように、屈折率n1でありコア半径a1のコア部1と、コア部1を覆い、屈折率n2であるクラッド部2と、コア部1の領域におけるコア部1の中心C1から所定の距離Λ1に等間隔にて形成された6個の空孔部3とを有する分散補償ファイバ10や、図1(b)に示すように、屈折率n1でありコア半径a2のコア部11と、コア部11を覆い、屈折率n2であるクラッド部12と、クラッド部12の領域におけるコア部11の中心C2から所定の距離Λ2に等間隔にて形成された6個の空孔部13とを有する分散補償ファイバ20が挙げられる。 The dispersion compensating fiber according to the best mode of the present invention includes a clad portion having a uniform refractive index, a core portion having a predetermined relative refractive index difference with respect to the clad portion, and a predetermined distance from the center of the core portion. And at least four holes formed at equal intervals. That is, such a dispersion compensating fiber, as shown in FIG. 1 (a), a core portion 1 of the core radius a 1 is the refractive index n1, covering the core portion 1, and clad portion 2 is the refractive index n2 FIG. 1B shows a dispersion compensating fiber 10 having six hole portions 3 formed at equal intervals from the center C 1 of the core portion 1 in the region of the core portion 1 at a predetermined distance Λ 1 . as shown, the refractive index n1 and the core portion 11 of the core radius a 2, covering the core portion 11, and the cladding portion 12 is a refractive index n2, predetermined from the center C 2 of the core portion 11 in the region of the cladding portion 12 And a dispersion compensating fiber 20 having six holes 13 formed at equal intervals at a distance [Lambda] 2 .

比屈折率差Δは、コア部1,11の屈折率n1、及びクラッド部2,12の屈折率n2を用い、次式(1)により定義される。
Δ = (n12−n22)/(2n12) (1)
The relative refractive index difference Δ is defined by the following equation (1) using the refractive index n1 of the core portions 1 and 11 and the refractive index n2 of the cladding portions 2 and 12.
Δ = (n1 2 −n2 2 ) / (2n1 2 ) (1)

ここで、コア部の中心から空孔部までの距離Λをコア半径aで規格化した値を規格化空孔位置Λ/aとして定義し、空孔部の空孔直径dをコア直径2aで規格化した値を規格化空孔直径d/2aとして定義する。   Here, a value obtained by normalizing the distance Λ from the center of the core part to the hole part by the core radius a is defined as a normalized hole position Λ / a, and the hole diameter d of the hole part is defined by the core diameter 2a. The normalized value is defined as the normalized hole diameter d / 2a.

図2は、本発明の最良の形態に係る分散補償ファイバにおいて、波長1310nmにおける波長分散が+30ps/nm・km以上となる規格化空孔位置Λ/aと規格化空孔直径d/2aの関係を示す図である。   FIG. 2 shows the relationship between the normalized hole position Λ / a and the normalized hole diameter d / 2a where the chromatic dispersion at a wavelength of 1310 nm is +30 ps / nm · km or more in the dispersion compensating fiber according to the best mode of the present invention. FIG.

図2に示すように、分散補償ファイバが1310nm帯にて+30ps/nm・km以上となる規格化空孔位置Λ/aと規格化空孔直径d/2aは、網掛け領域、すなわち、(0.4≦Λ/a≦0.5)と(0.2≦d/2a≦0.3)の範囲である、または(1.0≦Λ/a≦1.4)と(0.4≦d/2a≦1.2)の範囲である。   As shown in FIG. 2, the normalized hole position Λ / a and the normalized hole diameter d / 2a at which the dispersion compensating fiber is +30 ps / nm · km or more in the 1310 nm band are shaded regions, that is, (0 .4 ≦ Λ / a ≦ 0.5) and (0.2 ≦ d / 2a ≦ 0.3), or (1.0 ≦ Λ / a ≦ 1.4) and (0.4 ≦ d / 2a ≦ 1.2).

図3は、本発明の最良の形態に係る分散補償ファイバ、具体的には、図2における規格化空孔位置Λ/aと規格化空孔直径d/2aとの関係を満たす分散補償ファイバにおけるコア半径aとコア部の比屈折率差Δとの関係を示す図である。図3(a)に空孔部がコア部の領域に形成される場合におけるコア半径aとコア部の比屈折率差Δの関係、図3(b)に空孔部がクラッド部の領域に形成される場合におけるコア半径aとコア部の比屈折率差Δの関係を示す。ただし、図3中の網掛けの領域は、上述の規格化空孔位置Λ/aと規格化空孔直径Λ/2aの関係を満たす、コア半径a及びコア部の比屈折率Λの関係を示す。   FIG. 3 shows a dispersion compensating fiber according to the best mode of the present invention, specifically, a dispersion compensating fiber satisfying the relationship between the normalized hole position Λ / a and the normalized hole diameter d / 2a in FIG. It is a figure which shows the relationship between the core radius a and the relative refractive index difference (DELTA) of a core part. FIG. 3A shows the relationship between the core radius a and the relative refractive index difference Δ when the hole is formed in the core region, and FIG. 3B shows the hole in the cladding region. The relationship between the core radius a and the relative refractive index difference Δ of the core portion when formed is shown. However, the shaded region in FIG. 3 shows the relationship between the core radius a and the relative refractive index Λ of the core portion that satisfies the relationship between the normalized hole position Λ / a and the normalized hole diameter Λ / 2a. Show.

ここで、光ファイバ中の屈折率を増加させるために、一般にガラス材料へゲルマニウムを添加するが、その添加量の増加に伴う損失増加の観点から、1.4〜1.5%以上の比屈折率差Δを実現することは困難となる。また、コア半径aが1.5μmより小さくなる場合、コア内部への光の閉じ込め効果が低下し、基本モード伝搬が実現できなくなる可能性が生じる。   Here, in order to increase the refractive index in the optical fiber, germanium is generally added to the glass material, but from the viewpoint of an increase in loss accompanying an increase in the addition amount, a specific refraction of 1.4 to 1.5% or more. It is difficult to realize the rate difference Δ. Further, when the core radius a is smaller than 1.5 μm, the effect of confining light inside the core is lowered, and there is a possibility that fundamental mode propagation cannot be realized.

従って、図2及び図3に示すように、分散補償ファイバにおいて、波長1310nmにおける波長分散が+30ps/nm・km以上となる、規格化空孔位置Λ/aと規格化空孔直径d/2a、及びコア半径aとコア部の比屈折率差Δは、それぞれ(0.4≦Λ/a≦0.5)と(0.2≦d/2a≦0.3)、及び(4.0μm≦a≦6.5μm)と(0.7%≦Δ≦1.5%)の範囲である、または(1.0≦Λ/a≦1.4)と(0.4≦d/2a≦1.2)、及び(1.5μm≦a≦2.5μm)と(0.7%≦Δ≦1.5%)の範囲である。   Therefore, as shown in FIGS. 2 and 3, in the dispersion compensating fiber, the normalized hole position Λ / a and the normalized hole diameter d / 2a, in which the chromatic dispersion at a wavelength of 1310 nm is +30 ps / nm · km or more, The relative refractive index difference Δ between the core radius a and the core portion is (0.4 ≦ Λ / a ≦ 0.5), (0.2 ≦ d / 2a ≦ 0.3), and (4.0 μm ≦), respectively. a ≦ 6.5 μm) and (0.7% ≦ Δ ≦ 1.5%), or (1.0 ≦ Λ / a ≦ 1.4) and (0.4 ≦ d / 2a ≦ 1). .2), and (1.5 μm ≦ a ≦ 2.5 μm) and (0.7% ≦ Δ ≦ 1.5%).

図4は、本発明の最良の形態に係る分散補償ファイバ、具体的には、図2及び図3に示した条件を満たす分散補償ファイバにおいて、規格化空孔位置Λ/a、規格化空孔直径d/2a、コア半径a、及びコア部の比屈折率差Δをそれぞれ所定の値にしたときの波長分散特性を示す図である。この図において、実線は空孔部がコア部の領域に形成される分散補償ファイバ、すなわち、規格化空孔位置Λ/a、規格化空孔直径d/2a、コア半径a、及び比屈折率差Δを、それぞれ0.4、0.2、5.5μm、1.3%とした分散補償ファイバの波長分散特性を示す。破線は空孔部がクラッド部の領域に形成される分散補償ファイバ、すなわち、規格化空孔位置Λ/a、規格化空孔直径d/2a、コア半径a、及び比屈折率差Δを、それぞれ1.2、0.8、2μm、1.3%とした分散補償ファイバの波長分散特性を示す。   FIG. 4 shows a dispersion compensation fiber according to the best mode of the present invention, specifically, a dispersion compensation fiber satisfying the conditions shown in FIGS. 2 and 3, and a normalized hole position Λ / a and a normalized hole. It is a figure which shows the wavelength dispersion characteristic when the diameter d / 2a, the core radius a, and relative refractive index difference (DELTA) of a core part are each made into the predetermined value. In this figure, the solid line indicates a dispersion compensating fiber in which the hole portion is formed in the region of the core portion, that is, the normalized hole position Λ / a, the normalized hole diameter d / 2a, the core radius a, and the relative refractive index. The chromatic dispersion characteristics of the dispersion compensating fiber are shown with a difference Δ of 0.4, 0.2, 5.5 μm, and 1.3%, respectively. The broken line indicates the dispersion compensating fiber in which the hole portion is formed in the region of the cladding portion, that is, the normalized hole position Λ / a, the normalized hole diameter d / 2a, the core radius a, and the relative refractive index difference Δ, The chromatic dispersion characteristics of the dispersion compensating fibers are 1.2, 0.8, 2 μm, and 1.3%, respectively.

この図に示すように、空孔部がコア部の領域に形成される分散補償ファイバ、及び空孔部がクラッド部の領域に形成される分散補償ファイバでは、波長1.3μmから波長1.4μmにおいて、波長分散がそれぞれ+30ps/nm・km以上、具体的には、+30ps/nm・kmから+40ps/nm・kmの範囲になることが分かった。   As shown in this figure, in the dispersion compensation fiber in which the hole portion is formed in the core region and the dispersion compensation fiber in which the hole portion is formed in the cladding region, the wavelength is from 1.3 μm to 1.4 μm. , The chromatic dispersion is +30 ps / nm · km or more, specifically, +30 ps / nm · km to +40 ps / nm · km.

ここで、光通信システム30は、図5に示すように、図示しない信号源からの電気信号を変換して光信号を送信する送信機31と、光信号を受信し、電気信号に変換する受信機32と、送信機31と受信機32とに接続され、光信号を伝送する光伝送路33として、1310nm帯にて負の波長分散を有する1310nm帯負分散ファイバ34と、1310nm帯負分散ファイバ34の前段及び後段の両方に配置された、本発明の最良の形態に係る分散補償ファイバ10,20とを有し、送信機31と受信機32との間で光信号の送受信(伝送)が行われる。尚、当該分散補償ファイバ10,20は、送信機31または受信機32の内部に組み込むようにしても良い。   Here, as shown in FIG. 5, the optical communication system 30 includes a transmitter 31 that converts an electrical signal from a signal source (not shown) and transmits the optical signal, and a reception that receives the optical signal and converts it into an electrical signal. 13, a 1310 nm band negative dispersion fiber 34 having a negative chromatic dispersion in the 1310 nm band, and a 1310 nm band negative dispersion fiber, as an optical transmission line 33 connected to the transmitter 32, the transmitter 31, and the receiver 32 and transmitting an optical signal. The dispersion compensating fibers 10 and 20 according to the best mode of the present invention are arranged in both the front stage and the rear stage of 34, and optical signal transmission / reception (transmission) is performed between the transmitter 31 and the receiver 32. Done. The dispersion compensating fibers 10 and 20 may be incorporated in the transmitter 31 or the receiver 32.

図6は、本発明の最良の形態に係る分散補償ファイバ、具体的には、図4に示した分散補償ファイバと、1310nm帯にて負の波長分散を有する1310nm帯負分散ファイバ(分散シフトファイバ)とを接続した光伝送路における波長分散特性を示す。この図において、実線は空孔部がコア部の領域に形成される分散補償ファイバ、すなわち、規格化空孔位置Λ/a、規格化空孔直径d/2a、コア半径a、及び比屈折率差Δを、それぞれ0.4、0.2、5.5μm、1.3%とした分散補償ファイバと前記1310nm帯負分散ファイバ34とを有する光伝送路の波長分散特性を示す。破線は空孔部がクラッド部の領域に形成される分散補償ファイバ、すなわち、規格化空孔位置Λ/a、規格化空孔直径d/2a、コア半径a、及び比屈折率差Δを、それぞれ1.2、0.8、2μm、1.3%とした分散補償ファイバと前記1310nm帯負分散ファイバとを有する光伝送路の波長分散特性を示す。一点鎖線は、前記1310nm帯負分散ファイバのみを有する光伝送路における波長分散特性を示す。   6 shows a dispersion compensating fiber according to the best mode of the present invention, specifically, the dispersion compensating fiber shown in FIG. 4 and a 1310 nm band negative dispersion fiber (dispersion shifted fiber) having negative chromatic dispersion in the 1310 nm band. The chromatic dispersion characteristics in the optical transmission line connecting the In this figure, the solid line indicates a dispersion compensating fiber in which the hole portion is formed in the region of the core portion, that is, the normalized hole position Λ / a, the normalized hole diameter d / 2a, the core radius a, and the relative refractive index. The chromatic dispersion characteristics of an optical transmission line having a dispersion compensating fiber having a difference Δ of 0.4, 0.2, 5.5 μm, and 1.3% and the 1310 nm band negative dispersion fiber 34 are shown. The broken line indicates the dispersion compensating fiber in which the hole portion is formed in the region of the cladding portion, that is, the normalized hole position Λ / a, the normalized hole diameter d / 2a, the core radius a, and the relative refractive index difference Δ, The chromatic dispersion characteristics of an optical transmission line having a dispersion compensating fiber of 1.2, 0.8, 2 μm, and 1.3% and the 1310 nm band negative dispersion fiber are shown. A one-dot chain line indicates a wavelength dispersion characteristic in an optical transmission line having only the 1310 nm band negative dispersion fiber.

図6に示すように、前記1310nm帯負分散ファイバと、本発明の最良の形態に係る分散補償ファイバとを有する光伝送路とすることにより、前記1310nm帯負分散ファイバのみからなる光伝送路に比べて、波長1310nm帯における波長分散の絶対値が低減されることが分かる。特に、波長1300nmから1320nmにおける分散補償後の波長分散の絶対値は、分散補償前の値の約10分の1に低減される。よって、前記分散補償ファイバを適用することにより、前記波長範囲における波長分散による伝送距離の制限を10倍以上改善できることが分かる。したがって、本発明の最良の形態に係る分散補償ファイバと、補償対象となる1310nm帯負分散ファイバを適切に組み合わせることにより、波長1310nm帯における累積分散を低減し、高速光伝送特性を改善することができる。   As shown in FIG. 6, by using an optical transmission line having the 1310 nm band negative dispersion fiber and the dispersion compensating fiber according to the best mode of the present invention, an optical transmission line consisting only of the 1310 nm band negative dispersion fiber is obtained. In comparison, it can be seen that the absolute value of chromatic dispersion in the wavelength 1310 nm band is reduced. In particular, the absolute value of chromatic dispersion after dispersion compensation at wavelengths from 1300 nm to 1320 nm is reduced to about 1/10 of the value before dispersion compensation. Therefore, it can be seen that by using the dispersion compensating fiber, the limitation of the transmission distance due to chromatic dispersion in the wavelength range can be improved by 10 times or more. Accordingly, by appropriately combining the dispersion compensating fiber according to the best mode of the present invention and the 1310 nm band negative dispersion fiber to be compensated, the cumulative dispersion in the wavelength 1310 nm band can be reduced and the high-speed optical transmission characteristics can be improved. it can.

したがって、本発明の最良の形態に係る分散補償ファイバ10,20によれば、規格化空孔位置Λ/a、規格化空孔直径d/2a、コア半径a、及びクラッド部に対するコア部の比屈折率差Δをそれぞれ所定の範囲にすることにより、1310nm帯にて波長分散が十分大きな正の値、具体的には、+30ps/nm・km以上となる。
また、本発明に係る光伝送路33によれば、波長1310nm帯における累積分散を低減し、その高速光伝送特性、及び伝送距離制限を改善することができる。
Therefore, according to the dispersion compensating fibers 10 and 20 according to the best mode of the present invention, the normalized hole position Λ / a, the normalized hole diameter d / 2a, the core radius a, and the ratio of the core part to the cladding part. By setting the refractive index difference Δ to a predetermined range, the chromatic dispersion in the 1310 nm band is a positive value with a sufficiently large value, specifically, +30 ps / nm · km or more.
Moreover, according to the optical transmission line 33 according to the present invention, the cumulative dispersion in the wavelength 1310 nm band can be reduced, and the high-speed optical transmission characteristic and the transmission distance limitation can be improved.

上記では、1310nm帯負分散ファイバ34と、1310nm帯負分散ファイバ34の前段及び後段の両方に配置された分散補償ファイバ10,20とを有する光伝送路33を用いて説明したが、1310nm帯負分散ファイバ34と、1310nm帯負分散ファイバ34の前段、または後段にのみ前記分散補償ファイバを配置した光伝送路を用いても良く、上記光伝送路33と同様な作用効果を奏する。   In the above description, the optical transmission line 33 having the 1310 nm band negative dispersion fiber 34 and the dispersion compensating fibers 10 and 20 arranged at both the front stage and the rear stage of the 1310 nm band negative dispersion fiber 34 has been described. An optical transmission line in which the dispersion compensating fiber is disposed only in the front stage or the rear stage of the dispersion fiber 34 and the 1310 nm-band negative dispersion fiber 34 may be used, and the same effect as the optical transmission path 33 is achieved.

本発明は、分散補償ファイバ及び光伝送路に関し、特に波長1310nm帯を用いた高速・大容量光通信に供して好適な分散補償ファイバ及び光伝送路に利用することが可能である。   The present invention relates to a dispersion compensating fiber and an optical transmission line, and in particular, can be used for a dispersion compensating fiber and an optical transmission line suitable for high-speed and large-capacity optical communication using a wavelength of 1310 nm band.

本発明の最良の形態に係る分散補償ファイバの断面図である。It is sectional drawing of the dispersion compensation fiber which concerns on the best form of this invention. 本発明の最良の形態に係る分散補償ファイバにおいて、波長1310nmにおける波長分散が+30ps/nm・km以上となる規格化空孔位置Λ/aと規格化空孔直径d/2aとの関係を示す図である。The figure which shows the relationship between the normalized hole position (LAMBDA) / a and the normalized hole diameter d / 2a in which the wavelength dispersion in wavelength 1310nm becomes + 30ps / nm * km or more in the dispersion compensation fiber which concerns on the best form of this invention It is. 本発明の最良の形態に係る分散補償ファイバにおけるコア半径aとコア部の比屈折率差Δとの関係を示す図である。It is a figure which shows the relationship between the core radius a and the relative refractive index difference (DELTA) of a core part in the dispersion compensation fiber which concerns on the best form of this invention. 本発明の最良の形態に係る分散補償ファイバにおいて、規格化空孔位置Λ/a、規格化空孔直径d/2a、コア半径a、及びコア部の比屈折率差Δをそれぞれ所定の値にしたときの波長分散特性を示す図である。In the dispersion compensating fiber according to the best mode of the present invention, the normalized hole position Λ / a, the normalized hole diameter d / 2a, the core radius a, and the relative refractive index difference Δ of the core part are set to predetermined values, respectively. It is a figure which shows the wavelength dispersion characteristic at the time of doing. 本発明の最良の形態に係る分散補償ファイバを用いた光通信システムの模式図である。1 is a schematic diagram of an optical communication system using a dispersion compensating fiber according to the best mode of the present invention. 本発明の最良の形態に係る分散補償ファイバと、1310nm帯で負の波長分散を有する1310nm帯負分散ファイバとを接続した光伝送路における波長分散特性を示す図である。It is a figure which shows the chromatic dispersion characteristic in the optical transmission line which connected the dispersion compensation fiber which concerns on the best form of this invention, and the 1310 nm band negative dispersion fiber which has a negative chromatic dispersion in a 1310 nm band.

符号の説明Explanation of symbols

1,11 コア部
2,12 クラッド部
3,13 空孔部
10,20 分散補償ファイバ
30 光通信システム
31 送信機
32 受信機
33 光伝送路
34 1310nm帯負分散ファイバ
DESCRIPTION OF SYMBOLS 1,11 Core part 2,12 Clad part 3,13 Hole part 10,20 Dispersion compensation fiber 30 Optical communication system 31 Transmitter 32 Receiver 33 Optical transmission line 34 1310 nm band negative dispersion fiber

Claims (2)

半径がaで比屈折率差がΔであるコア部と、前記コア部を覆うクラッド部と、前記コア部の中心から所定の距離Λ等間隔にて形成された少なくとも4個の直径dの空孔部とを有し、
前記所定の距離Λを前記コア半径aで規格化した規格化空孔位置Λ/aと、前記空孔直径dを前記コア部のコア直径2aで規格化した規格化空孔直径d/2aと、前記コア半径aと、前記コア部の比屈折率差Δが、それぞれ(0.4≦Λ/a≦0.5)と(0.2≦d/2a≦0.3)、及び(4.0μm≦a≦6.5μm)と(0.7%≦Δ≦1.5%)の範囲、または(1.0≦Λ/a≦1.4)と(0.4≦d/2a≦1.2)、及び(1.5μm≦a≦2.5μm)と(0.7%≦Δ≦1.5%)の範囲であり、波長1310nmにおける波長分散を+30ps/nm・km以上とした
ことを特徴とする分散補償ファイバ。
A core portion a radius of the relative refractive index difference a is delta, and a cladding portion covering the core portion, a predetermined distance Λ from the center of the core portion, at least four diameters d which are formed at equal intervals And a hole portion of
A normalized hole position Λ / a in which the predetermined distance Λ is normalized by the core radius a, and a normalized hole diameter d / 2a in which the hole diameter d is normalized by the core diameter 2a of the core portion. The core radius a and the relative refractive index difference Δ of the core portion are (0.4 ≦ Λ / a ≦ 0.5), (0.2 ≦ d / 2a ≦ 0.3), and (4, respectively). 0.0 μm ≦ a ≦ 6.5 μm) and (0.7% ≦ Δ ≦ 1.5%), or (1.0 ≦ Λ / a ≦ 1.4) and (0.4 ≦ d / 2a ≦). 1.2), and (1.5 μm ≦ a ≦ 2.5 μm) and (0.7% ≦ Δ ≦ 1.5%), and the chromatic dispersion at a wavelength of 1310 nm is set to +30 ps / nm · km or more. A dispersion compensating fiber characterized by that.
1310nm帯にて負の波長分散を有する1310nm帯負分散ファイバと、前記1310nm帯負分散ファイバの前段、後段、またはその両方に配置された請求項1記載の分散補償ファイバとを有する
ことを特徴とする光伝送路。
A 1310 nm-band negative dispersion fiber having negative chromatic dispersion in the 1310 nm band, and the dispersion-compensating fiber according to claim 1 disposed at a front stage, a rear stage, or both of the 1310 nm-band negative dispersion fiber. An optical transmission line.
JP2005187994A 2005-06-28 2005-06-28 Dispersion compensating fiber and optical transmission line Expired - Fee Related JP4413823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005187994A JP4413823B2 (en) 2005-06-28 2005-06-28 Dispersion compensating fiber and optical transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187994A JP4413823B2 (en) 2005-06-28 2005-06-28 Dispersion compensating fiber and optical transmission line

Publications (2)

Publication Number Publication Date
JP2007010729A JP2007010729A (en) 2007-01-18
JP4413823B2 true JP4413823B2 (en) 2010-02-10

Family

ID=37749386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187994A Expired - Fee Related JP4413823B2 (en) 2005-06-28 2005-06-28 Dispersion compensating fiber and optical transmission line

Country Status (1)

Country Link
JP (1) JP4413823B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4949997B2 (en) * 2007-11-02 2012-06-13 日本電信電話株式会社 Tunable optical filter

Also Published As

Publication number Publication date
JP2007010729A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
EP0785448B1 (en) Dispersion-shifted fiber
JP5534671B2 (en) Optical fiber
JP4999063B2 (en) Optical fiber
US8041172B2 (en) Transmission optical fiber having large effective area
JP5242405B2 (en) Optical fiber and optical fiber transmission line
JP4496649B2 (en) Optical fiber and optical transmission line including the same
JP3912009B2 (en) Dispersion compensating fiber
EP1170604A2 (en) Optical fiber, optical transmission line and dispersion compensating module
US6031955A (en) Dispersion compensating optical fiber
JP2009122277A (en) Optical fiber and optical transmission system
JP2988571B2 (en) Dispersion compensating optical fiber
US6424776B1 (en) Monomode optical fiber with optimized dispersion shift for high speeds
JP2000162462A (en) Dispersion compensating fiber for wavelength-divided multiple optical fiber transmission system using dispersion shift type line fiber
US7164829B2 (en) Optical fiber, optical transmission line and optical communications system
JP2008096933A (en) Optical communication system and dispersion compensating optical fiber
JP4024461B2 (en) Dispersion compensating optical fiber
JP4413823B2 (en) Dispersion compensating fiber and optical transmission line
CN111656234B (en) Optical fiber, coated optical fiber and optical transmission system
JP2000244400A (en) Optical fiber transmission system and its line and its method
US6516123B1 (en) Optical fiber with large effective core area and high chromatic dispersion
JP4504266B2 (en) Dispersion control fiber and optical transmission line
US10983267B2 (en) Quasi-single-mode optical fiber
JP4523500B2 (en) Optical transmission line
JP3960881B2 (en) Dispersion compensating optical fiber
JP2004093935A (en) Optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees