JP4413707B2 - Heat-dissipating resin molded product with multilayer structure - Google Patents

Heat-dissipating resin molded product with multilayer structure Download PDF

Info

Publication number
JP4413707B2
JP4413707B2 JP2004236363A JP2004236363A JP4413707B2 JP 4413707 B2 JP4413707 B2 JP 4413707B2 JP 2004236363 A JP2004236363 A JP 2004236363A JP 2004236363 A JP2004236363 A JP 2004236363A JP 4413707 B2 JP4413707 B2 JP 4413707B2
Authority
JP
Japan
Prior art keywords
heat
resin
thermal conductivity
molded product
dissipating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004236363A
Other languages
Japanese (ja)
Other versions
JP2006051750A (en
Inventor
暁英 霜田
貴之 宮下
広宣 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2004236363A priority Critical patent/JP4413707B2/en
Publication of JP2006051750A publication Critical patent/JP2006051750A/en
Application granted granted Critical
Publication of JP4413707B2 publication Critical patent/JP4413707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、ピンホールが無く、ガスバリア性に優れた放熱性樹脂成形品に関する。   The present invention relates to a heat-dissipating resin molded article having no pinhole and excellent gas barrier properties.

ポリフェニレンサルファイド(以下PPSと略す場合がある)樹脂に代表されるポリアリーレンサルファイド(以下PASと略す場合がある)樹脂や液晶性ポリマー等のスーパーエンジニアリングプラスチックは、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有していることから、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用されている。近年、これらの部品が軽薄短小化され、部品等の内部の放熱が問題となってきており、放熱性を付与した材料の要求が出てきている。   Super engineering plastics such as polyarylene sulfide (hereinafter sometimes abbreviated as PAS) resin and liquid crystalline polymer represented by polyphenylene sulfide (hereinafter abbreviated as PPS) resin have high heat resistance, mechanical properties and chemical resistance. Since it has chemical properties, dimensional stability, and flame retardancy, it is widely used in electrical and electronic equipment component materials, automotive equipment component materials, chemical equipment component materials, and the like. In recent years, these parts have become lighter, thinner, and smaller, and heat radiation inside the parts has become a problem, and there is a demand for a material imparting heat radiation.

このような理由から、特許文献1〜2に記載のように、導電性のフィラーを添加することにより高い放熱性を付与することが試みられているが、この方法では成形品が導電性を示すため、絶縁用途の部品には使用できないという問題や、粘度増加や脆くなる等の問題、薄肉化した場合にピンホールが発生する等の問題があった。   For this reason, as described in Patent Documents 1 and 2, it has been attempted to impart high heat dissipation by adding a conductive filler, but in this method, the molded product exhibits conductivity. Therefore, there are problems that it cannot be used for parts for insulation, problems such as increase in viscosity and brittleness, and problems such as pinholes occurring when the thickness is reduced.

また、特許文献3〜5に記載のように、絶縁性のフィラーを添加することにより放熱性と絶縁性を付与することが試みられているが、この方法では絶縁性は付与されるものの、上記方法と同様に、粘度増加や脆くなる等の問題、薄肉化した場合にピンホールが発生する等の問題があった。
特開平2−163137号公報 特開2003−41119号公報 特開平4−33958号公報 特開平4−198265号公報 特開2001−151905号公報
In addition, as described in Patent Documents 3 to 5, attempts have been made to impart heat dissipation and insulation properties by adding an insulating filler. Similar to the method, there were problems such as increased viscosity and brittleness, and pinholes when thinned.
JP-A-2-163137 JP 2003-411119 A JP-A-4-33958 Japanese Patent Laid-Open No. 4-198265 JP 2001-151905 A

本発明は、かかる従来技術の問題の解決を図り、ピンホールが無く、熱伝導率の高い成形品を提供することを目的とする。   An object of the present invention is to solve such problems of the prior art and to provide a molded article having no pinhole and high thermal conductivity.

本発明者らは上記目的を達成し、ピンホールが無く、熱伝導率の高い成形品をを得るべく鋭意探索、検討を重ねた結果、成形性に劣り、均一に薄肉化することが難しい高い熱伝導率を持つ放熱性樹脂組成物と、絶縁性で成形性に優れ薄肉化が容易な、熱伝導率の低い樹脂材料を多層押出成形することにより、高い放熱性を維持しつつ、ピンホールの無い絶縁性の放熱性樹脂成形品が得られることを見出し、本発明を完成するに至った。   The inventors of the present invention achieved the above-mentioned object, and as a result of intensive search and examination to obtain a molded product having no pinhole and high thermal conductivity, the moldability is inferior, and it is difficult to uniformly reduce the thickness. Pinhole while maintaining high heat dissipation by multilayer extrusion molding of heat-dissipating resin composition with thermal conductivity and resin material with low thermal conductivity that is insulating and excellent in moldability and easy to thin. The inventors have found that an insulating heat-dissipating resin molded product having no surface can be obtained, and have completed the present invention.

即ち本発明は、1W/m・K以上の熱伝導率を持つ放熱性樹脂組成物(A) と、熱伝導率が0.5W/m・K以下であり、体積抵抗率が1×1010Ω・cm以上である樹脂材料(B) を多層押出成形した成形品であって、樹脂材料(B) の一層の厚さが0.01〜0.1mmであり、Xカットテープ法による樹脂層間剥離の評価点数が2よりも大きい密着力を示す放熱性樹脂成形品である。 That is, the present invention provides a heat-dissipating resin composition (A) having a thermal conductivity of 1 W / m · K or more, a thermal conductivity of 0.5 W / m · K or less, and a volume resistivity of 1 × 10 10 Ω. · A molded product obtained by multilayer extrusion molding of a resin material (B) that is greater than or equal to cm, and the thickness of one layer of the resin material (B) is 0.01 to 0.1 mm. Is a heat-dissipating resin molded product exhibiting an adhesion strength greater than 2.

本発明により、熱伝導率の高い材料を用いて、ピンホールの無い放熱板等の成形が容易になる。   According to the present invention, using a material having high thermal conductivity, it becomes easy to form a heat sink without pinholes.

以下、本発明について詳細に説明する。本発明で用いる1W/m・K以上の熱伝導率を持つ放熱性樹脂組成物(A) 及び熱伝導率が0.5W/m・K以下であり、体積抵抗率が1×1010Ω・cm以上である樹脂材料(B) に使用する樹脂としては、多層押出成形可能な樹脂であれば如何なる樹脂でも使用可能であるが、耐熱性、耐化学薬品性の点からエンジニアリングプラスチックが好ましく、更に好ましくはスーパーエンジニアリングプラスチックに属する熱可塑性樹脂である。その中でも、成形性に優れたPAS樹脂や液晶性ポリマーが好ましい。 Hereinafter, the present invention will be described in detail. The heat-dissipating resin composition (A) having a thermal conductivity of 1 W / m · K or more used in the present invention and a thermal conductivity of 0.5 W / m · K or less and a volume resistivity of 1 × 10 10 Ω · cm As the resin used for the resin material (B), any resin can be used as long as it is a resin that can be subjected to multilayer extrusion molding. However, engineering plastics are preferable and more preferable in terms of heat resistance and chemical resistance. Is a thermoplastic resin belonging to super engineering plastics. Among these, PAS resin and liquid crystalline polymer excellent in moldability are preferable.

本発明に用いるPAS樹脂は、繰返し単位として-(Ar-S)-(但しArはアリーレン基)で主として構成されたものである。アリーレン基としては、例えば、p−フェニレン基、m−フェニレン基、o−フェニレン基、置換フェニレン基、p,p’−ジフェニレンスルフォン基、p,p’−ビフェニレン基、p,p’−ジフェニレンエーテル基、p,p’−ジフェニレンカルボニル基、ナフタレン基などが使用できる。この場合、前記のアリーレン基から構成されるアリーレンサルファイド基の中で、同一の繰返し単位を用いたポリマー、すなわちホモポリマーの他に、組成物の加工性という点から、異種繰返し単位を含んだコポリマーが好ましい場合もある。ホモポリマーとしては、アリーレン基としてp−フェニレン基を用いた、p−フェニレンサルファイド基を繰返し単位とするものが特に好ましく用いられる。また、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp−フェニレンサルファイド基とm−フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。この中で、p−フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、流動性(成形性)、機械的特性等の物性上の点から適当である。   The PAS resin used in the present invention is mainly composed of — (Ar—S) — (wherein Ar is an arylene group) as a repeating unit. Examples of the arylene group include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, and p, p′-di. A phenylene ether group, p, p′-diphenylenecarbonyl group, naphthalene group, and the like can be used. In this case, among the arylene sulfide groups composed of the above-mentioned arylene groups, in addition to a polymer using the same repeating unit, that is, a homopolymer, a copolymer containing different repeating units from the viewpoint of processability of the composition May be preferred. As the homopolymer, those having a p-phenylene sulfide group as a repeating unit and using a p-phenylene group as an arylene group are particularly preferably used. In addition, as the copolymer, among the arylene sulfide groups comprising the above-mentioned arylene groups, two or more different combinations can be used, and among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used. It is done. Among these, those containing 70 mol% or more, preferably 80 mol% or more of p-phenylene sulfide groups are suitable from the viewpoint of physical properties such as heat resistance, fluidity (moldability) and mechanical properties.

また、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できるが、直鎖状構造のPAS樹脂以外にも、縮重合させさせるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造又は架橋構造を形成させたポリマーも使用できるし、低分子量の直鎖状構造ポリマーを酸素又酸化剤存在下、高温で加熱して酸化架橋又は熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマーも使用可能である。また、PAS樹脂は、前記直鎖状PAS(310℃・ズリ速度1200sec-1における粘度が10〜300Pa・s)を主体とし、その一部(1〜30重量%、好ましくは2〜25重量%)が、比較的高粘度(300〜3000Pa・s、好ましくは500 〜2000Pa・s)の分岐又は架橋PAS樹脂との混合系でも構わない。 Further, among these PAS resins, a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used. In addition to the PAS resin having a structure, a polymer in which a branched structure or a crosslinked structure is partially formed by using a small amount of a monomer such as a polyhaloaromatic compound having three or more halogen substituents when polycondensation is performed. It is also possible to use a polymer in which a low molecular weight linear structure polymer is heated at a high temperature in the presence of oxygen or an oxidant to increase the melt viscosity by oxidative crosslinking or thermal crosslinking to improve the moldability. The PAS resin is mainly composed of the linear PAS (the viscosity at 310 ° C. and the shear rate of 1200 sec −1 is 10 to 300 Pa · s), and a part thereof (1 to 30% by weight, preferably 2 to 25% by weight). ) May be a mixed system with a branched or crosslinked PAS resin having a relatively high viscosity (300 to 3000 Pa · s, preferably 500 to 2000 Pa · s).

また、本発明に用いるPAS樹脂は、重合後、酸洗浄、熱水洗浄、有機溶剤洗浄(或いはこれらの組合せ)等を行って副生不純物等を除去精製したものが好ましい。   In addition, the PAS resin used in the present invention is preferably a PAS resin that has been subjected to acid cleaning, hot water cleaning, organic solvent cleaning (or a combination thereof) and the like after polymerization to remove by-product impurities.

次に、本発明に用いる液晶性ポリマーとは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。   Next, the liquid crystalline polymer used in the present invention refers to a melt processable polymer having a property capable of forming an optically anisotropic molten phase. The property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times. When the liquid crystalline polymer applicable to the present invention is inspected between crossed polarizers, the polarized light is normally transmitted even in the molten stationary state, and optically anisotropic.

前記のような液晶性ポリマーとしては特に限定されないが、芳香族ポリエステル又は芳香族ポリエステルアミドであることが好ましく、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。これらは60℃でペンタフルオロフェノールに濃度0.1重量%で溶解したときに、好ましくは少なくとも約2.0dl/g、さらに好ましくは2.0〜10.0dl/gの対数粘度(I.V.)を有するものが使用される。   The liquid crystalline polymer as described above is not particularly limited, but is preferably an aromatic polyester or an aromatic polyester amide, and a polyester partially containing an aromatic polyester or an aromatic polyester amide in the same molecular chain. It is in. They preferably have a logarithmic viscosity (IV) of at least about 2.0 dl / g, more preferably 2.0-10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by weight. .) Are used.

本発明に適用できる液晶性ポリマーとしての芳香族ポリエステル又は芳香族ポリエステルアミドとして特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた少なくとも1種以上の化合物を構成成分として有する芳香族ポリエステル、芳香族ポリエステルアミドである。   The aromatic polyester or aromatic polyester amide as the liquid crystalline polymer applicable to the present invention is particularly preferably at least one compound selected from the group of aromatic hydroxycarboxylic acids, aromatic hydroxyamines, and aromatic diamines. Aromatic polyesters and aromatic polyester amides as constituent components.

より具体的には、
(1)主として芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオールおよびその誘導体の少なくとも1種又は2種以上、とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミンおよびその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上、とからなるポリエステルアミド;
(4)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミンおよびその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオールおよびその誘導体の少なくとも1種又は2種以上、とからなるポリエステルアミドなどが挙げられる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
More specifically,
(1) A polyester mainly composed of one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(2) mainly (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof; and (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and derivatives thereof; c) Polyester comprising at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof;
(3) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof; (b) one or more aromatic hydroxyamines, aromatic diamines and derivatives thereof; and (c). A polyesteramide comprising one or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof;
(4) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof; (b) one or more aromatic hydroxyamines, aromatic diamines and derivatives thereof; and (c). One or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof; and (d) at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof, and The polyesteramide which consists of, etc. are mentioned. Furthermore, you may use a molecular weight modifier together with said structural component as needed.

本発明に適用できる前記液晶性ポリマーを構成する具体的化合物の好ましい例としては、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸等の芳香族ヒドロキシカルボン酸、2,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、4,4’−ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)および下記一般式(II)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、2,6−ナフタレンジカルボン酸および下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p−アミノフェノール、p−フェニレンジアミン等の芳香族アミン類が挙げられる。   Preferable examples of specific compounds constituting the liquid crystalline polymer applicable to the present invention include p-hydroxybenzoic acid, aromatic hydroxycarboxylic acids such as 6-hydroxy-2-naphthoic acid, 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, aromatic diols such as compounds represented by the following general formula (I) and the following general formula (II); terephthalic acid, isophthalic acid, 4 , 4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid and aromatic dicarboxylic acids such as compounds represented by the following general formula (III); aromatic amines such as p-aminophenol and p-phenylenediamine Can be mentioned.

Figure 0004413707
Figure 0004413707

(但し、X :アルキレン(C1〜C4)、アルキリデン、-O- 、-SO-、-SO- 、-S-、-CO-より選ばれる基、Y :-(CH)-(n =1〜4)、-O(CH)O-(n =1〜4)より選ばれる基)
本発明が適用される特に好ましい液晶性ポリマーとしては、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸を主構成単位成分とする芳香族ポリエステルである。
(However, X: alkylene (C1 -C4), alkylidene, -O-, -SO -, - SO 2 -, -S -, - CO- than group selected, Y :-( CH 2) n - (n = 1~4), - O (CH 2) n O- (n = 1~4) from the group selected)
Particularly preferred liquid crystalline polymers to which the present invention is applied are aromatic polyesters containing p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid as main structural unit components.

次に、本発明で用いる1W/m・K以上の熱伝導率を持つ放熱性樹脂組成物(A) とは、多層押出成形可能な樹脂に高い熱伝導率を持つフィラーを添加したものであり、特に前記PAS樹脂又は液晶性ポリマーに高い熱伝導率を持つフィラーを添加したものが好ましい。ここで用いられる高い熱伝導率を持つフィラーとしては、2W/m・K以上の熱伝導率を持つフィラーであれば如何なるフィラーでも使用可能であるが、フィラーの安定性、コストの点からアルミナ、窒化ホウ素、マグネシア、黒鉛が好ましい。これらのフィラーは1種又は2種以上併用することができる。また、これらのフィラーの使用にあたっては、必要ならば収束剤又は表面処理剤にて収束又は表面処理して使用することも可能である。   Next, the heat-dissipating resin composition (A) having a thermal conductivity of 1 W / m · K or more used in the present invention is obtained by adding a filler having a high thermal conductivity to a resin capable of multilayer extrusion molding. In particular, it is preferable to add a filler having high thermal conductivity to the PAS resin or liquid crystalline polymer. As the filler having a high thermal conductivity used here, any filler can be used as long as it has a thermal conductivity of 2 W / m · K or more. However, alumina, Boron nitride, magnesia and graphite are preferred. These fillers can be used alone or in combination of two or more. Moreover, when using these fillers, if necessary, they can be converged or surface-treated with a sizing agent or a surface treatment agent.

また、フィラーの添加量に関しては、放熱性樹脂組成物(A) の熱伝導率を1W/m・K以上とする量であれば特に制限されないが、一般的に放熱性樹脂組成物(A) 中30重量%以上が好ましく、更に好ましくは50重量%以上である。   The amount of filler added is not particularly limited as long as the heat conductivity of the heat dissipating resin composition (A) is 1 W / m · K or more, but generally the heat dissipating resin composition (A) The content is preferably 30% by weight or more, more preferably 50% by weight or more.

更に放熱性樹脂組成物(A) には、機械的強度、耐熱性、寸法安定性(耐変形、そり)等の性能の改良のため、上記高熱伝導性フィラー以外の無機又は有機充填剤を配合してもよく、これには目的に応じて繊維状、粉粒状、板状の充填剤が用いられる。   In addition, the heat-dissipating resin composition (A) is blended with inorganic or organic fillers other than the above high thermal conductive fillers in order to improve performance such as mechanical strength, heat resistance and dimensional stability (deformation resistance, warpage). Alternatively, a fibrous, powdery, or plate-like filler may be used depending on the purpose.

繊維状充填剤としては、ガラス繊維、アスベスト繊維、ホウ素繊維、チタン酸カリウム繊維等の無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。なおポリアミド、フッ素樹脂、アクリル樹脂などの高融点有機質繊維物質も使用することができる。   Examples of the fibrous filler include inorganic fibrous materials such as glass fiber, asbestos fiber, boron fiber, and potassium titanate fiber. A particularly typical fibrous filler is glass fiber. High melting point organic fiber materials such as polyamide, fluororesin and acrylic resin can also be used.

また、粉粒状充填剤としては、石英粉末、ガラスビーズ、ガラス粉、珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー、珪藻土、ウォラストナイトのごとき珪酸塩、酸化鉄、酸化チタン、酸化亜鉛のごとき金属の酸化物、炭酸カルシウム、炭酸マグネシウムのごとき金属の炭酸塩、硫酸カルシウム、硫酸バリウムのごとき金属の硫酸塩が挙げられる。   The granular fillers include quartz powder, glass beads, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, wollastonite, silicate, iron oxide, titanium oxide, zinc oxide, etc. Examples include metal oxides, metal carbonates such as calcium carbonate and magnesium carbonate, and metal sulfates such as calcium sulfate and barium sulfate.

また、板状充填剤としてはマイカ、ガラスフレーク等が挙げられる。   Examples of the plate-like filler include mica and glass flakes.

更に、一般に熱可塑性樹脂に添加される公知の物質、即ち難燃剤、染料・顔料等の着色剤、酸化防止剤や紫外線吸収剤等の安定剤、潤滑剤、結晶化促進剤、結晶核剤等も要求性能に応じ適宜添加した組成物も本発明で使用することができる。   Furthermore, known substances generally added to thermoplastic resins, that is, flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and ultraviolet absorbers, lubricants, crystallization accelerators, crystal nucleating agents, etc. In addition, compositions appropriately added according to the required performance can also be used in the present invention.

一方、本発明で用いる樹脂材料(B) としては、熱伝導率が0.5W/m・K以下であり、体積抵抗率が1×1010Ω・cm以上であれば如何なる樹脂材料でも使用可能であるが、多層押出成形時の溶着性の点から放熱性樹脂組成物(A) に使用されている樹脂と同じ樹脂を用いた樹脂材料であることが好ましい。 On the other hand, as the resin material (B) used in the present invention, any resin material can be used as long as the thermal conductivity is 0.5 W / m · K or less and the volume resistivity is 1 × 10 10 Ω · cm or more. However, a resin material using the same resin as that used in the heat-dissipating resin composition (A) is preferable from the viewpoint of weldability at the time of multilayer extrusion molding.

樹脂材料(B) は、熱伝導率が0.5W/m・K以下、体積抵抗率が1×1010Ω・cm以上という条件を満足するのであれば、樹脂単独でも使用でき、またフィラーを配合した樹脂組成物であってもよい。樹脂材料(B) に添加されるフィラーとしては、組成物の熱伝導率0.5W/m・K以下、体積抵抗率1×1010Ω・cm以上を保つことができれば如何なるフィラーでも添加可能であるが、多層押出成形時の成形性を保ち、ピンホールの発生を抑制する点から、フィラー添加量としては、樹脂材料(B) 中50重量%以下が好ましく、更に好ましくは30重量%以下である。 As long as the resin material (B) satisfies the conditions of a thermal conductivity of 0.5 W / m · K or less and a volume resistivity of 1 × 10 10 Ω · cm or more, the resin can be used alone, and a filler is added. It may be a resin composition. As the filler added to the resin material (B), any filler can be added as long as the thermal conductivity of the composition is 0.5 W / m · K or less and the volume resistivity is 1 × 10 10 Ω · cm or more. However, the filler addition amount is preferably 50% by weight or less, more preferably 30% by weight or less in the resin material (B) from the viewpoint of maintaining the moldability during multilayer extrusion molding and suppressing the generation of pinholes. .

本発明の多層成形品は、多層押出成形法にて成形される。多層押出成形法としては、多層Tダイフィルム・シート成形、多層インフレーションフィルム成形、多層パイプ・チューブ押出成形、多層異形押出成形等の公知の何れの方法を用いてもよい。また、各層の接着には接着剤層を使用することも可能である。   The multilayer molded article of the present invention is molded by a multilayer extrusion molding method. As the multilayer extrusion molding method, any known method such as multilayer T-die film / sheet molding, multilayer inflation film molding, multilayer pipe / tube extrusion molding, multilayer profile extrusion molding, or the like may be used. In addition, an adhesive layer can be used for bonding the layers.

また、樹脂材料(B) の一層の厚さは重要であり、薄過ぎるとピンホールが多発することにより信頼性が低下し、好ましくない。逆に、厚過ぎると放熱性樹脂成形品の熱伝導率が低下し好ましくない。そのため、樹脂材料(B) の一層の厚さは0.01〜0.1mmとすることが必要であり、更に好ましくは0.02〜0.06mmであ。尚、ここで、樹脂材料(B) の一層の厚さとは、樹脂材料(B) の層を二層以上用いる場合には、合計の層厚さではなく、その夫々の層の厚さを意味する。   Further, the thickness of the resin material (B) is important, and if it is too thin, pinholes are frequently generated and reliability is lowered, which is not preferable. On the other hand, if it is too thick, the heat conductivity of the heat-dissipating resin molded product is lowered, which is not preferable. Therefore, the thickness of one layer of the resin material (B) needs to be 0.01 to 0.1 mm, and more preferably 0.02 to 0.06 mm. Here, the thickness of one layer of the resin material (B) means not the total layer thickness but the thickness of each layer when two or more layers of the resin material (B) are used. To do.

また、本発明の多層成形品は、後記するXカットテープ法による樹脂層間剥離の評価点数が2よりも大きい密着力を示すことが実用性から重要である。   Moreover, it is important from a practical point of view that the multilayer molded article of the present invention exhibits an adhesive strength with an evaluation score of resin delamination by the X-cut tape method to be described later of greater than 2.

更に、多層成形品全体の厚さに対する放熱性樹脂組成物(A) の層厚さの割合も重要であり、少な過ぎると放熱性樹脂組成物(A) 層にピンホールが多発することによる信頼性の低下、また多層成形品としての熱伝導率が低下するため好ましくない。逆に、多過ぎると、樹脂材料(B) にピンホールが発生し、信頼性が低下する。そのため、多層成形品全体の厚さに対する放熱性樹脂組成物(A) の層厚さは55〜98%とすることが必要であり、更に好ましくは60〜95%である。   Furthermore, the ratio of the layer thickness of the heat-dissipating resin composition (A) to the total thickness of the multilayer molded product is also important, and if it is too small, the reliability due to frequent pinholes in the heat-dissipating resin composition (A) layer. This is not preferable because of lowering of heat resistance and thermal conductivity as a multilayer molded article. On the other hand, if the amount is too large, pinholes are generated in the resin material (B) and the reliability is lowered. Therefore, the layer thickness of the heat dissipating resin composition (A) with respect to the entire thickness of the multilayer molded article needs to be 55 to 98%, and more preferably 60 to 95%.

次に、実施例、比較例で本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例中の物性測定の方法は以下の通りである。
(1)層間密着力評価
JIS K5400のXカットテープ法に準じて、多層成形品をシート状に押出したものを用い、層間までカットし、層間からの剥離度合いにて点数を付け評価した。
(2)ピンホール評価
多層シートを10cm四方の大きさに切り、東洋精機製作所製差圧式ガス透過率測定装置にセットした。シートの両面の気圧をそれぞれ酸素1気圧と、0気圧に設定し、30分放置した後の0気圧に設定したセルの圧力変化よりピンホールの有無を評価した。セルの圧力変化が5mmHg以下であればピンホールは無いと判断し、均質性が良好と判断した。
(3)熱伝導率
成形したシートの中央部を直径1cmの円状に打ち抜き、リガク製レーザーフラツシュ測定機LF/TCM-FA8510Bを用いて熱拡散率を測定した。使用した各樹脂材料それぞれ単独の比熱、比重を多層シートの厚み構成で計算し、熱拡散率×比熱×比重の式を用いて、多層シートの熱伝導率を求めた。
実施例1〜6、比較例1〜7
下記する樹脂材料を使用し、(株)東洋精機製作所製プラストミル(3層Tダイ)を用いて幅10cm、厚さ0.3mmのTダイ多層シートを押出した。実施例の多層シートの材料構成と厚みを表1に、比較例の(多層)シートの材料構成と厚みを表2に示す。それぞれのシートの評価結果を表3に示す。
(使用材料)
放熱性樹脂組成物(A)
・(A-1) 下記(B-1) のPPS樹脂に黒鉛(熱伝導率100〜150W/m・K)を60重量%(組成物中)配合したもの;熱伝導率5.8W/m・K
・(A-2) 下記(B-1) のPPS樹脂にマグネシア(熱伝導率30〜40W/m・K)を70重量%(組成物中)配合したもの;熱伝導率1.5W/m・K
・(A-3) 下記(B-2) のLCPにアルミナ(熱伝導率20〜30W/m・K)を60重量%(組成物中)配合したもの;熱伝導率2.3W/m・K
・(A-4) 下記(B-2) のLCPに窒化ホウ素(熱伝導率50〜60W/m・K)を40重量%(組成物中)配合したもの;熱伝導率1.8W/m・K
・(A-5) 下記(B-1) のPPS樹脂にガラスファイバー(熱伝導率0.6〜0.8W/m・K)を40重量%(組成物中)配合したもの;熱伝導率0.5W/m・K(比較品)
樹脂材料(B)
・(B-1) ポリフェニレンサルファイド(PPS)樹脂:ポリプラスチックス(株)製、フォートロン0220A9;熱伝導率0.2W/m・K、体積抵抗率2×1016Ω・cm
・(B-2) 液晶性ポリマー(LCP):ポリプラスチックス(株)製、ベクトラA950;熱伝導率0.3W/m・K、体積抵抗率6×1016Ω・cm
Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. In addition, the method of the physical property measurement in an Example is as follows.
(1) Interlayer adhesion evaluation In accordance with the JIS K5400 X-cut tape method, a multilayer molded product was extruded into a sheet shape, cut to the interlayer, and scored according to the degree of peeling from the interlayer.
(2) Pinhole evaluation The multilayer sheet was cut into a size of 10 cm square and set in a differential pressure type gas permeability measuring device manufactured by Toyo Seiki Seisakusho. The pressure on both sides of the sheet was set to 1 atmosphere of oxygen and 0 atmosphere, respectively, and the presence or absence of pinholes was evaluated from the change in pressure of the cell set to 0 atmosphere after being left for 30 minutes. If the pressure change of the cell was 5 mmHg or less, it was judged that there was no pinhole, and it was judged that the homogeneity was good.
(3) Thermal conductivity The center of the molded sheet was punched into a 1 cm diameter circle, and the thermal diffusivity was measured using a Rigaku laser flash measuring machine LF / TCM-FA8510B. The specific heat and specific gravity of each resin material used were calculated based on the thickness structure of the multilayer sheet, and the thermal conductivity of the multilayer sheet was determined using the formula of thermal diffusivity x specific heat x specific gravity.
Examples 1-6, Comparative Examples 1-7
Using the resin material described below, a T-die multilayer sheet having a width of 10 cm and a thickness of 0.3 mm was extruded using a plast mill (3-layer T die) manufactured by Toyo Seiki Seisakusho. Table 1 shows the material configuration and thickness of the multilayer sheet of the example, and Table 2 shows the material configuration and thickness of the (multilayer) sheet of the comparative example. Table 3 shows the evaluation results of each sheet.
(Materials used)
Heat dissipation resin composition (A)
-(A-1) 60% by weight (in the composition) of graphite (thermal conductivity 100-150 W / m · K) blended with PPS resin (B-1) below; thermal conductivity 5.8 W / m K
-(A-2) 70% by weight (in the composition) of magnesia (thermal conductivity 30-40 W / m · K) blended with PPS resin (B-1) below; thermal conductivity 1.5 W / m K
・ (A-3) LCP of the following (B-2) blended with 60% by weight of alumina (thermal conductivity 20-30 W / m · K) (in composition); thermal conductivity 2.3 W / m · K
・ (A-4) LCP of the following (B-2), 40% by weight (in composition) of boron nitride (thermal conductivity 50 to 60 W / m · K); thermal conductivity 1.8 W / m K
-(A-5) 40% by weight (in the composition) of glass fiber (thermal conductivity 0.6-0.8 W / m · K) blended with PPS resin (B-1) below; thermal conductivity 0.5 W / m ・ K (comparative product)
Resin material (B)
(B-1) Polyphenylene sulfide (PPS) resin: manufactured by Polyplastics Co., Ltd., Fortron 0220A9; thermal conductivity 0.2 W / m · K, volume resistivity 2 × 10 16 Ω · cm
(B-2) Liquid crystalline polymer (LCP): Polyplastics Co., Ltd., Vectra A950; thermal conductivity 0.3 W / m · K, volume resistivity 6 × 10 16 Ω · cm

Figure 0004413707
Figure 0004413707

Figure 0004413707
Figure 0004413707

Figure 0004413707
Figure 0004413707

Claims (2)

ポリアリーレンサルファイド樹脂にアルミナ、窒化ホウ素、マグネシア及び黒鉛より選ばれた1種以上のフィラーを配合してなる、1W/m・K以上の熱伝導率を持つ放熱性樹脂組成物(A-i) と、熱伝導率が0.5W/m・K以下であり、体積抵抗率が1×1010Ω・cm以上であるポリアリーレンサルファイド樹脂材料(B-i) を多層押出成形した成形品であって、樹脂材料(B-i) の一層の厚さが0.01〜0.1mmであり、Xカットテープ法による樹脂層間剥離の評価点数が2よりも大きい密着力を示す放熱性樹脂成形品。 A heat-dissipating resin composition (Ai) having a thermal conductivity of 1 W / m · K or more, comprising a polyarylene sulfide resin blended with one or more fillers selected from alumina, boron nitride, magnesia and graphite; A polyarylene sulfide resin material (Bi) having a thermal conductivity of 0.5 W / m · K or less and a volume resistivity of 1 × 10 10 Ω · cm or more, which is a molded product obtained by multilayer extrusion molding, A heat-dissipating resin molded product in which the thickness of one layer of Bi) is 0.01 to 0.1 mm and the evaluation score of resin delamination by the X-cut tape method is greater than 2. 芳香族ポリエステルからなる液晶性ポリマーにアルミナ、窒化ホウ素、マグネシア及び黒鉛より選ばれた1種以上のフィラーを配合してなる、1W/m・K以上の熱伝導率を持つ放熱性樹脂組成物(A-ii) と、熱伝導率が0.5W/m・K以下であり、体積抵抗率が1×1010Ω・cm以上である芳香族ポリエステルからなる液晶性ポリマー樹脂材料(B-ii) を多層押出成形した成形品であって、樹脂材料(B-ii) の一層の厚さが0.01〜0.1mmであり、Xカットテープ法による樹脂層間剥離の評価点数が2よりも大きい密着力を示す放熱性樹脂成形品。 A heat-dissipating resin composition having a thermal conductivity of 1 W / m · K or more, comprising a liquid crystalline polymer comprising an aromatic polyester and one or more fillers selected from alumina, boron nitride, magnesia and graphite ( A-ii) and a liquid crystalline polymer resin material (B-ii) comprising an aromatic polyester having a thermal conductivity of 0.5 W / m · K or less and a volume resistivity of 1 × 10 10 Ω · cm or more. This is a multilayer extrusion molded product, the thickness of one layer of the resin material (B-ii) is 0.01 to 0.1 mm, and the adhesion score of the resin delamination by the X-cut tape method is greater than 2. Heat-dissipating resin molded product.
JP2004236363A 2004-08-16 2004-08-16 Heat-dissipating resin molded product with multilayer structure Expired - Fee Related JP4413707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236363A JP4413707B2 (en) 2004-08-16 2004-08-16 Heat-dissipating resin molded product with multilayer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236363A JP4413707B2 (en) 2004-08-16 2004-08-16 Heat-dissipating resin molded product with multilayer structure

Publications (2)

Publication Number Publication Date
JP2006051750A JP2006051750A (en) 2006-02-23
JP4413707B2 true JP4413707B2 (en) 2010-02-10

Family

ID=36029520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236363A Expired - Fee Related JP4413707B2 (en) 2004-08-16 2004-08-16 Heat-dissipating resin molded product with multilayer structure

Country Status (1)

Country Link
JP (1) JP4413707B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428985B1 (en) * 2011-12-06 2014-08-12 제일모직주식회사 Thermal conductive polyphenylene sulfide resin composition and article using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049607A (en) * 2006-08-25 2008-03-06 Teijin Ltd Heat-conductive laminate with bonded thin film of electrical insulation
JP2011126262A (en) * 2009-04-09 2011-06-30 Teijin Ltd Thermal conductive resin composite molded product and led illuminator
JP2010264740A (en) * 2009-04-14 2010-11-25 Teijin Ltd Heat-conductive resin molding
WO2013190871A1 (en) * 2012-06-20 2013-12-27 アオイ電子株式会社 Light source-integrated optical sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428985B1 (en) * 2011-12-06 2014-08-12 제일모직주식회사 Thermal conductive polyphenylene sulfide resin composition and article using the same

Also Published As

Publication number Publication date
JP2006051750A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
KR101717449B1 (en) Thermallyconductive organic additiveresin compositionand cured product
KR101618239B1 (en) High thermal conductivity thermoplastic resin composition and thermoplastic resin
WO2021106768A1 (en) Lcp resin composition for circuit boards, lcp film for circuit boards and method for producing same
JP2016094615A (en) Mesomorphism polymer composition having thermal conductivity and dimension stability
JP6930046B1 (en) Manufacturing method of LCP film for circuit board and T-die melt extrusion LCP film for circuit board
TW201211121A (en) Wholly aromatic liquid crystalline polyester resin compound with enhanced electrical insulating property
WO2022113964A1 (en) Film and laminate
WO2022065270A1 (en) Insulating material for circuit substrate, and metal foil-clad laminate
JP4413707B2 (en) Heat-dissipating resin molded product with multilayer structure
WO2022065285A1 (en) Insulating material for circuit boards, method for producing same and metal foil-clad laminate
JPH02307751A (en) Laminated film
JP2005306955A (en) Method for producing highly heat-conductive resin composition
WO2022202789A1 (en) Polymer film and laminate
JP5151914B2 (en) Thermal laminated laminated film and method for producing the same
WO2022202790A1 (en) Polymer film and layered body
JP2022091469A (en) Method for manufacturing lcp extrusion film
JP2005126651A (en) Liquid crystalline polyester resin for high-pressure hydrogen storage tank
JP2022126429A (en) Polymer film and laminate
WO2024048348A1 (en) Film and layered body
JP6354361B2 (en) the film
JP2024155964A (en) LCP resin composition for circuit boards and LCP film for circuit boards
WO2024048000A1 (en) Composition and film
JP2022091493A (en) Method for manufacturing lcp extrusion film
WO2023191011A1 (en) Film and laminate
KR20240028296A (en) Insulation film and laminate comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees