JP4412217B2 - Capacitive touch switch device with half mirror - Google Patents

Capacitive touch switch device with half mirror Download PDF

Info

Publication number
JP4412217B2
JP4412217B2 JP2005104381A JP2005104381A JP4412217B2 JP 4412217 B2 JP4412217 B2 JP 4412217B2 JP 2005104381 A JP2005104381 A JP 2005104381A JP 2005104381 A JP2005104381 A JP 2005104381A JP 4412217 B2 JP4412217 B2 JP 4412217B2
Authority
JP
Japan
Prior art keywords
half mirror
switch
state
capacitive touch
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005104381A
Other languages
Japanese (ja)
Other versions
JP2006286386A (en
Inventor
宏 信田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP2005104381A priority Critical patent/JP4412217B2/en
Publication of JP2006286386A publication Critical patent/JP2006286386A/en
Application granted granted Critical
Publication of JP4412217B2 publication Critical patent/JP4412217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Description

本発明は、入力方式に静電容量方式を採用したハーフミラー付きタッチスイッチ装置に関するものである。   The present invention relates to a touch switch device with a half mirror that employs a capacitance method as an input method.

ハーフミラー付きタッチスイッチ装置は、入力方式に光学センサを利用したものと、静電容量変化を利用したものがある。
光学センサを利用したハーフミラー付きスイッチは、図1に示した構造が一般的で使われている。動作原理は、照明手段1から文字や絵を描いた表示シートに光を透過し、その光を屈折率分布型レンズの働きで、表示シートに描いた絵や文字を空中に結像し浮かび上がったように見せる。その絵や文字が浮かび上がった結像ポイントに合わせて、発光素子2より投光させる。結像ポイントに光を反射する物がなければ発光素子2からの光は通過し、結像ポイントに手をかざすと発光素子1からの光を反射し、その反射光をハーフミラーで屈曲させ受光素子3により認識する。この原理に基づき空中に浮かんだ絵や文字に手を近づけたり離したりすることを確認し、スイッチのON/OFF機能と連動させている。
There are two types of touch switch devices with a half mirror that use an optical sensor as an input method and one that uses a change in capacitance.
A switch with a half mirror using an optical sensor generally has the structure shown in FIG. The principle of operation is that light is transmitted from the illumination means 1 to a display sheet on which characters and pictures are drawn, and the light and image of the pictures and letters drawn on the display sheet are formed in the air by the function of the gradient index lens. Show like. The light emitting element 2 emits light in accordance with the imaging point where the picture or character emerges. If there is no object that reflects light at the imaging point, the light from the light emitting element 2 will pass. If you hold your hand over the imaging point, the light from the light emitting element 1 will be reflected, and the reflected light will be bent by a half mirror. Recognized by element 3. Based on this principle, it is confirmed that a hand is brought close to or separated from a picture or character floating in the air, and this is linked with the ON / OFF function of the switch.

また、静電容量変化を利用したハーフミラー付きタッチスイッチ装置には、図2に示す構造で、バックライト付の液晶表示装置の上に、アクリル板に金属蒸着したハーフミラーパネルを貼り付け、アクリル表面から指で触ることで静電容量変化を認識し、スイッチ機能を実現している。図2に示すように、静電容量変化を感知する電極部とハーフミラーを構成する金属蒸着膜を、共通部品とし利用しているため部品点数が少なく、非常に効率的にハーフミラー付きスイッチが実現出来ている。
しかしスイッチが1個の場合は問題ないが、複数個のスイッチを構成するとアクリル板に金属蒸着した面をスイッチの数だけ分割する必要があり、スイッチとスイッチの間に隙間が出来、隙間の部分はミラーの機能が果たさず、ハーフミラーとしの商品価値が著しく低下する。
In addition, the touch switch device with a half mirror using capacitance change has a structure shown in FIG. 2, and a half mirror panel vapor-deposited on an acrylic plate is pasted on a liquid crystal display device with a backlight. The switch function is realized by recognizing changes in capacitance by touching the surface with a finger. As shown in FIG. 2, the electrode part that senses the capacitance change and the metal vapor deposition film constituting the half mirror are used as common parts, so the number of parts is small, and the switch with half mirror is very efficient. It has been realized.
However, there is no problem if there is a single switch. However, if a plurality of switches are configured, it is necessary to divide the surface on which the metal is deposited on the acrylic plate by the number of switches, creating a gap between the switches. Does not perform the function of the mirror, and the commercial value of the half mirror is significantly reduced.

特開平9−120761号公報。JP-A-9-120761. 特開2002−247674号公報。JP 2002-247664 A.

従って、従来の光学センサ方式では、非接触でスイッチ入力が可能なため、衛生的に問題のあるトイレ用スイッチのように、不衛生な場所に設置されているために極力触りたくない場所に設けられているスイッチには、非常に有効である。
しかし、図1の構成から明らかなように、使用者の指の反射光を屈曲させるためのハーフミラーを斜めに取り付ける構造で、スペースが必要になり、軽薄短小が要求される電子機器やオーディオのスイッチに採用する場合には、筐体の厚みが問題となり不向きである。
また、静電容量変化型ハーフミラー付きスイッチは、設置場所の美観を損なうことが少ないため、セントラルタイプの給湯器や暖房装置のリモコンに採用されている。このリモコンは、リビングルームやダイニングルームに設置し、使わないときはハーフミラー部分が鏡状態となり、鏡に指が触れると静電容量が変化し、液晶のバックライトを点灯し液晶表示が現れ、図3の(a)に示した状態となる。しかしセントラルタイプの給湯器や暖房装置のリモコンは、時間セットや温度調整機能がありスイッチが複数必要になる。そのためリモコンを使わない状態でも、リモコン全体を鏡に出来ず、図3の(b)ようにスイッチが見えてしまう状況が発生する。この原因は静電容量用電極とハーフミラーが共有され、スイッチが1個しか実現できないためである。この構成では、ハーフミラーの特徴が半減してしまう。
ハーフミラーは、図4に示すアクリル板にアルミニウム膜を真空蒸着したもので、金属蒸着のため導通性があり低い抵抗値になる。その為、図5に示す導通性のアルミニウム膜の下に静電容量電極を搭載する場合に1個の静電容量電極を搭載する場合なら問題ないが、図6に示すように静電容量電極を複数個搭載すると、アルミニウム膜で電極全体が覆われ、全部の電極が同時に静電容量変化を引き起こし、各電極の静電容量変化の区別が出来なくなる現象が発生する。
そこで本発明は上記問題点の解決を目的とするものであり、スイッチ構造を小型化し、非接触浮上入力機能が実現でき、またスイッチ形状やスイッチを設ける数も限定しないハーフミラー付き静電容量型タッチスイッチ装置を提供する事にある。
Therefore, in the conventional optical sensor system, switch input is possible without contact, so it is installed in an unhygienic place, such as a toilet switch with sanitary problems, so it should be installed in a place where you do not want to touch it as much as possible. It is very effective for the switch.
However, as is apparent from the configuration of FIG. 1, the structure in which the half mirror for bending the reflected light of the user's finger is attached obliquely requires a space and is required for electronic devices and audio devices that require lightness and shortness. When used in a switch, the thickness of the housing is a problem and is not suitable.
In addition, the switch with the capacitance change type half mirror is used in a central type water heater or a remote controller of a heating device because it hardly damages the aesthetic appearance of the installation place. This remote control is installed in the living room or dining room, and when not in use, the half mirror part becomes a mirror state, the capacitance changes when a finger touches the mirror, the liquid crystal backlight turns on, and the liquid crystal display appears. The state shown in FIG. However, remote controls for central type water heaters and heating devices have time setting and temperature adjustment functions and require multiple switches. Therefore, even when the remote control is not used, the entire remote control cannot be used as a mirror, and a situation occurs in which the switch can be seen as shown in FIG. This is because the capacitance electrode and the half mirror are shared and only one switch can be realized. With this configuration, the characteristics of the half mirror are halved.
The half mirror is obtained by vacuum-depositing an aluminum film on the acrylic plate shown in FIG. 4, and has a conductivity and low resistance value due to metal deposition. For this reason, there is no problem if a single capacitive electrode is mounted when the capacitive electrode is mounted under the conductive aluminum film shown in FIG. 5, but the capacitive electrode as shown in FIG. When a plurality of electrodes are mounted, the entire electrode is covered with an aluminum film, and all the electrodes simultaneously cause a change in capacitance, resulting in a phenomenon in which the change in capacitance of each electrode cannot be distinguished.
Therefore, the present invention aims to solve the above-mentioned problems, and can reduce the size of the switch structure, realize a non-contact floating input function, and also has a capacitance type with a half mirror that does not limit the switch shape or the number of switches. It is to provide a touch switch device.

そこで本発明は、ハーフミラー付き静電容量型タッチスイッチにおいて、ハーフミラーはアクリル板に100メガオーム以上の真空蒸着により錫薄膜を蒸着して非導通タイプのハーフミラーパネルとした構成であり、前記静電容量型タッチスイッチは、ITO透明電極で作成した静電容量電極シートを透明な接着剤で前記ハーフミラーパネルに貼り付けた電極パネルを構成したハーフミラー付き静電容量型タッチスイッチであり、前記電極パネルを使用者の指が接触した状態又は非接触状態に応じて静電容量変化量を計測して演算する演算回路と前記静電容量の変化量を記憶する不揮発性メモリを制御基板に搭載し、前記演算回路で演算した静電容量変化の演算結果により前記ハーフミラーを鏡の状態または、スイッチ表示の状態に切り替える手段を内蔵したハーフミラー付き静電容量型タッチスイッチ装置を第1の要旨とし、静電容量変化の違いにより入力感度レベルを3段階に設定し、1段目以下の場合スイッチOFF状態で全面鏡、2段目範囲内は近接状態でスイッチの存在を認識出来き、3段目以上でスイッチON状態と認識出来き、入力感度レベルで切り替え機能を選択出来ることを特徴とする請求項1記載のハーフミラー付き静電容量型タッチスイッチ装置を第2の要旨とするものである。
The present invention provides a capacitive touch switch with a half mirror, a half mirror is a configuration in which a half mirror panel in a non-conductive type by depositing a tin thin film by vacuum deposition of more than 100 mega ohms to acrylic plate, the electrostatic Capacitive touch switch is a capacitive touch switch with a half mirror that comprises an electrode panel in which a capacitive electrode sheet made of ITO transparent electrode is attached to the half mirror panel with a transparent adhesive. Controlling an arithmetic circuit that measures and calculates a capacitance change amount according to a state in which the user's finger is in contact with the electrode panel or a non-contact state, and a nonvolatile memory that stores the capacitance change amount The half mirror is mounted on a substrate and switched to a mirror state or a switch display state according to the calculation result of the capacitance change calculated by the arithmetic circuit. Capacitance touch switch device with half mirror with built-in means to change is the first gist, the input sensitivity level is set in 3 steps according to the difference in capacitance change, and the switch is turned off when the first step or less 2. A mirror according to claim 1, wherein the presence of the switch can be recognized in the proximity state within the second stage range, the switch can be recognized as the switch ON state at the third stage or more, and the switching function can be selected according to the input sensitivity level. The second aspect is a capacitive touch switch device with a half mirror.

本発明によれば、錫膜を真空蒸着した非導通タイプのハーフミラーパネルを採用することで、静電容量電極シートにITO透明電極が利用でき、電極形状や電極数に制約がなくなりスイッチの数を増やすことが可能である。
更に制御回路のプログラムにより、静電容量のOFF/近接/ONの判定基準を3段階にしたことで浮上入力が可能となり、構造もITO透明電極シートの100ミクロンしか厚みが増えず、薄型構造が実現可能なものである。
その為、軽薄短小が要求される電子機器やオーディオのスイッチにも、ハーフミラー付き静電容量型タッチスイッチが搭載可能となるものである。
According to the present invention, by adopting a non-conductive type half mirror panel in which a tin film is vacuum-deposited, an ITO transparent electrode can be used for a capacitance electrode sheet, and there are no restrictions on the electrode shape and the number of electrodes and the number of switches. Can be increased.
In addition, the control circuit program has three levels of capacitance OFF / proximity / ON determination criteria, allowing floating input, and the thickness of the ITO transparent electrode sheet is only 100 microns, resulting in a thin structure. It is feasible.
For this reason, a capacitive touch switch with a half mirror can be mounted on an electronic device or an audio switch that is required to be light and thin.

本発明は、図11で示す通りハーフミラー付き電極パネルと表示ユニットと制御基板から構成する。
ハーフミラー付き電極パネルは、アクリル板に錫膜を真空蒸着した非導通タイプのハーフミラーパネルを作成し、PETフィルムにITO透明電極膜を印刷した静電容量電極シートを透明な糊で貼り付けた物である。静電容量電極シートのスイッチ部に指が触れると静電容量が変化し、スイッチ機能を実現している。
表示ユニットは、通常表面が鏡になっている状態からスイッチの位置と形状を分かりやすくするために、青色LED(LED−A1、LED−B1、LED−C1)を同時に点灯し、スイッチを触られた場合には触られたスイッチ部分の白色LED(LED−A2、LED−B2、LED−C2)の何れかを点灯させる。
制御基板は、図12で示したスイッチ電極切り換え回路、発振回路を利用した容量変化を周波数変化に変換するC/F変換回路、しきい値データを記憶するための不揮発性メモリ、波形の幅が計測できるインプットキャプチャ機能を内蔵したCPUで構成する。CPUのI/O端子1は、不揮発性メモリのリードライトに使用する。スイッチ電極切り換え回路は、汎用のアナログスイッチで構成され、CPUのI/O端子2でスイッチ電極SW−A/SW−B/SW−Cの何れかを選択する機能を有している。CPUのI/O端子3は、LED駆動制御に使用する。
The present invention comprises an electrode panel with a half mirror, a display unit, and a control board as shown in FIG.
The electrode panel with a half mirror is a non-conductive type half mirror panel in which a tin film is vacuum-deposited on an acrylic plate, and a capacitive electrode sheet with an ITO transparent electrode film printed on a PET film is pasted with a transparent paste. It is a thing. When a finger touches the switch portion of the capacitance electrode sheet, the capacitance changes to realize a switch function.
In order to make it easy to understand the position and shape of the switch, the display unit usually has a mirror on the surface, and the blue LED (LED-A1, LED-B1, LED-C1) is turned on at the same time and the switch is touched. In the case of touching, one of the white LEDs (LED-A2, LED-B2, LED-C2) of the touched switch part is turned on.
The control board includes a switch electrode switching circuit shown in FIG. 12, a C / F conversion circuit that converts a capacitance change to a frequency change using an oscillation circuit, a non-volatile memory for storing threshold data, and a waveform width It consists of a CPU with a built-in input capture function. The I / O terminal 1 of the CPU is used for reading / writing the nonvolatile memory. The switch electrode switching circuit is composed of a general-purpose analog switch, and has a function of selecting any one of the switch electrodes SW-A / SW-B / SW-C with the I / O terminal 2 of the CPU. The I / O terminal 3 of the CPU is used for LED drive control.

以下、本発明を具体化した実施例について図面を参照して説明する。まず始めにスイッチOFF状態、近接状態、ON状態の初期発信周波数を順番に測定する。
電極パネル10上に使用者の手が存在しないスイッチOFF状態(図13参照)で、CPUのI/O端子2(図12を参照)よりスイッチ電極切り換え回路に対し、制御信号を出力し、C/F変換回路にSW−A、SW−B、SW−Cの順番で接続しその時の発振周波数を測定し、各スイッチOFF状態の発信周波数Toff−A,Toff−B,Toff−CをCPUのI/O端子1に接続された不揮発性メモリに記憶する。
次に電極パネル4上に使用者の手5が近接した状態(図14参照)で、CPUのI/O端子2(図12参照)よりスイッチ電極切り換え回路に対し、制御信号を出力し、C/F変換回路にSW−A、SW−B、SW−Cの順番で接続しその時の発振周波数を測定し、各スイッチ上での近接状態の発信周波数Tnea−A,Tnea−B,Tnea−CをCPUのI/O端子1に接続された不揮発性メモリに記憶する。
続いて電極パネル4上に使用者の手11が、触れた状態(スイッチONの状態)で、CPUのI/O端子2(図12参照)よりスイッチ電極切り換え回路に対し、制御信号を出力し、C/F変換回路にSW−A、SW−B、SW−Cの順番で接続しその時の発振周波数を測定し、各スイッチ上での発信周波数Ton−A,Ton−B,Ton−CをCPUのI/O端子1に接続された不揮発性メモリに記憶する。
Embodiments of the present invention will be described below with reference to the drawings. First, the initial transmission frequency in the switch OFF state, the proximity state, and the ON state is measured in order.
In the switch OFF state (see FIG. 13) where the user's hand does not exist on the electrode panel 10, a control signal is output from the CPU I / O terminal 2 (see FIG. 12) to the switch electrode switching circuit. / F conversion circuit is connected in the order of SW-A, SW-B, SW-C, and the oscillation frequency at that time is measured, and the transmission frequencies Toff-A, Toff-B, Toff-C in each switch OFF state are determined by the CPU. The data is stored in a nonvolatile memory connected to the I / O terminal 1.
Next, in a state where the user's hand 5 is close to the electrode panel 4 (see FIG. 14), a control signal is output from the I / O terminal 2 (see FIG. 12) of the CPU to the switch electrode switching circuit, and C / F conversion circuit is connected in the order of SW-A, SW-B, SW-C, the oscillation frequency at that time is measured, and the transmission frequencies Tnea-A, Tnea-B, Tnea-C in the proximity state on each switch Is stored in a nonvolatile memory connected to the I / O terminal 1 of the CPU.
Subsequently, with the user's hand 11 touching the electrode panel 4 (switch ON state), a control signal is output from the CPU I / O terminal 2 (see FIG. 12) to the switch electrode switching circuit. The SW / A, SW-B, and SW-C are connected to the C / F conversion circuit in this order, and the oscillation frequency at that time is measured, and the transmission frequencies Ton-A, Ton-B, and Ton-C on each switch are measured. It memorize | stores in the non-volatile memory connected to the I / O terminal 1 of CPU.

上記測定した電極パネルの個々の初期データは、CPUの不揮発性メモリに内蔵されており下記の通りである。
1.図13のスイッチOFF状態の発振周波数
・容量 C=C1
・抵抗値 R=R1
・周波数 Toff−A,B,C=100kHz程度
2.図14のスイッチに手が近接状態の発振周波数
・容量 C=C1+C2(手が近づいたことによる容量増加)
・抵抗値 R=R1
・周波数 Tnea−A,B,C=99.8kHz程度
3.図15のスイッチON状態の発振周波数
・容量 C=C1+C3(指が触ったことによる容量増加)
・抵抗値 R=R1
・周波数 Ton−A,B,C=99kHz程度
Individual initial data of the measured electrode panel is incorporated in the nonvolatile memory of the CPU and is as follows.
1. Oscillation frequency in switch OFF state in FIG. 13 -Capacitance C = C1
・ Resistance value R = R1
・ Frequency Toff-A, B, C = about 100 kHz Oscillation frequency when hand is close to switch in FIG. 14 -Capacitance C = C1 + C2 (Capacity increase due to approach of hand)
・ Resistance value R = R1
・ Frequency Tnea-A, B, C = about 99.8 kHz Oscillation frequency in switch ON state of FIG. 15 -Capacitance C = C1 + C3 (Capacity increase due to finger touch)
・ Resistance value R = R1
・ Frequency Ton-A, B, C = about 99kHz

では一例としてSW−Bが押された場合について、判断方法を具体的な測定データを使い説明する。
図13の状態(スイッチOFF状態)で周波数を計測すると、SW−A=SW−B=SW−C=100kHzでToffと同じ周波数のためスイッチOFFと判断できる。その時のパネル表示は図16でCPUのI/O端子3よりLEDが消灯した鏡状態となる。
図14の状態(使用者の指が電極パネル上に近接した状態)で周波数を計測すると、SW−A=SW−B=100kHzでSW−C=99.8kHzの為SW−A,BはToffと同じ周波数のためスイッチOFFと判断し、SW−CはTneaと同じ周波数のため近接状態と判断できる。その時のパネル表示状態は図17でCPUのI/O端子3よりLED−A1,B1,C1が3個とも点灯し、スイッチ青色表示となる。この時非接触の浮上入力が可能となる。
図15の状態(使用者の指が電極パネル上に接触した状態)で周波数を計測すると、SW−A=SW−C=99.8kHzでSW−B=99kHzの為SW−A,CはTneaと同じ周波数のため近接状態と判断し、SW−BはTonと同じ周波数のためスイッチON状態と判断できる。その時のパネル表示状態は図18に示している状態であり、CPUのI/O端子3よりLED−A1,C1が点灯しLED−B1が消灯しスイッチSW−A、Cは青色の表示となる。スイッチBは、ON状態のため白色LED−B2が点灯しスイッチON状態を目視確認できる。このことによりSW−Bが押されたことが確認できる。
As an example, the determination method will be described using specific measurement data when SW-B is pressed.
When the frequency is measured in the state of FIG. 13 (switch OFF state), it can be determined that the switch is OFF because SW-A = SW-B = SW-C = 100 kHz and the same frequency as Toff. The panel display at that time is in a mirror state in which the LED is turned off from the I / O terminal 3 of the CPU in FIG.
When the frequency is measured in the state shown in FIG. 14 (when the user's finger is close to the electrode panel), SW-A = SW-B = 100 kHz and SW-C = 99.8 kHz, so SW-A and B are Toff. It can be determined that the switch is OFF because of the same frequency as SW1, and SW-C can be determined to be in the proximity state because of the same frequency as Tnea. The panel display state at that time is shown in FIG. 17 by turning on all three LEDs-A1, B1, and C1 from the I / O terminal 3 of the CPU, and the switch is displayed in blue. At this time, non-contact floating input is possible.
When the frequency is measured in the state of FIG. 15 (the state where the user's finger is in contact with the electrode panel), SW-A = SW-C = 99.8 kHz and SW-B = 99 kHz, so SW-A and C are Tnea. Since the frequency is the same as that of Ton, it is determined that the switch is in the proximity state. The panel display state at that time is the state shown in FIG. 18, LEDs-A1, C1 are turned on and LED-B1 is turned off from the CPU I / O terminal 3, and switches SW-A, C are displayed in blue. . Since the switch B is in the ON state, the white LED-B2 is lit and the switch ON state can be visually confirmed. This confirms that SW-B has been pressed.

以上により初期値と測定データをCPUの演算プログラムで比較し、3段階の判定基準を設けることで、浮上入力が可能となる。併せて判定基準の段階に併せてLEDの点灯方式を工夫し視認性の高いハーフミラー付き静電容量型タッチスイッチ装置が実現できる。   As described above, the initial value and the measurement data are compared with the calculation program of the CPU, and the determination input in three stages is provided, thereby allowing the floating input. At the same time, it is possible to realize a high-visibility capacitive touch switch device with a half mirror by devising the LED lighting method in accordance with the determination criterion stage.

光学センサ方式Optical sensor method 静電容量方式Capacitance method 表示状態切り換えDisplay status switching 一般的なハーフミラーパネルの構造図General half-mirror panel structure ハーフミラーパネルに1個静電容量電極を貼り付けた構成図Configuration diagram with one capacitive electrode attached to a half mirror panel ハーフミラーパネルに複数静電容量電極を貼り付けた構成図Configuration diagram with multiple capacitance electrodes attached to a half mirror panel 非導通タイプのハーフミラーパネルの構造図Structure diagram of non-conductive type half mirror panel 静電容量電極シートCapacitive electrode sheet ハーフミラー付き電極パネルElectrode panel with half mirror 表示ユニットDisplay unit ハーフミラー付き静電容量型タッチスイッチの構成図Configuration diagram of capacitive touch switch with half mirror 制御基板Control board スイッチOFF状態Switch OFF state スイッチ近接状態Switch proximity state スイッチON状態Switch ON state パネル表示(鏡状態)Panel display (mirror state) パネル表示(スイッチ認識可能状態)Panel display (switch recognition possible state) パネル表示(スイッチON状態)Panel display (switch ON state)

符号の説明Explanation of symbols

1 照明手段
2 発光素子
3 受光素子
4 電極パネル
5 使用者の手
DESCRIPTION OF SYMBOLS 1 Illumination means 2 Light emitting element 3 Light receiving element 4 Electrode panel 5 User's hand

Claims (2)

ハーフミラー付き静電容量型タッチスイッチにおいて、ハーフミラーはアクリル板に100メガオーム以上の真空蒸着により錫薄膜を蒸着して非導通タイプのハーフミラーパネルとした構成であり、前記静電容量型タッチスイッチは、ITO透明電極で作成した静電容量電極シートを透明な接着剤で前記ハーフミラーパネルに貼り付けた電極パネルを構成したハーフミラー付き静電容量型タッチスイッチであり、前記電極パネルを使用者の指が接触した状態又は非接触状態に応じて静電容量変化量を計測して演算する演算回路と前記静電容量の変化量を記憶する不揮発性メモリを制御基板に搭載し、前記演算回路で演算した静電容量変化の演算結果により前記ハーフミラーを鏡の状態または、スイッチ表示の状態に切り替える手段を内蔵したことを特徴としたことを特徴とするハーフミラー付き静電容量型タッチスイッチ装置。 In the capacitive touch switch with a half mirror , the half mirror has a configuration in which a tin thin film is deposited on an acrylic plate by vacuum deposition of 100 mega ohms or more to form a non-conductive type half mirror panel, and the capacitive touch switch Is a capacitive touch switch with a half mirror that constitutes an electrode panel in which a capacitive electrode sheet made of an ITO transparent electrode is bonded to the half mirror panel with a transparent adhesive, and the electrode panel An arithmetic circuit that measures and calculates a capacitance change amount according to a state in which a user's finger is in contact or a non-contact state, and a non-volatile memory that stores the capacitance change amount are mounted on the control board , Built-in means for switching the half mirror to the mirror state or switch display state according to the calculation result of the capacitance change calculated by the arithmetic circuit A capacitive touch switch device with a half mirror, characterized in that 静電容量変化の違いにより入力感度レベルを3段階に設定し、1段目以下の場合スイッチOFF状態で全面鏡、2段目範囲内は近接状態でスイッチの存在を認識出来き、3段目以上でスイッチON状態と認識出来き、入力感度レベルで切り替え機能を選択出来ることを特徴とする請求項1記載のハーフミラー付き静電容量型タッチスイッチ装置。     The input sensitivity level is set to 3 levels depending on the difference in capacitance, and if it is less than the 1st stage, it can recognize the presence of the switch in the full state mirror when the switch is OFF and the proximity within the 2nd stage range. 2. The capacitive touch switch device with a half mirror according to claim 1, wherein the switch ON state can be recognized and the switching function can be selected based on the input sensitivity level.
JP2005104381A 2005-03-31 2005-03-31 Capacitive touch switch device with half mirror Expired - Fee Related JP4412217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104381A JP4412217B2 (en) 2005-03-31 2005-03-31 Capacitive touch switch device with half mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104381A JP4412217B2 (en) 2005-03-31 2005-03-31 Capacitive touch switch device with half mirror

Publications (2)

Publication Number Publication Date
JP2006286386A JP2006286386A (en) 2006-10-19
JP4412217B2 true JP4412217B2 (en) 2010-02-10

Family

ID=37408077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104381A Expired - Fee Related JP4412217B2 (en) 2005-03-31 2005-03-31 Capacitive touch switch device with half mirror

Country Status (1)

Country Link
JP (1) JP4412217B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4216311B2 (en) * 2006-11-28 2009-01-28 Smk株式会社 Remote control transmitter
JP4897555B2 (en) * 2007-04-20 2012-03-14 信越ポリマー株式会社 Operation switch cover member and operation switch
KR101537616B1 (en) * 2009-07-22 2015-07-22 엘지전자 주식회사 A refrigerator and a production method for a operation panel thereof
JP5460207B2 (en) * 2009-08-12 2014-04-02 日立アプライアンス株式会社 refrigerator
JP4948578B2 (en) * 2009-08-12 2012-06-06 日立アプライアンス株式会社 refrigerator
JP5604664B2 (en) * 2010-06-30 2014-10-08 国立大学法人名古屋大学 Half mirror substrate manufacturing method and half mirror substrate
JP5667805B2 (en) * 2010-07-14 2015-02-12 日立アプライアンス株式会社 refrigerator
JP5740706B2 (en) * 2010-09-21 2015-06-24 株式会社ユピテル Automotive electronics
JP4970618B2 (en) * 2011-12-12 2012-07-11 日立アプライアンス株式会社 refrigerator
JP4970617B2 (en) * 2011-12-12 2012-07-11 日立アプライアンス株式会社 refrigerator
JP2017003248A (en) * 2015-06-05 2017-01-05 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP2006286386A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4412217B2 (en) Capacitive touch switch device with half mirror
AU2019246934B2 (en) Electronic devices with sidewall displays
US7394367B1 (en) Keypad for building automation
CN105493409B (en) Capacitive touch panel
TW202009958A (en) Transparent button for capacitive touch screen
WO2017193743A1 (en) Flexible display module and manufacturing method therefor
CN101507362A (en) Touch sensitive actuator having a uniform actuation force and a maximum active area
US9571096B2 (en) Touch panel based switch
JP2005084982A (en) Electrostatic capacitance type touch panel device
JP2008041484A (en) Switch device with touch detection function
JP2006128020A (en) Electrostatic capacity type switching arrangement
JP2004335477A (en) Contact switching device comprising flat-shaped non-conductive cover
KR100772676B1 (en) A plain touch switch
CN111240511B (en) Display device and driving method thereof
KR100895147B1 (en) Refrigerator
JP2015095183A (en) Mirror-tone capacitance type touch panel and mirror-tone touch input device
JP4381227B2 (en) Optical touch panel device
US20200228118A1 (en) Touch control human machine interface
KR100342649B1 (en) Touch panel
JP6956087B2 (en) Operating parts and electrical equipment on which they are installed
US20170364201A1 (en) Touch-sensitive remote control
CN218237596U (en) Panel control device based on infrared induction and range hood
KR100985406B1 (en) Capacitive overlay touch panel
KR20070096130A (en) A plain touch switch
US20140009904A1 (en) Touch key control and icon display apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees