JP4411749B2 - Metal vapor discharge lamp - Google Patents

Metal vapor discharge lamp Download PDF

Info

Publication number
JP4411749B2
JP4411749B2 JP2000190138A JP2000190138A JP4411749B2 JP 4411749 B2 JP4411749 B2 JP 4411749B2 JP 2000190138 A JP2000190138 A JP 2000190138A JP 2000190138 A JP2000190138 A JP 2000190138A JP 4411749 B2 JP4411749 B2 JP 4411749B2
Authority
JP
Japan
Prior art keywords
lamp
bromine
ratio
arc tube
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000190138A
Other languages
Japanese (ja)
Other versions
JP2002008588A (en
Inventor
吉川  智也
典秀 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2000190138A priority Critical patent/JP4411749B2/en
Publication of JP2002008588A publication Critical patent/JP2002008588A/en
Application granted granted Critical
Publication of JP4411749B2 publication Critical patent/JP4411749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば紫外線硬化用ランプとして利用される、金属蒸気放電灯に関する。
【0002】
【従来の技術】
従来より、紫外線硬化用のランプとして、高圧水銀ランプ、鉄入り金属蒸気放電灯が用いられてきた。
【0003】
鉄入り金属蒸気放電灯は、発光管に発光金属として鉄が封入され、ハロゲンとして沃素が封入されたものであるが、多様な感剤に対してその分光感度曲線に適合できるように、さらに各種の金属が微量添加されている。例えば添加金属としてSnを添加することが米国特許第3590307号公報に、Pbを添加することが特開昭55−133743号公報に記載されている。
【0004】
鉄の沃化物が封入された上記ランプは高圧水銀ランプに比べ350〜450nmの発光が増強され、感剤によっては高圧水銀灯よりも好まれて用いられている。
しかしながら感剤の多様化が進むにつれランプの分光分布への要求も多様化し、鉄入り金属蒸気放電灯においては350〜450nmに加えさらに別の波長範囲も併せて増強させたいという要望があった。例えば450〜500nmの増強である。
【0005】
また近年紫外線強度増加の要求が強まるなか、これに対しては発光長当たりのランプ入力値を大きくすることで対応がなされてきたが、鉄入り金属蒸気放電灯を高負荷で長時間点灯すると、鉄を含んだ薄膜が発光管を形成している石英管の内側に形成され、発生した光が膜で遮断されランプの発光強度が著しく低下するという問題があった。
【0006】
そこで、これについての対策として、微量の金属を添加する方法や、ハロゲンとして臭素を利用する方法(例えば特開平5−135740号公報参照)が考えられている。
【0007】
【発明が解決しようとする課題】
しかしながら、ハロゲンとして臭素を封入すると、ランプの始動性に問題が生じることが判った。この原因はランプが消灯した後、封入されている臭素が完全に臭化金属あるいは臭化水銀の形に戻ることが出来ず、一部臭素ガス(Br2)として存在するためと考えられる。すなわち、従来からハロゲンとして主に利用されている沃素の場合、たとえ沃化金属あるいは沃化水銀の形に還らずI2のままであっても、室温(25℃)の状態でI2は固体であるのに対しBr2は蒸気圧が高く、ランプ始動時において負性の臭素ガスが発光管内を満たすことになることが始動性に難をきたす原因と考えられる。
【0008】
以上に鑑み、本願発明は、主発光金属元素として鉄、ハロゲンとして沃素が封入されている金属蒸気放電灯において、始動性能を低下させることなく450〜500nmの発光強度を増加させることを目的とする。
【0009】
【課題を解決するための手段】
本願発明の金属蒸気放電灯は、発光管内に緩衝ガス用の水銀、発光金属としての鉄、ハロゲンとしての沃素と臭素、始動用の希ガスが少なくとも封入され、発光管内容積あたりに換算した封入原子数について、沃素を(I)、臭素を(Br)と表すとき、(Br)+(I)が2×10-7〜14×10-7(mol/cc)となっており、(Br):(I)で表される原子比が10:90〜30:70の範囲にあることを特徴とするものである。
【0010】
本願発明者らは、従来封入ハロゲンとして用いられてきた沃素の特定割合を臭素に換えることで上記課題を解決できることを見出し、本願発明を成すに至った。すなわち、封入沃素の総原子数の10〜30%の範囲の量を臭素原子で置き換えることで350〜400nm及び400〜450nmの発光エネルギ−が20〜30%程度、特に450〜500nmの発光強度が40〜70%程度増加するのである。そして、置き換え率が10%未満の場合には強度増加が十分ではなく、置き換え率が30%を越える場合には、ランプの始動性能が著しく低下する。この原因は臭素の封入比を高めたことでランプ始動時の発光管内の臭素ガスの蒸気圧が高くなったのが原因と推定される。
【0011】
【発明の実施の形態】
以下、実施形態とともに本願発明について更に説明する。
【0012】
図1は本願発明の1実施形態である金属蒸気放電灯の構造を示す図である。本実施形態の金属蒸気放電灯は、発光管1内の両端に電極2が設けられ、発光管1の細径部にモリブデンホイル3と口金4が設けらた構造となっている。発光管の材質としては、石英を用いることができる。
【0013】
発光管内部には、緩衝ガス用の水銀と、主発光金属となる鉄、ハロゲンとしての沃素と臭素とが封入され、さらに始動用の希ガスが封入される。
【0014】
ハロゲンは、例えば、FeI2、FeBr2、HgI2、HgBr2等のハロゲン化物の形で発光管内に封入でき、水銀や鉄はハロゲン化物や金属単体として封入でき、これらが適宜組み合わされて所定の量と比率になるように封入される。
【0015】
希ガスとしては、He,Ne,Xe,Ar,Kr等を用いることができるが、点灯後徐々に光度が上昇するタイプの放電灯の場合には、価格の点からもArが好ましい。
【0016】
また、分光特性を改良する場合には、発光管内に分光改良用の添加金属(例えば、Mg,Bi,Ta,Cd,Mn,Sn,Pb等)が封入され、この場合、発光管内容積あたりに換算した封入原子数について、鉄を(Fe)、分光改良金属を(M)と表すとき、(M)/(Fe)で表される封入比が0.3以下となるようにするのが好ましい。これは発光効率に特に優れた鉄の主発光を効果的に維持する為である。
【0017】
特に、上記添加金属を用いる場合、鉛または錫を少なくとも一種用いるのが好ましく、どちらか一方を用いるのが実用的である。
【0018】
沃素と臭素は、発光管内容積あたりに換算した封入原子数について、沃素を(I)、臭素を(Br)と表すとき、(Br)+(I)が2×10-7〜14×10-7(mol/cc)となり、(Br):(I)で表される原子比が10:90〜30:70の範囲になるように、上記封入物の割合を適宜調整して封入するが、これは添加金属の有無、希ガスの種類にはよらず同じであり、このような量と割合とすることで、特に450〜500nmの発光強度を大きくでき、始動性能の低下も抑制できる。
【0019】
臭素の添加量を多くすると、始動性能が低下する傾向が現れるが、臭素の割合が30%以下である場合には、臭素を添加しない場合(すなわち沃素のみ)に比べてそれほど始動性能の低下はなく、また、実用上無視できない程度の始動性能の低下が生じた場合にも、30%以下の添加量とした場合には、希ガスの封入圧力を低下させることで、電極物質のスパッタリングによる発光管端部の黒化等の問題を生じることなく、問題のない程度にまで始動性能の低下を抑えることが可能となる。この場合の圧力としては、例えば、発光管内温度25℃で5torr以上10torr以下が良い。30%を越えて臭素を添加した場合には、希ガスの封入圧力を下げるという方法を用いた場合、始動性能の低下を抑えることのできる圧力では、黒化等の別の問題が生じてしまい、このような方法を採用できなくなる。
【0020】
上記のような量と割合の臭素を添加した場合の始動性能の確保には、特に希ガスをアルゴンガスとし、これを発光管内での分圧が、発光管内温度25℃で5torr以上10torr以下となるように封入するのが良く、このようにすることで、臭素封入による始動性悪化分を効果的に相殺することが出来る。
【0021】
【実施例】
以下、試作した金属蒸気放電灯の特性について説明する。試作した金属蒸気放電灯は、上記図1に示したものと同じ構造を有するもので、石英製の発光管の発光長が500mm、発光管内径が22mmで、ランプ電力が8kW、ランプ電圧が750V、ランプ電流が11.8Aとなるように作製した。
【0022】
(実施例1)
(Fe)を6×10-7(mol/cc)、(Sn)を2×10-7(mol/cc)、(I)+(Br)を8×10-7(mol/cc)とし、(Br):(I)を0:100〜100:0の範囲で変化させたランプを試作した。なお、水銀は200mg封入し、希ガスとしてはArを用いた。
【0023】
これらのランプの発光強度について300〜500nmの波長範囲を50nmごとに分け、各波長区間の積算値において(Br):(I)=0:100のランプの値を基準にして相対表示したグラフを図2に示す。
【0024】
同図から判るように、臭素の封入比の増加に対し300〜350nmの区間の積分値は100%から87%まで単調減少した。350〜400nmと400〜450nmの区間の積分値は(Br):(I)が30:70〜100:0で平坦であり、その相対強度比は114〜133%であった。特に450〜500nmの場合は違いが顕著に現れ、臭素比が僅かでもその効果は大きく(Br)比が10%で相対エネルギ−比は130%へ増加し、さらに(Br)比を大きくしていくと緩やかな増加率になりながらも(Br)比が75%で相対比は200%を越えた。このように波長区間450〜500nmの発光エネルギ−は臭素比が10%以上であればハロゲンとして沃素だけを使用した場合に対して130%程度以上になることが判った。
【0025】
図5は沃素と臭素の封入比を変化させ、始動用ガスとしてアルゴンガスを室温状態でそれぞれ5、10、15torrで封入したランプについて始動特性を調べたものである。測定方法は空冷式の紫外線照射器具にて一旦ランプを点灯してから消灯し、10分間アフタ−冷却した後にランプの電極間に図6に示すような実効値1000Vの正弦波電圧を印加し、さらに半値幅約80(μS)のパルス波形を重畳させ、パルス波高値を変化させてランプが放電破壊に至る値を測定した。以後この値を始動電圧と呼ぶ。
【0026】
図5から、臭素の封入比が増えると始動電圧が上昇しているのが判る。しかしながら、アルゴン10torrの場合の(Br):(I)=30:70においては、アルゴンガスが15torr封入され、ハロゲンとして沃素のみが使用されている従来ランプと同等の始動電圧となっていることが分かる。
すなわち従来の安定器で本発明のランプを始動可能にするには、(Br)を総ハロゲンの30%以下の封入比とし、封入アルゴン圧が10torr以下でなければならないことが判る。
【0027】
ただしArガス圧が低いほど始動電圧は低くなるが5torr未満の場合ランプ始動時における電極物質のスパッタリングが激しく、著しく発光管の端部が黒化する。
【0028】
(実施例2)
第2の実施例として第1の実施例の錫についてこれを鉛に置き換えた場合を説明する。
【0029】
図3はこのランプの発光強度について300〜500nmの波長範囲を50nmごとに分け、各波長区間の積算値について(Br):(I)=0:100を基準にして相対表示したグラフである。図から判るように臭素の封入比の増加に対し300〜350nmの区間の積分値は100%から88%まで単調減少した。350〜400nmと400〜450nmの場合は(Br):(I)が30:70〜100:0で相対強度比は113〜135%であった。特に450〜500nmの場合は違いが顕著に現れ、臭素比が僅かでもその効果は大きく(Br)比が10%で相対エネルギ−比は130%へ増加し、さらに(Br)比を大きくしていくと緩やかな増加率になりながらも(Br)比が75%で相対比は200%になった。このように波長区間450〜500nmの発光エネルギ−は臭素比が10%以上であればハロゲンとして沃素だけを使用した場合に対して130%以上になることが判った。
【0030】
またランプの始動電圧に関してアルゴンスの封入圧力を変えた場合も第1の実施例と同様の結果であった。
【0031】
(実施例3)
第3の実施例は第1の実施例において鉛や錫などの添加金属は封入しないでその分鉄を増量して封入した場合である。
【0032】
図4はこのランプの発光強度について301〜500nmの波長範囲を50nmごとに分け、各波長区間の積算値について(Br):(I)=0:100を基準にして相対表示したグラフである。図から判るように臭素の封入比の増加に対し300〜350nmの区間の積分値は100から85%まで単調減少した。350〜400nmと400〜450nmの場合は(Br):(I)が30:70〜100:0で相対強度比は130%近辺であった。特に450〜500nmの場合は違いが顕著に現れ、臭素比が僅かでもその効果は大きく(Br)比が10%で相対エネルギ−比は130%へ増加し、さらに(Br)比を大きくしていくと緩やかな増加率になりながらも(Br)比が75%で相対比は200%になった。このように波長区間450〜500nmの発光エネルギ−は臭素比が10%以上であればハロゲンとして沃素だけを使用した場合に対して130%以上になることが判った。
【0033】
またランプの始動電圧に関してアルゴンガスの封入圧力を変えた場合も第1の実施例と同様の結果であった。
【0034】
すなわち主発光金属として鉄を利用している鉄入りメタルハライドランプの発光強度に関して添加金属を錫または鉛とした場合、あるいは添加しない場合、換言すれば少なくとも主発光金属として封入した鉄が封入全金属数の原子比で70%以上を占めている場合において、(Br):(I)の比が10:90〜30:70の範囲であれば450〜500nmの相対強度比は130〜180%、(Br):(I)=30:70〜100:0の範囲では170〜200%の極めて大きな改善が認められた。
【0035】
始動電圧については上述のような添加金属の変化では、ランプ始動時の臭素ガス(Br2)の圧力に違いがないためであろうと推定されるのであるがほとんど同じような始動電圧の変化傾向を示した。すなわち臭素の封入比率が大きくなるほど始動電圧は上昇するが、(Br):(I)が10:90〜30:70の範囲でランプ製作時に始動用希ガスとして5〜10torrのアルゴンを封入すれば、従来ランプのハロゲンとして沃素のみを、始動用ガスとしてアルゴンを15torrで封入したランプと同程度の始動電圧を有するランプが出来た。
【0036】
また始動性については(Br):(I)の封入比だけでなく(Br)+(I)のハロゲン和も影響すると考えられる。発明者は図1の構造のランプに適量の水銀(200mg前後)、始動用ガスにアルゴンを10torr、(Br):(I)を30:70に固定した状態で(Fe)を(Br)+(I)と同量封入した場合と、適量の水銀(200mg前後)、アルゴン15torr、(Fe)と(I)を同量封入した場合において、(Br)+(I)のハロゲン和を2×10-7、8×10-7、14×10-7 (mol/cc)と変化させ始動電圧を調査した結果を図7に示す。
【0037】
横軸は(Br)+(I)、縦軸は始動電圧を示す。図から判るようにこの範囲のハロゲン和では両者はほぼ同程度の始動電圧であった。
【0038】
結局、(Br)+(I)のハロゲン和が2×10-7〜14×10-7(mol/cc)の範囲で、(Br):(I)が10:90〜30:70の範囲ならば、ランプ製作時において始動用希ガスとして5〜10torrのアルゴンを封入するならば従来ランプ並の始動性を有するランプとなり、従来安定器でも始動可能である。
【0039】
【発明の効果】
本発明によれば、350〜500nmの範囲の発光エネルギ−が増強され、なおかつ従来の安定器で始動可能なランプを提供できる。
【図面の簡単な説明】
【図1】 金属蒸気放電灯の構造を示す断面図。
【図2】 封入ハロゲンである沃素と臭素の封入比を変化させた場合の発光強度の変化を示すグラフである。
【図3】 封入ハロゲンである沃素と臭素の封入比を変化させた場合の発光強度の変化を示すグラフである。
【図4】 封入ハロゲンである沃素と臭素の封入比を変化させた場合の発光強度の変化を示すグラフで封入金属が鉄のみの場合である。
【図5】 封入アルゴンガス圧5、10、15torrにおいて、沃素と臭素の封入比を変化させた場合の始動電圧を示す図である。
【図6】 ランプの電極間に印加した始動電圧波形を示す図である。
【図7】 ハロゲン和を変化せた場合の始動電圧を示す図である。
【符号の説明】
1・・・発光管
2・・・電極
3・・・モリブデンホイル
4・・・口金
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal vapor discharge lamp used as an ultraviolet curing lamp, for example.
[0002]
[Prior art]
Conventionally, high-pressure mercury lamps and iron-containing metal vapor discharge lamps have been used as ultraviolet curing lamps.
[0003]
An iron-containing metal vapor discharge lamp is one in which iron is enclosed as a luminescent metal in a luminous tube and iodine is enclosed as a halogen, but various types of sensitizers can be adapted to their spectral sensitivity curves. A small amount of metal is added. For example, adding Sn as an additive metal is described in US Pat. No. 3,590,307, and adding Pb is described in JP-A-55-133743.
[0004]
The lamp filled with iron iodide has enhanced light emission of 350 to 450 nm as compared with a high-pressure mercury lamp, and is preferred to be used over a high-pressure mercury lamp depending on the sensitizer.
However, as diversification of sensitizers has progressed, the demands on the spectral distribution of the lamps have also diversified, and there has been a desire to enhance other wavelength ranges in addition to 350 to 450 nm in iron-containing metal vapor discharge lamps. For example, enhancement of 450 to 500 nm.
[0005]
In recent years, as the demand for increasing the UV intensity has increased, this has been addressed by increasing the lamp input value per emission length, but when the iron-containing metal vapor discharge lamp is lit for a long time at a high load, There is a problem that a thin film containing iron is formed inside the quartz tube forming the arc tube, and the generated light is blocked by the film and the luminous intensity of the lamp is significantly reduced.
[0006]
Therefore, as measures against this, a method of adding a trace amount of metal and a method of using bromine as a halogen (for example, see Japanese Patent Laid-Open No. 5-135740) are considered.
[0007]
[Problems to be solved by the invention]
However, it has been found that encapsulating bromine as a halogen causes a problem with the startability of the lamp. This is presumably because bromine contained in the lamp cannot completely return to the form of metal bromide or mercury bromide after the lamp is extinguished, and partly exists as bromine gas (Br 2 ). That is, in the case of iodine which has been mainly used as a halogen conventionally, I 2 is solid at room temperature (25 ° C.) even if it remains I 2 without returning to the form of metal iodide or mercury iodide. On the other hand, Br 2 has a high vapor pressure, and it is considered that the negative bromine gas fills the inside of the arc tube at the start of the lamp, which causes the startability to be difficult.
[0008]
In view of the above, an object of the present invention is to increase the emission intensity of 450 to 500 nm without reducing the starting performance in a metal vapor discharge lamp in which iron as a main light emitting metal element and iodine as a halogen are enclosed. .
[0009]
[Means for Solving the Problems]
In the metal vapor discharge lamp of the present invention, mercury as a buffer gas, iron as a luminescent metal, iodine and bromine as halogens, and a rare gas for starting are enclosed in an arc tube, and encapsulated atoms converted per arc tube volume In terms of numbers, when iodine is represented by (I) and bromine by (Br), (Br) + (I) is 2 × 10 −7 to 14 × 10 −7 (mol / cc), and (Br) : The atomic ratio represented by (I) is in the range of 10:90 to 30:70.
[0010]
The inventors of the present application have found that the above-mentioned problems can be solved by replacing the specific ratio of iodine conventionally used as encapsulated halogen with bromine, and have reached the present invention. That is, by replacing an amount in the range of 10 to 30% of the total number of atoms of encapsulated iodine with bromine atoms, the emission energy of 350 to 400 nm and 400 to 450 nm is about 20 to 30%, particularly the emission intensity of 450 to 500 nm. It increases about 40-70%. When the replacement rate is less than 10%, the strength increase is not sufficient, and when the replacement rate exceeds 30%, the starting performance of the lamp is significantly deteriorated. This is presumably because the vapor pressure of bromine gas in the arc tube at the start of the lamp was increased due to the increased bromine sealing ratio.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be further described together with embodiments.
[0012]
FIG. 1 is a diagram showing the structure of a metal vapor discharge lamp according to an embodiment of the present invention. The metal vapor discharge lamp of the present embodiment has a structure in which electrodes 2 are provided at both ends in the arc tube 1, and a molybdenum foil 3 and a base 4 are provided in the narrow diameter portion of the arc tube 1. Quartz can be used as the material of the arc tube.
[0013]
Inside the arc tube, mercury for a buffer gas, iron as a main luminescent metal, iodine and bromine as halogens are sealed, and a rare gas for starting is further sealed.
[0014]
Halogen can be enclosed in the arc tube in the form of halides such as FeI 2 , FeBr 2 , HgI 2 , HgBr 2, etc., and mercury and iron can be enclosed as halides or simple metals, and these are appropriately combined to give a predetermined Enclosed so as to have a quantity and ratio.
[0015]
As the rare gas, He, Ne, Xe, Ar, Kr, or the like can be used. However, in the case of a discharge lamp in which the luminous intensity gradually increases after lighting, Ar is preferable from the viewpoint of price.
[0016]
In addition, when the spectral characteristics are improved, an additive metal for spectral improvement (for example, Mg, Bi, Ta, Cd, Mn, Sn, Pb, etc.) is enclosed in the arc tube. Regarding the converted number of encapsulated atoms, when the iron is represented by (Fe) and the spectrally improved metal is represented by (M), the encapsulated ratio represented by (M) / (Fe) is preferably 0.3 or less. . This is to effectively maintain the main light emission of iron, which is particularly excellent in luminous efficiency.
[0017]
In particular, when the above additive metal is used, it is preferable to use at least one kind of lead or tin, and it is practical to use either one of them.
[0018]
With respect to iodine and bromine, with respect to the number of encapsulated atoms converted per arc tube inner volume, when iodine is represented by (I) and bromine is represented by (Br), (Br) + (I) is 2 × 10 −7 to 14 × 10 − 7 (mol / cc), and the ratio of the inclusions is appropriately adjusted so that the atomic ratio represented by (Br) :( I) is in the range of 10:90 to 30:70. This is the same regardless of the presence or absence of the added metal and the type of the rare gas. By setting the amount and ratio in this manner, it is possible to increase particularly the emission intensity of 450 to 500 nm, and to suppress the deterioration of the starting performance.
[0019]
When the amount of bromine added is increased, the starting performance tends to decrease. However, when the bromine ratio is 30% or less, the starting performance is not significantly decreased as compared with the case where bromine is not added (that is, iodine only). In addition, even when the start-up performance is reduced to a level that is not negligible in practice, if the addition amount is 30% or less, light emission due to sputtering of the electrode material can be achieved by reducing the sealing pressure of the rare gas. Without causing problems such as blackening of the end of the tube, it is possible to suppress a decrease in starting performance to the extent that there is no problem. The pressure in this case is preferably 5 to 10 torr at an arc tube temperature of 25 ° C., for example. When bromine is added in excess of 30%, another problem such as blackening occurs when the pressure that can suppress the deterioration of the starting performance is reduced when the method of reducing the sealing pressure of the rare gas is used. Such a method cannot be adopted.
[0020]
In order to ensure the starting performance when adding bromine in the above amount and proportion, in particular, the rare gas is argon gas, and the partial pressure in the arc tube is 5 to 10 torr at the arc tube temperature of 25 ° C. It is preferable to enclose so that the startability deterioration due to bromine encapsulation can be effectively offset.
[0021]
【Example】
The characteristics of the prototype metal vapor discharge lamp will be described below. The prototype metal vapor discharge lamp has the same structure as that shown in FIG. 1, the emission length of the quartz arc tube is 500 mm, the inner diameter of the arc tube is 22 mm, the lamp power is 8 kW, and the lamp voltage is 750 V. The lamp current was 11.8 A.
[0022]
Example 1
(Fe) is 6 × 10 −7 (mol / cc), (Sn) is 2 × 10 −7 (mol / cc), (I) + (Br) is 8 × 10 −7 (mol / cc), A lamp in which (Br) :( I) was changed in the range of 0: 100 to 100: 0 was made as an experiment. In addition, 200 mg of mercury was sealed, and Ar was used as a rare gas.
[0023]
A graph in which the wavelength range of 300 to 500 nm is divided every 50 nm with respect to the emission intensity of these lamps, and the relative values are displayed with reference to the lamp value of (Br) :( I) = 0: 100 in the integrated value of each wavelength section. As shown in FIG.
[0024]
As can be seen from the figure, the integrated value in the section of 300 to 350 nm monotonously decreased from 100% to 87% with respect to the increase in the bromine encapsulation ratio. The integrated values in the section of 350 to 400 nm and 400 to 450 nm were flat when (Br) :( I) was 30:70 to 100: 0, and the relative intensity ratio was 114 to 133%. Especially in the case of 450 to 500 nm, the difference appears remarkably, even if the bromine ratio is small, the effect is large, the (Br) ratio is 10%, the relative energy ratio is increased to 130%, and the (Br) ratio is further increased. Although the rate of increase was moderate, the (Br) ratio was 75% and the relative ratio exceeded 200%. Thus, it has been found that the emission energy in the wavelength range of 450 to 500 nm is about 130% or more with respect to the case where only iodine is used as the halogen when the bromine ratio is 10% or more.
[0025]
FIG. 5 shows the starting characteristics of a lamp in which the sealing ratio of iodine and bromine is changed and argon gas is sealed as starting gas at room temperature at 5, 10, and 15 torr, respectively. The measuring method is to turn on and off the lamp once with an air-cooled ultraviolet irradiation device, and after cooling for 10 minutes, apply a sine wave voltage with an effective value of 1000 V as shown in FIG. 6 between the electrodes of the lamp, Further, a pulse waveform having a half-value width of about 80 (μS) was superimposed, and the value at which the lamp reached discharge breakdown was measured by changing the pulse peak value. Hereinafter, this value is referred to as a starting voltage.
[0026]
From FIG. 5, it can be seen that the starting voltage increases as the bromine encapsulation ratio increases. However, in the case of (Br) :( I) = 30: 70 in the case of 10 torr of argon, the starting voltage is equivalent to that of a conventional lamp in which argon gas is sealed at 15 torr and only iodine is used as halogen. I understand.
In other words, in order to enable the lamp of the present invention to be started with a conventional ballast, it can be seen that (Br) should have an enclosure ratio of 30% or less of the total halogen and the enclosed argon pressure should be 10 torr or less.
[0027]
However, the lower the Ar gas pressure, the lower the starting voltage. However, when the pressure is less than 5 torr, sputtering of the electrode material is severe when starting the lamp, and the end of the arc tube is markedly blackened.
[0028]
(Example 2)
As a second embodiment, the case where the tin of the first embodiment is replaced with lead will be described.
[0029]
FIG. 3 is a graph in which the wavelength range of 300 to 500 nm is divided for every 50 nm with respect to the emission intensity of this lamp, and the integrated values of each wavelength section are displayed relative to each other on the basis of (Br) :( I) = 0: 100. As can be seen from the figure, the integral value in the section of 300 to 350 nm monotonously decreased from 100% to 88% with increasing bromine encapsulation ratio. In the case of 350 to 400 nm and 400 to 450 nm, (Br) :( I) was 30:70 to 100: 0 and the relative intensity ratio was 113 to 135%. Especially in the case of 450 to 500 nm, the difference appears remarkably, even if the bromine ratio is small, the effect is large, the (Br) ratio is 10%, the relative energy ratio is increased to 130%, and the (Br) ratio is further increased. Although the rate of increase was moderate, the (Br) ratio was 75% and the relative ratio was 200%. Thus, it has been found that the emission energy in the wavelength region of 450 to 500 nm is 130% or more with respect to the case where only iodine is used as the halogen when the bromine ratio is 10% or more.
[0030]
The same results as in the first embodiment were obtained when the argon pressure was changed with respect to the lamp starting voltage.
[0031]
(Example 3)
The third embodiment is a case in which, in the first embodiment, an additional metal such as lead or tin is not encapsulated but the amount of iron is increased by that amount and encapsulated.
[0032]
FIG. 4 is a graph in which the wavelength range of 301 to 500 nm is divided every 50 nm with respect to the emission intensity of this lamp, and the integrated values of each wavelength section are displayed relative to each other on the basis of (Br) :( I) = 0: 100. As can be seen from the figure, the integral value in the section of 300 to 350 nm monotonously decreased from 100 to 85% with increasing bromine encapsulation ratio. In the case of 350 to 400 nm and 400 to 450 nm, (Br) :( I) was 30:70 to 100: 0, and the relative intensity ratio was around 130%. Especially in the case of 450 to 500 nm, the difference appears remarkably, even if the bromine ratio is small, the effect is large, the (Br) ratio is 10%, the relative energy ratio is increased to 130%, and the (Br) ratio is further increased. Although the rate of increase was moderate, the (Br) ratio was 75% and the relative ratio was 200%. Thus, it has been found that the emission energy in the wavelength region of 450 to 500 nm is 130% or more with respect to the case where only iodine is used as the halogen when the bromine ratio is 10% or more.
[0033]
The same results as in the first embodiment were obtained when the argon gas sealing pressure was changed with respect to the lamp starting voltage.
[0034]
That is, when the additive metal is tin or lead with respect to the emission intensity of the iron-containing metal halide lamp using iron as the main light emitting metal, or in other words, at least the iron enclosed as the main light emitting metal is the total number of encapsulated metals. When the ratio of (Br) :( I) is in the range of 10:90 to 30:70, the relative intensity ratio of 450 to 500 nm is 130 to 180%. In the range of Br) :( I) = 30: 70 to 100: 0, a very large improvement of 170 to 200% was observed.
[0035]
Regarding the starting voltage, it is estimated that the change in the additive metal as described above is due to the fact that there is no difference in the pressure of the bromine gas (Br 2 ) at the time of starting the lamp. Indicated. That is, the starting voltage increases as the bromine sealing ratio increases. However, if (Br) :( I) is in the range of 10:90 to 30:70, 5-10 torr of argon is sealed as a starting rare gas when the lamp is manufactured. Thus, a lamp having a starting voltage comparable to that of a lamp in which only iodine as a halogen of a conventional lamp and argon as a starting gas was sealed at 15 torr was obtained.
[0036]
The startability is considered to be influenced not only by the (Br) :( I) encapsulation ratio but also by the halogen sum of (Br) + (I). The inventor fixed an appropriate amount of mercury (around 200 mg) in the lamp having the structure shown in FIG. 1, argon in the starting gas at 10 torr, (Br) :( I) fixed at 30:70 (Fe) with (Br) + When the same amount of (I) is encapsulated, and when an appropriate amount of mercury (around 200 mg), argon 15 torr, (Fe) and (I) are encapsulated in the same amount, the halogen sum of (Br) + (I) is 2 × FIG. 7 shows the results of investigating the starting voltage while changing to 10 −7 , 8 × 10 −7 , and 14 × 10 −7 (mol / cc).
[0037]
The horizontal axis represents (Br) + (I), and the vertical axis represents the starting voltage. As can be seen from the figure, in this range of halogen sums, both had almost the same starting voltage.
[0038]
Eventually, the halogen sum of (Br) + (I) is in the range of 2 × 10 −7 to 14 × 10 −7 (mol / cc), and (Br) :( I) is in the range of 10:90 to 30:70. Then, if 5 to 10 torr of argon is sealed as a starting rare gas when manufacturing the lamp, the lamp has a startability comparable to that of a conventional lamp, and can be started with a conventional ballast.
[0039]
【The invention's effect】
According to the present invention, it is possible to provide a lamp that has enhanced emission energy in the range of 350 to 500 nm and can be started with a conventional ballast.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a metal vapor discharge lamp.
FIG. 2 is a graph showing changes in emission intensity when the encapsulation ratio of iodine and bromine, which are encapsulated halogens, is changed.
FIG. 3 is a graph showing a change in emission intensity when the encapsulation ratio of iodine and bromine as encapsulated halogens is changed.
FIG. 4 is a graph showing a change in emission intensity when the encapsulation ratio of iodine and bromine, which are encapsulated halogens, is changed, in which the encapsulated metal is only iron.
FIG. 5 is a diagram showing a starting voltage when an enclosure ratio of iodine and bromine is changed at an enclosed argon gas pressure of 5, 10, and 15 torr.
FIG. 6 is a diagram showing a starting voltage waveform applied between electrodes of a lamp.
FIG. 7 is a diagram showing a starting voltage when the halogen sum is changed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Arc tube 2 ... Electrode 3 ... Molybdenum foil 4 ... Base

Claims (3)

発光管内に緩衝ガス用の水銀、発光金属としての鉄、ハロゲンとしての沃素と臭素、始動用の希ガスが少なくとも封入され、
発光管内容積あたりに換算した封入原子数について、沃素を(I)、臭素を(Br)と表すとき、(Br)+(I)が2×10-7〜14×10-7(mol/cc)となっており、(Br):(I)で表される原子比が10:90〜30:70の範囲にあることを特徴とする金属蒸気放電灯。
At least mercury for a buffer gas, iron as a luminescent metal, iodine and bromine as halogens, and a starting rare gas are enclosed in the arc tube,
Regarding the number of encapsulated atoms converted per volume inside the arc tube, when (I) is iodine and (Br) is bromine, (Br) + (I) is 2 × 10 −7 to 14 × 10 −7 (mol / cc). And the atomic ratio represented by (Br) :( I) is in the range of 10:90 to 30:70.
発光管内に鉛または錫の少なくとも一種が封入され、発光管内容積あたりに換算した封入原子数について、鉛を(Pb)、錫を(Sn)、鉄を(Fe)と表すとき、((Pb)+(Sn))/(Fe)で表される封入比が0.3以下となっていることを特徴とする請求項1記載の金属蒸気放電灯。When at least one kind of lead or tin is enclosed in the arc tube, and the number of encapsulated atoms converted per volume of the arc tube, when lead is represented as (Pb), tin as (Sn), and iron as (Fe), ((Pb) The metal vapor discharge lamp according to claim 1, wherein an encapsulation ratio represented by + (Sn)) / (Fe) is 0.3 or less. 始動用希ガスとしてアルゴンガスが封入され、該アルゴンガスの発光管内での分圧が5〜10torrとなっていることを特徴とする請求項1または2記載の金属蒸気放電灯。3. The metal vapor discharge lamp according to claim 1, wherein argon gas is enclosed as a starting rare gas, and a partial pressure of the argon gas in the arc tube is 5 to 10 torr.
JP2000190138A 2000-06-23 2000-06-23 Metal vapor discharge lamp Expired - Fee Related JP4411749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190138A JP4411749B2 (en) 2000-06-23 2000-06-23 Metal vapor discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190138A JP4411749B2 (en) 2000-06-23 2000-06-23 Metal vapor discharge lamp

Publications (2)

Publication Number Publication Date
JP2002008588A JP2002008588A (en) 2002-01-11
JP4411749B2 true JP4411749B2 (en) 2010-02-10

Family

ID=18689653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190138A Expired - Fee Related JP4411749B2 (en) 2000-06-23 2000-06-23 Metal vapor discharge lamp

Country Status (1)

Country Link
JP (1) JP4411749B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978738B1 (en) * 2011-01-06 2012-07-18 岩崎電気株式会社 Metal halide lamp
JP6252217B2 (en) * 2014-02-10 2017-12-27 岩崎電気株式会社 Microwave electrodeless lamp and light irradiation device using the same

Also Published As

Publication number Publication date
JP2002008588A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
US6265827B1 (en) Mercury-free metal halide lamp
US6639343B2 (en) Mercury-free metal halide lamp
JP2003168391A (en) Mercury-free arc tube for discharge lamp device
JP3921975B2 (en) Metal halide lamp
US8193711B2 (en) Metal halide lamp
WO2012093664A1 (en) Metal halide lamp
JP4411749B2 (en) Metal vapor discharge lamp
WO2006048830A2 (en) Quartz metal halides lamp with improved lumen maintenance
WO2000016360A1 (en) Anhydrous silver halide lamp
JP2012038612A (en) Mercury-free metal halide lamp for vehicle
JP4700733B2 (en) Low pressure gas discharge lamp with novel gas filling
JPH1069883A (en) Metallic vapor discharge lamp
JP5288303B2 (en) Metal halide lamp, metal halide lamp device
JPH03250549A (en) Metal vapor electric discharge lamp
JPH0121586B2 (en)
JP5573791B2 (en) Metal halide lamp
JP3430972B2 (en) Metal halide lamp
JP2895340B2 (en) Metal vapor discharge lamp
JPS5823707B2 (en) metal halide lamp
JP2007234266A (en) Metal halide lamp
JP3176364B2 (en) Metal vapor discharge lamp
JP2982198B2 (en) Mercury-free metal halide lamp
JP2013110096A (en) Metal halide lamp
JP3239721B2 (en) Metal halide lamp
JPS6364030B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees