JP4411576B2 - Aquatic animal counting equipment - Google Patents

Aquatic animal counting equipment Download PDF

Info

Publication number
JP4411576B2
JP4411576B2 JP2002146123A JP2002146123A JP4411576B2 JP 4411576 B2 JP4411576 B2 JP 4411576B2 JP 2002146123 A JP2002146123 A JP 2002146123A JP 2002146123 A JP2002146123 A JP 2002146123A JP 4411576 B2 JP4411576 B2 JP 4411576B2
Authority
JP
Japan
Prior art keywords
transmitted light
light image
image
reference value
counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002146123A
Other languages
Japanese (ja)
Other versions
JP2003337931A (en
Inventor
裕之 高橋
稔規 本間
通隆 波
信一 長尾
英雄 中村
肇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Prefecture
Original Assignee
Hokkaido Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Prefecture filed Critical Hokkaido Prefecture
Priority to JP2002146123A priority Critical patent/JP4411576B2/en
Publication of JP2003337931A publication Critical patent/JP2003337931A/en
Application granted granted Critical
Publication of JP4411576B2 publication Critical patent/JP4411576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、育成板を使って養殖される水棲動物の個体数を計数する水棲動物計数処理装置に関する。
【0002】
【従来の技術】
ウニやアワビなどの水棲動物の養殖に育成板が使用されている。そして、養殖中の水棲動物の生育状況を管理する場合、育成板に付着する水棲動物の個体数、あるいは、大きさ別の個体数などが計数される。このような水棲動物の個体数の計数は、従来、目視で行われている。
【0003】
【発明が解決しようとする課題】
従来、水棲動物の個体数の計数は目視で行われている。個体数の計数は、一度に、数十から数百枚の育成板について行われ、1枚の育成板には数百個程度の水棲動物が付着している。そのため、計数作業に要する労働負荷が大きくなる。また、育成板に珪藻などの藻類が付着していると、水棲動物と藻類の識別が難しくなり、作業時間や労働負荷が増大し誤計数の原因になる。その結果、水棲動物の出荷計画などが適正に行えないという問題が発生する。
【0004】
本発明は、上記した欠点を解決し、育成板に付着した水棲動物の個体数の計数作業を容易にした水棲動物計数処理装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、育成板上で育成されている水棲動物の個体数を計数する水棲動物計数処理装置において、前記育成板を収納する収納手段と、この収納手段に収納された前記育成板に光を照射する投光手段と、前記育成板を透過した透過光を撮像し、撮像した透過光を透過光画像に変換する撮像手段と、前記透過光画像を処理する画像処理手段とを設け、前記画像処理手段は前記水棲動物の個体数を計数する第1計数手段を有することを特徴とする。
【0006】
【発明の実施の形態】
本発明の実施形態について図1を参照して説明する。収納手段11は、外部からの光が入らないように構成された収納容器、たとえば周囲の各壁部分が遮光部材で形成された遮光箱で、その内部に水棲動物が付着した育成板12が収納される。育成板12は断面がたとえば波形状をした薄い板で、育成板12の上下にガイド13a、13bが設けられている。ガイド13a、13bの一部に移動手段14たとえば直動型アクチュエータが固定されている。移動手段14は連結棒15を介して育成板12に連結され、移動手段14が動作状態に入ると、育成板12はガイド13a、13bに沿って、矢印Yで示す横方向に移動する。
【0007】
育成板12の一方の側に投光手段16が配置されている。投光手段16は全体が防水構造に形成され、たとえば基板上に複数の発光ダイオード(以下LEDという)を配置した光源や光拡散板などから構成され、光源の光が育成板12全体を均一に照射するようになっている。
【0008】
育成板12の他方の側に撮像手段17たとえば12台のCCDカメラ1701〜1712が縦方向に配置されている。撮像手段17は、投光手段16から放出され育成板12を透過した透過光を撮像し、撮像した透過光をたとえば電気的な透過光画像に変換して出力する。各CCDカメラ1701〜1712は切換器18に接続されている。切換器18は制御器19の制御で接続状態が順に切り換えられ、接続状態にあるCCDカメラ1701〜1712の透過光画像が画像処理手段20に送られる。
【0009】
上記の育成板12は断面が波形状をしているが、平板状の育成板を使用することもできる。また、育成板12は縦方向にたとえば12個に区分され、横方向にたとえば5個に区分され、全領域がたとえば60区分に区分されている。そして、横方向の最端部、たとえば縦方向に位置する12区分の透過光がそれぞれCCDカメラ1701〜1712によって撮像され、電気的な透過光画像に変換されて出力される。これらの透過光画像は切換器18の切り換えにより、CCDカメラ1701〜1712ごとに順に画像処理手段20に送られる。
【0010】
その後、移動手段14が動作し、育成板12が横方向に1区分だけ移動して停止する。その位置で、育成板12を透過した12区分の透過光がCCDカメラ1701〜1712で撮像され、電気的な透過光画像に変換される。このような動作が順に繰り返され、育成板12の全領域たとえば60区分の透過光画像が撮像手段17から出力され画像処理手段20に供給される。
【0011】
画像処理手段20は画像処理部201および計数部202、記録表示部203などから構成されている。画像処理部201では、撮像手段17から送られてくる透過光画像について各種の画像処理を行い、透過光画像に含まれている不要な透過光画像たとえば藻類などの透過光画像を除去し、水棲動物の透過光画像を抽出する。計数部202では、画像処理部201で抽出された水棲動物の個体数や大きさ別の個体数が計数される。記録表示部203では計数部202の計数結果を記録表示し、また、外部装置に対しその計数結果を電気信号などとして出力する。
【0012】
ここで、投光手段16から放出される光と育成板12を透過する透過光の関係について図2を参照して説明する。図2の横軸は光の波長(nm)、縦軸は減衰量(dB)で、曲線Dは藻類を透過した透過光のスペクトル強度分布の計測結果を示している。図2から分かるように、藻類は約800nm〜900nm以上の波長の光を透過する特性がある。そのため、投光手段16の光源にはたとえば波長945nmの赤外LEDが使用される。なお、光源を選択する場合、撮像手段の周波数感度特性等にもよるものの、800nm〜900nm以上、とくに900nm以上の波長を含む光が適している。
【0013】
次に、藻類が付着した育成板の透過光画像を図3を参照して説明する。図3(a)は光源に赤外LED(波長945nm)を用いた場合で、図3(b)は光源に白色LEDを用いた場合である。図3(b)に示すように白色LEDを用いた場合は、斜線で表示した水棲動物W1〜W3と点で表示した藻類Xとの分離が困難になっている。図3(a)に示すように赤外LEDを用いた場合は、光が藻類Xをほぼ透過し、藻類Xの中にある水棲動物W1〜W3の陰影が明瞭になっている。したがって、育成板に付着した水棲動物が藻類などの上、あるいは藻類の中に位置する場合でも、これら不要な背景と水棲動物が分離され、計数精度が向上する。
【0014】
次に、画像処理手段20で行われる画像処理や計数方法などについて図4〜図6のフロー図を参照して説明する。
【0015】
まず、撮像手段17(図1)から送られてくる透過光画像に対し画像補正が行われる(S1)。育成板の全領域の透過光画像はたとえば縦が12区分、横が5区分され、全体で60区分に分割されている。この場合、1つの区分はたとえば1台のCCDカメラから出力する透過光画像に対応し、たとえば640画素×480画素で構成されている。そして、透過光画像はその濃淡の階層がたとえば黒レベルの0から白レベルの255まで256階層に分けられている。
【0016】
一般に、水棲動物は光を透過せず、黒い透過光画像となる。そのため、画像補正(S1)では、たとえば階層が200以上の明るい領域の画像は水棲動物を含まない背景と判定し、これらの透過光画像が除去される。
【0017】
このように画像補正処理の初期の段階で、濃淡分布の階層が200以上の明るい画像部分を除去することにより、その後の画像処理の対象となるデータ数が減少し、画像処理が迅速化する。
【0018】
次に、育成板12の所定領域たとえば育成板12の全領域の中から1区分の透過光画像が切り出され(S2)、その1区分における透過光画像の濃淡分布、たとえば図7に示すようなヒストグラムが作られる(S3)。図7の横軸は濃淡の階層を示し、縦軸はたとえば画素数を示す。以下の説明では、ヒストグラム上で最も濃度の濃い黒に近い透過光画像が現れる階層Lを最小位置、最も多くの透過光画像が現れる階層Pをピーク位置、最も濃度の淡い白に近い透過光画像が現れる階層Mを最大位置と呼ぶ。そして、このヒストグラムをもとに、たとえば最小位置から(ピーク位置−10階層)までを水棲動物が含まれる2値化有効範囲E、すなわち基準値に設定する。
【0019】
次に、1つの区分が、たとえば(20画素×20画素)の複数の小区分にさらに分割され(S4)、その1つの小区分における透過光画像をS3で設定した基準値をもとに2値化し2値化画像に変換する(S5)。
【0020】
次に、2値化画像の1つあるいは複数の画素が集まった塊(以下図形という)に対して番号づけ、いわゆるラベリングが行われる(S6)。
【0021】
次に、たとえばS3における濃度分布の作成時に使用されたデータを利用し、ラベリングされた図形を対象に透過光画像のヒストグラムを作り、その最小位置からピーク位置までの濃淡の階層数が所定基準値たとえば20以内であるデータのみを有効データとして抽出する(S7)。ウニなどの水棲動物は最小位置からピーク位置まで少ない階層数で急峻に立ち上がる特性があり、一方、藻類は最小位置からピーク位置まで多くの階層数を費やして緩やかに立ち上がる特性がある。そのため、S7の処理によって藻類の透過光画像が削除され、水棲動物の透過光画像が取り出される。
【0022】
次に、上記のS4〜S7の処理をした小区分の画像を1区分の元の場所に戻す(S8)。その後、他の小区分の画像に対し、上記S4〜S8の処理が順に繰り返され、1区分すべての透過光画像が処理される。
【0023】
そして、1区分に対する画像処理が終了すると、その1区分の中で有効データとしてラベリングされた図形を対象にして、面積の小さい図形たとえば画素数が所定値10以下の図形が粒子塊として除去される(S9)。
【0024】
次に、S9の処理で有効データとしてラベリングされた図形に対しスパン除去が行われる(S10)。スパン除去は、ラベリングされた図形ごとに濃度分布のヒストグラムを作成し、最小位置から最大位置までのスパン幅が所定値たとえば200階層以上の図形が除去される。この場合、水棲動物はスパン幅が短く、一方の藻類はスパン幅が長いという特性があるため、スパン幅の大きい図形を削除することにより、水棲動物の図形のみが有効に取り出される。
【0025】
次に、S10の処理で取り出された図形を対象にして、ヒストグラムの確定率がたとえば50%以下の図形が除去される(S11)。
【0026】
この場合、確定率は、たとえば
確定率={1一( ピーク位置−最小位置)/有効幅)}…(1)
と定義される。以下の説明では、確定率の数字として(1)式に100を乗じた「%」を使用する。
【0027】
たとえば、水棲動物は最小位置からピーク位置まで濃淡の少ない階層で急激に上昇する特性があり、確定率(%)が大きくなる。藻類等は最小位置からピーク位置まで緩やかに上昇する特性があるため確定率(%)が小さくなる。したがって、確定率がたとえば50%以下の図形を除去することにより水棲動物の図形が抽出される。
【0028】
次に、S10のスパン除去で削除された図形のデータをもう一度呼び戻し、ヒストグラムのスパン幅が規定値たとえば(20階層〜160階層)の図形を有効データとして取り出し2値化する。そして、この2値化画像の図形に対しスパン除去を行う(S12)。この場合、S10のスパン除去よりも狭いスパン幅を基準値にし、たとえば50階層以内を有効データとして抽出する。なお、最初のスパン除去で削除されたデータはバッファに保存され、2回目のスパン除去ではバッファに保存されたデータが呼び戻され利用される。
【0029】
次に、ラベリングした図形の中で、面積が小さい図形たとえば10画素以下のものが粒子塊として除去される(S13)。
【0030】
そして、他の区分の透過光画像についても上記のS9〜S13の処理が順に繰り返され、すべての区分の透過光画像が処理され、たとえば育成板の全領域の図形として合成される。
【0031】
次に、育成板の全領域にわたり有効データと判定された図形について、背景から各画素までの距離が計算される(S14)。この場合、背景と画素間の距離は、一番近い背景画素たとえば白い画素から図形を構成する各画素までの(縦画素数の2乗)と(横画素数の2乗)の和の平方根で算出される。
【0032】
次に、育成板の全領域で、ラベリングされた図形を対象に、たとえば30%以上のデータを有効化し図形分離を行う(S15)。
【0033】
次に、図形分離された育成板の全領域の図形を対象にして、再度、背景と画素間の距離が算出される(S16)。
【0034】
次に、S15よりも大きい数値たとえば60%以上のデータを有効化し図形分離を行う(S17)。
【0035】
上記の図形分離の処理では、相違する基準値を用いて図形分離を2回に分けて行っている。その理由について図8を参照して説明する。図8の符号Wは水棲動物の図形、符号Xは藻類の図形を示している。
【0036】
図8(a)は水棲動物Wや藻類Xなどの物体の重なり具合が大きく輪郭パターンのくびれが少ない図形を示し、図8(b)は物体の重なり具合が小さく輪郭パターンのくびれZがはっきりした図形を示している。くびれZがはっきりしている場合、図形分離を最初から60%以上の大きな値で有効化すると、図形の周辺部が削除され有効データが残らない場合がある。そのため、図形分離が複数回たとえば2回に分けて行われる。
【0037】
次に、図形分離の模様を図9を参照して説明する。
【0038】
図9(a)は、背景から図形の各画素までの距離を算出した状態の一例を示し、数字は背景(白い領域)からの距離を示している。ここでは、たとえば距離が「6」と「8」と「4」の3個のウニがいる場合を一例として示し、3個のウニが1つの図形Gに含まれている。距離を示す数値は説明の都合で選んだ数字であり、一部の数字は必ずしも背景(白い領域)からの距離に対応しない。
【0039】
図9(b)は、図9(a)のピーク「8」の30%以上を有効化した図で、8×0.3=2.4以上の「6」「8」「4」「3」の距離のデータが有効化されて切り出され、2つの図形G1、G2に分離されている。
【0040】
図9(c)は、切り出されたデータについて、改めて距離を計算した状態を示している。この場合、ピークは「6」で、この60%を有効化すると、6×0.6=3.6以上のデータが有効とみなされ、「4」と「6」の部分がG11、G12に切り出され、最終的には、図9(d)に示すように、3つの図形G11、G12、G2に切り出され3個と判断される。
【0041】
上記の図形分離処理を用いた場合、水棲動物が接触したり重なったりしている場合でも、水棲動物の個体数や大きさを正しく計数することができ、計数精度が向上する。
【0042】
次に、図形分離の後、ラベリングされた図形の中で面積の小さい図形たとえば10画素以下のものが粒子塊として除去される(S18)。
【0043】
次に、上記の各処理で有効データとして切り出された図形をラベリングし(S19)、ラベリングされた図形の数が計数部202(図1)で計数される。計数部202では図形の大きさたとえば画素数や径(最大幅)の少なくとも一方が計測され、図形の数(水棲動物の数)、あるいは、大きさ別の図形の数(水棲動物の数)が計数される(S20)。
【0044】
次に、S20の計数結果が記録表示部203(図1)で表示、記録される(S21)。
【0045】
次に、計数処理を継続するか否かを判定し(S22)、YESの場合はS1に戻り、NOの場合は終了する。
【0046】
上記の実施形態では、画像処理を行う場合、育成板全体の透過光画像を複数の区分に分割し、1つの区分をさらに複数の小区分に分割し、たとえば大中小の3段階に分けている。そして、一部の処理は育成板単位で行い、一部の処理は区分単位で行い、一部の処理は小区分単位で行っている。しかし、上記の各画像処理のすべてを1つの単位たとえば育成板単位、あるいは区分単位、あるいは小区分単位で行うこともできる。また、大小の2つの単位に分け、上記した画像処理の一部を大きな単位で行い、他の一部を小さな単位で分けて行うこともできる。
【0047】
なお、上記の実施形態では、透過光画像を2値化する場合に、区分単位で基準値を設定している。育成板全体で共通の基準値を設定すると、藻類の付着状況などにより育成板の場所によって透過光画像の濃淡にばらつきがあるため、計数精度が低下するおそれがある。区分単位で基準値を設定した場合、このようなばらつきによる計数精度の低下が防止される。また、2値化することにより、水棲動物や藻類の透過状態が一様でなく、透過光画像の濃淡にばらつきがある場合でも、水棲動物のデータを確実に選択できる。
【0048】
また、上記の実施形態では育成板全体を複数の区分に分割して、各区分をそれぞれのCCDカメラで撮像している。この場合、計数精度を向上させ、画像処理を容易にするために、1つの区分と1台のCCDカメラを対応させることが望ましい。なお、撮像手段を構成するCCDカメラの数は12台に限るものではなく、育成板の大きさや必要とされる解像度などの条件に応じて、1台あるいは任意の数の台数が用いられる。
【0049】
また、上記の実施形態では育成板を移動させているが、撮像手段の方を移動させる構成にすることもできる。育成板や撮像手段を移動させた場合、1つのCCDカメラが一度で撮像する範囲を狭くでき解像度が相対的に改善する。そのため、高解像度カメラでの撮像やラインセンサを移動させての撮像などを用いる必要がなくなり、低価格のCCDカメラの使用が可能となりコストが低減する。
【0050】
上記の実施形態で使用されている数値は一例であり、これらの数値は照明条件や撮像環境などで相違する。したがって、予備試験などを行い、それに基づいて決定されることが望ましい。また、画像処理の順番も一例であり、その順番は適宜変更できる。また、水棲動物を計数する環境や条件によっては上記の処理の一部を省略することもできる。
【0051】
上記した構成によれば、水棲動物が育成板の表側や裏側に生息していたり、あるいは、複数の水棲動物が重なっていたり、また、珪藻の状況や藻類の発生状況が一様でない場合でも、珪藻や藻類中に含まれた水棲動物の個体数を正確に計数できる。また、作業者の労働負荷ならびに誤計数が減少する。個体計数処理の自動化も容易で、その結果、安定化な出荷計画が維持される。
【0052】
【発明の効果】
本発明によれば、育成板で養殖されている水棲動物を容易に計数できる水凄動物計数処理装置が実現される。
【図面の簡単な説明】
【図1】本発明の実施形態を説明するための構成図である。
【図2】本発明の実施形態を説明するための図で、藻類を透過した光強度スペクトルの一例を示す図である。
【図3】本発明の実施形態を説明するための図で、藻類が付着した育成板を透過した光の画像を示す図である。
【図4】本発明の実施形態を説明するためのフローの一部を示す図である。
【図5】本発明の実施形態を説明するためのフローの一部を示す図である。
【図6】本発明の実施形態を説明するためのフローの一部を示す図である。
【図7】本発明の実施形態を説明するための図で、育成板を透過した透過光画像のヒストグラムの一例を示す図である。
【図8】本発明の実施形態に用いられる図形の連結分離を説明する図である。
【図9】本発明の実施形態に用いられる図形の連結分離を説明する模式図である。
【符号の説明】
11…収納手段
12…育成板
13a、13b…ガイド
14…移動手段
15…連結棒
16…投光手段
17…撮像手段
1701〜1712…CCDカメラ
18…切替器
19…コントローラ
20…画像処理装置
201…画像処理
202…計数部
203…記録表示部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aquatic animal counting processing apparatus that counts the number of aquatic animals cultivated using a breeding board.
[0002]
[Prior art]
Growing plates are used for aquaculture of aquatic animals such as sea urchins and abalone. Then, when managing the growth situation of aquatic animals during aquaculture, the number of aquatic animals attached to the breeding board or the number of individuals by size is counted. Such counting of the number of aquatic animals is conventionally performed visually.
[0003]
[Problems to be solved by the invention]
Conventionally, the number of individuals of aquatic animals is counted visually. The counting of the number of individuals is performed on several tens to several hundreds of growth plates at a time, and several hundreds of aquatic animals are attached to one growth plate. Therefore, the labor load required for the counting work is increased. In addition, if algae such as diatoms adhere to the growth plate, it is difficult to distinguish between aquatic animals and algae, which increases work time and labor load and causes erroneous counting. As a result, there arises a problem that an aquatic animal shipment plan cannot be properly performed.
[0004]
An object of the present invention is to provide an aquatic animal counting processing apparatus that solves the above-described drawbacks and facilitates the counting operation of the number of aquatic animals adhering to a growth plate.
[0005]
[Means for Solving the Problems]
In the aquatic animal counting processing apparatus for counting the number of aquatic animals cultivated on a cultivating plate, the present invention provides a storage means for storing the cultivating plate and a light for the cultivating plate stored in the storing means. A light projecting unit that irradiates; an image capturing unit that captures the transmitted light that has passed through the growth plate; converts the captured transmitted light into a transmitted light image; and an image processing unit that processes the transmitted light image. The processing means has a first counting means for counting the number of individuals of the aquatic animals.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. The storage means 11 is a storage container configured to prevent light from the outside from entering, for example, a light shielding box in which each peripheral wall portion is formed of a light shielding member, and a growth plate 12 to which aquatic animals are attached is housed. Is done. The growth plate 12 is a thin plate having a corrugated cross section, for example, and guides 13 a and 13 b are provided above and below the growth plate 12. A moving means 14, such as a direct acting actuator, is fixed to a part of the guides 13a and 13b. The moving means 14 is connected to the growing plate 12 via the connecting rod 15, and when the moving means 14 enters the operating state, the growing plate 12 moves in the lateral direction indicated by the arrow Y along the guides 13a and 13b.
[0007]
A light projecting means 16 is disposed on one side of the growth plate 12. The light projecting means 16 is entirely formed in a waterproof structure, and is composed of, for example, a light source or a light diffusion plate in which a plurality of light emitting diodes (hereinafter referred to as LEDs) are arranged on a substrate. It comes to irradiate.
[0008]
On the other side of the growth plate 12, an image pickup means 17, for example, twelve CCD cameras 1701 to 1712 are arranged in the vertical direction. The imaging means 17 images the transmitted light emitted from the light projecting means 16 and transmitted through the growth plate 12, and converts the captured transmitted light into, for example, an electrically transmitted light image and outputs it. Each of the CCD cameras 1701 to 1712 is connected to the switcher 18. The switch 18 is sequentially switched in connection state under the control of the controller 19, and transmitted light images of the CCD cameras 1701 to 1712 in the connection state are sent to the image processing means 20.
[0009]
The growing plate 12 has a corrugated cross section, but a flat growing plate can also be used. Further, the growth plate 12 is divided into, for example, 12 pieces in the vertical direction, divided into, for example, 5 pieces in the horizontal direction, and the entire region is divided into, for example, 60 divisions. Then, the transmitted light in 12 sections located in the extreme end in the horizontal direction, for example, in the vertical direction, is captured by the CCD cameras 1701 to 1712, converted into an electrical transmitted light image, and output. These transmitted light images are sequentially sent to the image processing means 20 for each of the CCD cameras 1701 to 1712 by switching the switch 18.
[0010]
Thereafter, the moving means 14 operates, and the growth plate 12 moves by one section in the lateral direction and stops. At that position, 12 sections of transmitted light transmitted through the growth plate 12 are imaged by the CCD cameras 1701 to 1712 and converted into an electrically transmitted light image. Such operations are repeated in order, and the entire region of the growth plate 12, for example, 60 sections of transmitted light images are output from the imaging unit 17 and supplied to the image processing unit 20.
[0011]
The image processing means 20 includes an image processing unit 201, a counting unit 202, a recording display unit 203, and the like. The image processing unit 201 performs various types of image processing on the transmitted light image sent from the imaging unit 17, removes unnecessary transmitted light images included in the transmitted light image, for example, transmitted light images such as algae, and the like. Extract the animal's transmitted light image. The counting unit 202 counts the number of individuals of aquatic animals extracted by the image processing unit 201 and the number of individuals by size. The recording display unit 203 records and displays the counting result of the counting unit 202 and outputs the counting result as an electric signal or the like to an external device.
[0012]
Here, the relationship between the light emitted from the light projecting means 16 and the transmitted light transmitted through the growth plate 12 will be described with reference to FIG. The horizontal axis in FIG. 2 is the wavelength of light (nm), the vertical axis is the attenuation (dB), and the curve D shows the measurement result of the spectral intensity distribution of the transmitted light that has passed through the algae. As can be seen from FIG. 2, algae have a characteristic of transmitting light having a wavelength of about 800 nm to 900 nm or more. Therefore, for example, an infrared LED having a wavelength of 945 nm is used as the light source of the light projecting means 16. Note that, when a light source is selected, light including a wavelength of 800 nm to 900 nm or more, particularly 900 nm or more is suitable, although it depends on the frequency sensitivity characteristics of the imaging means.
[0013]
Next, a transmitted light image of the growth plate to which algae is attached will be described with reference to FIG. FIG. 3A shows a case where an infrared LED (wavelength 945 nm) is used as a light source, and FIG. 3B shows a case where a white LED is used as a light source. When a white LED is used as shown in FIG. 3B, it is difficult to separate the aquatic animals W1 to W3 indicated by diagonal lines from the algae X indicated by dots. As shown in FIG. 3A, when an infrared LED is used, light is almost transmitted through the algae X, and the shadows of the aquatic animals W1 to W3 in the algae X are clear. Therefore, even when the aquatic animal attached to the growing plate is located on or in the algae, these unnecessary backgrounds and aquatic animals are separated, and the counting accuracy is improved.
[0014]
Next, image processing performed by the image processing means 20, a counting method, and the like will be described with reference to the flowcharts of FIGS.
[0015]
First, image correction is performed on the transmitted light image sent from the imaging means 17 (FIG. 1) (S1). The transmitted light image of the entire area of the growth plate is divided into, for example, 12 sections in the vertical direction and 5 sections in the horizontal direction, and is divided into 60 sections as a whole. In this case, one section corresponds to a transmitted light image output from one CCD camera, for example, and is composed of, for example, 640 pixels × 480 pixels. The transmitted light image is divided into 256 hierarchies, for example, from black level 0 to white level 255.
[0016]
In general, aquatic animals do not transmit light, and result in a black transmitted light image. Therefore, in the image correction (S1), for example, an image of a bright region having a hierarchy of 200 or more is determined as a background that does not include aquatic animals, and these transmitted light images are removed.
[0017]
In this way, by removing bright image portions having a gray level distribution of 200 or more at the initial stage of image correction processing, the number of data to be subjected to subsequent image processing is reduced and image processing is speeded up.
[0018]
Next, a transmitted light image of one section is cut out from a predetermined area of the growing plate 12, for example, the entire area of the growing plate 12 (S2), and the distribution of the transmitted light image in the one section, for example, as shown in FIG. A histogram is created (S3). The horizontal axis in FIG. 7 indicates the gray level, and the vertical axis indicates, for example, the number of pixels. In the following description, the level L where the transmitted light image close to black with the highest density appears on the histogram is the minimum position, the level P where the most transmitted light image appears is the peak position, and the transmitted light image close to white with the lowest density. The hierarchy M in which “” appears is called the maximum position. Based on this histogram, for example, the binarized effective range E including the aquatic animals, that is, the reference value is set from the minimum position to (peak position−10th hierarchy).
[0019]
Next, one section is further divided into, for example, a plurality of subsections (20 pixels × 20 pixels) (S4), and the transmitted light image in the one subsection is 2 based on the reference value set in S3. The image is converted into a binary image (S5).
[0020]
Next, a lump (hereinafter referred to as a graphic) in which one or a plurality of pixels of the binarized image are collected is numbered and so-called labeling is performed (S6).
[0021]
Next, for example, using the data used when creating the density distribution in S3, a histogram of the transmitted light image is created for the labeled figure, and the number of gray levels from the minimum position to the peak position is a predetermined reference value. For example, only data within 20 is extracted as valid data (S7). Aquatic animals such as sea urchins have a characteristic of rising steeply with a small number of layers from the minimum position to the peak position, while algae have a characteristic of gradually rising with a large number of layers from the minimum position to the peak position. Therefore, the transmitted light image of the algae is deleted by the process of S7, and the transmitted light image of the aquatic animal is extracted.
[0022]
Next, the image of the small section subjected to the above-described processing of S4 to S7 is returned to the original location of one section (S8). Thereafter, the processes of S4 to S8 are sequentially repeated for the other small-section images, and the transmitted light images of all the sections are processed.
[0023]
When the image processing for one section is completed, a figure with a small area, for example, a figure having a pixel number of 10 or less is removed as a particle lump for a figure labeled as valid data in the one section. (S9).
[0024]
Next, span removal is performed on the graphic labeled as valid data in the process of S9 (S10). In span removal, a histogram of density distribution is created for each labeled figure, and a figure whose span width from the minimum position to the maximum position is a predetermined value, for example, 200 layers or more, is removed. In this case, since the aquatic animal has a short span width and one algae has a long span width, only the figure of the aquatic animal is effectively extracted by deleting the figure having the large span width.
[0025]
Next, for a figure extracted in the process of S10, a figure having a histogram determination rate of, for example, 50% or less is removed (S11).
[0026]
In this case, the fixed rate is, for example, fixed rate = {1 one (peak position−minimum position) / effective width)} (1)
It is defined as In the following description, “%” obtained by multiplying the expression (1) by 100 is used as a numerical value of the determination rate.
[0027]
For example, an aquatic animal has a characteristic of rapidly rising from a minimum position to a peak position in a layer with little shading, and a definite rate (%) increases. Algae and the like have a characteristic of gradually rising from the minimum position to the peak position, so the determination rate (%) becomes small. Therefore, a figure of aquatic animals is extracted by removing a figure having a deterministic rate of, for example, 50% or less.
[0028]
Next, the graphic data deleted by the span removal in S10 is recalled once again, and a graphic whose span width of the histogram is a specified value, for example, (20th to 160th) is taken out as valid data and binarized. Then, span removal is performed on the figure of the binarized image (S12). In this case, a span width narrower than the span removal of S10 is set as a reference value, and, for example, within 50 layers is extracted as valid data. The data deleted in the first span removal is stored in the buffer, and the data stored in the buffer is recalled and used in the second span removal.
[0029]
Next, among the labeled figures, a figure with a small area, for example, 10 pixels or less is removed as a particle lump (S13).
[0030]
And also about the transmitted light image of another division, the process of said S9-S13 is repeated in order, the transmitted light image of all the divisions is processed, for example, is synthesize | combined as a figure of the whole area | region of a growth board.
[0031]
Next, the distance from the background to each pixel is calculated for the graphic determined to be valid data over the entire area of the growth plate (S14). In this case, the distance between the background and the pixel is the square root of the sum of (the square of the number of vertical pixels) and (the square of the number of horizontal pixels) from the nearest background pixel such as a white pixel to each pixel constituting the figure. Calculated.
[0032]
Next, for example, 30% or more of data is validated and graphic separation is performed on the labeled graphic in the entire area of the growth plate (S15).
[0033]
Next, the distance between the background and the pixels is calculated again for the graphics in the entire area of the growth plate that has been separated (S16).
[0034]
Next, a numerical value larger than S15, for example, 60% or more data is validated and graphic separation is performed (S17).
[0035]
In the graphic separation process described above, graphic separation is performed twice using different reference values. The reason will be described with reference to FIG. The code | symbol W of FIG. 8 has shown the figure of the aquatic animal, and the code | symbol X has shown the figure of the algae.
[0036]
FIG. 8A shows a figure in which the overlapping state of objects such as aquatic animals W and algae X is large and the contour pattern is less constricted, and FIG. 8B is a figure in which the overlapping state of the object is small and the contour pattern is narrowed Z. The figure is shown. If the constriction Z is clear, if the figure separation is validated with a large value of 60% or more from the beginning, the periphery of the figure may be deleted and no valid data may remain. Therefore, the figure separation is performed a plurality of times, for example, twice.
[0037]
Next, the pattern of graphic separation will be described with reference to FIG.
[0038]
FIG. 9A shows an example of a state in which the distance from the background to each pixel of the figure is calculated, and the numbers indicate the distance from the background (white area). Here, for example, a case where there are three sea urchins having distances of “6”, “8”, and “4” is shown as an example, and three sea urchins are included in one graphic G. The numerical value indicating the distance is a number selected for convenience of explanation, and some of the numbers do not necessarily correspond to the distance from the background (white area).
[0039]
FIG. 9B is a diagram in which 30% or more of the peak “8” in FIG. 9A is validated, and “6” “8” “4” “3” of 8 × 0.3 = 2.4 or more. ”Data is cut out by being validated and separated into two figures G1 and G2.
[0040]
FIG. 9C shows a state in which the distance is calculated again for the cut out data. In this case, the peak is “6”, and when 60% is validated, data of 6 × 0.6 = 3.6 or more is regarded as valid, and the portions “4” and “6” are represented by G11 and G12. It is cut out, and finally, as shown in FIG. 9 (d), it is cut into three figures G11, G12, and G2, and it is determined that there are three.
[0041]
When the graphic separation process described above is used, even when aquatic animals are touching or overlapping, the number and size of the aquatic animals can be correctly counted, and the counting accuracy is improved.
[0042]
Next, after graphic separation, among the labeled figures, a figure with a small area, for example, 10 pixels or less is removed as a particle lump (S18).
[0043]
Next, the figure cut out as valid data in each of the above processes is labeled (S19), and the number of the labeled figures is counted by the counting unit 202 (FIG. 1). The counting unit 202 measures at least one of the figure size, for example, the number of pixels and the diameter (maximum width), and the number of figures (number of aquatic animals) or the number of figures by size (number of aquatic animals). Counted (S20).
[0044]
Next, the counting result of S20 is displayed and recorded on the recording display unit 203 (FIG. 1) (S21).
[0045]
Next, it is determined whether to continue the counting process (S22). If YES, the process returns to S1, and if NO, the process ends.
[0046]
In the above embodiment, when image processing is performed, the transmitted light image of the entire growth plate is divided into a plurality of sections, and one section is further divided into a plurality of small sections, for example, divided into three stages of large, medium, and small. . A part of the processing is performed in units of growth plates, a part of the processing is performed in units of sections, and a part of the processing is performed in units of small sections. However, all of the above image processing can be performed in one unit, for example, a growth plate unit, a division unit, or a small division unit. In addition, the image processing can be divided into two large and small units, and a part of the above-described image processing can be performed in a large unit, and the other part can be performed in a small unit.
[0047]
In the above embodiment, when the transmitted light image is binarized, the reference value is set in units of sections. If a common reference value is set for the entire growth plate, the density of the transmitted light image varies depending on the location of the growth plate, depending on the state of algae attachment, and the counting accuracy may be reduced. When the reference value is set in units of sections, a decrease in counting accuracy due to such variations is prevented. Further, by binarizing, even if the transmission state of aquatic animals and algae is not uniform and there is variation in the density of the transmitted light image, the data of the aquatic animal can be selected reliably.
[0048]
In the above embodiment, the entire growth plate is divided into a plurality of sections, and each section is imaged by the respective CCD camera. In this case, in order to improve the counting accuracy and facilitate image processing, it is desirable to associate one section with one CCD camera. Note that the number of CCD cameras constituting the image pickup means is not limited to 12, but one or any number can be used depending on conditions such as the size of the growth plate and the required resolution.
[0049]
In the above embodiment, the growth plate is moved. However, the imaging means can be moved. When the growth plate or the imaging means is moved, the range that one CCD camera can capture at a time can be narrowed, and the resolution is relatively improved. For this reason, it is not necessary to use imaging with a high-resolution camera or imaging by moving a line sensor, and a low-cost CCD camera can be used, thereby reducing costs.
[0050]
The numerical values used in the above-described embodiments are examples, and these numerical values are different depending on illumination conditions, imaging environments, and the like. Therefore, it is desirable to perform a preliminary test or the like and make a determination based on the preliminary test. The order of image processing is also an example, and the order can be changed as appropriate. Further, depending on the environment and conditions for counting aquatic animals, a part of the above processing can be omitted.
[0051]
According to the above configuration, aquatic animals inhabit the front and back sides of the breeding board, or a plurality of aquatic animals overlap, and even if the situation of diatoms and algae is not uniform, The number of aquatic animals contained in diatoms and algae can be accurately counted. In addition, the labor load and miscounts of workers are reduced. It is easy to automate the individual counting process, and as a result, a stable shipment plan is maintained.
[0052]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the marvelous animal count processing apparatus which can count easily the aquatic animal cultured with the breeding board is implement | achieved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram for explaining an embodiment of the present invention.
FIG. 2 is a diagram for explaining an embodiment of the present invention and showing an example of a light intensity spectrum transmitted through algae.
FIG. 3 is a diagram for explaining an embodiment of the present invention, and is a diagram showing an image of light transmitted through a growth plate to which algae is attached.
FIG. 4 is a diagram showing a part of a flow for explaining an embodiment of the present invention.
FIG. 5 is a diagram showing a part of a flow for explaining an embodiment of the present invention.
FIG. 6 is a diagram showing a part of a flow for explaining an embodiment of the present invention.
FIG. 7 is a diagram for explaining an embodiment of the present invention and is a diagram showing an example of a histogram of a transmitted light image transmitted through a growth plate.
FIG. 8 is a diagram illustrating connection / separation of figures used in the embodiment of the present invention.
FIG. 9 is a schematic diagram for explaining connection and separation of figures used in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Storage means 12 ... Growth board 13a, 13b ... Guide 14 ... Moving means 15 ... Connecting rod 16 ... Light projection means 17 ... Imaging means 1701-1712 ... CCD camera 18 ... Switch 19 ... Controller 20 ... Image processing apparatus 201 ... Image processing 202 ... counting unit 203 ... recording display unit

Claims (7)

育成板上で育成されている水棲動物の個体数を計数する水棲動物計数処理装置において、前記育成板を収納する収納手段と、この収納手段に収納された前記育成板に光を照射する投光手段と、前記育成板を透過した透過光を撮像し、撮像した透過光を透過光画像に変換する撮像手段と、前記透過光画像を処理する画像処理手段とを設け、前記画像処理手段は、撮像手段で変換された透過光画像の濃淡分布の最小位置、最大位置、ピーク位置から基準値を算出する基準値算出手段と、前記基準値をもとに前記透過光画像を2値化画像に変換する2値化手段と、前記2値化画像の塊を構成する図形毎に透過光画像の濃淡分布からヒストグラムを作成し、該ヒストグラムの最小位置、最大位置、ピーク位置から算出した値を所定値と比較し、以下または以上の場合に有効データと判定する判定手段を有し、前記水棲動物の個体数の計数、または、前記水棲動物の大きさと大きさ別の個体数を計数する計数手段を有することを特徴とする水棲動物計数処理装置。In the aquatic animal counting processing apparatus for counting the number of aquatic animals cultivated on a cultivating plate, storage means for storing the cultivating plate, and light projection for irradiating light to the cultivating plate stored in the storing means Imaging means for imaging the transmitted light transmitted through the growth plate, converting the captured transmitted light into a transmitted light image, and image processing means for processing the transmitted light image. Reference value calculation means for calculating a reference value from the minimum position, maximum position, and peak position of the gray level distribution of the transmitted light image converted by the imaging means, and the transmitted light image as a binarized image based on the reference value A histogram is created from the density distribution of the transmitted light image for each figure that constitutes the binarized image block and the binarized image block , and values calculated from the minimum position, maximum position, and peak position of the histogram are predetermined. compared to the value, below or Has a determination means for determining as valid data in the above case, and has a counting means for counting the number of individuals of the aquatic animals or counting the number of individuals according to the size and size of the aquatic animals. Aquatic animal counting processing equipment. 画像処理手段は、撮像手段で変換された透過光画像の濃淡分布から基準値を算出する基準値算出手段と、前記基準値をもとに前記透過光画像を2値化画像に変換する2値化手段と、前記2値化画像の塊を構成する透過光画像の濃淡分布上に最も濃度が濃い透過光画像が現れる最小位置から、濃淡分布上に最も多くの透過光画像が現れるピーク位置までの濃淡の階層が所定値以下の場合に有効データと判定する判定手段とを有する請求項1記載の水棲動物計数処理装置。The image processing means includes a reference value calculating means for calculating a reference value from the density distribution of the transmitted light image converted by the imaging means, and a binary value for converting the transmitted light image into a binarized image based on the reference value. And from a minimum position where a transmitted light image having the highest density appears on the density distribution of the transmitted light image constituting the binarized image block to a peak position where the most transmitted light image appears on the density distribution The aquatic animal counting processing apparatus according to claim 1, further comprising: a determination unit that determines that the data is valid when the gray level is less than or equal to a predetermined value. 画像処理手段は、撮像手段で変換された透過光画像の濃淡分布から基準値を算出する基準値算出手段と、前記基準値をもとに前記透過光画像を2値化画像に変換する2値化手段と、前記2値化画像の塊を構成する透過光画像の濃淡分布上に最も濃度が濃い透過光画像が現れる最小位置から、最も濃度が淡い透過光画像が現れる最大位置までの階層幅が所定値以下の場合に有効データと判定する判定手段とを有する請求項1記載の水棲動物計数処理装置。The image processing means includes a reference value calculating means for calculating a reference value from the density distribution of the transmitted light image converted by the imaging means, and a binary value for converting the transmitted light image into a binarized image based on the reference value. And a hierarchical width from a minimum position at which a transmitted light image having the highest density appears on a density distribution of the transmitted light image constituting the binarized image block to a maximum position at which the transmitted light image having the lightest density appears. The aquatic animal count processing apparatus according to claim 1, further comprising: a determination unit that determines that the data is valid when the value is equal to or less than a predetermined value. 画像処理手段は、撮像手段で変換された透過光画像の濃淡分布から基準値を算出する基準値算出手段と、前記基準値をもとに前記透過光画像を2値化信号に変換する2値化手段と、前記2値化画像の塊を構成する透過光画像の濃淡分布上で、
確定率=1−(最大位置からピーク位置までの濃淡の階層)/最大位置から最小位置までの濃淡の階層(ただし、最大位置は濃淡分布上に最も濃度が淡い透過光画像が現れる階層、ピーク位置は濃淡分布上に最も多くの透過光画像が現れる階層、最小位置は濃淡分布上に最も濃度が濃い透過光画像が現れる階層)とし、
前記確定率が所定値以上の場合に、有効データと判定する判定手段とを有する請求項1記載の水棲動物計数処理装置。
The image processing means includes a reference value calculating means for calculating a reference value from the gray level distribution of the transmitted light image converted by the imaging means, and a binary value for converting the transmitted light image into a binarized signal based on the reference value. On the grayscale distribution of the transmitted light image constituting the binarized image block,
Determining rate = 1− (gradation level from the maximum position to the peak position) / density level from the maximum position to the minimum position (however, the maximum position is the level where the transmitted light image with the lightest density appears on the density distribution, peak The position is the hierarchy where the most transmitted light image appears on the gray distribution, and the minimum position is the hierarchy where the transmitted light image with the highest density appears on the gray distribution)
The aquatic animal counting processing apparatus according to claim 1, further comprising a determination unit that determines that the data is valid when the determination rate is equal to or greater than a predetermined value.
画像処理手段は、撮像手段で変換された透過光画像の濃淡分布から基準値を算出する基準値算出手段と、前記基準値をもとに前記透過光画像を2値化画像に変換する2値化手段と、前記2値化画像の塊を構成する透過光画像の背景からの距離を算出する距離算出手段と、この距離算出手段で算出された前記透過光画像の距離に所定係数を少なくとも1回掛け算し、この掛け算の結果が所定値以上の場合に有効データと判定する判定手段とを有する請求項1記載の水棲動物計数処理装置。The image processing means includes a reference value calculating means for calculating a reference value from the density distribution of the transmitted light image converted by the imaging means, and a binary value for converting the transmitted light image into a binarized image based on the reference value. A distance calculating means for calculating a distance from the background of the transmitted light image constituting the binarized image block, and a predetermined coefficient for the distance of the transmitted light image calculated by the distance calculating means. The aquatic animal counting processing apparatus according to claim 1, further comprising: a determination unit that performs multiplication and determines that the data is valid data when the result of the multiplication is a predetermined value or more. 撮像手段は、育成板の透過光画像を複数区分に分割して区分毎に撮像するため、育成板かカメラ装置の一方を他方に対し相対的に移動させる移動手段を有する1台以上のカメラ装置、または、育成板の区分毎に配置した複数台のカメラ装置で全面を一度に分割して撮像するため複数台からなるカメラ装置、のどちらか一方を具備し、区分単位毎に画像処理手段を有する請求項1乃至5記載の水棲動物計数処理装置。The imaging unit divides the transmitted light image of the growth plate into a plurality of sections and captures each of the sections, so that one or more camera devices having moving means for moving one of the growth plate and the camera device relative to the other or, by a plurality of camera devices arranged on the classification of the breeding plates by dividing the entire surface at once includes one camera unit, either comprising a plurality for capturing, the image processing means on the classification unit The aquatic animal counting processing apparatus according to claim 1, wherein 投光手段は、波長領域800nm以上の光を発生する光源を有し、撮像手段は、投光手段の波長領域を含む光を撮像可能な特性を有する請求項1乃至6記載の水棲動物計数処理装置。  The aquatic animal counting process according to claim 1, wherein the light projecting unit has a light source that generates light having a wavelength region of 800 nm or more, and the imaging unit has a characteristic capable of capturing light including the wavelength region of the light projecting unit. apparatus.
JP2002146123A 2002-05-21 2002-05-21 Aquatic animal counting equipment Expired - Fee Related JP4411576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002146123A JP4411576B2 (en) 2002-05-21 2002-05-21 Aquatic animal counting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002146123A JP4411576B2 (en) 2002-05-21 2002-05-21 Aquatic animal counting equipment

Publications (2)

Publication Number Publication Date
JP2003337931A JP2003337931A (en) 2003-11-28
JP4411576B2 true JP4411576B2 (en) 2010-02-10

Family

ID=29705203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002146123A Expired - Fee Related JP4411576B2 (en) 2002-05-21 2002-05-21 Aquatic animal counting equipment

Country Status (1)

Country Link
JP (1) JP4411576B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697923B2 (en) * 2004-04-16 2011-06-08 財団法人電力中央研究所 Counting system and counting method for moving object in water or water surface

Also Published As

Publication number Publication date
JP2003337931A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
US11250580B2 (en) Method, system and computer readable storage media for registering intraoral measurements
CN1328700C (en) Intelligent traffic system
CN111551530B (en) Method and device for acquiring three-dimensional distribution information of chlorophyll fluorescence of canopy of crop group
JP6573907B2 (en) System, method, apparatus, and computer readable storage medium for collecting color information about 3D scanned objects
KR20140045923A (en) Method and software for analysing microbial growth
CN103778621B (en) The recognition methods of foreign objects fragment
CN109951635A (en) It takes pictures processing method, device, mobile terminal and storage medium
Lakshmi et al. Classification of Dental Cavities from X-ray images using Deep CNN algorithm
CN110807775A (en) Traditional Chinese medicine tongue image segmentation device and method based on artificial intelligence and storage medium
JP2019037225A (en) Plant growth state monitoring device and method
CN111968081A (en) Fish shoal automatic counting method and device, electronic equipment and storage medium
CN110782440A (en) Crop grain character measuring method
CN111951322A (en) Camera module quality detection method and device and computer storage medium
JP4411576B2 (en) Aquatic animal counting equipment
Wijethunga et al. Digital image analysis based automated kiwifruit counting technique
JP2672509B2 (en) Method and apparatus for automatically calibrating camera model
JPH0715703B2 (en) Character reading method
CN107300360A (en) A kind of shaft size fast algorithm of detecting of rain fed crops seed three
CN104410811A (en) Laser spot trajectory extracting and displaying device and method
CN117616451A (en) Optical image processing method, machine learning method, trained model, machine learning preprocessing method, optical image processing module, optical image processing program, and optical image processing system
CN112597934B (en) Application method of image target detection in baling press area calculation
JP3570765B2 (en) Seeding evaluation device
CN114187279A (en) Shrimp larvae marking method and device based on image processing
JPH0519354B2 (en)
Luwes Artificial intelligence machine vision grading system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees