JP4410840B2 - Optical adjusting member, and illumination device and liquid crystal display device including the same - Google Patents

Optical adjusting member, and illumination device and liquid crystal display device including the same Download PDF

Info

Publication number
JP4410840B2
JP4410840B2 JP2009208777A JP2009208777A JP4410840B2 JP 4410840 B2 JP4410840 B2 JP 4410840B2 JP 2009208777 A JP2009208777 A JP 2009208777A JP 2009208777 A JP2009208777 A JP 2009208777A JP 4410840 B2 JP4410840 B2 JP 4410840B2
Authority
JP
Japan
Prior art keywords
light
cross
section
optical adjustment
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009208777A
Other languages
Japanese (ja)
Other versions
JP2009294672A (en
Inventor
勝輔 島崎
容一 小川
暢高 佐藤
栄二 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2009208777A priority Critical patent/JP4410840B2/en
Publication of JP2009294672A publication Critical patent/JP2009294672A/en
Application granted granted Critical
Publication of JP4410840B2 publication Critical patent/JP4410840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は入射光線の進行方向を制御する光学調整部材、並びに、それを備える照明装置及び液晶表示装置に関する。   The present invention relates to an optical adjustment member that controls the traveling direction of incident light, and an illumination device and a liquid crystal display device including the same.

従来、液晶ディスプレイなどのバックライトユニット等の各種照明装置では、光源からの光線の広がりや明るさを調整する機構を備えている。多くの照明装置において、その光路中や光源ハウジングの出射口に、光の指向性を制御するためのシートなどの光学調整部材が設置されている。この光学調整部材は、光透過性を有し、入射光を所定の方向に揃える機能、あるいは、入射光を拡散させる機能を有する。   Conventionally, various illumination devices such as a backlight unit such as a liquid crystal display have a mechanism for adjusting the spread and brightness of light rays from a light source. In many illuminating devices, an optical adjusting member such as a sheet for controlling the directivity of light is installed in the light path or the exit of the light source housing. This optical adjusting member has light transmittance and has a function of aligning incident light in a predetermined direction or a function of diffusing incident light.

入射光を所定の方向に揃える機能、すなわち、光指向性を制御する機能を有する光学調整部材の代表的な例としては、プリズムシートがある(例えば、特許文献1参照)。プリズムシートは、所定の方向に延在し且つその延在方向に直交する断面が三角形状である光学構造体(以下、プリズム状構造体ともいう)や、断面が半円(半楕円)形状である光学構造体(以下、レンズ状構造体ともいう)を複数連続的にシート状基材の上に並べた構造のものが一般的である。そして、基材上に形成されたこれらの光学構造体によるプリズム効果またはレンズ効果によって光線の進行方向を制御する。   A typical example of an optical adjustment member having a function of aligning incident light in a predetermined direction, that is, a function of controlling light directivity, includes a prism sheet (see, for example, Patent Document 1). The prism sheet has an optical structure (hereinafter, also referred to as a prism-like structure) having a triangular cross section extending in a predetermined direction and perpendicular to the extending direction, or a semicircular (semi-elliptical) cross section. A structure in which a plurality of optical structures (hereinafter also referred to as lens-like structures) are continuously arranged on a sheet-like base material is generally used. And the advancing direction of a light beam is controlled by the prism effect or lens effect by these optical structures formed on the base material.

また、液晶表示装置用のバックライトユニットでは、従来、例えば上述したプリズム状構造体を基材上に複数設けたプリズムシートを2枚用い、各プリズムシートのプリズム状構造体の延在方向が互いに直交するように配置される(例えば、特許文献1参照)。このような液晶表示装置用のバックライトユニットの一般的な構成を図5に示した。また、プリズムシートの一般的な構造を図6に示した。液晶表示装置用のバックライトユニット501は、主に、図5に示すように、光源503と、光源503から放射された光510を面光源に変える導光板504と、導光板504の下部(液晶表示パネル502とは反対側)に配置された反射シート505と、導光板504の上部(液晶表示パネル502側)に配置された多数の機能性光学シート群506〜508とで構成される。機能性光学シート群は、主に、下部拡散シート506、プリズムシート群507及び上部拡散シート508などから構成される。   Also, in a backlight unit for a liquid crystal display device, conventionally, for example, two prism sheets each having a plurality of the prism-like structures described above are provided on a substrate, and the extending directions of the prism-like structures of each prism sheet are mutually connected. It arrange | positions so that it may orthogonally cross (for example, refer patent document 1). A general configuration of such a backlight unit for a liquid crystal display device is shown in FIG. The general structure of the prism sheet is shown in FIG. As shown in FIG. 5, a backlight unit 501 for a liquid crystal display device mainly includes a light source 503, a light guide plate 504 that converts light 510 emitted from the light source 503 into a surface light source, and a lower portion of the light guide plate 504 (liquid crystal The reflection sheet 505 is disposed on the side opposite to the display panel 502, and a large number of functional optical sheet groups 506 to 508 are disposed on the light guide plate 504 (on the liquid crystal display panel 502 side). The functional optical sheet group mainly includes a lower diffusion sheet 506, a prism sheet group 507, an upper diffusion sheet 508, and the like.

図5に示すようなバックライトユニットは、導光板504の側部に光源503が配置された、いわゆるエッジライト(サイドライト)方式の照明装置であり、光源503から放射された光510は導光板504の側部に入射され、入射された光は、導光板504の表面504aから出射される。この際、導光板504からの出射光511の指向性はある程度揃っており、その方向は導光板504の出射面504aの法線方向に対して所定の角度で傾斜している。そして、この傾斜方向において出射光511の輝度が最大となる。以下、本明細書では、該光線の輝度が最大となる方向に進行する光線成分を「輝度ピーク光線」と称す。なお、図5では、液晶表示装置500の構成を分かり易くするために各光学部材を離して記載しているが、実際には、各光学部材は接して重ねられている。   The backlight unit as shown in FIG. 5 is a so-called edge light (side light) type illumination device in which a light source 503 is arranged on the side of a light guide plate 504, and light 510 emitted from the light source 503 is emitted from the light guide plate. The incident light enters the side portion 504 and exits from the surface 504 a of the light guide plate 504. At this time, the directivity of the emitted light 511 from the light guide plate 504 is uniform to some extent, and the direction is inclined at a predetermined angle with respect to the normal direction of the output surface 504a of the light guide plate 504. And the brightness | luminance of the emitted light 511 becomes the maximum in this inclination direction. Hereinafter, in this specification, a light ray component that travels in a direction in which the luminance of the light ray becomes maximum is referred to as a “luminance peak light ray”. In FIG. 5, the optical members are illustrated apart from each other for easy understanding of the configuration of the liquid crystal display device 500, but actually, the optical members are stacked in contact with each other.

プリズムシート群507は、2枚のプリズムシート507a及び507bからなり、各プリズムシートは、図6に示すように、シート状基材507c上に、所定の方向に延在し且つその延在方向に直交する断面が三角形状であるプリズム状構造体507dが複数平行に並べられた構造を有する。そして、バックライトユニット501内では各プリズムシート507a,507bのプリズム状構造体507dの延在方向が互いに直交するように配置されている。   The prism sheet group 507 includes two prism sheets 507a and 507b, and each prism sheet extends in a predetermined direction on the sheet-like base material 507c and extends in the extending direction as shown in FIG. It has a structure in which a plurality of prismatic structures 507d whose cross sections perpendicular to each other are triangular are arranged in parallel. In the backlight unit 501, the prismatic structures 507d of the prism sheets 507a and 507b are arranged so that the extending directions thereof are orthogonal to each other.

また、特許文献2では、透明な基材シートと、その片面に配置された複数の三角柱状のプリズムとを有する防眩シートが開示されている。ここで、三角柱状プリズムは、稜線の延在方向が互いに平行になるように並べられている。各三角柱プリズムの、稜線の延在方向に直交する面における断面形状は非対称三角形である。また、各三角柱状プリズムの、基材シートとのなす角度が大きい方の斜面には、稜線に平行な複数の凹凸(線条)が形成されている。これように、三角柱プリズムの一方の斜面に複数の線条を設けることにより、背面(基材シート側)からの照射光の中で、プリズム内部反射のため、多重像となる光や外部からの入射光の反射光で眩光となる光を視野外に拡散し、さらに、拡散・透過した光線の一部を背面照射光として再利用している。これにより、従来の防眩シートに比べて、明るくコントラストの高い防眩シートを実現している。   Patent Document 2 discloses an antiglare sheet having a transparent base sheet and a plurality of triangular prisms arranged on one side thereof. Here, the triangular prisms are arranged so that the extending directions of the ridge lines are parallel to each other. The cross-sectional shape of each triangular prism in the plane orthogonal to the extending direction of the ridgeline is an asymmetric triangle. In addition, a plurality of projections and depressions (wires) parallel to the ridge line are formed on the slope of each triangular prism that has a larger angle with the base material sheet. In this way, by providing a plurality of filaments on one inclined surface of the triangular prism, in the irradiation light from the back surface (base sheet side), light that becomes a multiple image or external light due to internal reflection of the prism Light that becomes glare by reflected light of incident light is diffused out of the field of view, and a part of the diffused and transmitted light is reused as back irradiation light. Thereby, compared with the conventional anti-glare sheet, a bright and high-contrast anti-glare sheet is realized.

特表平10−506500号公報Japanese National Patent Publication No. 10-506500 特開平8−54503号公報JP-A-8-54503

上述のように、従来の液晶表示装置用の背面照明装置(バックライトユニット)では、導光板から出射される光を集光して効果的に液晶表示板に照射するために、図6に示すようなプリズム形状(三角柱状)の光学構造体を複数有するプリズムシート(光学調整部材)が用いられてきた。この従来のプリズムシートは、すぐれた集光性能を有するものの、1枚のプリズムシートでは、プリズムシートから出射される光の色が分離してしまうという問題があった。その結果、該プリズムシートを用いた照明装置で物体を照明すると、物体の影のエッジ部に色がついて滲んだり、あるいは、該プリズムシートを液晶表示装置のバックライトユニットに用いた場合には、ある角度で見た場合と正面で見た場合とで色が異なって見えるといった問題が生じた。   As described above, in the conventional backlight unit (backlight unit) for the liquid crystal display device, the light emitted from the light guide plate is collected and effectively irradiated to the liquid crystal display plate as shown in FIG. A prism sheet (optical adjustment member) having a plurality of prism-shaped (triangular prism-shaped) optical structures has been used. Although this conventional prism sheet has excellent light collecting performance, there is a problem that the color of light emitted from the prism sheet is separated by one prism sheet. As a result, when the object is illuminated with the illumination device using the prism sheet, the shadow edge of the object is colored and blurred, or when the prism sheet is used in a backlight unit of a liquid crystal display device, There was a problem that the colors looked different when viewed from a certain angle and when viewed from the front.

上述した色分離の課題を図8を用いてより具体的に説明する。図8は、図6に示したプリズムシート507aのプリズム状構造体507dの拡大断面図であり、プリズムシート507aに所定の入射角度で光512が入射された際のプリズム状構造体507dによる光の屈折の様子を示した図である。なお、図8では、上記色分離の課題をより分かり易くするために、導光板の出射面上に従来のプリズムシートを直接配置した場合、すなわち、図7に示すような構成のエッジライト型のバックライトユニットにおける光の屈折の様子を示した。なお、図8中の光線512は、プリズムシート507aに入射された光線のうち、該光線の輝度が最大となる方向に進行する光線成分、すなわち、輝度ピーク光線を示している。   The above-described problem of color separation will be described more specifically with reference to FIG. FIG. 8 is an enlarged cross-sectional view of the prism-like structure 507d of the prism sheet 507a shown in FIG. 6, and the light by the prism-like structure 507d when the light 512 is incident on the prism sheet 507a at a predetermined incident angle. It is the figure which showed the mode of refraction. In FIG. 8, in order to make the above-described color separation problem easier to understand, when a conventional prism sheet is directly arranged on the light exit surface of the light guide plate, that is, an edge light type having a configuration as shown in FIG. The state of light refraction in the backlight unit is shown. A light ray 512 in FIG. 8 indicates a light ray component that travels in a direction in which the luminance of the light ray reaches the maximum, that is, a luminance peak light ray, among the light rays incident on the prism sheet 507a.

プリズム状構造体507dに入射された輝度ピーク光線512は、図8に示すように、プリズム状構造体507dの光進行方向側の面507eで屈折し、プリズムシート507aの厚さ方向に出射される。その際、プリズム状構造体507d(プリズムシート507a)の形成材料の屈折率が光の波長により異なるので、輝度ピーク光線512に含まれる波長成分に応じてプリズム状構造体507dの面507eにおける屈折量が異なる。その結果、図8に示すように、波長に応じてプリズム状構造体507dの面507eにおける屈折光の屈折方向が変わり、プリズムシート507aからの出射光513には所定のパターンで色分離が生じる。なお、図8中では、説明を簡略化するために、2つの波長成分のみの分離を示した。   As shown in FIG. 8, the luminance peak light beam 512 incident on the prismatic structure 507d is refracted by the light traveling direction surface 507e of the prismatic structure 507d and is emitted in the thickness direction of the prism sheet 507a. . At this time, since the refractive index of the forming material of the prismatic structure 507d (prism sheet 507a) varies depending on the wavelength of light, the amount of refraction at the surface 507e of the prismatic structure 507d according to the wavelength component included in the luminance peak light beam 512. Is different. As a result, as shown in FIG. 8, the refraction direction of the refracted light on the surface 507e of the prismatic structure 507d changes according to the wavelength, and color separation occurs in a predetermined pattern in the emitted light 513 from the prism sheet 507a. In FIG. 8, only two wavelength components are separated in order to simplify the description.

また、1枚のプリズムシートを用いただけでは、上述した色分離の問題以外に、輝度も不足するという問題もあった。従来の液晶表示装置等に用いられるバックライトユニット、特に、エッジライト方式のバックライトユニットでは、上述した色分離及び輝度不足の課題を解決するために、図5に示すように通常、プリズムシートを2枚重ねて用いている。   In addition to the above-described problem of color separation, there is a problem that luminance is insufficient when only one prism sheet is used. In a backlight unit used in a conventional liquid crystal display device or the like, particularly an edge light type backlight unit, a prism sheet is usually used as shown in FIG. Two sheets are used in layers.

しかしながら、上述のように、図5に示すような構成の照明装置及び液晶表示装置では、上記課題を解決するために、多数の光学シート群(図5の例では、プリズムシート2枚、拡散シート2枚)を必要とし、照明装置及び液晶表示装置の薄型化及び低コスト化に限度があった。   However, as described above, in the illumination device and the liquid crystal display device configured as shown in FIG. 5, in order to solve the above problems, a large number of optical sheet groups (in the example of FIG. 5, two prism sheets, a diffusion sheet). 2), and there was a limit to reducing the thickness and cost of the lighting device and the liquid crystal display device.

本発明は上記課題を解決するためになされたものであり、本発明の目的は、1つの光学調整部材で上述した色分離及び輝度不足の課題を解決することができ且つ照明装置及び液晶表示装置の薄型化及び低コスト化が可能となる光学調整部材を提供することである。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to solve the above-described problems of color separation and insufficient luminance with a single optical adjusting member, and to provide an illumination device and a liquid crystal display device. It is an object to provide an optical adjustment member that can be made thinner and lower in cost.

本発明の第1の態様に従えば、所定の方向から光が入射される光学調整部材であって、
上記光が入射される光入射面を有し、且つ、光透過性を有する基材と、
上記基材の、上記光入射面と反対側の面の上に設けられた光透過性を有する複数の線状体とを備え、
上記線状体の延在方向に直交する断面が、第1〜第3辺で画成された三角形状の第1断面部と、第1断面部より面積が小さく且つ第4〜第6辺で画成された略三角形状の第2断面部とを有し、第1断面部の第1辺が上記基材の上記光入射面と反対側の面と平行に接しており、第2断面部が第1断面部の第2辺上に設けられており、且つ、第2断面部の第4辺が第1断面部の第2辺と平行に接しており、
第1断面部の第1辺と第2辺のなす角は、第1辺と第3辺のなす角よりも小さく、
第2断面部第5辺を含む線状体の面で屈折した上記光の色分離パターンと、第2断面部の第6辺を含む線状体の面で屈折した上記光の色分離パターンとが、上記光の進行方向に対して逆パターンとなり、互いに色分離を打ち消しあうことを特徴とする光学調整部材が提供される。
According to the first aspect of the present invention, there is provided an optical adjustment member in which light is incident from a predetermined direction,
A base material having a light incident surface on which the light is incident and having light transmittance;
A plurality of linear bodies having light transmissivity provided on a surface of the substrate opposite to the light incident surface;
The cross section perpendicular to the extending direction of the linear body has a triangular first cross section defined by the first to third sides, an area smaller than the first cross section, and the fourth to sixth sides. A substantially triangular second cross section defined, wherein the first side of the first cross section is in contact with the surface opposite to the light incident surface of the substrate, and the second cross section Is provided on the second side of the first cross section, and the fourth side of the second cross section is in contact with the second side of the first cross section,
The angle formed by the first side and the second side of the first cross section is smaller than the angle formed by the first side and the third side,
A color separation pattern of the light refracted on the surface of the linear body including the second side of the second cross section, and a color separation pattern of the light refracted on the surface of the linear body including the sixth side of the second cross section. However, an optical adjustment member is provided, which has a reverse pattern with respect to the traveling direction of the light and cancels color separation from each other.

本発明者らが、入射光線の進行方向を制御する光学調整部材について鋭意検討を重ねたところ、上述した構造の光学調整部材を用いることにより、光学調整部材からの出射光の色分離を抑制できることが分かった。これは、光学調整部材を上述した構造にすることにより、第2断面部の第5辺を含む線状体の面で屈折した光の色分離パターンと、第2断面部の第6辺を含む線状体の面で屈折した光の色分離パターンとが、光学調整部材に入射された光の進行方向に対して互いに逆パターンとなり、第2断面部の第5辺を含む線状体の面で屈折した光と第2断面部の第6辺を含む線状体の面で屈折した光との間で互いに色分離を打ち消しあうためである(色分離抑制の原理は後で詳述する)。   When the present inventors have made extensive studies on the optical adjustment member that controls the traveling direction of the incident light, the use of the optical adjustment member having the above-described structure can suppress the color separation of the emitted light from the optical adjustment member. I understood. This includes the color separation pattern of the light refracted on the surface of the linear body including the fifth side of the second cross-sectional portion and the sixth side of the second cross-sectional portion by making the optical adjustment member the structure described above. The color separation pattern of the light refracted on the surface of the linear body is opposite to the traveling direction of the light incident on the optical adjustment member, and the surface of the linear body including the fifth side of the second cross section This is to cancel the color separation between the light refracted in step 1 and the light refracted on the surface of the linear body including the sixth side of the second cross section (the principle of suppressing color separation will be described in detail later). .

さらに、本発明の光学調整部材では、上述した構造にすることにより、導光板から出射されたある程度指向性の揃った光線の進行方向を光学調整部材の厚さ方向に直接変更することができるので、従来のように、プリズムシート群と導光板との間に下部拡散シートを設ける必要がなくなる。すなわち、本発明の光学調整部材では、従来のように、下部拡散シートを用いて導光板から出射されたある程度指向性の揃った光を一旦ブロードな光に変換する必要がない。それゆえ、導光板から出射された光の利用効率を向上させ、輝度特性を向上させることができる。すなわち、本発明の光学調整部材では、一つの光学調整部材で、上述した出射光の色分離及び輝度不足の課題を解消することができる。   Furthermore, in the optical adjustment member of the present invention, by using the above-described structure, it is possible to directly change the traveling direction of the light beam emitted from the light guide plate with a certain degree of directivity to the thickness direction of the optical adjustment member. Thus, unlike the prior art, it is not necessary to provide a lower diffusion sheet between the prism sheet group and the light guide plate. That is, in the optical adjustment member of the present invention, unlike the conventional case, it is not necessary to once convert light having a certain degree of directivity emitted from the light guide plate using the lower diffusion sheet into broad light. Therefore, the utilization efficiency of the light emitted from the light guide plate can be improved and the luminance characteristics can be improved. That is, in the optical adjustment member of the present invention, the above-described problems of color separation of emitted light and insufficient luminance can be solved with one optical adjustment member.

特に、本発明の光学調整部材をエッジライト方式の照明装置等に適用した際には、一つの光学調整部材により出射光の色分離を抑制することができるので、従来のように、出射光の色分離を抑制するために2枚のプリズムシートを用いる必要が無くなる。また、上述のように、本発明の光学調整部材を用いた場合には、従来のように、プリズムシート群と導光板との間に下部拡散シートを設ける必要がなくなる。それゆえ、本発明の光学調整部材をエッジライト方式の照明装置等に適用した際には、光学部材の数を減らすことができ、装置の薄型化及び低コスト化を図ることができる。   In particular, when the optical adjustment member of the present invention is applied to an edge light type illumination device or the like, color separation of the emitted light can be suppressed by one optical adjustment member. There is no need to use two prism sheets to suppress color separation. Further, as described above, when the optical adjustment member of the present invention is used, it is not necessary to provide a lower diffusion sheet between the prism sheet group and the light guide plate as in the conventional case. Therefore, when the optical adjustment member of the present invention is applied to an edge light type illumination device or the like, the number of optical members can be reduced, and the device can be reduced in thickness and cost.

本発明に関連する光学調整部材では、第1断面部の第2辺上に複数の第2断面部が設けられていることが好ましい。   In the optical adjustment member related to the present invention, it is preferable that a plurality of second cross-sectional portions are provided on the second side of the first cross-sectional portion.

本発明に関連する光学調整部材では、上記複数の第2断面部が全て同じ形状及び寸法を有することが好ましい。本発明の光学調整部材では、上記複数の第2断面部の形状が互いに相似形であることが好ましい。また、本発明の光学調整部材では、上記複数の第2断面部の第4辺に対向する頂角が互いに同じ角度であることが好ましい。   In the optical adjustment member related to the present invention, it is preferable that all of the plurality of second cross-sectional portions have the same shape and size. In the optical adjustment member of the present invention, it is preferable that the shapes of the plurality of second cross-sectional portions are similar to each other. Moreover, in the optical adjustment member of this invention, it is preferable that the vertex angle which opposes the 4th side of a said some 2nd cross-section part is the same angle mutually.

本発明に関連する光学調整部材では、第2断面部の第5及び第6辺のうち、第1断面部の第1辺に対向する頂角に近い方の辺が、他方の辺より短いことが好ましい。このような構成にすると、例えば、図1及び2に示すように、第2断面部12aの第4辺12bに対向する頂角(例えば、図1中の角部12e)を画成する2つの面のうち、輝度ピーク光線52を光学調整部材1の厚さ方向に屈折させる線状体13の集光面12f(第1断面部11aの頂角11eに遠い方の辺12cを含む面)をより広くすることができる。それゆえ、この場合、線状体の集光面に入射される光が増大するので(集光させる光線が増大するので)、入射光の利用効率をさらに向上させ、輝度特性をさらに向上させることができる。   In the optical adjustment member related to the present invention, of the fifth and sixth sides of the second cross section, the side closer to the apex angle facing the first side of the first cross section is shorter than the other side. Is preferred. With such a configuration, for example, as shown in FIGS. 1 and 2, two apexes (for example, the corner 12 e in FIG. 1) that face the fourth side 12 b of the second cross-sectional portion 12 a are defined. Among the surfaces, a condensing surface 12f of the linear body 13 that refracts the luminance peak light ray 52 in the thickness direction of the optical adjustment member 1 (a surface including the side 12c far from the apex angle 11e of the first cross-sectional portion 11a). Can be wider. Therefore, in this case, since the light incident on the condensing surface of the linear body is increased (because the light rays to be collected are increased), the utilization efficiency of the incident light is further improved, and the luminance characteristics are further improved. Can do.

本発明に関連する光学調整部材では、上記光学調整部材に入射された光線の輝度特性において輝度が最大となる方向に進行する輝度ピーク光線が上記光学調整部材で屈折した際に、第2断面部の第5辺を含む上記線状体の面で屈折した後の輝度ピーク光線の進行方向と、第2断面部の第6辺を含む上記線状体の面で屈折した後の該輝度ピーク光線の進行方向とが、屈折前の輝度ピーク光線の進行方向に対して互いに逆となるように、第2断面部の第5辺及び第6辺が第4辺に対して傾斜していることが好ましい。   In the optical adjustment member related to the present invention, when the luminance peak light beam traveling in the direction in which the luminance is maximized in the luminance characteristic of the light beam incident on the optical adjustment member is refracted by the optical adjustment member, the second cross-sectional portion The direction of travel of the luminance peak light beam after being refracted on the surface of the linear body including the fifth side and the luminance peak light beam after being refracted on the surface of the linear body including the sixth side of the second cross section. The fifth side and the sixth side of the second cross-sectional portion are inclined with respect to the fourth side so that the traveling direction is opposite to the traveling direction of the luminance peak light beam before refraction. preferable.

本発明に関連する光学調整部材では、第1断面部の第3辺の第1辺に対する傾斜方向が、上記光学調整部材に入射された光線の輝度特性において輝度が最大となる方向と略平行であることが好ましい。より好ましくは、第1断面部の第3辺と第1辺との間の角度(例えば、図2中のβ1)が、光学調整部材に入射された輝度ピーク光線(例えば、図2中の光線52)の基材表面に対する角度(例えば、図2中の90度−θ)と同じまたは大きいことが好ましい。このような構成にすると、第1断面部の第3辺を含む線状体の面(例えば、図1中の面13c)における入射光の反射及び屈折が非常に小さくなるので、入射光の利用効率がさらに向上する。   In the optical adjustment member related to the present invention, the inclination direction of the third side of the first cross section with respect to the first side is substantially parallel to the direction in which the luminance is maximum in the luminance characteristic of the light beam incident on the optical adjustment member. Preferably there is. More preferably, the angle between the third side and the first side of the first cross section (for example, β1 in FIG. 2) is a luminance peak ray (for example, the ray in FIG. 2) incident on the optical adjustment member. 52) is preferably equal to or larger than an angle of the substrate surface (for example, 90 degrees -θ in FIG. 2). With such a configuration, the reflection and refraction of incident light on the surface of the linear body including the third side of the first cross section (for example, the surface 13c in FIG. 1) becomes very small. Efficiency is further improved.

本発明に関連する光学調整部材では、上記複数の線状体が、その延在方向に直交する方向に周期的に配置されていることが好ましい。   In the optical adjustment member related to the present invention, it is preferable that the plurality of linear bodies are periodically arranged in a direction orthogonal to the extending direction.

本発明の第2の態様に従えば、所定の方向から光が入射される光学調整部材であって、
上記光が入射される光入射面を有し、且つ、光透過性を有する基材と、
複数の線状体であって、上記基材の、上記光入射面と反対側の面の上に設けられ、光透過性を有し、且つ、それぞれが集光面及び補正面を有する複数の線状体とを備え、
上記線状体の延在方向に直交する断面が略三角形であり、該断面を画成する3つの辺のうち、一つの辺が上記基材の上記光入射面と反対側の面と平行に接しており且つ他の2辺のうちの一方の辺が階段状であって、前記階段状の辺は、前記断面と、前記集光面及び前記補正面との交線であって、上記断面の、上記基材に平行な辺と上記階段状の辺とのなす角度は、上記基材に平行な辺と残りの辺とのなす角度よりも小さく、
上記線状体の上記集光面で屈折した上記光の色分離パターンと、上記線状体の上記補正面で屈折した上記光の色分離パターンとが、上記光の進行方向に対して互いに逆パターンとなり、互いに色分離を打ち消しあうことを特徴とする光学調整部材が提供される。なお、本願において用語「集光面」は、線状体の光出射面であって、基材の側から入射された光線を光学調整部材の厚さ方向(基材の厚さ方向)に屈折させる面をいい、用語「補正面」は、線状体の光出射面であって、基材の側から入射された光線を光学調整部材の面方向(基材の面方向)に屈折させる面をいう。
According to the second aspect of the present invention, there is provided an optical adjustment member in which light is incident from a predetermined direction,
A base material having a light incident surface on which the light is incident and having light transmittance;
A plurality of linear bodies, provided on a surface of the substrate opposite to the light incident surface, having light transmittance, and each having a condensing surface and a correction surface A linear body,
The cross section perpendicular to the extending direction of the linear body is substantially triangular, and one of the three sides defining the cross section is parallel to the surface opposite to the light incident surface of the substrate. One of the other two sides is stepped, and the stepped side is a line of intersection of the cross section, the light collection surface and the correction surface, and the cross section The angle formed between the side parallel to the base material and the stepped side is smaller than the angle formed between the side parallel to the base material and the remaining side,
The light color separation pattern refracted on the light collecting surface of the linear body and the light color separation pattern refracted on the correction surface of the linear body are opposite to each other in the light traveling direction. An optical adjustment member is provided which is a pattern and cancels color separation from each other. In this application, the term “light condensing surface” is a light emitting surface of a linear body, and refracts light incident from the side of the base material in the thickness direction of the optical adjustment member (thickness direction of the base material). The term “correction surface” refers to a light emitting surface of a linear body that refracts light incident from the substrate side in the surface direction of the optical adjustment member (surface direction of the substrate). Say.

本発明の第3の態様に従えば、照明装置であって、光源と、本発明の第1または第2の態様に従う光学調整部材と、上記光源から出射された光を上記光学調整部材に導くための導光板とを備える照明装置が提供される。   According to a third aspect of the present invention, there is provided a lighting device, the light source, the optical adjustment member according to the first or second aspect of the present invention, and the light emitted from the light source is guided to the optical adjustment member. An illuminating device including a light guide plate is provided.

本発明の第4の態様に従えば、液晶表示装置であって、光源と、本発明の第1または第2の態様に従う光学調整部材と、上記光源から出射された光を上記光学調整部材に導くための導光板と、上記光学調整部材の上記導光板側とは反対側に配置された液晶表示素子とを備える液晶表示装置が提供される。   According to a fourth aspect of the present invention, there is provided a liquid crystal display device comprising a light source, an optical adjustment member according to the first or second aspect of the present invention, and light emitted from the light source as the optical adjustment member. There is provided a liquid crystal display device comprising a light guide plate for guiding and a liquid crystal display element arranged on the side of the optical adjustment member opposite to the light guide plate side.

本発明の照明装置及び液晶表示装置では、本発明の光学調整部材を備えているので、上述したように、構成する光学部材の数を減らすことができ、装置の薄型化及び低コスト化を図ることができる。さらに、本発明の照明装置及び液晶表示装置では、本発明の光学調整部材を備えているので、色分離を抑制することができるとともに、導光板から出射された光の利用効率が向上するので、輝度特性を向上させることもできる。   Since the illumination device and the liquid crystal display device according to the present invention include the optical adjustment member according to the present invention, as described above, the number of optical members to be configured can be reduced, and the device can be reduced in thickness and cost. be able to. Furthermore, since the illumination device and the liquid crystal display device of the present invention include the optical adjustment member of the present invention, color separation can be suppressed and use efficiency of light emitted from the light guide plate is improved. Luminance characteristics can also be improved.

本発明の照明装置及び液晶表示装置では、上記光学調整部材が導光板に接して配置されていることが好ましい。   In the illumination device and the liquid crystal display device of the present invention, it is preferable that the optical adjustment member is disposed in contact with the light guide plate.

上記液晶表示装置では、さらに、上記導光板の上記光学調整部材側とは反対側に配置された反射部材を備えていてもよい。   The liquid crystal display device may further include a reflecting member disposed on the opposite side of the light guide plate from the optical adjustment member side.

本発明の光学調整部材では、延在方向に直交する断面が略三角形であり且つ該断面の一つの辺が階段状である線状体を基材上に複数設けることにより、一つの光学調整部材により出射光の色分離を抑制することができる。また、本発明の光学調整部材では、導光板から出射されたある程度指向性の揃った光の進行方向を光学調整部材の厚さ方向に直接変更することができるので、導光板から出射された光の利用効率を向上させ、輝度特性を向上させることもできる。すなわち、本発明の光学調整部材によれば、一つの光学調整部材により出射光の色分離を抑制することができ且つ輝度特性を向上させることができる   In the optical adjustment member of the present invention, a single optical adjustment member is provided by providing a plurality of linear bodies on the substrate whose cross section orthogonal to the extending direction is substantially triangular and one side of the cross section is stepped. Thus, color separation of emitted light can be suppressed. Further, in the optical adjustment member of the present invention, the traveling direction of the light having a certain degree of directivity emitted from the light guide plate can be directly changed to the thickness direction of the optical adjustment member, so that the light emitted from the light guide plate It is also possible to improve the use efficiency and the luminance characteristics. That is, according to the optical adjustment member of the present invention, color separation of emitted light can be suppressed and luminance characteristics can be improved by one optical adjustment member.

本発明の照明装置及び液晶表示装置によれば、本発明の光学調整部材を備えているので、光の色分離及び輝度不足の課題を解決しつつ、照明装置及び液晶表示装置の薄型化及び低コスト化を図ることができる。   According to the illumination device and the liquid crystal display device of the present invention, since the optical adjustment member of the present invention is provided, the illumination device and the liquid crystal display device can be made thinner and lower while solving the problems of light color separation and insufficient luminance. Cost can be reduced.

図1は、実施例1の光学調整シートの概略構成図である。1 is a schematic configuration diagram of an optical adjustment sheet of Example 1. FIG. 図2は、実施例1の線状光学構造体の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the linear optical structure according to the first embodiment. 図3は、実施例1の液晶表示装置の概略構成図である。FIG. 3 is a schematic configuration diagram of the liquid crystal display device according to the first embodiment. 図4は、実施例2の線状光学構造体の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the linear optical structure according to the second embodiment. 図5は、比較例1の液晶表示装置の概略構成図である。FIG. 5 is a schematic configuration diagram of the liquid crystal display device of Comparative Example 1. 図6は、比較例1のプリズムシートの概略構成図である。FIG. 6 is a schematic configuration diagram of a prism sheet of Comparative Example 1. 図7は、比較例2の液晶表示装置の概略構成図である。FIG. 7 is a schematic configuration diagram of a liquid crystal display device of Comparative Example 2. 図8は、出射光の色分離の様子を示した図である。FIG. 8 is a diagram showing a state of color separation of emitted light.

以下に、本発明の光学調整部材、照明装置及び液晶表示装置の実施例を図面を参照しながら説明するが、本発明はこれに限定されない。   Hereinafter, examples of the optical adjustment member, the illumination device, and the liquid crystal display device of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

[光学調整シートの構成]
実施例1の光学調整シート(光学調整部材)の概略構成図を図1に示した。この例の光学調整シート1は、図1に示すように、シート状の光透過性(透明)基材10と、基材10上に形成された複数の線状光学構造体13(線状体)とから構成される。
[Configuration of optical adjustment sheet]
The schematic block diagram of the optical adjustment sheet (optical adjustment member) of Example 1 is shown in FIG. As shown in FIG. 1, the optical adjustment sheet 1 of this example includes a sheet-like light transmissive (transparent) base material 10 and a plurality of linear optical structures 13 (linear bodies) formed on the base material 10. ).

この例では、基材10として、厚さ50μmのポリエチレンテレフタレート(PET)シートを用いた。なお、基材10の厚さは、光学調整シートの加工の容易性、ハンドリング性等を考慮すると、10〜500μmの範囲が好ましい。また、基材10の形成材料としては、PET以外では、ポリエチレンナフタレート、ポリスチレン、ポリカーボネート(PC)、ポリオレフィン、ポリプロピレン、セルロースアセテート、ガラスなどの無機透明物質等、任意の光透過性材料を用いることができる。基材10の形状としては、典型的には、この例のようにシート状であるが、より肉厚の板状あるいは任意の形状の基材を用いてもよい。さらに、基材10の表面は平坦に限らず、立体面であってもよい。   In this example, a polyethylene terephthalate (PET) sheet having a thickness of 50 μm was used as the substrate 10. In addition, the thickness of the base material 10 is preferably in the range of 10 to 500 μm in consideration of ease of processing of the optical adjustment sheet, handling properties, and the like. Further, as a material for forming the base material 10, any light transmissive material such as an inorganic transparent substance such as polyethylene naphthalate, polystyrene, polycarbonate (PC), polyolefin, polypropylene, cellulose acetate, glass, or the like is used other than PET. Can do. The shape of the base material 10 is typically a sheet shape as in this example, but a thicker plate shape or an arbitrary shape base material may be used. Furthermore, the surface of the base material 10 is not limited to a flat surface and may be a three-dimensional surface.

線状光学構造体13は、図1に示すように、その延在方向に直交する断面が略三角形であり、その延在方向に沿った一つの面13a(以下、底面ともいう)が基材10の表面と平行に接している。すなわち、線状光学構造体13は、その底面13aが基材10の表面と対向するように、基材10上に設けられている。   As shown in FIG. 1, the linear optical structure 13 has a substantially triangular cross section orthogonal to the extending direction, and one surface 13a (hereinafter also referred to as a bottom surface) along the extending direction is a base material. 10 in parallel with the surface. That is, the linear optical structure 13 is provided on the base material 10 so that the bottom surface 13 a faces the surface of the base material 10.

また、この例では、図1に示すように、複数の線状光学構造体13の形状及び寸法は全て同じとし、複数の線状光学構造体13をその延在方向と直交する方向に周期的に配置し、隣り合う線状光学構造体13の底角部が互いに接するように配置した。なお、複数の線状光学構造体13の配置間隔(ピッチ)は7〜100μm程度であることが好ましい。複数の線状光学構造体13の配置間隔が7μmより小さくなると、線状光学構造体13を形成するために用いる金型に対して精度の高い金型加工が必要となりコストが高くなる。また、複数の線状光学構造体13の配置間隔が100μmより大きくなると、特にシート状の基材を用いた場合には、次のような問題が生じる。複数の線状光学構造体13の配置間隔が100μmより大きくなると、線状光学構造体13のサイズも相対的に大きくなり、線状光学構造体13を形成する樹脂の体積が増大する。この結果、樹脂を硬化させて線状光学構造体13を形成した際の樹脂の硬化収縮量も増大する。この場合、金型に対する樹脂のいわゆる「食いつき」が強くなり、樹脂が金型から剥離し難くなる。特に、ロール状の金型を用いてシート状基材上に線状光学構造体13を形成した場合には、剥離時に線状光学構造体13が破壊されたり、線状光学構造体13が金型表面に残留したりするという問題が生じる。また、複数の線状光学構造体13の配置間隔が100μmより大きくなると、線状光学構造体13の高さも高くなるので厚い光学調整部材となる。   Further, in this example, as shown in FIG. 1, the plurality of linear optical structures 13 are all the same in shape and size, and the plurality of linear optical structures 13 are periodically arranged in a direction orthogonal to the extending direction. And the bottom corners of the adjacent linear optical structures 13 are in contact with each other. In addition, it is preferable that the arrangement | positioning space | interval (pitch) of the some linear optical structure 13 is about 7-100 micrometers. When the arrangement interval of the plurality of linear optical structures 13 is smaller than 7 μm, high-precision mold processing is required for the mold used to form the linear optical structures 13, and the cost increases. Moreover, when the arrangement | positioning space | interval of the some linear optical structure 13 becomes larger than 100 micrometers, especially when a sheet-like base material is used, the following problems will arise. When the arrangement interval of the plurality of linear optical structures 13 is larger than 100 μm, the size of the linear optical structures 13 is also relatively increased, and the volume of the resin forming the linear optical structures 13 is increased. As a result, the amount of cure shrinkage of the resin when the linear optical structure 13 is formed by curing the resin also increases. In this case, the so-called “biting” of the resin with respect to the mold becomes strong, and the resin becomes difficult to peel from the mold. In particular, when the linear optical structure 13 is formed on a sheet-like substrate using a roll-shaped mold, the linear optical structure 13 is destroyed at the time of peeling, or the linear optical structure 13 is The problem of remaining on the mold surface arises. Moreover, when the arrangement | positioning space | interval of the some linear optical structure 13 becomes larger than 100 micrometers, since the height of the linear optical structure 13 will also become high, it will become a thick optical adjustment member.

この例では、線状光学構造体13を芳香族系アクリレートの紫外線硬化型樹脂(屈折率1.60)を形成した。なお、線状光学構造体13の形成材料としては、屈折率1.3〜1.9の任意の樹脂材料が利用可能である。また、この例のように、線状光学構造体13を基材10の形成材料とは異なる材料で形成する場合、その形成材料としては、アクリル樹脂やウレタン樹脂、スチレン樹脂、エポキシ樹脂、シリコーン系樹脂などの透明プラスチック樹脂を用いてもよい。なお、線状光学構造体13を基材10と同じ材料で形成してもよい。   In this example, the linear optical structure 13 is formed of an aromatic acrylate ultraviolet curable resin (refractive index of 1.60). In addition, as a forming material of the linear optical structure 13, an arbitrary resin material having a refractive index of 1.3 to 1.9 can be used. Further, as in this example, when the linear optical structure 13 is formed of a material different from the forming material of the base material 10, the forming material includes an acrylic resin, a urethane resin, a styrene resin, an epoxy resin, a silicone-based material. A transparent plastic resin such as a resin may be used. The linear optical structure 13 may be formed of the same material as the base material 10.

また、線状光学構造体13は、図1に示すように、基材10上に形成され且つ線状光学構造体13の延在方向と同じ方向に延在した第1線状プリズム部11と、第1線状プリズム部11の頂角を画成する一つの面上に形成され且つ線状光学構造体13の延在方向と同じ方向に延在した複数の第2線状プリズム部12とから構成される。なお、この例では、後述するように、第1線状プリズム部11と第2線状プリズム部12とは一体的に形成されている。すなわち、この例では、複数の第2線状プリズム部12が形成されている線状光学構造体13の面13bは、階段状となっている(以下、階段面ともいう)。なお、この例では、図1に示すように、第1線状プリズム部11の頂角を画成する一つの面上に3つの第2線状プリズム部12を形成したが、本発明はこれに限定されない。第2線状プリズム部12の数や形状は、用途、必要とする光学特性等に応じて適宜変更し得る。また、用途、必要とする光学特性等に応じて、第1線状プリズム部11の頂角を画成する2つの面の両方に第2線状プリズム部12を設けてよい。   Further, as shown in FIG. 1, the linear optical structure 13 includes a first linear prism portion 11 formed on the base material 10 and extending in the same direction as the extending direction of the linear optical structure 13. A plurality of second linear prism portions 12 formed on one surface defining the apex angle of the first linear prism portion 11 and extending in the same direction as the extending direction of the linear optical structure 13; Consists of In this example, as will be described later, the first linear prism portion 11 and the second linear prism portion 12 are integrally formed. That is, in this example, the surface 13b of the linear optical structure 13 on which the plurality of second linear prism portions 12 are formed has a step shape (hereinafter also referred to as a step surface). In this example, as shown in FIG. 1, three second linear prism portions 12 are formed on one surface that defines the apex angle of the first linear prism portion 11, but the present invention is not limited to this. It is not limited to. The number and shape of the second linear prism portions 12 can be changed as appropriate according to the application, required optical characteristics, and the like. Further, the second linear prism portion 12 may be provided on both of the two surfaces that define the apex angle of the first linear prism portion 11 depending on the application, required optical characteristics, and the like.

線状光学構造体13の拡大断面図を図2に示した。なお、図2中に示した入射光線52は、光学調整シート1に入射された(光学調整シート1内を進行する)光線の輝度特性において輝度が最大となる方向に進行する光線、すなわち、輝度ピーク光線を示している。線状光学構造体13のその延在方向に直交する断面は、図2に示すように、第1線状プリズム部11の第1断面部11aと、第2線状プリズム部12の第2断面部12aとから構成される。   An enlarged sectional view of the linear optical structure 13 is shown in FIG. Note that the incident light beam 52 shown in FIG. 2 travels in the direction in which the luminance is maximized in the luminance characteristics of the light beam incident on the optical adjustment sheet 1 (traveling through the optical adjustment sheet 1), that is, the luminance. Peak light is shown. As shown in FIG. 2, the cross section perpendicular to the extending direction of the linear optical structure 13 includes a first cross section 11 a of the first linear prism section 11 and a second cross section of the second linear prism section 12. Part 12a.

第1断面部11aは、図2に示すように、基材10の表面と平行に接する底辺11b(第1辺)と、底辺11bの両端からそれぞれ所定の角度(図2中のα1及びβ1)で延在した2つの傾斜辺11c(第2辺)及び11d(第3辺)とにより画成される。この例では、図2に示すように、第1断面部11aの底辺11bと対向する頂角11eを画成する2つの傾斜辺11c及び11dのうち、第2断面部12aと接する傾斜辺11c(第2辺)の長さを、もう一方の傾斜辺11d(第3辺)より長くした。それゆえ、第1断面部11aの底辺11bと傾斜辺11cとの間の角(第1底角)の角度α1は、底辺11bと傾斜辺11dとの間の角(第2底角)の角度β1より小さくなる。すなわち、この例では、第1断面部11aの形状は、非対称の三角形とした(二等辺三角形でない)。   As shown in FIG. 2, the first cross-sectional portion 11a has a base 11b (first side) that is in contact with the surface of the substrate 10 and predetermined angles from both ends of the base 11b (α1 and β1 in FIG. 2). Are defined by two inclined sides 11c (second side) and 11d (third side) extending in the above. In this example, as shown in FIG. 2, of the two inclined sides 11c and 11d that define the apex angle 11e facing the base 11b of the first cross section 11a, the inclined side 11c (in contact with the second cross section 12a) The length of the second side) is longer than the other inclined side 11d (third side). Therefore, the angle α1 between the base 11b and the inclined side 11c of the first cross section 11a (first base angle) is the angle between the base 11b and the inclined side 11d (second base angle). It becomes smaller than β1. That is, in this example, the shape of the first cross section 11a is an asymmetric triangle (not an isosceles triangle).

また、この例では、図2に示すように、第1断面部11aの傾斜辺11dの基材10表面の法線方向に対する傾斜角を、基材10表面の法線方向に対する輝度ピーク光線52の進行方向の傾斜角(図2中のθ)と略同じになるようした。すなわち、図2中の傾斜辺11dを含む(対応する)線状光学構造体13の面(図1中の面13c、以下、この面を平坦面ともいう)の傾斜方向が輝度ピーク光線52の進行方向と略平行となるようにした。なお、この例では、後述するように、線状光学構造体13の平坦面13cの基材表面に対する傾斜角度(図2中のβ1)を線状光学構造体13内の輝度ピーク光線52の基材表面に対する傾斜角度(90度−θ)より若干大きくなるようにした。   In this example, as shown in FIG. 2, the inclination angle of the inclined side 11 d of the first cross-sectional portion 11 a with respect to the normal direction of the surface of the base material 10 is expressed by the luminance peak light ray 52 with respect to the normal direction of the surface of the base material 10. It was made to be substantially the same as the inclination angle (θ in FIG. 2) in the traveling direction. That is, the inclination direction of the surface of the linear optical structure 13 including (corresponding to) the inclined side 11d in FIG. 2 (the surface 13c in FIG. 1; hereinafter, this surface is also referred to as a flat surface) is the luminance peak ray 52. It was made to be substantially parallel to the traveling direction. In this example, as will be described later, the inclination angle (β1 in FIG. 2) of the flat surface 13c of the linear optical structure 13 with respect to the substrate surface is determined based on the luminance peak ray 52 in the linear optical structure 13. It was made to be slightly larger than the inclination angle (90 ° −θ) with respect to the material surface.

この例の第1断面部11aの具体的な寸法は、第1断面部11aの底辺11bの長さを35μmとし、第1断面部11aの第1底角の角度α1を39.14度とし、第2底角の角度β1を57.71度とした。   The specific dimensions of the first cross section 11a in this example are such that the length of the base 11b of the first cross section 11a is 35 μm, the angle α1 of the first base angle of the first cross section 11a is 39.14 degrees, The angle β1 of the second base angle was 57.71 degrees.

第2断面部12aは、図2に示すように、第1断面部11aの傾斜辺11c(第2辺)と平行に接する底辺12b(第4辺)と、底辺12bの両端からそれぞれ所定の角度(図2中のα2及びβ2)で延在した2つの傾斜辺12c及び12dとにより画成される。この例では、図2に示すように、第2断面部12aの2つの傾斜辺12c及び12dのうち、第1断面部11aの底辺11bと対向する頂角11eに近い側に位置する傾斜辺12dの長さを、もう一方の傾斜辺12cより短くした。それゆえ、第2断面部12aの底辺12bと傾斜辺12cとの間の角(第1底角)の角度α2は、底辺12bと傾斜辺12dとの間の角(第2底角)の角度β2より小さくなる。すなわち、この例では、第2断面部12aの形状は、非対称の三角形とした(二等辺三角形でない)。   As shown in FIG. 2, the second cross-sectional portion 12a has a base 12b (fourth side) in contact with the inclined side 11c (second side) of the first cross-sectional portion 11a and a predetermined angle from both ends of the base 12b. It is defined by two inclined sides 12c and 12d extending at (α2 and β2 in FIG. 2). In this example, as shown in FIG. 2, of the two inclined sides 12c and 12d of the second cross section 12a, the inclined side 12d located on the side close to the apex angle 11e facing the base 11b of the first cross section 11a. Was made shorter than the other inclined side 12c. Therefore, the angle α2 between the base 12b and the inclined side 12c of the second cross section 12a (first base angle) is the angle between the base 12b and the inclined side 12d (second base angle). It becomes smaller than β2. That is, in this example, the shape of the second cross section 12a is an asymmetric triangle (not an isosceles triangle).

なお、第2断面部12aの傾斜辺12c(第5辺または第6辺)を含む第2線状プリズム部12の面12fは、後述するように、主に、入射光線の進行方向を光学調整シート1の厚さ方向に屈折させる面、すなわち、入射光線を集光させる作用を有する面である。それゆえ、以下では、この第2断面部12aの傾斜辺12cを含む面12fを集光面という。一方、第2断面部12aのもう一方の傾斜辺12d(第5辺または第6辺)を含む第2線状プリズム部12の面12rは、後述するように、主に、光学調整シート1からの出射光の色分離を抑制する作用を与えるので、以下では、補正面と称す。   The surface 12f of the second linear prism portion 12 including the inclined side 12c (fifth side or sixth side) of the second cross-sectional portion 12a mainly optically adjusts the traveling direction of the incident light, as will be described later. It is a surface that is refracted in the thickness direction of the sheet 1, that is, a surface that has a function of collecting incident light. Therefore, hereinafter, the surface 12f including the inclined side 12c of the second cross-sectional portion 12a is referred to as a condensing surface. On the other hand, the surface 12r of the second linear prism portion 12 including the other inclined side 12d (fifth side or sixth side) of the second cross section 12a is mainly formed from the optical adjustment sheet 1 as described later. In the following, it will be referred to as a correction surface.

この例の光学調整シート1のように、第1断面部11aの頂角11eに遠い側に位置する第2断面部12aの傾斜辺12cの長さを、もう一方の傾斜辺12dより長くすることにより、第2線状プリズム部12(線状光学構造体13)の集光面12fをより広くすることができ、入射光線の利用効率を向上させることができる。   Like the optical adjustment sheet 1 of this example, the length of the inclined side 12c of the second cross-sectional portion 12a located on the side far from the apex angle 11e of the first cross-sectional portion 11a is made longer than the other inclined side 12d. Thereby, the condensing surface 12f of the 2nd linear prism part 12 (linear optical structure 13) can be made wider, and the utilization efficiency of incident light can be improved.

また、この例では、図2に示すように、光学調整シート1に入射された輝度ピーク光線52が第2線状プリズム部12の集光面12fで屈折した際の光線53の屈折方向と、第2線状プリズム部12の補正面12rで屈折した際の光線54の屈折方向とが、屈折前の輝度ピーク光線52の進行方向に対して互いに逆になるように、第2断面部12aの第1及び第2底角の角度α2及びβ2を設定した。また、この例では、第2線状プリズム部12の集光面12fで屈折した際の光線53の所定の波長成分(例えば、図2中の波長A成分53A)の屈折方向と屈折前の輝度ピーク光線52の進行方向との間の角度(図2中の角度γ)が、第2線状プリズム部12の補正面12rで屈折した際の光線54の所定の波長成分(例えば、図2中の波長A成分54A)の屈折方向と屈折前の輝度ピーク光線52の進行方向との間の角度が、略同じになるように、第2断面部12aの第1及び第2底角の角度α2及びβ2を設定した。このような構成にすることにより、光学調整シート1からの出射光の色分離を一層抑制することができる。   In this example, as shown in FIG. 2, the refraction direction of the light beam 53 when the luminance peak light beam 52 incident on the optical adjustment sheet 1 is refracted by the light collecting surface 12 f of the second linear prism portion 12, and The refraction direction of the light ray 54 when refracted by the correction surface 12r of the second linear prism part 12 is opposite to the traveling direction of the luminance peak light ray 52 before refraction. The angles α2 and β2 of the first and second base angles were set. In this example, the refraction direction of the predetermined wavelength component of the light beam 53 (for example, the wavelength A component 53A in FIG. 2) when refracted by the condensing surface 12f of the second linear prism portion 12 and the luminance before refraction. A predetermined wavelength component (for example, in FIG. 2) of the light beam 54 when the angle (angle γ in FIG. 2) with the traveling direction of the peak light beam 52 is refracted by the correction surface 12r of the second linear prism portion 12. The angle α2 of the first and second base angles of the second cross section 12a so that the angle between the refraction direction of the wavelength A component 54A) and the traveling direction of the luminance peak ray 52 before refraction is substantially the same. And β2. With such a configuration, the color separation of the emitted light from the optical adjustment sheet 1 can be further suppressed.

なお、光学調整シート1からの出射光の色分離が十分抑制できる程度の範囲内であれば、第2線状プリズム部12の集光面12fで屈折した際の光線53の所定の波長成分の屈折方向と屈折前の輝度ピーク光線52の進行方向との間の角度と、第2線状プリズム部12の補正面12rで屈折した際の光線54の所定の波長成分の屈折方向と屈折前の輝度ピーク光線52の進行方向との間の角度とが異なっていてもよい。   If the color separation of the emitted light from the optical adjustment sheet 1 is within a range that can be sufficiently suppressed, the predetermined wavelength component of the light beam 53 refracted by the light condensing surface 12f of the second linear prism portion 12 will be described. The angle between the refraction direction and the traveling direction of the luminance peak light ray 52 before refraction, the refraction direction of the predetermined wavelength component of the light ray 54 when refracted by the correction surface 12r of the second linear prism portion 12, and The angle between the luminance peak light beam 52 and the traveling direction may be different.

この例の第2断面部12aの具体的な寸法は、第2断面部12aの底辺12bの長さを約10.44μmとし、第2断面部12aの第1底角の角度α2を30度とし、第2断面部12aの第2底角の角度β2を70度とした。   The specific dimensions of the second cross section 12a in this example are such that the length of the base 12b of the second cross section 12a is about 10.44 μm, and the angle α2 of the first base angle of the second cross section 12a is 30 degrees. The angle β2 of the second base angle of the second cross section 12a was set to 70 degrees.

なお、この例では、3つの第2線状プリズム部12の形状及び寸法は全て同じとし、3つの第2線状プリズム部12をその延在方向と直交する方向に周期的に配置し、隣り合う第2線状プリズム部12の底角部が互いに接するように配置した。すなわち、この例では、線状光学構造体13の階段面13bを構成する複数の第2線状プリズム部12の集光面12f及び補正面12rがそれぞれ、互いに平行で且つ等間隔に配置されるような構造にした。   In this example, the shapes and dimensions of the three second linear prism portions 12 are all the same, and the three second linear prism portions 12 are periodically arranged in a direction perpendicular to the extending direction, and adjacent to each other. The bottom corners of the matching second linear prism portions 12 are arranged so as to contact each other. That is, in this example, the condensing surfaces 12f and the correction surfaces 12r of the plurality of second linear prism portions 12 constituting the staircase surface 13b of the linear optical structure 13 are arranged in parallel with each other at equal intervals. The structure was as follows.

[光学調整シートの製造方法]
この例の光学調整シート1の製造方法は次の通りである。図1に示すような複数の線状光学構造体13からなる光学構造体の形状に対応する凹凸パターンが切削加工により表面に形成されたロール状の金型を用意する。次いで、用意した基材10と金型表面との間に、紫外線硬化樹脂を充填し、波長340〜420nmの紫外線を照射して充填した紫外線硬化樹脂を硬化させた。次いで、金型から基材10を剥離した。この例では、このようにして、基材10上に、紫外線硬化樹脂からなる複数の線状光学構造体13が形成された光学調整シート1を得た。
[Method for producing optical adjustment sheet]
The manufacturing method of the optical adjustment sheet 1 of this example is as follows. A roll-shaped mold is prepared in which an uneven pattern corresponding to the shape of an optical structure composed of a plurality of linear optical structures 13 as shown in FIG. 1 is formed on the surface by cutting. Next, an ultraviolet curable resin was filled between the prepared substrate 10 and the mold surface, and the filled ultraviolet curable resin was cured by irradiation with ultraviolet rays having a wavelength of 340 to 420 nm. Next, the substrate 10 was peeled from the mold. In this example, an optical adjustment sheet 1 in which a plurality of linear optical structures 13 made of an ultraviolet curable resin was formed on the substrate 10 in this way was obtained.

なお、本発明の光学調整シートの製造方法は上記方法に限定されず、公知の任意の方法を用いることができる。例えば、熱可塑性樹脂で基材を作製し、複数の線状光学構造体からなる光学構造体の形状に対応する凹凸パターンが切削加工により表面に形成された金型を基材に加熱押圧して、金型の凹凸パターンを転写する熱転写法などにより、該基材本体に光学構造体を直接形成しても良い。また、周知の押出成型法やプレス成型法、あるいは金型に溶融樹脂を注入する射出成形法等により基材上に複数の線状光学構造体からなる光学構造体を形成しても良い。この場合、基材と、線状光学構造体とは同じ材料で形成されることになる。   In addition, the manufacturing method of the optical adjustment sheet | seat of this invention is not limited to the said method, A well-known arbitrary method can be used. For example, a base material is made of a thermoplastic resin, and a mold having an uneven pattern corresponding to the shape of an optical structure composed of a plurality of linear optical structures is formed on the surface by heating and pressing the base material. The optical structure may be directly formed on the base body by a thermal transfer method for transferring the concave / convex pattern of the mold. Further, an optical structure composed of a plurality of linear optical structures may be formed on the substrate by a known extrusion molding method, press molding method, or injection molding method in which a molten resin is injected into a mold. In this case, the base material and the linear optical structure are formed of the same material.

[液晶表示装置及び照明装置]
この例の光学調整シート1を用いた液晶表示装置の概略構成を図3に示した。なお、図3では、液晶表示装置の構成を分かり易くするために、各光学部材を離して記載しているが、実際の装置内では各光学部材は接した状態で重ねられている。この例の液晶表示装置100は、図3に示すように、液晶表示パネル7(液晶表示素子)と、バックライトユニット6(照明装置)とから構成される。
[Liquid crystal display device and lighting device]
A schematic configuration of a liquid crystal display device using the optical adjustment sheet 1 of this example is shown in FIG. In FIG. 3, the optical members are illustrated apart from each other for easy understanding of the configuration of the liquid crystal display device. However, in the actual device, the optical members are stacked in contact with each other. As shown in FIG. 3, the liquid crystal display device 100 of this example includes a liquid crystal display panel 7 (liquid crystal display element) and a backlight unit 6 (illumination device).

液晶表示パネル7には、従来の液晶表示装置で用いられている液晶表示パネルを用いた。具体的には、ここでは図示していないが、液晶表示パネル7の構造を、偏光板、ガラス基板、画素電極を成す透明導電膜、配向膜、液晶層、配向膜、対抗電極を成す透明導電膜、カラーフィルター、ガラス基板、及び、偏光板をこの順で積層した構造とした。   As the liquid crystal display panel 7, a liquid crystal display panel used in a conventional liquid crystal display device was used. Specifically, although not shown here, the structure of the liquid crystal display panel 7 includes a polarizing plate, a glass substrate, a transparent conductive film forming a pixel electrode, an alignment film, a liquid crystal layer, an alignment film, and a transparent conductive film forming a counter electrode. A film, a color filter, a glass substrate, and a polarizing plate were laminated in this order.

バックライトユニット6は、主に、図3に示すように、光源(LED:発光ダイオード)2と、側部に入射された光50を上面3a(出射面)から射出する導光板3と、導光板3の下部(液晶表示パネル7とは反対側)に配置された反射シート4(反射部材)と、導光板3の上部(液晶表示パネル7側)に配置されたこの例の光学調整シート1と、光学調整シート1の上部に配置された拡散シート5とから構成される。なお、この例では、図3に示すように、この例の光学調整シート1を、線状光学構造体13の階段面13bが入射光線の主な受光面となるように液晶表示装置に装着した。また、この例のバックライトユニット6はエッジライト方式の照明装置であり、光源2は導光板3の側部に設けられている。   As shown in FIG. 3, the backlight unit 6 mainly includes a light source (LED: light emitting diode) 2, a light guide plate 3 that emits light 50 incident on a side portion thereof from an upper surface 3 a (an emission surface), and a light guide plate 3. The reflective sheet 4 (reflective member) disposed at the lower part of the light plate 3 (on the side opposite to the liquid crystal display panel 7), and the optical adjustment sheet 1 of this example disposed at the upper part of the light guide plate 3 (on the liquid crystal display panel 7 side). And a diffusion sheet 5 disposed on the optical adjustment sheet 1. In this example, as shown in FIG. 3, the optical adjustment sheet 1 of this example is mounted on the liquid crystal display device so that the stepped surface 13b of the linear optical structure 13 is the main light receiving surface for incident light. . The backlight unit 6 in this example is an edge light type illumination device, and the light source 2 is provided on the side of the light guide plate 3.

光学調整シート1以外の光学部材は、従来のバックライトユニットの光学部材と同じものを用いた。具体的には、導光板3はポリカーボネートで形成した。なお、この例では、導光板3の出射面3aから出射される光51の輝度が最大となる方向(輝度ピーク光線の方向)と、出射面3aの法線方向に対する方向との間の角度が70度となるような出射特性を有する導光板3を用いた。それゆえ、導光板3からの出射光51が光学調整シート1に入射されると、光51は光学調整シート1の基材10の下面で屈折され、光51の輝度ピーク光線の進行方向の基材10表面の法線方向(光学調整シート1の厚さ方向)に対する傾斜角θは約36度になる。すなわち、光学調整シート1に入射された輝度ピーク光線52の進行方向の傾斜角θは、光学調整シート1の線状光学構造体13の平坦面13cの傾斜方向と基材10表面の法線方向との間の角度(90度−α1=32.29度)より少し大きくなるように調整した。   The optical members other than the optical adjustment sheet 1 were the same as the optical members of the conventional backlight unit. Specifically, the light guide plate 3 was formed of polycarbonate. In this example, the angle between the direction in which the luminance of the light 51 emitted from the emission surface 3a of the light guide plate 3 is maximized (the direction of the luminance peak light beam) and the direction relative to the normal direction of the emission surface 3a is The light guide plate 3 having an emission characteristic of 70 degrees was used. Therefore, when the outgoing light 51 from the light guide plate 3 is incident on the optical adjustment sheet 1, the light 51 is refracted on the lower surface of the base 10 of the optical adjustment sheet 1, and the base of the light 51 in the traveling direction of the luminance peak ray. The inclination angle θ with respect to the normal direction of the surface of the material 10 (the thickness direction of the optical adjustment sheet 1) is about 36 degrees. That is, the inclination angle θ in the traveling direction of the luminance peak light beam 52 incident on the optical adjustment sheet 1 is the inclination direction of the flat surface 13 c of the linear optical structure 13 of the optical adjustment sheet 1 and the normal direction of the surface of the substrate 10. It was adjusted to be slightly larger than the angle between (90 degrees-α1 = 32.29 degrees).

反射シート4にはPETフィルムの表面に銀が蒸着されたシートを用いた。また、拡散シート5にはPETフィルムをビーズコーティングしたものを用い、その厚さは70μmとし、ヘイズは30%とした。   As the reflection sheet 4, a sheet in which silver was deposited on the surface of a PET film was used. The diffusion sheet 5 used was a PET film bead-coated with a thickness of 70 μm and a haze of 30%.

[色分離の抑制原理]
次に、この例の光学調整シート1において、光学調整シート1から出射された光の色分離が抑制される原理を図1〜3を参照しながら説明する。
[Suppression principle of color separation]
Next, in the optical adjustment sheet 1 of this example, the principle that color separation of light emitted from the optical adjustment sheet 1 is suppressed will be described with reference to FIGS.

この例の光学調整シート1に導光板3からの出射光51が入射されると、その入射光線は、主に、線状光学構造体13の階段面13b、すなわち、第2線状プリズム部12で屈折される。なお、線状光学構造体13の平坦面13cの傾斜方向は、上述のように、光学調整シート1に入射された光線の輝度ピーク光線52の進行方向と略平行であるので、この平坦面13cでの入射光線の屈折の影響は比較的小さい。   When the outgoing light 51 from the light guide plate 3 is incident on the optical adjustment sheet 1 of this example, the incident light is mainly the staircase surface 13b of the linear optical structure 13, that is, the second linear prism portion 12. Refracted at. In addition, since the inclination direction of the flat surface 13c of the linear optical structure 13 is substantially parallel to the traveling direction of the luminance peak light ray 52 of the light ray incident on the optical adjustment sheet 1 as described above, the flat surface 13c. The influence of refraction of incident light at is relatively small.

線状光学構造体13の階段面13bに入射された輝度ピーク光線52は、階段面13bの各凸面(各段部表面)を画成する2つの面、すなわち、第2線状プリズム部12の集光面12f及び補正面12rで屈折する。この際、輝度ピーク光線52は、図2に示すように、第2線状プリズム部12の集光面12fでは光学調整シート1の厚さ方向(基材10表面の法線方向)に屈折し(図2中の光線53)、補正面12rでは光学調整シート1の面内方向(基材10の面内方向)に屈折する(図2中の光線54)。すなわち、第2線状プリズム部12の集光面12fで屈折する光線53の進行方向と、補正面12rで屈折する光線54の進行方向とは、屈折前の輝度ピーク光線52の進行方向に対して、互いに逆になる。   The luminance peak light ray 52 incident on the staircase surface 13b of the linear optical structure 13 has two surfaces defining each convex surface (each step surface) of the staircase surface 13b, that is, the second linear prism portion 12. The light is refracted by the condensing surface 12f and the correction surface 12r. At this time, as shown in FIG. 2, the luminance peak light beam 52 is refracted in the thickness direction of the optical adjustment sheet 1 (the normal direction of the surface of the substrate 10) on the light condensing surface 12f of the second linear prism portion 12. (Light ray 53 in FIG. 2), the correction surface 12r is refracted in the in-plane direction of the optical adjustment sheet 1 (in-plane direction of the substrate 10) (light ray 54 in FIG. 2). That is, the traveling direction of the light beam 53 refracted by the condensing surface 12f of the second linear prism portion 12 and the traveling direction of the light beam 54 refracted by the correction surface 12r are relative to the traveling direction of the luminance peak light beam 52 before refraction. Are opposite to each other.

また、輝度ピーク光線52が線状光学構造体13の階段面13bに入射され屈折する際には、線状光学構造体13の形成材料の屈折率は入射される光線の波長により異なるので、輝度ピーク光線52に含まれる各波長成分によって屈折角が異なり、図2に示すように屈折光53及び54の色分離が生じる。なお、図2では、説明を簡略化するため、2つの波長成分(波長A及びB、波長A>波長B)の分離を示した。図2中の光線53A及び54Aは波長A成分の屈折光を示しており、光線53B及び54Bは波長B成分の屈折光を示しており、そして、図2では波長B成分の屈折が波長A成分の屈折より大きい(屈折角が大きい)場合を示している。   Further, when the luminance peak light beam 52 is incident on the stepped surface 13b of the linear optical structure 13 and is refracted, the refractive index of the material forming the linear optical structure 13 varies depending on the wavelength of the incident light beam. The refraction angle differs depending on each wavelength component included in the peak light ray 52, and color separation of the refracted lights 53 and 54 occurs as shown in FIG. In FIG. 2, separation of two wavelength components (wavelengths A and B, wavelength A> wavelength B) is shown to simplify the description. The light rays 53A and 54A in FIG. 2 indicate the refracted light of the wavelength A component, the light rays 53B and 54B indicate the refracted light of the wavelength B component, and the refraction of the wavelength B component in FIG. In this case, the refraction is larger than the refraction (the refraction angle is large).

輝度ピーク光線52が第2線状プリズム部12の集光面12fで屈折した際には、図2に示すように、屈折光53の波長B成分53Bは、波長A成分53Aより大きく屈折されるので、波長B成分53Bの進行(屈折)方向は、波長A成分53Aよりさらに図2中の矢印A1の方向に向く。一方、輝度ピーク光線52が第2線状プリズム部12の補正面12rで屈折した際には、屈折光54の波長B成分54Bは、波長A成分54Aより大きく屈折されるので、波長B成分54Bの進行方向は、波長A成分54Aよりさらに図2中の矢印A2の方向に向く。すなわち、第2線状プリズム部12の集光面12fで屈折した光線53の色(波長)の分離パターンと、第2線状プリズム部12の補正面12rで屈折した光線54の色(波長)の分離パターンとは、図2に示すように、輝度ピーク光線52の進行方向に対して逆パターンになる。それゆえ、第2線状プリズム部12の集光面12fで屈折した光線53の色分離が、第2線状プリズム部12の補正面12rで屈折した光線54の色分離により打ち消され、光学調整シート1から出射され液晶表示面に集光される光の色分離が抑制される。   When the luminance peak light beam 52 is refracted by the condensing surface 12f of the second linear prism portion 12, the wavelength B component 53B of the refracted light 53 is refracted more than the wavelength A component 53A as shown in FIG. Therefore, the traveling (refractive) direction of the wavelength B component 53B is further in the direction of the arrow A1 in FIG. 2 than the wavelength A component 53A. On the other hand, when the luminance peak ray 52 is refracted by the correction surface 12r of the second linear prism portion 12, the wavelength B component 54B of the refracted light 54 is refracted to be larger than the wavelength A component 54A, and therefore the wavelength B component 54B. In the direction of arrow A2 in FIG. 2 further from the wavelength A component 54A. That is, the separation pattern of the color (wavelength) of the light beam 53 refracted by the condensing surface 12f of the second linear prism portion 12, and the color (wavelength) of the light beam 54 refracted by the correction surface 12r of the second linear prism portion 12. As shown in FIG. 2, the separation pattern is a pattern opposite to the traveling direction of the luminance peak light beam 52. Therefore, the color separation of the light beam 53 refracted by the condensing surface 12f of the second linear prism portion 12 is canceled by the color separation of the light beam 54 refracted by the correction surface 12r of the second linear prism portion 12, and optical adjustment is performed. Color separation of light emitted from the sheet 1 and collected on the liquid crystal display surface is suppressed.

上述のように、この例の光学調整シート1では、上述のように、一枚の光学シートにより出射光の色分離を抑制することができるので、従来のように、出射光の色分離を抑制するために2枚のプリズムシートを用いる必要が無くなる。また、上述のように、この例の光学調整シート1は、ある程度指向性の揃った導光板からの出射光(傾斜光)の進行方向を光学調整シート1の厚さ方向に直接変更するものであるので、従来のように、プリズムシート群と導光板との間に下部拡散シートを設ける必要がなくなる。それゆえ、従来のように、下部拡散シートを用いて導光板から出射されたある程度指向性の揃った光を一旦ブロードな光に変換する必要がなくなるので、導光板から出射された光の利用効率を向上させ、輝度特性を向上させることができる。   As described above, in the optical adjustment sheet 1 of this example, since the color separation of the emitted light can be suppressed by one optical sheet as described above, the color separation of the emitted light is suppressed as in the conventional case. This eliminates the need to use two prism sheets. In addition, as described above, the optical adjustment sheet 1 of this example directly changes the traveling direction of the emitted light (tilted light) from the light guide plate having a certain degree of directivity to the thickness direction of the optical adjustment sheet 1. Therefore, it is not necessary to provide a lower diffusion sheet between the prism sheet group and the light guide plate as in the prior art. Therefore, there is no need to convert light with a certain degree of directivity emitted from the light guide plate using the lower diffusion sheet into broad light as in the prior art, so the efficiency of using the light emitted from the light guide plate is eliminated. And the luminance characteristics can be improved.

また、この例の光学調整シート1を備えたエッジライト方式の液晶表示装置100及びバックライトユニット6では、図3に示すように、出射光の色分離を抑制するために2枚のプリズムシートを用いる必要が無く、且つ、下部拡散シートを用いる必要が無くなる。それゆえ、この例のエッジライト方式の液晶表示装置100及びバックライトユニット6では、従来に比べて光学部材の数を減らすことができ、装置の薄型化及び低コスト化を図ることができる。   Further, in the edge light type liquid crystal display device 100 and the backlight unit 6 provided with the optical adjustment sheet 1 of this example, as shown in FIG. 3, two prism sheets are used to suppress the color separation of the emitted light. There is no need to use, and there is no need to use a lower diffusion sheet. Therefore, in the edge light type liquid crystal display device 100 and the backlight unit 6 of this example, the number of optical members can be reduced as compared with the conventional case, and the thickness and cost of the device can be reduced.

[光学特性評価]
図3に示したこの例の液晶表示装置100及びバックライトユニット6の光学特性を評価した。具体的には、輝度計を用いて正面輝度の測定を行なった。また、目視により色みの官能評価を行なった。具体的には、バックライトユニットからの出射光の色みを、主に正面方向から目視観察し、出射光の色の均一性を調べた。
[Optical characteristics evaluation]
The optical characteristics of the liquid crystal display device 100 and the backlight unit 6 of this example shown in FIG. 3 were evaluated. Specifically, front luminance was measured using a luminance meter. Moreover, the sensory evaluation of color was performed visually. Specifically, the color of the emitted light from the backlight unit was visually observed mainly from the front direction to examine the color uniformity of the emitted light.

ここでは、比較のため、図4に示した従来の液晶表示装置500(比較例1)についても上記評価を行った。なお、図5に示した比較例1の液晶表示装置500では、プリズムシート507a及び507bに形成されたプリズム状構造体の延在方向に直交する断面の形状は、底辺の幅30μm、高さ15μm、頂角90度の二等辺三角形とした。各プリズムシート507aの基材507cは、PETフィルムで形成し、プリズム状構造体507dは紫外線硬化型のアクリル系樹脂で形成した。また、下部拡散シート506にはPETフィルムをビーズコーティングしたものを用い、その厚さは70μmとし、ヘイズは85%とした。プリズムシート群507及び下部拡散シート506以外の構成光学部材は、実施例1の液晶表示装置100で用いたものと同じものを用いた。   Here, for the sake of comparison, the above-described evaluation was also performed for the conventional liquid crystal display device 500 (Comparative Example 1) shown in FIG. In the liquid crystal display device 500 of Comparative Example 1 shown in FIG. 5, the cross-sectional shape perpendicular to the extending direction of the prismatic structures formed on the prism sheets 507a and 507b has a base width of 30 μm and a height of 15 μm. An isosceles triangle with an apex angle of 90 degrees. The base material 507c of each prism sheet 507a was formed of a PET film, and the prismatic structure 507d was formed of an ultraviolet curable acrylic resin. The lower diffusion sheet 506 was a PET film bead-coated, the thickness was 70 μm, and the haze was 85%. The constituent optical members other than the prism sheet group 507 and the lower diffusion sheet 506 were the same as those used in the liquid crystal display device 100 of Example 1.

さらに、ここでは、比較のため、図7に示すような構成の液晶表示装置600(比較例2)についても上記評価を行った。なお、図7に示した比較例2の液晶表示装置600は、図3に示した実施例1の液晶表示装置100内の光学調整シート1の代わりに、図6に示した従来のプリズムシート507aを一枚用いた装置である。光学調整部材に従来のプリズムシート507aを用いたこと以外は、実施例1の液晶表示装置100と同様の構成とした。   Furthermore, for the purpose of comparison, the above evaluation was also performed on the liquid crystal display device 600 (Comparative Example 2) configured as shown in FIG. 7 is replaced with the conventional prism sheet 507a shown in FIG. 6 in place of the optical adjustment sheet 1 in the liquid crystal display device 100 of Example 1 shown in FIG. Is a device using a single sheet. The configuration was the same as that of the liquid crystal display device 100 of Example 1 except that the conventional prism sheet 507a was used as the optical adjustment member.

上記評価結果を下記表1に示した。表1には、導光板と液晶パネルとの間に配置される光学シートの枚数も記載した。なお、正面輝度は比較例1の正面輝度を基準(100%)としている。また、表1の色の均一性の評価◎及び×の基準は次の通りである。また、下記表1には、後述する実施例2の評価結果も併せて記載している。
◎:バックライトユニット6からの出射光55の色みが、光源からの出射光50と同じ白色であり、両者の相違を目視により判別できないレベル。
×:バックライトユニット6からの出射光55が、赤色、黄色等の色みを帯びていることが目視で確認できるレベル。
The evaluation results are shown in Table 1 below. Table 1 also shows the number of optical sheets disposed between the light guide plate and the liquid crystal panel. The front luminance is based on the front luminance of Comparative Example 1 (100%). In addition, the evaluations of color uniformity ◎ and x in Table 1 are as follows. In Table 1 below, evaluation results of Example 2 described later are also shown.
A: The color of the emitted light 55 from the backlight unit 6 is the same white color as the emitted light 50 from the light source, and the difference between the two cannot be visually determined.
X: Level at which it can be visually confirmed that the emitted light 55 from the backlight unit 6 is colored red, yellow or the like.

Figure 0004410840
Figure 0004410840

表1から明らかなように、実施例1の液晶表示装置では、比較例1(図5)の液晶表示装置に比べて、正面輝度を向上させることができ且つ光学シートの数を減らすことができることが分かった。すなわち、実施例1の液晶表示装置では、装置の薄型化、低コスト化を図りつつ、光学特性を向上させることができることが分かった。また、実施例1の液晶表示装置では、表1から明らかなように、比較例2の液晶表示装置(図7)に比べて、正面輝度及び色の均一性ともに改善できることが分かった。   As apparent from Table 1, the liquid crystal display device of Example 1 can improve the front luminance and reduce the number of optical sheets as compared with the liquid crystal display device of Comparative Example 1 (FIG. 5). I understood. That is, it has been found that the liquid crystal display device of Example 1 can improve the optical characteristics while reducing the thickness and cost of the device. Further, as is clear from Table 1, the liquid crystal display device of Example 1 was found to be able to improve both the front luminance and the color uniformity as compared with the liquid crystal display device of Comparative Example 2 (FIG. 7).

上記実施例1の光学調整シートでは、線状光学構造体を構成する複数の第2プリズム構造体の形状及び寸法が全て同じ場合について説明したが、本発明はこれに限定されない。複数の第2プリズム構造体の形状が互いに相似形であっても良い。この場合も、複数の第2プリズム構造体の集光面及び補正面は、それぞれ互いに平行となるので、実施例1と同様の効果が得られる。   In the optical adjustment sheet of Example 1 described above, the case where the shapes and dimensions of the plurality of second prism structures constituting the linear optical structure are all the same has been described, but the present invention is not limited to this. The shapes of the plurality of second prism structures may be similar to each other. Also in this case, since the condensing surfaces and the correction surfaces of the plurality of second prism structures are parallel to each other, the same effect as in the first embodiment can be obtained.

上記実施例1の光学調整シートでは、光学調整シートからの出射光の輝度のムラ等をさらに改善して、表示品位をさらに向上させるために、光学調整シートの上部にさらに拡散シートを配置しているが、本発明はこれに限定されない。例えば、光学調整シートからの出射光の品質が十分に良好である場合(輝度のムラ等が極力抑制されている場合)、あるいは、高品質の表示性能を必要としない用途に本発明を適用する場合には、拡散シートを用いなくてもよい。   In the optical adjustment sheet of Example 1 above, in order to further improve the unevenness of the luminance of the light emitted from the optical adjustment sheet and further improve the display quality, a diffusion sheet is further disposed on the optical adjustment sheet. However, the present invention is not limited to this. For example, the present invention is applied to a case where the quality of light emitted from the optical adjustment sheet is sufficiently good (when luminance unevenness is suppressed as much as possible), or a use that does not require high-quality display performance. In some cases, a diffusion sheet may not be used.

上記実施例1で用いた液晶表示装置及び照明装置では、導光板の光学調整シート側とは反対側に反射シートを配置した例を説明したが、本発明はこれに限定されない。例えば、導光板の光学調整シート側とは反対側の表面が十分な反射作用を得られる構造(凹凸構造等)を有している場合には、反射シートを用いなくても良い。   In the liquid crystal display device and the illuminating device used in Example 1, the example in which the reflection sheet is disposed on the side opposite to the optical adjustment sheet side of the light guide plate has been described, but the present invention is not limited to this. For example, when the surface opposite to the optical adjustment sheet side of the light guide plate has a structure (such as a concavo-convex structure) that can obtain a sufficient reflection action, the reflection sheet may not be used.

本発明の光学調整シートでは、線状光学構造体の階段面を構成する第2線状プリズム部の数、階段面における集光面と補正面の位置や面積比、あるいは、必要に応じて集光面や補正面の傾斜角度などを調整することにより、光学調整シートからの出射光の輝度や色分散などの光学的な特性のバランスを整えることができる。実施例2の光学調整シートでは、集光面に入射する光線が補正面に対して相対的に多くなるように、第2線状プリズム部の数、形状及び寸法を実施例1とは変えた。それ以外は、実施例1と同様の構成及び形成材料とした。   In the optical adjustment sheet of the present invention, the number of second linear prism portions constituting the step surface of the linear optical structure, the position and area ratio of the condensing surface and the correction surface on the step surface, or collection as necessary. By adjusting the inclination angle of the light surface and the correction surface, it is possible to adjust the balance of the optical characteristics such as the luminance and chromatic dispersion of the light emitted from the optical adjustment sheet. In the optical adjustment sheet of Example 2, the number, shape, and dimensions of the second linear prism portions were changed from those of Example 1 so that the amount of light incident on the light collection surface was relatively large with respect to the correction surface. . Other than that, it was set as the structure and formation material similar to Example 1. FIG.

実施例2の光学調整シートの線状光学構造体の拡大断面図を図4に示した。この例の線状光学構造体24は、図4に示すように、その延在方向に直交する断面が略三角形状であり、その延在方向に沿った一つの面(底辺21bを含む面。以下、底面ともいう)が基材20の表面と平行に接している。すなわち、線状光学構造体24は、その底面が基材20の表面と対向するように、基材20上に設けられている。なお、図4中に示した入射光線52は、この例の光学調整シートに入射された光線の輝度特性において輝度が最大となる方向に進行する光線、すなわち、輝度ピーク光線を示している。   An enlarged cross-sectional view of the linear optical structure of the optical adjustment sheet of Example 2 is shown in FIG. As shown in FIG. 4, the linear optical structure 24 of this example has a substantially triangular cross section orthogonal to the extending direction, and one surface (a surface including the bottom side 21 b) along the extending direction. (Hereinafter also referred to as the bottom surface) is in contact with the surface of the substrate 20 in parallel. That is, the linear optical structure 24 is provided on the base material 20 so that the bottom surface thereof faces the surface of the base material 20. The incident light beam 52 shown in FIG. 4 indicates a light beam that travels in the direction in which the luminance is maximized in the luminance characteristics of the light beam incident on the optical adjustment sheet of this example, that is, a luminance peak light beam.

線状光学構造体24のその延在方向に直交する断面は、図4に示すように、第1断面部21aと、第1断面部21aの一辺上に設けられた形状の異なる2つの第2断面部22a及び23aとから構成される。すなわち、この例では、線状光学構造体24の第1線状プリズム部(第1断面部21aに対応する線状構造体)の一つの面上に形状の異なる2つの第2線状プリズム部(第2断面部22a及び23aに対応する線状構造体)を設けた。2つの第2断面部22a及び23aは、図4に示すように、互いの底角部が接するように設けた。   As shown in FIG. 4, the cross section orthogonal to the extending direction of the linear optical structure 24 includes a first cross section 21a and two second different shapes provided on one side of the first cross section 21a. It is comprised from the cross-sectional parts 22a and 23a. That is, in this example, two second linear prism portions having different shapes on one surface of the first linear prism portion (linear structure corresponding to the first cross-sectional portion 21a) of the linear optical structure 24. (Linear structures corresponding to the second cross-sectional portions 22a and 23a) were provided. As shown in FIG. 4, the two second cross-sectional portions 22 a and 23 a are provided so that the bottom corner portions thereof are in contact with each other.

第1断面部21aは、図4に示すように、基材20の表面と平行に接する底辺21b(第1辺)と、底辺21bの両端からそれぞれ所定の角度(図4中のα1及びβ1)で延在した2つの傾斜辺21c(第2辺)及び21d(第3辺)とにより画成される。この例の光学調整シートでは、第1断面部21aの形状(第1線状プリズム部の形状)は実施例1と同様とした。すなわち、第1断面部21aの第1及び第2底角の角度α1及びβ1は、それぞれ、39.14度及び57.71度とし、第1断面部21aの底辺21bの長さを35μmとした。   As shown in FIG. 4, the first cross section 21a has a base 21b (first side) in contact with the surface of the substrate 20 and predetermined angles (α1 and β1 in FIG. 4) from both ends of the base 21b. Are defined by two inclined sides 21c (second side) and 21d (third side) extending in the above. In the optical adjustment sheet of this example, the shape of the first cross-sectional portion 21a (the shape of the first linear prism portion) was the same as that of Example 1. That is, the angles α1 and β1 of the first and second base angles of the first cross section 21a are 39.14 degrees and 57.71 degrees, respectively, and the length of the base 21b of the first cross section 21a is 35 μm. .

なお、この例では、図4に示すように、第1断面部21aの傾斜辺21dの基材20表面の法線方向に対する傾斜角と、光学調整シートに入射された輝度ピーク光線52の進行方向の傾斜角(図4中のθ)との関係も実施例1と同様とした。すなわち、図4中の傾斜辺21dを含む線状光学構造体24の面(平坦面)の傾斜方向が輝度ピーク光線52の進行方向と略平行となるようにした。より具体的には、線状光学構造体24の平坦面の基材20表面に対する傾斜角度(図4中のβ1)を、実施例1と同様に、線状光学構造体24内の輝度ピーク光線52の基材20表面に対する傾斜角度(90度−θ)より若干大きくした。   In this example, as shown in FIG. 4, the inclination angle of the inclined side 21d of the first cross section 21a with respect to the normal direction of the surface of the substrate 20, and the traveling direction of the luminance peak light ray 52 incident on the optical adjustment sheet The inclination angle (θ in FIG. 4) was also the same as in Example 1. That is, the inclination direction of the surface (flat surface) of the linear optical structure 24 including the inclined side 21d in FIG. 4 is made substantially parallel to the traveling direction of the luminance peak light beam 52. More specifically, the angle of inclination (β1 in FIG. 4) of the flat surface of the linear optical structure 24 with respect to the surface of the base material 20 is set to a luminance peak ray in the linear optical structure 24 as in the first embodiment. 52 was slightly larger than the inclination angle (90 degrees -θ) with respect to the surface of the substrate 20.

第1断面部21aの第1底角側(図4中のα1側)に位置する第2断面部22aは、図4に示すように、第1断面部21aの傾斜辺21c(第2辺)と平行に接する底辺22b(第4辺)と、底辺22bの両端からそれぞれ所定の角度(図4中のα2及びβ2)で延在した2つの傾斜辺22c及び22dとにより画成される。なお、この例では、第2断面部22aの形状は実施例1の第2断面部12aと相似形とし、第2断面部22aの第1底角の角度α2及び第2底角の角度β2をそれぞれ30度及び70度とした。そして、この例の光学調整シートでは、第2断面部22aの底辺22bを約14.92μmとし、実施例1の第2断面部12aの底辺12b(約10.44μm)より長くした。すなわち、この例の光学調整シートでは、第1断面部21aの第1底角側(図4中のα1側)に位置する第2断面部22aの面積を実施例1の第2断面部12aの面積より大きくした。   As shown in FIG. 4, the second cross section 22a located on the first base angle side (α1 side in FIG. 4) of the first cross section 21a is an inclined side 21c (second side) of the first cross section 21a. And a base 22b (fourth side) in contact with the base 22b and two inclined sides 22c and 22d extending from the both ends of the base 22b at predetermined angles (α2 and β2 in FIG. 4), respectively. In this example, the shape of the second cross section 22a is similar to that of the second cross section 12a of the first embodiment, and the first base angle α2 and the second base angle β2 of the second cross section 22a are set as follows. They were 30 degrees and 70 degrees, respectively. In the optical adjustment sheet of this example, the base 22b of the second cross section 22a was about 14.92 μm, which was longer than the base 12b (about 10.44 μm) of the second cross section 12a of Example 1. That is, in the optical adjustment sheet of this example, the area of the second cross-sectional portion 22a located on the first base angle side (α1 side in FIG. 4) of the first cross-sectional portion 21a is the same as that of the second cross-sectional portion 12a of Example 1. It was larger than the area.

なお、第2断面部22aの傾斜辺22c(第5辺または第6辺)を含む線状光学構造体24(第2線状プリズム部)の面は、主に、入射光線の進行方向を光学調整シートの厚さ方向に屈折させる面、すなわち、入射光線を集光させる作用を有する面(集光面)である。一方、第2断面部22aのもう一方の傾斜辺22d(第5辺または第6辺)を含む線状光学構造体24の面は、主に、光学調整シートからの出射光の色分離を抑制する作用を与える面(補正面)である。すなわち、この例では、第1線状プリズム部の最も底角側(図4中のα1側)に位置する第2線状プリズム部の集光面の面積を、実施例1のそれより大きくした。   Note that the surface of the linear optical structure 24 (second linear prism portion) including the inclined side 22c (fifth side or sixth side) of the second cross-sectional portion 22a mainly optically transmits the traveling direction of incident light. It is a surface that is refracted in the thickness direction of the adjustment sheet, that is, a surface that has a function of condensing incident light (condensing surface). On the other hand, the surface of the linear optical structure 24 including the other inclined side 22d (fifth side or sixth side) of the second cross section 22a mainly suppresses color separation of the emitted light from the optical adjustment sheet. It is a surface (correction surface) that gives the function to perform. That is, in this example, the area of the condensing surface of the second linear prism portion located on the most base angle side (α1 side in FIG. 4) of the first linear prism portion is made larger than that of the first embodiment. .

このように、第1線状プリズム部の最も底角側(図4中のα1側)に位置する第2線状プリズム部の集光面をより広くすることにより、入射光の利用効率を向上させ、輝度を増大させることができる。その理由は次の通りである。第2線状プリズム部が形成されている第1線状プリズム部の面(図4中の第2辺21cを含む面。以下、第2線状プリズム部形成面ともいう)を通過する光線、すなわち、光学調整シートの階段面に入射される光線は輝度ピーク光線52以外の光線成分を含んでおり、第1線状プリズム部の第2線状プリズム部形成面を通過する光線の強度(照度)は、第2線状プリズム部形成面の通過位置により異なる。具体的には、第1線状プリズム部の第2線状プリズム部形成面を通過する光線の強度は、第1線状プリズム部の底角側(図4中の第1底角α1側)に近いほど大きくなる。すなわち、第1線状プリズム部の底角側に位置する第2線状プリズム部に入射される光線ほど、その強度が強い(照度が高い)。それゆえ、この例のように、最も第1線状プリズム部の底角側に位置する第2線状プリズム部の集光面をより広くすることにより、より強度の強い光線を集光することができるので、入射光線の利用効率を向上させて出射光の輝度を増大させることができる。   Thus, the utilization efficiency of incident light is improved by making the condensing surface of the 2nd linear prism part located in the most base angle side (alpha 1 side in FIG. 4) of the 1st linear prism part wider. Brightness can be increased. The reason is as follows. A light beam that passes through a surface of the first linear prism portion on which the second linear prism portion is formed (a surface including the second side 21c in FIG. 4; hereinafter also referred to as a second linear prism portion forming surface); That is, the light ray incident on the staircase surface of the optical adjustment sheet contains light ray components other than the luminance peak light ray 52, and the intensity (illuminance) of the light ray passing through the second linear prism portion forming surface of the first linear prism portion. ) Differs depending on the passing position of the second linear prism portion forming surface. Specifically, the intensity of the light beam passing through the second linear prism portion forming surface of the first linear prism portion is the base angle side of the first linear prism portion (the first base angle α1 side in FIG. 4). The closer it is, the bigger it becomes. That is, the intensity of the light incident on the second linear prism portion located on the base angle side of the first linear prism portion is higher (the illuminance is higher). Therefore, as in this example, by condensing the condensing surface of the second linear prism portion located closest to the base angle side of the first linear prism portion, it is possible to condense a light beam having a higher intensity. Therefore, the use efficiency of incident light can be improved and the luminance of outgoing light can be increased.

一方、第1断面部21aの頂角21e側に位置する第2断面部23aは、図4に示すように、略3角形状であり、第1断面部21aの傾斜辺21c(第2辺)と平行に接する底辺23b(第4辺)と、底辺23bの両端からそれぞれ所定の角度(図4中のα2及びβ3)で延在した2つの傾斜辺23c及び23dとにより画成される。また、この例では、図4に示すように、第1断面部21aの頂角21e側に位置する傾斜辺23d(第5辺または第6辺)を2つの辺23f及び23gで構成し、傾斜辺23dを第2断面部23aの外側に向かって凸状に折れ曲がったような形状にした。   On the other hand, as shown in FIG. 4, the second cross section 23a located on the apex angle 21e side of the first cross section 21a has a substantially triangular shape, and the inclined side 21c (second side) of the first cross section 21a. Are defined by a base 23b (fourth side) that is in parallel with each other and two inclined sides 23c and 23d that extend from both ends of the base 23b at predetermined angles (α2 and β3 in FIG. 4), respectively. Further, in this example, as shown in FIG. 4, the inclined side 23d (fifth side or sixth side) located on the apex angle 21e side of the first cross-sectional portion 21a is composed of two sides 23f and 23g, and the inclined side The side 23d was shaped to be bent convexly toward the outside of the second cross section 23a.

傾斜辺23dを構成する2つの辺23f及び23gのうち、第1断面部21aの傾斜辺21d側に位置する辺23fは、図4に示すように、第1断面部21aの頂角21eから第1断面部21aの傾斜辺21dと平行に延在している。それゆえ、第2断面部23aの底辺23bと傾斜辺23dとの間の角(第2底角)の角度β3は、α1+β1となる。また、傾斜辺23dを構成する他方の辺23gは、第1断面部21aの第1底角側に位置する第2断面部22aの傾斜辺22dと平行となるように構成した。すなわち、この例では、第2断面部23aを画成する傾斜辺23c並びに辺23f及び23gは、それぞれ、第2断面部22aの傾斜辺22c並びに第1断面部21aの傾斜辺21d及び第2断面部22aの傾斜辺22dと平行となっている。第2断面部23aの第1底角の角度α2は30度とし、第2断面部23aの第2底角の角度β3は96.85度とした。   Of the two sides 23f and 23g constituting the inclined side 23d, the side 23f located on the inclined side 21d side of the first cross-sectional portion 21a is, as shown in FIG. 4, from the apex angle 21e of the first cross-sectional portion 21a. It extends in parallel with the inclined side 21d of one cross section 21a. Therefore, the angle β3 of the angle (second base angle) between the base 23b and the inclined side 23d of the second cross-sectional portion 23a is α1 + β1. The other side 23g constituting the inclined side 23d is configured to be parallel to the inclined side 22d of the second cross-sectional portion 22a located on the first base angle side of the first cross-sectional portion 21a. That is, in this example, the inclined side 23c and the sides 23f and 23g that define the second cross-sectional portion 23a are the inclined side 22c of the second cross-sectional portion 22a and the inclined side 21d and the second cross-section of the first cross-sectional portion 21a, respectively. It is parallel to the inclined side 22d of the portion 22a. The angle α2 of the first base angle of the second cross section 23a was 30 degrees, and the angle β3 of the second base angle of the second cross section 23a was 96.85 degrees.

なお、第1断面部21aの頂角21e側に位置する第2断面部23aにおいては、その傾斜辺23c(第5辺または第6辺)を含む線状光学構造体24(第2線状プリズム部)の面は、主に、入射光線の進行方向を光学調整シートの厚さ方向に屈折させる面、すなわち、入射光線を集光させる作用を有する面(集光面)である。一方、第2断面部23aのもう一方の傾斜辺23dを画成する辺23f及び23gのうち、第1断面部21aの傾斜辺21d側に位置する辺23fは、第1断面部21aの傾斜辺21dと平行であるので、辺23fを含む線状光学構造体24の面の傾斜方向は輝度ピーク光線52と略平行になる。それゆえ、辺23fを含む線状光学構造体24の面では、入射光の屈折及び反射の影響は小さい。また、傾斜辺23dを画成する他方の辺23gを含む線状光学構造体24の面は、主に、光学調整シートからの出射光の色分離を抑制する作用を与える面(補正面)となる。それゆえ、この例では、第2断面部23aの形状は、第2断面部23aに対応する第2線状プリズム部の集光面の面積をできる限り大きくし、且つ、補正面をできる限り小さくしたような形状になっている。   In the second cross section 23a located on the apex angle 21e side of the first cross section 21a, the linear optical structure 24 (second linear prism) including the inclined side 23c (fifth side or sixth side). The surface of (part) is mainly a surface that refracts the traveling direction of incident light in the thickness direction of the optical adjustment sheet, that is, a surface having a function of condensing incident light (condensing surface). On the other hand, of the sides 23f and 23g that define the other inclined side 23d of the second cross section 23a, the side 23f located on the inclined side 21d side of the first cross section 21a is the inclined side of the first cross section 21a. Since it is parallel to 21d, the inclination direction of the surface of the linear optical structure 24 including the side 23f is substantially parallel to the luminance peak light ray 52. Therefore, the influence of refraction and reflection of incident light is small on the surface of the linear optical structure 24 including the side 23f. The surface of the linear optical structure 24 including the other side 23g that defines the inclined side 23d is mainly a surface (correction surface) that acts to suppress color separation of emitted light from the optical adjustment sheet. Become. Therefore, in this example, the shape of the second cross-sectional portion 23a increases the area of the condensing surface of the second linear prism portion corresponding to the second cross-sectional portion 23a as much as possible and makes the correction surface as small as possible. It has a shape like that.

上記構造のこの例の光学調整シートに対しても、実施例1と同様にして、その光学特性を評価した。具体的には、図3に示した液晶表示装置100及びバックライトユニット6にこの例の光学調整シートを装着し(図3中の実施例1の光学調整シート1の代わりにこの例の光学調整シートを装着し)、輝度計を用いて正面輝度の測定を行なった。また、目視により色みの官能評価を行なった。その結果を上記表1に記載した。   The optical properties of this example of the optical adjustment sheet having the above structure were evaluated in the same manner as in Example 1. Specifically, the optical adjustment sheet of this example is attached to the liquid crystal display device 100 and the backlight unit 6 shown in FIG. 3 (the optical adjustment of this example instead of the optical adjustment sheet 1 of Example 1 in FIG. 3). The front luminance was measured using a luminance meter. Moreover, the sensory evaluation of color was performed visually. The results are shown in Table 1 above.

表1から明らかなように、この例の光学調整シートを用いた場合には、正面輝度が112%となり、実施例1の場合(107%)よりもさらに正面輝度を高めることができることが分かった。これは、主に、この例の光学調整シートでは、上述したように、線状光学構造体を構成する複数の第2線状プリズム部のうち、最も第1線状プリズム部の底角側に位置する第2線状プリズム部(第2断面部22aに対応する線状構造体)の集光面を、実施例1のそれより広くしたことによるものと考えられる。また、この例の光学調整シートでは、上述のように、第1線状プリズム部の頂角21e側に位置する第2断面部23aに対応する第2線状プリズム部の補正面がより小さくなるような構造にしたが、表1に示すように、色の均一性に関しては、実施例1と2とで有意な差は確認されなかった。すなわち、この例のような構造の光学調整シートを液晶用バックライトをはじめ各種照明装置に使用した場合であっても、十分な光学性能が得られることが確認できた。   As can be seen from Table 1, when the optical adjustment sheet of this example was used, the front luminance was 112%, and it was found that the front luminance could be further increased than in the case of Example 1 (107%). . This is mainly because, in the optical adjustment sheet of this example, as described above, among the plurality of second linear prism parts constituting the linear optical structure, the most close to the base angle side of the first linear prism part. This is considered to be because the condensing surface of the second linear prism portion (linear structure corresponding to the second cross-sectional portion 22a) is wider than that of the first embodiment. In the optical adjustment sheet of this example, as described above, the correction surface of the second linear prism portion corresponding to the second cross-sectional portion 23a located on the apex angle 21e side of the first linear prism portion is smaller. However, as shown in Table 1, no significant difference was found between Examples 1 and 2 in terms of color uniformity. That is, it was confirmed that sufficient optical performance was obtained even when the optical adjustment sheet having the structure as in this example was used in various illumination devices including a liquid crystal backlight.

本発明の光学調整部材では、一つの光学調整部材で、出射光の色分離を抑制することができ、且つ、入射光の利用効率も向上させることができる。それゆえ、本発明の光学調整部材は、特に、エッジライト方式の照明装置及び液晶表示装置の光指向性を制御する機能を有する光学部材として好適である。   In the optical adjustment member of the present invention, the color separation of the emitted light can be suppressed and the utilization efficiency of the incident light can be improved with one optical adjustment member. Therefore, the optical adjustment member of the present invention is particularly suitable as an optical member having a function of controlling the light directivity of an edge light type illumination device and a liquid crystal display device.

また、本発明の液晶表示装置及び照明装置では、本発明の光学調整部材を備えているので、装置の薄型化、低コスト化を図りつつ、光学特性を向上させることができる。それゆえ、本発明の液晶表示装置及び照明装置は、あらゆる用途の液晶表示装置及び照明装置に好適である。   In addition, since the liquid crystal display device and the illumination device of the present invention include the optical adjustment member of the present invention, the optical characteristics can be improved while reducing the thickness and cost of the device. Therefore, the liquid crystal display device and illumination device of the present invention are suitable for liquid crystal display devices and illumination devices for all uses.

1 光学調整シート
2 光源
3 導光板
4 反射シート
5 拡散シート
6 照明装置
7 液晶表示パネル
10 基材
11 第1線状プリズム部
11a 第1断面部
12 第2線状プリズム部
12a 第2断面部
12f 集光面
12r 補正面
13 線状光学構造体
13b 階段面
13c 平坦面
52 輝度ピーク光線
53,54 屈折光
100 液晶表示装置
DESCRIPTION OF SYMBOLS 1 Optical adjustment sheet 2 Light source 3 Light guide plate 4 Reflective sheet 5 Diffusion sheet 6 Illumination device 7 Liquid crystal display panel 10 Base material 11 1st linear prism part 11a 1st cross-section part 12 2nd linear prism part 12a 2nd cross-section part 12f Condensing surface 12r Correction surface 13 Linear optical structure 13b Step surface 13c Flat surface 52 Luminance peak rays 53 and 54 Refracted light 100 Liquid crystal display device

Claims (7)

所定の方向から光が入射される光学調整部材であって、
上記光が入射される光入射面を有し、且つ、光透過性を有する基材と、
上記基材の、上記光入射面と反対側の面の上に設けられた光透過性を有する複数の線状体とを備え、
上記線状体の延在方向に直交する断面が、第1〜第3辺で画成された三角形状の第1断面部と、第1断面部より面積が小さく且つ第4〜第6辺で画成された略三角形状の第2断面部とを有し、第1断面部の第1辺が上記基材の上記光入射面と反対側の面と平行に接しており、第2断面部が第1断面部の第2辺上に設けられており、且つ、第2断面部の第4辺が第1断面部の第2辺と平行に接しており、
第1断面部の第1辺と第2辺のなす角は、第1辺と第3辺のなす角よりも小さく、
第2断面部第5辺を含む線状体の面で屈折した上記光の色分離パターンと、第2断面部の第6辺を含む線状体の面で屈折した上記光の色分離パターンとが、上記光の進行方向に対して逆パターンとなり、互いに色分離を打ち消しあうことを特徴とする光学調整部材。
An optical adjustment member to which light is incident from a predetermined direction,
A base material having a light incident surface on which the light is incident and having light transmittance;
A plurality of linear bodies having light transmissivity provided on a surface of the substrate opposite to the light incident surface;
The cross section perpendicular to the extending direction of the linear body has a triangular first cross section defined by the first to third sides, an area smaller than the first cross section, and the fourth to sixth sides. A substantially triangular second cross section defined, wherein the first side of the first cross section is in contact with the surface opposite to the light incident surface of the substrate, and the second cross section Is provided on the second side of the first cross section, and the fourth side of the second cross section is in contact with the second side of the first cross section,
The angle formed by the first side and the second side of the first cross section is smaller than the angle formed by the first side and the third side,
A color separation pattern of the light refracted on the surface of the linear body including the second side of the second cross section, and a color separation pattern of the light refracted on the surface of the linear body including the sixth side of the second cross section. However, the optical adjustment member has a reverse pattern with respect to the traveling direction of the light and cancels color separation from each other.
所定の方向から光が入射される光学調整部材であって、
上記光が入射される光入射面を有し、且つ、光透過性を有する基材と、
複数の線状体であって、上記基材の、上記光入射面と反対側の面の上に設けられ、光透過性を有し、且つ、それぞれが集光面及び補正面を有する複数の線状体とを備え、
上記線状体の延在方向に直交する断面が略三角形であり、該断面を画成する3つの辺のうち、一つの辺が上記基材の上記光入射面と反対側の面と平行に接しており且つ他の2辺のうちの一方の辺が階段状であって、上記階段状の辺は、上記断面と、上記集光面及び上記補正面との交線であって、上記断面の、上記基材に平行な辺と上記階段状の辺とのなす角度は、上記基材に平行な辺と残りの辺とのなす角度よりも小さく、
上記線状体の上記集光面で屈折した上記光の色分離パターンと、上記線状体の上記補正面で屈折した上記光の色分離パターンとが、上記光の進行方向に対して互いに逆パターンとなり、互いに色分離を打ち消しあうことを特徴とする光学調整部材。
An optical adjustment member to which light is incident from a predetermined direction,
A base material having a light incident surface on which the light is incident and having light transmittance;
A plurality of linear bodies, provided on a surface of the substrate opposite to the light incident surface, having light transmittance, and each having a condensing surface and a correction surface A linear body,
The cross section perpendicular to the extending direction of the linear body is substantially triangular, and one of the three sides defining the cross section is parallel to the surface opposite to the light incident surface of the substrate. One of the other two sides is stepped, and the stepped side is a line of intersection between the cross section, the light collection surface, and the correction surface, and the cross section The angle formed between the side parallel to the base material and the stepped side is smaller than the angle formed between the side parallel to the base material and the remaining side,
The light color separation pattern refracted on the light collecting surface of the linear body and the light color separation pattern refracted on the correction surface of the linear body are opposite to each other in the light traveling direction. An optical adjusting member characterized by forming a pattern and canceling color separation from each other.
照明装置であって、
光源と、
請求項1又は2に記載の光学調整部材と、
上記光源から出射された光を上記光学調整部材に導くための導光板とを備える照明装置。
A lighting device,
A light source;
The optical adjustment member according to claim 1 or 2,
And a light guide plate for guiding the light emitted from the light source to the optical adjustment member.
上記光学調整部材が導光板に接して配置されていることを特徴とする請求項3に記載の照明装置。   The lighting device according to claim 3, wherein the optical adjustment member is disposed in contact with the light guide plate. さらに、上記導光板の上記光学調整部材側とは反対側に配置された反射部材を備える請求項3又は4に記載の照明装置。   Furthermore, the illuminating device of Claim 3 or 4 provided with the reflection member arrange | positioned on the opposite side to the said optical adjustment member side of the said light-guide plate. 液晶表示装置であって、
光源と、
請求項1又は2に記載の光学調整部材と、
上記光源から出射された光を上記光学調整部材に導くための導光板と、
上記光学調整部材の上記導光板側とは反対側に配置された液晶表示素子とを備える液晶表示装置。
A liquid crystal display device,
A light source;
The optical adjustment member according to claim 1 or 2,
A light guide plate for guiding the light emitted from the light source to the optical adjustment member;
A liquid crystal display device comprising: a liquid crystal display element disposed on a side opposite to the light guide plate side of the optical adjustment member.
上記光学調整部材が導光板に接して配置されていることを特徴とする請求項6に記載の液晶表示装置。   The liquid crystal display device according to claim 6, wherein the optical adjustment member is disposed in contact with the light guide plate.
JP2009208777A 2009-09-10 2009-09-10 Optical adjusting member, and illumination device and liquid crystal display device including the same Active JP4410840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208777A JP4410840B2 (en) 2009-09-10 2009-09-10 Optical adjusting member, and illumination device and liquid crystal display device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208777A JP4410840B2 (en) 2009-09-10 2009-09-10 Optical adjusting member, and illumination device and liquid crystal display device including the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007145847A Division JP2008299131A (en) 2007-05-31 2007-05-31 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2009294672A JP2009294672A (en) 2009-12-17
JP4410840B2 true JP4410840B2 (en) 2010-02-03

Family

ID=41542857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208777A Active JP4410840B2 (en) 2009-09-10 2009-09-10 Optical adjusting member, and illumination device and liquid crystal display device including the same

Country Status (1)

Country Link
JP (1) JP4410840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829622B2 (en) 2010-03-12 2017-11-28 Panasonic Liquid Crystal Display Co., Ltd. Illuminating device and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829622B2 (en) 2010-03-12 2017-11-28 Panasonic Liquid Crystal Display Co., Ltd. Illuminating device and liquid crystal display device

Also Published As

Publication number Publication date
JP2009294672A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US9164216B2 (en) Illumination device and display device
US7448787B2 (en) Prism sheet and backlight unit employing the same
WO2002065173A1 (en) Light guiding body, light reflective sheet, surface light source device and liquid crystal display device using the light reflective sheet, and method of manufacturing the light reflective sheet
WO2010010694A1 (en) Liquid crystal display
JP2008288195A (en) Backlight unit with reduced color separation containing polarization conversion film
US20090303414A1 (en) Optical member with a scatter layer, and backlight assembly and display device having the same
US8118469B2 (en) Surface illuminating device and image display apparatus
US20200233146A1 (en) Lighting device and display device
JP2008299131A (en) Liquid crystal display
JP4410840B2 (en) Optical adjusting member, and illumination device and liquid crystal display device including the same
JP4395197B1 (en) Liquid crystal display
JP4448555B2 (en) Manufacturing method of liquid crystal display device
JP4250192B2 (en) Optical adjusting member, and illumination device and liquid crystal display device including the same
CN109709723A (en) Light guide plate, backlight module and display panel
JP4410841B2 (en) Illumination device and liquid crystal display device
JP2013120266A (en) Optical module and display device
JP2008216831A (en) Optical adjusting member, lighting device and liquid crystal display device, and method for manufacturing optical adjusting member
JP4945414B2 (en) Optical adjusting member, and illumination device and liquid crystal display device including the same
KR20170039814A (en) Optical component and display device having the same
JP2009128764A (en) Optical adjusting member and illumination device and liquid crystal display device including the same
JP4606135B2 (en) Liquid crystal display device
JP2013020932A (en) Optical module and display device
JP7510624B1 (en) Optical member, surface light source device, and display device
JP2010066722A (en) Optical member, lighting system and display device using the same
JP2009026753A (en) Illuminating apparatus and optical adjustment member used for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090910

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R150 Certificate of patent or registration of utility model

Ref document number: 4410840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250