JP4410782B2 - Catalyst for producing pentafluoroethane and method for producing the catalyst - Google Patents

Catalyst for producing pentafluoroethane and method for producing the catalyst Download PDF

Info

Publication number
JP4410782B2
JP4410782B2 JP2006257278A JP2006257278A JP4410782B2 JP 4410782 B2 JP4410782 B2 JP 4410782B2 JP 2006257278 A JP2006257278 A JP 2006257278A JP 2006257278 A JP2006257278 A JP 2006257278A JP 4410782 B2 JP4410782 B2 JP 4410782B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
producing
chromium oxide
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006257278A
Other languages
Japanese (ja)
Other versions
JP2007083233A (en
Inventor
張香子
金大鉉
金哲虎
趙榮救
李定殷
金榮守
祐一 飯久保
Original Assignee
株式會社 厚成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式會社 厚成 filed Critical 株式會社 厚成
Publication of JP2007083233A publication Critical patent/JP2007083233A/en
Application granted granted Critical
Publication of JP4410782B2 publication Critical patent/JP4410782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、ペンタフルオロエタン製造用触媒及びこの触媒の製造方法に係り、より具体的には、ペルクロロエタン(CCl、以下「PCE」という)又は1,1−ジクロロ−2,2,2−トリフルオロエタン(CHClCF、以下「HCFC−123」という)をHFと反応させてペンタフルオロエタン(CFCHF、以下「HFC−125」という)を製造するのに有用な触媒及びこの触媒の製造方法に関する。 The present invention relates to a catalyst for producing pentafluoroethane and a method for producing the catalyst, more specifically, perchloroethane (C 2 Cl 6 , hereinafter referred to as “PCE”) or 1,1-dichloro-2,2, Catalyst useful for producing pentafluoroethane (CF 3 CHF 2 , hereinafter referred to as “HFC-125”) by reacting 2-trifluoroethane (CHCl 2 CF 3 , hereinafter referred to as “HCFC-123”) with HF And a method for producing the catalyst.

HFC−125は、分子内に塩素を含有しないため地球温暖化及びオゾン層破壊指数が殆どなく、既存の冷媒、発泡剤、噴射剤などとして使用されてきた塩化フッ化炭素(chloro fluoro carbon)又は塩化フッ化炭化水素(hydrogen chloro fluoro carbon)の代替物質であって、ジフルオロメタン(CH、以下「HFC−32」という)と混合して混合冷媒の原料として用いられている。 HFC-125 has almost no global warming and ozone depletion index because it does not contain chlorine in the molecule, and has been used as an existing refrigerant, blowing agent, propellant, etc. It is an alternative to hydrogen chlorofluorocarbon and is used as a raw material for mixed refrigerants by mixing with difluoromethane (CH 2 F 2 , hereinafter referred to as “HFC-32”).

クロロエタン化合物を原料としてHFC−125を製造するのに使用される触媒は、既に知られており、その代表的な例がクロム酸化物である。
特許文献1では、クロロエタン化合物を原料とするHFC−125製造用触媒として、Cr−BaO−Al、Cr−MgO−Al、Cr−SrO−Al、Cr−CaO−Al、Cr−Fe、Cr−Al、Cr−MgOについて記述している。
ここで、Cr−Al触媒は、Cr(NO・9HOとAl(NO・9HOを共に水に溶解させ、これをアンモニア水中に入れて撹拌することにより、Cr(OH)とAl(OH)の沈殿物を得、この沈殿物を水洗・乾燥させた後、450℃で5時間焼成してCr−Alの粉末を得、この粉末をペレット(pellet)状に成形し、これをNとHFの混合ガスでフッ素化させて製造する。
A catalyst used to produce HFC-125 using a chloroethane compound as a raw material is already known, and a typical example thereof is chromium oxide.
In Patent Document 1, as a catalyst for producing HFC-125 using a chloroethane compound as a raw material, Cr 2 O 3 —BaO—Al 2 O 3 , Cr 2 O 3 —MgO—Al 2 O 3 , Cr 2 O 3 —SrO— Al 2 O 3 , Cr 2 O 3 —CaO—Al 2 O 3 , Cr 2 O 3 —Fe 2 O 3 , Cr 2 O 3 —Al 2 O 3 , and Cr 2 O 3 —MgO are described.
Here, the Cr 2 O 3 —Al 2 O 3 catalyst is prepared by dissolving both Cr (NO 3 ) 3 · 9H 2 O and Al (NO 3 ) 3 · 9H 2 O in water, and putting this in ammonia water. By stirring, a precipitate of Cr (OH) 3 and Al (OH) 3 was obtained. The precipitate was washed with water and dried, then calcined at 450 ° C. for 5 hours, and Cr 2 O 3 —Al 2 O 3 The powder is obtained, and the powder is formed into a pellet and fluorinated with a mixed gas of N 2 and HF.

特許文献2では、Cr/Al、Cr/In、Cr/Ga、Cr/CoO、Cr/NiO、Cr/ZnO触媒について記述している。
ここで、Cr/Al触媒は、次の方法で製造される。
アンモニア水をCr(NO水溶液に加えてCr(OH)の沈殿物を得、これを濾過・乾燥させて得た固体状のCr(OH)を粉砕してCr(OH)粉末を得た後、これをAl(NO水溶液に入れて12時間放置した後乾燥させ、ここに少量の黒鉛を添加してペレット状に成形し、これをNガス中で2時間焼成し、N+HFの混合ガスでフッ素化させて製造する。
In Patent Document 2, Cr 2 O 3 / Al 2 O 3 , Cr 2 O 3 / In 2 O 3 , Cr 2 O 3 / Ga 2 O 3 , Cr 2 O 3 / CoO, Cr 2 O 3 / NiO, Cr A 2 O 3 / ZnO catalyst is described.
Here, the Cr 2 O 3 / Al 2 O 3 catalyst is produced by the following method.
Ammonia water is added to an aqueous Cr (NO 3 ) 3 solution to obtain a precipitate of Cr (OH) 3 , which is filtered and dried to pulverize solid Cr (OH) 3 to obtain Cr (OH) 3 After obtaining the powder, it was placed in an Al (NO 3 ) 3 aqueous solution and allowed to stand for 12 hours and then dried. A small amount of graphite was added thereto to form a pellet, and this was formed in N 2 gas for 2 hours. It is fired and fluorinated with a mixed gas of N 2 + HF.

すなわち、従来のCr−Alのような2成分系あるいは3成分系クロム酸化物触媒を製造する方法では、Cr(NOとAl(NOを共に水に溶解させてアンモニア水を用いて共沈させ、Cr(OH−Al(OH)の共沈物(coprecipitate)を焼成してCr−Al触媒を得るか(特許文献1参照)、あるいはCr(OH)粉末をAl(NO水溶液に含浸させた後乾燥させてCr(OH)/Al(OH)の組成物を得、これを焼成してCr/Al触媒を得る(特許文献2参照)。 That is, in the conventional method for producing a binary or ternary chromium oxide catalyst such as Cr 2 O 3 —Al 2 O 3 , both Cr (NO 3 ) 3 and Al (NO 3 ) 3 are used in water. dissolved coprecipitated with aqueous ammonia, Cr (OH 3) 3 -Al (OH) 3 coprecipitate (coprecipitate) by firing whether obtain Cr 2 O 3 -Al 2 O 3 catalyst (Patent Reference 1), or a Cr (OH) 3 powder impregnated in an Al (NO 3 ) 3 aqueous solution and then dried to obtain a composition of Cr (OH) 3 / Al (OH) 3 , which is fired A Cr 2 O 3 / Al 2 O 3 catalyst is obtained (see Patent Document 2).

一方、クロム酸化物系触媒の活性は、触媒の結晶構造及びCr原子の原子価(Valence)と密接な関係にあるものと知られている。
特許文献2によれば、クロム酸化物系触媒上のクロムは、+3.5〜+5.0の原子価を有し、無定形状態(amorphous state)のものが触媒の活性点(active site)である。
また、Cr/Alフッ化触媒において、活性度はクロムの原子価と関連しており、アルミナは担体(supporter)機能をするものと知られている。
ところが、前記含浸法又は共沈法で製造された2成分系及び3成分系クロム触媒は、クロロエタンの転換反応で転換率とHFC-125への選択率が低くて工業生産工程への適用に適しないという問題がある。
On the other hand, it is known that the activity of a chromium oxide catalyst is closely related to the crystal structure of the catalyst and the valence of Cr atoms.
According to Patent Document 2, chromium on a chromium oxide-based catalyst has a valence of +3.5 to +5.0, and an amorphous state is an active site of the catalyst. is there.
In the Cr 2 O 3 / Al 2 O 3 fluorination catalyst, the activity is related to the valence of chromium, and alumina is known to function as a supporter.
However, the two-component and three-component chromium catalysts produced by the impregnation method or coprecipitation method are suitable for industrial production processes due to the low conversion rate and selectivity to HFC-125 in the conversion reaction of chloroethane. There is no problem.

特に、PCEを原料としてHFC−125を製造する工程で転換率と選択率が低く、既存の触媒はフッ素化反応で十分な活性を示していない。
2成分系又は3成分系酸化物を用いて共沈法で製造されたクロム酸化物系触媒(特許文献1)がPCE(パークロロエチレン)を出発物質とする場合の転換率とHFC-125(ペンタフルオロエタン)への選択率は、表1のとおりである。
In particular, conversion and selectivity are low in the process of producing HFC-125 using PCE as a raw material, and existing catalysts do not exhibit sufficient activity in the fluorination reaction.
Conversion rate and HFC-125 when a chromium oxide catalyst (Patent Document 1) produced by a coprecipitation method using a two-component or three-component oxide starts with PCE (perchloroethylene) The selectivity to (pentafluoroethane) is as shown in Table 1.

Figure 0004410782
(注)HFC―125:ペンタフルオロエタン
HFC―124:テトラフルオロエタン
HFC―123:トリフルオロエタン
HFC―122:ジフルオロエタン
Figure 0004410782
(Note) HFC-125: Pentafluoroethane
HFC-124: Tetrafluoroethane
HFC-123: trifluoroethane
HFC-122: Difluoroethane

一方、2成分系あるいは3成分系酸化物を用いて含浸法で製造されたクロム酸化物系触媒(特許文献2)がHCFC−123(ジクロロトリフルオエロエタン)を出発物質とする場合のHFC-125への選択率は、表2のとおりである。   On the other hand, HFC-125 in the case where a chromium oxide catalyst (Patent Document 2) produced by impregnation using a binary or ternary oxide starts with HCFC-123 (dichlorotrifluoroethane). Table 2 shows the selectivity.

Figure 0004410782
(注)HFC―125 :ペンタフルオロエタン
HCFC―124:クロロテトラフルオロエタン
HCFC―123:1,1−ジクロロ−2,2,2−トリフルオロエタン
HCFC―115:クロロペンタフルオロエタン
すなわち、出発物質がPCEの場合には、HFC−125に対する選択率が20%未満であり、出発物質がHCFC−123の場合にも、HFC−125選択率は70%を超えていない。
したがって、この分野では、クロロエタン化合物のフッ素化においてより高い転換率と特にHFC−125に対する選択率が高い触媒の開発が必要な実情にある。
Figure 0004410782
(Note) HFC-125: Pentafluoroethane
HCFC-124: Chlorotetrafluoroethane
HCFC-123: 1,1-dichloro-2,2,2-trifluoroethane
HCFC-115: Chloropentafluoroethane That is, when the starting material is PCE, the selectivity for HFC-125 is less than 20%, and even when the starting material is HCFC-123, the selectivity for HFC-125 is 70 % Is not exceeded.
Therefore, in this field, it is necessary to develop a catalyst having a higher conversion rate and particularly a high selectivity for HFC-125 in the fluorination of chloroethane compounds.

特開平02−178237号公報Japanese Patent Laid-Open No. 02-178237 米国特許第6,433,233号明細書US Pat. No. 6,433,233

本発明者らは、2成分系又は3成分系酸化物を用いて従来の共沈法又は含浸法で製造されたクロム酸化物系触媒が十分な活性を示さない理由が、クロムに混合された異種の金属成分やその組成比などが触媒の活性点の実現又は持続に役立たないか、あるいは適切に選択した金属成分であっても、製造方法及びフッ素化方法によってクロムの活性点が活性化されるか、あるいは焼結(sintering)などで容易に消滅できるという点を考慮して2成分系クロム酸化物を製造するとき、クロム酸化物と金属酸化物とが混合される前にクロム酸化物が無定形状態(amorphous state)を保つことが可能な温度範囲内でCr(OH)を熱処理してCrに形成させた後、これを選択された異種の金属酸化物と単に機械的に混合した後、フッ素化させることにより、酸化クロム系触媒の活性を高めることができることを確認し、本発明の完成に至った。
本発明の目的は、クロロエタン化合物を原料としてHFC−125を製造する方法において、高い転換率と選択率を示すフッ素化触媒とこの触媒の製造方法を提供することにある。
The present inventors have mixed chromium with the reason why chromium oxide-based catalysts prepared by conventional coprecipitation or impregnation methods using two-component or three-component oxides do not exhibit sufficient activity. Even if different metal components and their composition ratios do not help to achieve or maintain the active site of the catalyst, or even when the metal component is appropriately selected, the active site of chromium is activated by the production method and the fluorination method. When producing a two-component chromium oxide considering that it can easily disappear by sintering or the like, the chromium oxide is mixed before the chromium oxide and the metal oxide are mixed. After the Cr (OH) 3 is heat-treated to form Cr 2 O 3 within a temperature range in which an amorphous state can be maintained, it is simply mechanically bonded to the selected dissimilar metal oxide. Fluorinated after mixing with As a result, it was confirmed that the activity of the chromium oxide catalyst could be increased, and the present invention was completed.
An object of the present invention is to provide a fluorination catalyst exhibiting high conversion and selectivity in a method for producing HFC-125 using a chloroethane compound as a raw material, and a method for producing the catalyst.

上記目的を解決するための本発明は、PCE又はHCFC−123のようなクロロエタン化合物をフッ素化してHFC−125を製造するのに有用なフッ素化触媒とこの触媒の製造方法を提供する。
本発明の触媒は、無定形であり、主成分のクロム酸化物にマグネシウム、鉄、モリブデン、バナジウム及びアルミニウムの中から選択された金属の酸化物を含有する酸化クロム系混合触媒である。
The present invention for solving the above object provides a fluorination catalyst useful for producing HFC-125 by fluorinating a chloroethane compound such as PCE or HCFC-123, and a method for producing the catalyst.
The catalyst of the present invention is an amorphous chromium oxide mixed catalyst containing an oxide of a metal selected from magnesium, iron, molybdenum, vanadium and aluminum in the main component chromium oxide.

本発明の触媒製造方法は、クロム水酸化物を加熱処理してクロム酸化物に転換させ、これをマグネシウム、鉄、モリブデン、バナジウム又はアルミニウムの酸化物と混合した後、フッ素化過程を経ることにより、クロム平均原子価3〜5価の無定形状態に保ち、比表面積10〜30m/gのクロム系混合触媒を製造する方法であり、この触媒は、PCE及びHCFC−123の高い転換率とHFC−125への選択性を向上させる効果をもたらした。触媒の製造の際に触媒のフッ素化工程の条件によって触媒活性が変化するので、最適条件のフッ素化処理が必須的である。 In the catalyst production method of the present invention, chromium hydroxide is heat-treated to convert to chromium oxide, mixed with magnesium, iron, molybdenum, vanadium or aluminum oxide, and then subjected to a fluorination process. , A method for producing a chromium-based mixed catalyst having a specific surface area of 10 to 30 m 2 / g while maintaining an amorphous state with an average chromium valence of 3 to 5, and having a high conversion rate of PCE and HCFC-123. The effect of improving selectivity to HFC-125 was brought about. Since the catalytic activity varies depending on the conditions of the catalyst fluorination step during the production of the catalyst, the fluorination treatment under the optimum conditions is essential.

本発明の方法で製造されたフッ素化触媒は、クロロエタン化合物を原料として高収率でペンタフルオロエタンを製造することができるという効果がある。   The fluorination catalyst produced by the method of the present invention has an effect that pentafluoroethane can be produced in a high yield using a chloroethane compound as a raw material.

以下、本発明の触媒製造方法について説明する。
まず、クロム硝酸塩(Cr(NO・9HO)を水に溶解させた水溶液にアンモニア水(NHOH)を加えて青灰色の水酸化クロム沈殿物を得、熱水を用いて、濾過された沈殿物を十分洗浄し乾燥させる。乾燥過程は、空気中で80〜150℃の温度にて行うことが好ましく、特に約100℃程度が適切である。乾燥時間は、24〜72時間であって、好ましくは72時間である。十分な洗浄と乾燥が行われていない状態で熱処理を行うと、内部に残存している硝酸塩とアンモニウム塩成分により過量のNOが発生し、一部は残存することもある。十分に乾燥した水酸化クロムは、オーブン又はヒーターに入れてゆっくり昇温させて300℃まで温度を上げた後、全2時間の熱処理を施す。この過程で約200℃に到達すると、多量の黄色NOガスが放出され、このガスはガス吸収塔に送って処理する。この際、触媒内部に残存する不純物(硝酸塩、アンモニウム塩、水分など)を除去すると同時に、クロム平均原子価3〜5価のクロム酸化物を作る。特に、残存不純物が十分除去されなければ、触媒フッ素化過程でNOの発生により触媒の強度が弱化されるうえ、多くの副産物が生成されるので、不純物を徹底に除去しなければならない。熱処理済みの水酸化クロムを細かく粉砕し、同じ過程を経て作られた他の金属酸化物を0.5〜15%の重量比で添加した後、少量の水と混合してペレット状に成形する。ここで、少量の水の添加は、ペレットの凝集性と強度を高める重要な役割をする。ペレットは、直径約12mm、高さ12mmの円筒状構造を持つ。ペレット状に製造した触媒は乾燥させる。
Hereinafter, the catalyst production method of the present invention will be described.
First, chromium nitrate (Cr (NO 3) 3 · 9H 2 O) to give the ammonia water to an aqueous solution obtained by dissolving in water (NH 4 OH) was added to blue-gray chromium hydroxide precipitate with hot water The filtered precipitate is washed thoroughly and dried. The drying process is preferably performed in air at a temperature of 80 to 150 ° C, and particularly about 100 ° C is appropriate. The drying time is 24 to 72 hours, preferably 72 hours. If heat treatment is performed without sufficient cleaning and drying, an excessive amount of NO x is generated due to the nitrate and ammonium salt components remaining inside, and a part of the NO x may remain. The sufficiently dried chromium hydroxide is put in an oven or a heater, slowly heated to 300 ° C., and then subjected to a heat treatment for 2 hours. In this process, when reaching about 200 ° C., a large amount of yellow NO x gas is released, and this gas is sent to the gas absorption tower for processing. At this time, impurities (nitrate, ammonium salt, moisture, etc.) remaining inside the catalyst are removed, and at the same time, chromium oxide having an average valence of 3 to 5 is formed. In particular, if the residual impurities is not sufficiently removed, after which the strength of the catalyst is weakened by the occurrence of the NO x in the catalyst fluorination process, since many products are produced must be removed thoroughly impurities. Finely pulverize heat-treated chromium hydroxide, add other metal oxides made through the same process at a weight ratio of 0.5-15%, mix with a small amount of water and form into pellets . Here, the addition of a small amount of water plays an important role in increasing the cohesiveness and strength of the pellets. The pellet has a cylindrical structure with a diameter of about 12 mm and a height of 12 mm. The catalyst produced in pellet form is dried.

ペレット状に成形された触媒を反応器に入れて200℃の温度で2時間窒素ガスを通気させた後、温度を300℃に昇温し、次いで、窒素ガスを3時間通気させながら熱処理する。その後、温度を320℃に昇温し、窒素ガスとフッ素化水素ガスを同時に流して触媒のフッ素化反応を開始する。温度を漸次380℃まで昇温しながら窒素ガスを遮断し、純粋なフッ素化水素酸ガスを通気させて触媒を完全にフッ素化させる。温度と圧力が高いほど、フッ素化速度は速いが、あまり急激な温度変化は触媒の破損をもたらすので、ゆっくり温度を昇温することが好ましい。フッ素化触媒は10〜30m/g範囲の比表面積を持つ。 The catalyst formed into a pellet is put into a reactor and nitrogen gas is passed through at a temperature of 200 ° C. for 2 hours, then the temperature is raised to 300 ° C., and then heat treatment is performed while the nitrogen gas is passed through for 3 hours. Thereafter, the temperature is raised to 320 ° C., and the fluorination reaction of the catalyst is started by simultaneously flowing nitrogen gas and hydrogen fluoride gas. Nitrogen gas is shut off while the temperature is gradually raised to 380 ° C., and pure fluorinated hydrofluoric acid gas is passed to completely fluorinate the catalyst. The higher the temperature and pressure, the faster the fluorination rate, but since a too rapid temperature change causes damage to the catalyst, it is preferable to raise the temperature slowly. The fluorination catalyst has a specific surface area in the range of 10 to 30 m 2 / g.

本発明の方法によって製造された触媒を使用し、PCEとHCFC−123を出発物質としてHFC−125を合成すると、出発物質の転換率とHFC−125の選択率は、反応物のモル比、反応温度、接触時間、反応圧力及びフッ素化処理方法によって様々に現れる。最適の反応温度は350〜400℃であり、HFとPCE/HCFC−123の最適モル比は8/1〜15/1であった。接触時間は2〜20秒がよく、5秒以上で最大の効率を示した。反応圧力は大気圧のときが最も良い結果を示した。HFC−125の選択率は、反応温度と接触時間を増加させると上昇する傾向を示した。これに対し、反応圧力が大気圧より高くなると、HFC−125への転換率は低くなる傾向を示した。   When HFC-125 is synthesized using PCE and HCFC-123 as starting materials using the catalyst produced by the method of the present invention, the conversion rate of the starting materials and the selectivity of HFC-125 are expressed as the molar ratio of the reactants, the reaction It varies depending on temperature, contact time, reaction pressure and fluorination treatment method. The optimum reaction temperature was 350 to 400 ° C., and the optimum molar ratio of HF and PCE / HCFC-123 was 8/1 to 15/1. The contact time was 2 to 20 seconds, and the maximum efficiency was exhibited at 5 seconds or more. The best results were obtained when the reaction pressure was atmospheric pressure. The selectivity of HFC-125 showed a tendency to increase with increasing reaction temperature and contact time. On the other hand, when reaction pressure became higher than atmospheric pressure, the conversion rate to HFC-125 showed the tendency to become low.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

フッ素化触媒1〜5は図1の順序によって製造される。図1において、触媒1はクロム酸化物とマグネシウム酸化物からなる触媒であり、触媒2はクロム酸化物と鉄酸化物からなる触媒であり、触媒3はクロム酸化物とモリブデン酸化物からなる触媒であり、触媒4はクロム酸化物とバナジウム酸化物からなる触媒であり、触媒5はクロム酸化物とアルミニウム酸化物からなる触媒である。   The fluorination catalysts 1 to 5 are produced according to the sequence shown in FIG. In FIG. 1, catalyst 1 is a catalyst made of chromium oxide and magnesium oxide, catalyst 2 is a catalyst made of chromium oxide and iron oxide, and catalyst 3 is a catalyst made of chromium oxide and molybdenum oxide. The catalyst 4 is a catalyst composed of chromium oxide and vanadium oxide, and the catalyst 5 is a catalyst composed of chromium oxide and aluminum oxide.

次に、クロム酸化物とマグネシウム酸化物からなる触媒の製造法について述べる。
クロム硝酸塩(Cr(NO・9HO)1kgを蒸留水に溶解させた水溶液に0.391kgのアンモニア水(NHOH)を滴下すると、水酸化クロム(Cr(OH))の青灰色沈殿物を得ることができる。この沈殿物を熱い蒸留水で十分洗浄した後、濾過し、約100℃で24時間乾燥させて固体状の水酸化クロムを製造する。こうして製造した水酸化クロムをボールミル機(ball mill)又は粉砕機(mortar)を用いて粉砕して粉末にして熱処理する。熱処理は、20℃の間隔で温度を300℃までゆっくり上昇させ、300℃で2時間を保持する。熱処理工程中で、水酸化クロム内に残存している硝酸塩によってNOが発生するが、このガスは吸収塔に送って処理する。熱処理が完了すると、粉砕器を用いて十分に粉砕する。前記の方法でマグネシウム硝酸塩[Mg(NO・6HO]を用いてそれぞれの水酸化物を製造した後、同一の方法で熱処理してマグネシウム酸化物(MgO)の粉末を得る。
重量比2%のマグネシウム酸化物の粉末を重量比98%のクロム酸化物と混合した後、それぞれの2つの酸化物が十分混ぜられる程度の水を添加して混合し、その後錠剤機を用いてペレット状に成形する。ペレットは、直径約12.5mm、高さ12mmの円筒状に成形して反応器に充填する前の約48時間、100℃で乾燥させる。内径1インチ、長さ500mmのシリンダ型反応器に触媒を約150g程度充填し、200℃で2時間、300℃で3時間窒素を通気させながら焼成する。その後、温度を320℃に昇温し、フッ素化水素酸と窒素ガスを同時に供給して触媒のフッ素化反応を始める。約30分間フッ素化水素酸ガスと窒素ガスとの混合物と反応させた後、窒素ガスを遮断して純粋なフッ素化水素酸ガスのみを通気せる。温度は段階的に380℃まで昇温し、持続的にフッ素化水素酸ガスを通過させて触媒を完全にフッ素化させる。フッ素化反応済みの後、窒素ガスを供給して未反応のフッ素化水素酸ガス及び不純物ガスを排出させる。こうして触媒1を製造し、製造された触媒をX線回折装置(x-ray diffractometr)で測定した結果、無定形であることが確認された。BET法による比表面積測定装置で測定した触媒の比表面積は10〜30m/gの間にあった。
Next, a method for producing a catalyst composed of chromium oxide and magnesium oxide will be described.
Added dropwise and chromium nitrate (Cr (NO 3) 3 · 9H 2 O) 1kg aqueous solution to 0.391kg of ammonia water dissolved in distilled water (NH 4 OH), chromium hydroxide (Cr (OH) 3) A blue-grey precipitate can be obtained. The precipitate is thoroughly washed with hot distilled water, filtered, and dried at about 100 ° C. for 24 hours to produce solid chromium hydroxide. The chromium hydroxide thus produced is pulverized using a ball mill or a mortar to form a powder and heat-treated. In the heat treatment, the temperature is slowly increased to 300 ° C. at intervals of 20 ° C. and held at 300 ° C. for 2 hours. During the heat treatment process, NO x is generated by nitrate remaining in the chromium hydroxide, and this gas is sent to an absorption tower for treatment. When the heat treatment is completed, it is sufficiently pulverized using a pulverizer. After producing each hydroxide using magnesium nitrate [Mg (NO 3 ) 2 .6H 2 O] by the above method, heat treatment is performed by the same method to obtain a magnesium oxide (MgO) powder.
After mixing 2% by weight magnesium oxide powder with 98% by weight chromium oxide, add enough water to mix each of the two oxides, and then use a tablet machine. Mold into pellets. The pellets are dried at 100 ° C. for about 48 hours before being formed into a cylindrical shape with a diameter of about 12.5 mm and a height of 12 mm and charged into the reactor. About 150 g of a catalyst is packed in a cylinder type reactor having an inner diameter of 1 inch and a length of 500 mm, and calcined while bubbling nitrogen at 200 ° C. for 2 hours and at 300 ° C. for 3 hours. Thereafter, the temperature is raised to 320 ° C., and hydrofluoric acid and nitrogen gas are simultaneously supplied to start the fluorination reaction of the catalyst. After reacting with a mixture of hydrofluoric acid gas and nitrogen gas for about 30 minutes, the nitrogen gas is shut off and only pure hydrofluoric acid gas is vented. The temperature is raised stepwise to 380 ° C., and a hydrofluoric acid gas is continuously passed to fully fluorinate the catalyst. After completion of the fluorination reaction, nitrogen gas is supplied to discharge unreacted fluorinated hydroacid gas and impurity gas. Catalyst 1 was produced in this way, and the produced catalyst was measured with an X-ray diffractometr. As a result, it was confirmed to be amorphous. The specific surface area of the catalyst measured with a specific surface area measuring apparatus by the BET method was between 10 and 30 m 2 / g.

<触媒2(クロム酸化物−鉄酸化物の触媒)の製造>
マグネシウム硝酸塩の代わりに鉄硝酸塩[Fe(NO・6HO]を使用する以外は、実施例1と同様の方法で触媒2を製造した。
<Production of catalyst 2 (chromium oxide-iron oxide catalyst)>
Catalyst 2 was produced in the same manner as in Example 1 except that iron nitrate [Fe (NO 3 ) 2 .6H 2 O] was used instead of magnesium nitrate.

<触媒3(クロム酸化物−モリブデン酸化物の触媒)の製造>
マグネシウム硝酸塩の代わりにモリブデンアンモニウム塩[(NHMo24]を使用する以外は、実施例1と同様の方法で触媒3を製造した。
<Production of catalyst 3 (chromium oxide-molybdenum oxide catalyst)>
Catalyst 3 was produced in the same manner as in Example 1 except that molybdenum ammonium salt [(NH 4 ) 6 Mo 7 O 24 ] was used instead of magnesium nitrate.

<触媒4(クロム酸化物−バナジウム酸化物の触媒)の製造>
マグネシウム硝酸塩の代わりにバナジウムアンモニウム塩(NHVO)を使用する以外は、実施例1と同様の方法で触媒4を製造した。
<Production of Catalyst 4 (Chromium Oxide-Vanadium Oxide Catalyst)>
Catalyst 4 was produced in the same manner as in Example 1, except that vanadium ammonium salt (NH 4 VO 3 ) was used instead of magnesium nitrate.

<触媒5(クロム酸化物−アルミニウム酸化物の触媒)の製造>
マグネシウム硝酸塩の代わりにアルミニウム硝酸塩[Al(NO・9HO]を使用する以外は、実施例1と同様の方法で触媒5を製造した。
実施例2〜4で製造された触媒をX線回折装置とBET法で測定した結果、結晶構造は全て無定形であり、比表面積は全て10〜30m/gの範囲内にあった。
<Manufacture of catalyst 5 (chromium oxide-aluminum oxide catalyst)>
Except using aluminum nitrate [Al (NO 3) 3 · 9H 2 O] in place of the magnesium nitrate was prepared catalyst 5 in the same manner as in Example 1.
As a result of measuring the catalysts produced in Examples 2 to 4 with an X-ray diffractometer and the BET method, all the crystal structures were amorphous, and all the specific surface areas were in the range of 10 to 30 m 2 / g.

(実験例)
<PCEのフッ素化反応>
実施例で得られた触媒1〜5を用いて次の反応条件下でHFによるPCEの気相フッ素化反応を行った。
(反応条件)
触媒量:150g
反応器:25.4mm(ID)、SUS316L
反応ガス:PCE(6.9g/min)、HF(300cm
接触時間:10秒
反応温度:350℃、300℃
反応圧力:大気圧
前記の条件下でPCEをフッ素化反応させた後、得たガスを反応器の外で水酸化カリウム水溶液に通過させ、その後ガスクロマトグラフを用いて反応生成物ガスを分析した。フッ素化反応温度350℃の場合は表3に、フッ素化反応温度300℃の場合は表4に反応結果をそれぞれ示した。
(Experimental example)
<Fluorination reaction of PCE>
The gas phase fluorination reaction of PCE by HF was performed using the catalysts 1 to 5 obtained in the examples under the following reaction conditions.
(Reaction conditions)
Catalyst amount: 150g
Reactor: 25.4 mm (ID), SUS316L
Reaction gas: PCE (6.9 g / min), HF (300 cm 3 )
Contact time: 10 seconds Reaction temperature: 350 ° C, 300 ° C
Reaction pressure: atmospheric pressure After fluorination of PCE under the above-mentioned conditions, the obtained gas was passed through a potassium hydroxide aqueous solution outside the reactor, and then the reaction product gas was analyzed using a gas chromatograph. Table 3 shows the reaction results when the fluorination reaction temperature is 350 ° C, and Table 4 shows the reaction results when the fluorination reaction temperature is 300 ° C.

Figure 0004410782
(注)HCFC−122;トリクロロジフルオロエタン
CFC−114;ジクロロテトラフルオロエタン
CFC−113;トリクロロトリフルオロエタン
Figure 0004410782
(Note) HCFC-122; trichlorodifluoroethane CFC-114; dichlorotetrafluoroethane CFC-113; trichlorotrifluoroethane

Figure 0004410782
(注)HCFC−113;クロロトリフルオロエタン
F−1111;フルオロトリクロロエタン(CFCl
Figure 0004410782
(Note) HCFC-113; Chlorotrifluoroethane F-1111; Fluorotrichloroethane (C 2 FCl 3 )

本発明の方法によって製造された触媒を用いてPCEを出発物質としてHFC−125を合成するとき、反応温度が350℃の場合にはPCEの転換率が94.9%以上であり、反応温度が300℃の場合にはPCEの転換率が80.1%以上であった。そして、HFC−125の選択率はそれぞれ61%、40.2%以上を示した。これは、本発明の触媒がPCEを出発物質としながら従来のHCFC−123を原料とするクロム酸化物系混合触媒と同様の選択率を示すものである。PCEを出発物質とする場合がHCFC−123を出発物質とする場合よりHFC−125への反応が非常に難しい点を考慮すると、本発明の触媒の活性が非常に高いことを認めることができる。   When synthesizing HFC-125 using PCE as a starting material using the catalyst produced by the method of the present invention, when the reaction temperature is 350 ° C., the conversion rate of PCE is 94.9% or more, and the reaction temperature is In the case of 300 ° C., the PCE conversion was 80.1% or more. And the selectivity of HFC-125 showed 61% and 40.2% or more, respectively. This shows that the catalyst of the present invention has the same selectivity as a conventional chromium oxide-based mixed catalyst using HCFC-123 as a starting material while using PCE as a starting material. In view of the fact that the reaction to HFC-125 is much more difficult when PCE is the starting material than when HCFC-123 is the starting material, it can be seen that the activity of the catalyst of the present invention is very high.

本発明の触媒は、高い活性で純粋なクロム酸化物に重量比2%のMg、Fe、Mo、V、Alの酸化物のみを添加しても、反応活性及びHFC125への選択性が向上することが分かる。また、クロム酸化物に対する前記金属酸化物の混合量が0.5重量%程度の少量の場合にも、選択性は向上する。ところが、15%を超過しても、選択性の向上に変化は殆どなかった。よって、クロム酸化物に対する前記金属酸化物の混合量は0.5〜15重量%の範囲で決定されることが適当である。発明された触媒は、純粋クロム酸化物触媒より反応初期に一定の収率と選択性を示す誘導期(induction period)が同じ反応条件で一層短いことが特徴である。添加された金属酸化物の触媒活性の増加はMg>Fe>V>Mo>Alの順である。   The catalyst of the present invention improves the reaction activity and selectivity to HFC125 even when only 2% by weight of Mg, Fe, Mo, V, and Al oxides are added to highly active and pure chromium oxide. I understand that. The selectivity is improved even when the amount of the metal oxide mixed with the chromium oxide is a small amount of about 0.5% by weight. However, even if it exceeded 15%, there was almost no change in the improvement of selectivity. Therefore, it is appropriate that the amount of the metal oxide mixed with the chromium oxide is determined in the range of 0.5 to 15% by weight. The invented catalyst is characterized by a shorter induction period under the same reaction conditions, which shows a certain yield and selectivity at the beginning of the reaction than a pure chromium oxide catalyst. The increase in the catalytic activity of the added metal oxide is in the order of Mg> Fe> V> Mo> Al.

<触媒のフッ素化処理方法による触媒の活性度の試験>
一方、触媒のフッ素化処理方法による反応活性度の特性を調べるために、触媒2を用いてHFとHCFC−123のフッ素化気相反応を下記の反応条件で行った。
(反応条件)
使用触媒:触媒2
接触時間:5秒
反応器:25.4mm(ID)、SUS316L
反応ガス:HCFC−123(12.5g/min)、HF(590cm
反応温度:350℃
反応圧力:大気圧
<Test of catalyst activity by catalyst fluorination method>
On the other hand, in order to investigate the characteristics of the reaction activity according to the fluorination treatment method of the catalyst, fluorination gas phase reaction of HF and HCFC-123 was carried out using the catalyst 2 under the following reaction conditions.
(Reaction conditions)
Catalyst used: Catalyst 2
Contact time: 5 seconds Reactor: 25.4 mm (ID), SUS316L
Reaction gas: HCFC-123 (12.5 g / min), HF (590 cm 3 )
Reaction temperature: 350 ° C
Reaction pressure: atmospheric pressure

Figure 0004410782
Figure 0004410782

Figure 0004410782
試験結果は、次の表7に記載した。
Figure 0004410782
The test results are listed in Table 7 below.

Figure 0004410782
Figure 0004410782

触媒のフッ素化処理方法がクロム酸化物触媒の反応活性と選択性に大きく影響することが分かる。フッ素化過程Aの如く400℃以上の高温で長時間フッ素化処理過程を経た場合、クロム酸化物がCrの結晶化構造に変形されるが、これは触媒の活性及び選択性を大幅減少する結果をもたらす。これに対し、フッ素化過程B、C、Dのように400℃未満の温度で短時間フッ素化処理した触媒の活性がよく、380℃で60〜180分間程度のフッ素化過程を経た触媒は、無定形状態であり、PCE及びHCFC−123の転換率とHFC−125の選択性に優れることが分かる。本試験から分かるように、触媒の活性は、フッ素化過程時の処理温度だけでなく、処理温度だけでなく、処理時間にも影響される。すなわち、成形されたペレットをHFガスでフッ素化させる工程を380℃の温度で3時間以内の範囲で行うことが最も優れた触媒活性を示すことが分かる。 It can be seen that the fluorination treatment method of the catalyst greatly affects the reaction activity and selectivity of the chromium oxide catalyst. When the fluorination process is performed for a long time at a high temperature of 400 ° C. or more as in the fluorination process A, the chromium oxide is transformed into a crystal structure of Cr 2 O 3 , which greatly increases the activity and selectivity of the catalyst. With reduced results. On the other hand, the activity of the catalyst fluorinated for a short time at a temperature of less than 400 ° C. as in the fluorination steps B, C, and D is good, and the catalyst that has undergone the fluorination step for about 60 to 180 minutes at 380 ° C. It can be seen that it is in an amorphous state and is excellent in the conversion rate of PCE and HCFC-123 and the selectivity of HFC-125. As can be seen from this test, the activity of the catalyst is influenced not only by the treatment temperature during the fluorination process, but also by the treatment time as well as the treatment temperature. That is, it can be seen that the most excellent catalytic activity is exhibited when the step of fluorinating the molded pellets with HF gas is performed at a temperature of 380 ° C. within a range of 3 hours.

次に、触媒2を用いて反応温度による製造された触媒の活性の影響を調べた。
(反応条件)
使用触媒:触媒2
接触時間:10秒
反応器の直径:25.4mm(ID)、SUS316L
反応ガス:PCE(6.9g/min)、HF(300cm
反応温度:300℃、330℃、350℃
反応圧力:大気圧
結果は次の表8に示した。
Next, the influence of the activity of the produced catalyst by the reaction temperature using the catalyst 2 was examined.
(Reaction conditions)
Catalyst used: Catalyst 2
Contact time: 10 seconds Reactor diameter: 25.4 mm (ID), SUS316L
Reaction gas: PCE (6.9 g / min), HF (300 cm 3 )
Reaction temperature: 300 ° C, 330 ° C, 350 ° C
Reaction pressure: atmospheric pressure The results are shown in Table 8 below.

Figure 0004410782
上記の結果より、反応温度が高くなるほど生産されるHFC−125への選択性とPCEの転換率が増加することが分かる。
Figure 0004410782
From the above results, it can be seen that the selectivity to HFC-125 produced and the conversion rate of PCE increase as the reaction temperature increases.

本発明の触媒製造工程を示すフローシートである。It is a flow sheet which shows the catalyst manufacturing process of this invention.

Claims (5)

クロロエタン化合物を原料とするペンタフルオロエタン製造用酸化クロム系触媒の製造方法において、
水酸化クロム粉末を300℃以下で加熱処理して得た酸化クロム粉末85〜99.5重量%と、マグネシウム、鉄、モリブデン、バナジウム及びアルミニウムの水酸化物の中から選択される金属水酸化物を300℃以下で加熱処理して得た酸化マグネシウム、酸化鉄、酸化モリブデン、酸化バナジウム及び酸化アルミニウムの中から選択される金属酸化物粉末0.5〜15重量%とを混合して成形したペレットを、窒素ガス中で200〜300℃で焼成した後、300〜320℃ではN+HFの混合ガスで、320〜380℃ではHFガスでフッ素化させて酸化クロム系触媒を製造する方法。
In the method for producing a chromium oxide-based catalyst for producing pentafluoroethane using a chloroethane compound as a raw material,
85 to 99.5% by weight of chromium oxide powder obtained by heat-treating chromium hydroxide powder at 300 ° C. or less, and metal hydroxide selected from magnesium, iron, molybdenum, vanadium and aluminum hydroxides Pellets formed by mixing 0.5 to 15% by weight of a metal oxide powder selected from magnesium oxide, iron oxide, molybdenum oxide, vanadium oxide and aluminum oxide, obtained by heat treatment at 300 ° C. or lower Is baked at 200 to 300 ° C. in nitrogen gas, and then fluorinated with a mixed gas of N 2 + HF at 300 to 320 ° C. and HF gas at 320 to 380 ° C. to produce a chromium oxide catalyst.
クロロエタン化合物がペルクロロエタン又は1,1−ジクロロ−2,2,2−トリフルオロエタンであることを特徴とする、請求項1に記載の酸化クロム系触媒を製造する方法。   The method for producing a chromium oxide-based catalyst according to claim 1, wherein the chloroethane compound is perchloroethane or 1,1-dichloro-2,2,2-trifluoroethane. 金属水酸化物の加熱処理は、大気中でゆっくり昇温させて300℃以下の温度で2時間以内の範囲で行うことを特徴とする、請求項1に記載の酸化クロム系触媒を製造する方法。   The method for producing a chromium oxide-based catalyst according to claim 1, wherein the heat treatment of the metal hydroxide is performed at a temperature of 300 ° C or less within 2 hours by slowly raising the temperature in the atmosphere. . 成形されたペレットをHFガスでフッ素化させる工程を380℃以下の温度で3時間以内の範囲で行うことを特徴とする、請求項1に記載の酸化クロム系触媒を製造する方法。   The method for producing a chromium oxide-based catalyst according to claim 1, wherein the step of fluorinating the formed pellets with HF gas is performed at a temperature of 380 ° C or less within 3 hours. 請求項1に記載の方法で製造されたペンタフルオロエタン製造用酸化クロム系触媒。   A chromium oxide-based catalyst for producing pentafluoroethane produced by the method according to claim 1.
JP2006257278A 2005-09-23 2006-09-22 Catalyst for producing pentafluoroethane and method for producing the catalyst Active JP4410782B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050088698A KR100680766B1 (en) 2005-09-23 2005-09-23 Manufacturing method of catalyst for pentafluoroethane

Publications (2)

Publication Number Publication Date
JP2007083233A JP2007083233A (en) 2007-04-05
JP4410782B2 true JP4410782B2 (en) 2010-02-03

Family

ID=37852833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257278A Active JP4410782B2 (en) 2005-09-23 2006-09-22 Catalyst for producing pentafluoroethane and method for producing the catalyst

Country Status (6)

Country Link
JP (1) JP4410782B2 (en)
KR (1) KR100680766B1 (en)
CN (1) CN1935360B (en)
DE (1) DE102005053962A1 (en)
FR (1) FR2891163B1 (en)
IT (1) ITBO20060029A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998815B1 (en) * 2012-12-03 2017-01-27 Arkema France CATALYST PREPARED BY REAGENT MILLING
CN105214659A (en) * 2015-10-30 2016-01-06 苏州莲池环保科技发展有限公司 A kind of preparation method of auto-exhaust catalyst of sulfur resistive
CN108057435B (en) * 2017-11-10 2020-07-07 乳源东阳光氟有限公司 Preparation method of gas phase fluorination catalyst
CN109675592B (en) * 2018-12-26 2022-02-08 乳源东阳光氟有限公司 Metal oxide/C composite fluorination catalyst and preparation method and application thereof
CN114644544A (en) * 2020-12-17 2022-06-21 陕西中化蓝天化工新材料有限公司 Preparation method of fluoroalkane
CN114084948B (en) * 2021-12-03 2023-09-15 湖南有色郴州氟化学有限公司 Method for removing ammonia nitrogen by catalytic oxidation
CN114054052B (en) * 2021-12-03 2023-11-03 湖南有色郴州氟化学有限公司 Method for removing ammonia nitrogen by catalytic oxidation of chromium oxyfluoride
CN114229985B (en) * 2021-12-15 2023-09-19 湖南有色郴州氟化学有限公司 Method for removing ammonia nitrogen by catalytic oxidation of magnesium-based oxyfluoride

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513823B1 (en) * 1991-05-17 1995-10-04 Hoechst Aktiengesellschaft Method for the production of pentafluoroethane (R125)
FR2700770B1 (en) * 1993-01-27 1995-03-24 Atochem Elf Sa Process for the production of 1,1,1,2-tetrafluoro-2-chloroethane and pentafluoroethane.
FR2713633B1 (en) * 1993-12-09 1996-01-19 Atochem Elf Sa Gas phase fluorination using crystallized catalysts.
DE19510024C2 (en) * 1995-03-20 1997-02-06 Hoechst Ag Process for the preparation of pentafluoroethane (R 125)
IT1276174B1 (en) * 1995-11-28 1997-10-27 Ausimont Spa PROCESS FOR THE PREPARATION OF PENTAFLUOROETHANE
JPH10113562A (en) 1996-04-17 1998-05-06 Ausimont Spa Catalyst for fluorination of halogenated hydrocarbon
US7074974B2 (en) * 2002-03-11 2006-07-11 Showa Denko K.K. Process for the production of fluoroethane and use of the same
CN100372607C (en) * 2004-12-23 2008-03-05 西安近代化学研究所 Florination catalyst, its manufacturing method and use

Also Published As

Publication number Publication date
FR2891163B1 (en) 2009-12-18
DE102005053962A1 (en) 2007-04-05
FR2891163A1 (en) 2007-03-30
CN1935360A (en) 2007-03-28
ITBO20060029A1 (en) 2007-03-24
CN1935360B (en) 2011-05-25
JP2007083233A (en) 2007-04-05
KR100680766B1 (en) 2007-02-09

Similar Documents

Publication Publication Date Title
JP4410782B2 (en) Catalyst for producing pentafluoroethane and method for producing the catalyst
EP1539347B1 (en) Cobalt substituted chromium oxide compositions, their preparation and their use as catalysts and catalyst precursors
KR100351211B1 (en) Chromium-based fluorinated catalyst, preparation method of the catalyst and fluorination method using the catalyst
JP3520900B2 (en) Method for producing pentafluoroethane, catalyst for fluorination and method for producing the same
US7504358B2 (en) Nickel-substituted and mixed nickel-and cobalt-substituted chromium oxide compositions, their preparation, and their use as catalysts and catalysts precursors
JP5436851B2 (en) catalyst
EP1673165B1 (en) Processes of using chromium oxide compositions containing zinc for changing the fluorine distribution in a halogenated hydrocarbon by disproportionation or dehodrofluorination
JP2001500059A (en) Fluorination catalyst and production method
JPH07206728A (en) Vapor-phase fluorination by crystalline catalyst
JP5888436B2 (en) Method for producing fluorine-containing olefin
JP2019196347A (en) Manufacturing method of fluoroolefin
US20100152503A1 (en) Copper-Substituted Chromium Oxide Compositions, Their Preparation, and Their Use as Catalysts and Catalyst Precursors
JP4314391B2 (en) Fluorination catalyst, method for producing the same, and method for producing fluorine compounds using the catalysts
JP3558385B2 (en) Chromium-based fluorination catalyst and fluorination method
JP2022518445A (en) Methods for activating chromia catalysts
JP2996598B2 (en) Chromium-based fluorination catalyst, its production method and fluorination method
JP3552887B2 (en) Method for producing 1,1,1,2,2-pentafluoroethane
US7232789B2 (en) Catalyst for preparation of pentafluoroethane and preparation method thereof
JP3582798B2 (en) Fluorination catalyst and fluorination method
JP2000034236A (en) Production of 1,1,1,2,2-pentafluoroethane or 2-chloro-1,1,1,2- tetrafluoroethane
JPH02204438A (en) Production of trihydrofluoropropanes having difluoromethylene group and trihydrochlorofluoropropanes
JPH03287552A (en) Preparation of trifuloroethylene and chlorotrifluoroethylene

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R150 Certificate of patent or registration of utility model

Ref document number: 4410782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250