JP4410649B2 - Extruder and molding method - Google Patents

Extruder and molding method Download PDF

Info

Publication number
JP4410649B2
JP4410649B2 JP2004290851A JP2004290851A JP4410649B2 JP 4410649 B2 JP4410649 B2 JP 4410649B2 JP 2004290851 A JP2004290851 A JP 2004290851A JP 2004290851 A JP2004290851 A JP 2004290851A JP 4410649 B2 JP4410649 B2 JP 4410649B2
Authority
JP
Japan
Prior art keywords
rectifying
plastic material
extrusion molding
flow
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004290851A
Other languages
Japanese (ja)
Other versions
JP2006103072A (en
Inventor
健太郎 足立
盛男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2004290851A priority Critical patent/JP4410649B2/en
Publication of JP2006103072A publication Critical patent/JP2006103072A/en
Application granted granted Critical
Publication of JP4410649B2 publication Critical patent/JP4410649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

本発明は、押出成形機およびその押出成形機を用いた成形方法に関し、特に、セラミックスハニカム成形体を高い寸法精度で押出成形することのできる押出成形機およびその押出成形機を用いた成形方法に関するものである。   The present invention relates to an extrusion molding machine and a molding method using the extrusion molding machine, and more particularly to an extrusion molding machine capable of extruding a ceramic honeycomb molded body with high dimensional accuracy and a molding method using the extrusion molding machine. Is.

従来、セラミツクス等を押出成形する場合、セラミツクス微粉末、バインダー、成形助剤、水などを所定の比率で調整し、混練した可塑性材料(以下、「坏土」または「捏和物」ということもある。)を押出成形機によって押出成形用金型から押し出すことによって行なわれ、押出成形機としては、坏土をスクリュ−を用いて連続的に押出成形するオーガー式押出成形機が周知である。
押出成形では、粘性を有する坏土に対してスクリューによる残留応力が発現したり、変形応力が加えられることにより、セラミツクス成形体に微小な歪や亀裂あるいは僅かなねじれ等が生じることがあった。
Conventionally, when extruding ceramics or the like, a plastic material (hereinafter referred to as “kneaded clay” or “kneaded product”) prepared by kneading ceramics fine powder, binder, molding aid, water, etc. at a predetermined ratio and kneading. An auger type extruder that continuously extrudes the clay using a screw is well known as an extruder.
In extrusion molding, residual stress due to a screw appears on a clay that has viscosity, or deformation stress is applied to the ceramics molded body, which may cause minute distortions, cracks, or a slight twist.

また、セラミツクス成形体の亀裂のなかには、ラミネーションクラックと呼ばれる成形体中心部の割れ現象が知られている(Eds.G et al著「Ceramics processing before firing, 29章 Extrusion defects」,1978年発行)。可塑性材料は金属抵抗が強く、その界面を移動し易くするために小さい粒子が集まる結果、押出成形機のスクリュー接触部とバレル接触部には、可塑性材料中の微粒成分が集まり易い。成形体において、外周部は分散して存在するので問題にならないが、中心部は一箇所に集中するため、その他の箇所と性質が明らかに異なり、ラミネーションクラックの原因となる。
さらに、セラミツクスハニカム触媒等の成形体であれば、肉薄の微細な断面形状になればなるほど、押出成形時の僅かな応力の残留によって完全な寸法精度を維持することが困難となるばかりか乾燥時に歪や反り等の変形が発生するという課題が残されている。
Further, among the cracks in the ceramics molded body, a cracking phenomenon at the center of the molded body called a lamination crack is known (Eds. G et al, “Ceramics processing before firing, Chapter 29 Extrusion defects”, published in 1978). The plastic material has a strong metal resistance, and as a result of the collection of small particles for facilitating movement at the interface, the fine particle component in the plastic material tends to collect at the screw contact portion and the barrel contact portion of the extruder. In the molded body, there is no problem because the outer peripheral portion is dispersed, but the central portion is concentrated in one place, so the properties are clearly different from other places, causing a lamination crack.
Furthermore, in the case of a molded body such as a ceramic honeycomb catalyst, the thinner the cross-sectional shape is, the more difficult it is to maintain perfect dimensional accuracy due to the slight residual stress during extrusion molding, as well as during drying. There remains a problem that deformation such as distortion and warpage occurs.

特開2002−254419号公報(特許文献1)には、坏土流れをスムーズにでき発熱の心配がなく、薄壁でも正常のセラミックハニカムを押出成形可能とするために、坏土流れの上流側から、主要部が2軸スクリュー部、整流部、異物除去装置部、先金押出部で構成されるセラミックハニカム用押出機において、整流部を、上流側から、縮小部、円筒部および拡大部で構成し、縮小部の2軸スクリュー部側入口形状を2軸スクリュー部の出口形状と同一形状とするとともに、縮小部の円筒部側出口形状を円筒部の入口形状と同一形状とし、拡大部の円筒部側入口形状を円筒部の出口形状と同一形状とするとともに、拡大部の異物除去装置部側出口形状を異物除去装置部の入口形状と同一形状としたセラミックハニカム用押出機が開示されている。   Japanese Patent Laid-Open No. 2002-254419 (Patent Document 1) discloses an upstream side of the clay flow so that the clay flow can be made smooth and there is no fear of heat generation, and a normal ceramic honeycomb can be extruded even with a thin wall. From the upstream side, the rectification unit is made up of the reduction unit, the cylindrical unit, and the expansion unit in the extruder for ceramic honeycomb, the main part of which is composed of a biaxial screw unit, a rectification unit, a foreign substance removal device unit, and a tip extrusion unit. The biaxial screw portion side inlet shape of the reduced portion is made the same shape as the outlet shape of the biaxial screw portion, and the cylindrical portion side outlet shape of the reduced portion is made the same shape as the inlet shape of the cylindrical portion. A ceramic honeycomb extruder is disclosed in which the shape of the cylindrical portion side inlet is the same shape as the outlet shape of the cylindrical portion, and the foreign matter removing device side outlet shape of the enlarged portion is the same shape as the inlet shape of the foreign matter removing device portion. There.

また、特開平5−253914号公報(特許文献2)には、オーガー式連続押出成形機を用いてセラミック坏土を成形するに当り、坏土供給用スクリューと成形ダイスとの間に押出機の有するスクリューの溝方向と逆方向の傾斜孔を有する整流板を設けることによって、「くせ」のない坏土からセラミック成形体を成形する発明が開示されている。   Japanese Patent Laid-Open No. 5-253914 (Patent Document 2) discloses that when forming a ceramic clay using an auger type continuous extrusion molding machine, an extruder is provided between the clay supply screw and the forming die. An invention has been disclosed in which a ceramic molded body is formed from a clay without “garbage” by providing a baffle plate having an inclined hole in a direction opposite to the groove direction of the screw.

しかしながら、上記従来の押出成形機では、排ガス処理用触媒のように大きな形状の触媒を押出成形する場合、ハニカム内部にクラック(ひび割れ)が多数生じ、触媒強度が弱くなるなどの問題が未解決であった。
特開2002−254419号公報 特開平5−253914号公報
However, in the above-described conventional extrusion molding machine, when a large-sized catalyst such as an exhaust gas treatment catalyst is extruded, problems such as a large number of cracks (cracks) are generated inside the honeycomb and the catalyst strength is weak. there were.
JP 2002-254419 A JP-A-5-253914

本発明の目的は、押し出された可塑性材料の回転履歴や層状構造を圧力負荷が小さい状態で解消して、曲りや反り、内部欠陥の少ない成形物を得ることのできる押出成形機およびその押出成形機を用いた成形方法を提供することにある。
また、本発明は特に、形状の大きなセラミックスハニカム成形体を押出成形しても成形体内部にクラックの発生が殆どなく、強度の強いハニカム成形体を得ることができる押出成形機およびその押出成形機を用いた成形方法を提供することにある。
An object of the present invention is to eliminate an extrusion history and a layered structure of an extruded plastic material in a state where a pressure load is small, and to obtain a molded product with less bending, warping, and internal defects, and the extrusion molding thereof It is to provide a molding method using a machine.
In particular, the present invention provides an extrusion molding machine capable of obtaining a honeycomb molded body having a high strength with almost no cracks generated in the molded body even when a ceramic honeycomb molded body having a large shape is extruded. It is providing the shaping | molding method using this.

本発明は、供給用スクリューと成形ダイスの間に可塑性材料の流れを整えるための筒状整流部を備えた押出成形機において、前記整流部内に入口と出口を結ぶ複数の流路を形成して可塑性材料の流れを分割し、整流部入口において中心部に流入する可塑性材料を整流部出口において周縁部に、整流部入口において周縁部に流入する可塑性材料を整流部出口において中心部に、それぞれ変更することを特徴とするものである。
前記流れを周縁部から中心部に変更する流路を直管群により形成し、整流部入口において該直管群の入口端を整流部の内壁に接触させて分散配置し、整流部出口において該直管群の出口端を整流部の中心部に集合配置したことが好ましい。
前記流れを周縁部から中心部に変更する流路が、4〜16本のいずれか複数本の直管群により前記整流部内に軸対象に形成されてなることが好ましい。
The present invention provides an extrusion molding machine having a cylindrical rectification unit for adjusting the flow of a plastic material between a supply screw and a molding die, and forming a plurality of flow paths connecting an inlet and an outlet in the rectification unit. Divide the flow of the plastic material and change the plastic material flowing into the central part at the rectifying unit inlet to the peripheral part at the rectifying part outlet, and the plastic material flowing into the peripheral part at the rectifying part inlet into the central part at the rectifying unit outlet. It is characterized by doing.
A flow path for changing the flow from the peripheral part to the central part is formed by a straight pipe group, and the inlet end of the straight pipe group is in contact with the inner wall of the rectifying part at the rectifying part inlet, and the flow path is changed at the outlet of the rectifying part. It is preferable that the outlet ends of the straight pipe group are collectively arranged at the center of the rectifying unit.
It is preferable that the flow path for changing the flow from the peripheral part to the central part is formed on the rectifying part as an axial object by any one of 4 to 16 straight pipe groups.

本発明の押出成形方法は、前記押出成形機を用いて可塑性材料を押出成形するものであり、また、本発明のセラミックスハニカム成形体の押出成形方法は、前記押出成形機を用いてセラミックスハニカム成形体を押出成形するものである。   The extrusion molding method of the present invention is a method of extruding a plastic material using the extrusion molding machine, and the extrusion molding method of the ceramic honeycomb molded body of the present invention is a ceramic honeycomb molding using the extrusion molding machine. The body is extruded.

本発明の押出成形機によれば、強度が高く、内部にクラックのない成形体を成形することができる。
また、本発明の押出成形機によれば、整流部近辺の内圧を低く設定して押出成形することができ、捏和物への圧力負荷が軽減される。従って、特に圧力負荷に対し離水して固化し易い可塑性材料の押出成形に有効である。即ち、押し出された捏和物の回転履歴や層状構造を、圧力負荷が小さい状態で解消することができ、この結果、成形物の曲りや反り、内部欠陥を防止することができるものである。
According to the extrusion molding machine of the present invention, a molded body having high strength and having no cracks inside can be molded.
Moreover, according to the extrusion molding machine of the present invention, extrusion molding can be performed by setting the internal pressure in the vicinity of the rectifying unit low, and the pressure load on the kneaded product is reduced. Therefore, it is particularly effective for extrusion molding of a plastic material that is easily solidified by water separation with respect to a pressure load. That is, the rotation history and the layered structure of the extruded kneaded product can be eliminated in a state where the pressure load is small, and as a result, bending, warping, and internal defects of the molded product can be prevented.

さらに、可塑性材料は成形機スクリューおよびバレルにより、状況に応じ冷却あるいは加温されるが、オーガー式押出成形機の場合、押出方向に対し垂直面においては温度分布が発生するため成形体の押し出され方が不均一となる問題があった。しかしながら、本発明の押出成形機によれば、可塑性材料をバレル内で無理なく混合できるため、温度分布が小さく(緩やかに)なり成形体の押し出され方を均一にすることができる。   In addition, the plastic material is cooled or heated depending on the situation by the molding machine screw and barrel. However, in the case of an auger type extrusion molding machine, a temperature distribution is generated in a plane perpendicular to the extrusion direction, so that the molded body is extruded. However, there was a problem of non-uniformity. However, according to the extrusion molding machine of the present invention, since the plastic material can be mixed without difficulty in the barrel, the temperature distribution becomes small (slow), and the extruded form can be made uniform.

以下、図面を参照しながら本発明の好適な実施形態を説明する。
図1は本発明に係る押出成形機10の要部縦断側面図であり、可塑性材料は図面左方に位置する供給用スクリュー11が設けられた供給部12から、筒状の整流部20を経由して、成形ダイス13が設置された押出部14へと流れるようになっている。供給部12、整流部20、押出部14はフランジ接続されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional side view of an essential part of an extrusion molding machine 10 according to the present invention, and a plastic material is supplied from a supply part 12 provided with a supply screw 11 located on the left side of the drawing through a cylindrical rectification part 20. And it flows to the extrusion part 14 in which the shaping | molding die 13 was installed. The supply unit 12, the rectification unit 20, and the extrusion unit 14 are flange-connected.

本発明において可塑性材料の流れを整えるための整流部20には、図1において複数本の矢印を以て示すように、整流部入口(a−a)と整流部出口(b−b)を結ぶ複数の流路を形成して可塑性材料の流れを分割する。即ち、整流部入口(a−a)において中心部に流入した可塑性材料は、整流部出口(b−b)において整流部20の周縁部に流出させる。一方、整流部入口(a−a)において周縁部に流入した可塑性材料を整流部出口(b−b)において整流部20の中心部に流出させる。   In the rectifying unit 20 for adjusting the flow of the plastic material in the present invention, as shown by a plurality of arrows in FIG. 1, a plurality of rectifying unit inlets (aa) and rectifying unit outlets (bb) are connected. A flow path is formed to divide the flow of the plastic material. That is, the plastic material that has flowed into the central part at the rectifying unit inlet (aa) flows out to the peripheral part of the rectifying unit 20 at the rectifying unit outlet (bb). On the other hand, the plastic material that has flowed into the peripheral portion at the rectifying unit inlet (aa) is caused to flow out to the central portion of the rectifying unit 20 at the rectifying unit outlet (bb).

上記可塑性材料の流れを分割する流路は、例えば図2に示すように、4本の直管22により形成し、整流部入口(a−a)では直管22の入口端22aを整流部20の内壁に接触させて分散配置し、整流部出口(b−b)では直管22の出口端22bを整流部20の中心部に集合配置する。本実施形態によれば、整流部入口(a−a)において周縁部に供給された可塑性材料の一部は、直管22群を流れて整流部出口(b−b)では整流部20の中心部に集められる。一方、整流部入口(a−a)において中心部に供給された可塑性材料は、直管22群の外周を迂回して整流部出口(b−b)では整流部20の周縁部に分散する。直管22群は整流部入口(a−a)から整流部出口(b−b)にかけて軸心部に絞られているので、中心部に供給された可塑性材料も周縁部に向けて流れ易くなっている。   For example, as shown in FIG. 2, the flow path for dividing the flow of the plastic material is formed by four straight pipes 22, and the straight end 22 a of the straight pipe 22 is connected to the straightening section 20 at the straightening section inlet (aa). The outlet end 22b of the straight pipe 22 is collectively arranged at the center of the rectification unit 20 at the rectification unit outlet (bb). According to the present embodiment, a part of the plastic material supplied to the peripheral portion at the rectifying unit inlet (aa) flows through the straight tube 22 group, and the center of the rectifying unit 20 at the rectifying unit outlet (bb). Collected in the department. On the other hand, the plastic material supplied to the central portion at the rectifying unit inlet (aa) bypasses the outer periphery of the straight tube 22 group and is dispersed at the peripheral portion of the rectifying unit 20 at the rectifying unit outlet (bb). Since the straight tube 22 group is narrowed to the axial center from the rectifying unit inlet (aa) to the rectifying unit outlet (bb), the plastic material supplied to the central part can easily flow toward the peripheral part. ing.

供給部12から整流部20に導入される可塑性材料は、それ自身が流通してきた部分の履歴を有している。即ち、可塑性材料が押出成形機10の供給部12から整流部20に入る際には、整流部20の中心部(即ち、スクリュー接触部)と最外周縁部(即ち、バレル接触部)には可塑性材料中の小さい粒子が集まり易く、それ以外の部分(即ち、中心部と最外周縁部の中間層)には大きい粒子が集まり易い。本発明の押出成形機10によれば、整流部20において可塑性材料を均質にすることができ、特にラミネーションクラックの原因となる中心部の微粒成分を分散することができる。また、この結果、可塑性材料の履歴を無くすことができる。   The plastic material introduced from the supply unit 12 to the rectification unit 20 has a history of the portion that has circulated itself. That is, when the plastic material enters the rectifying unit 20 from the supply unit 12 of the extrusion molding machine 10, the central part (that is, the screw contact portion) and the outermost peripheral edge portion (that is, the barrel contact portion) of the rectifying unit 20 are provided. Small particles in the plastic material tend to gather, and large particles tend to gather in other portions (that is, the intermediate layer between the central portion and the outermost peripheral portion). According to the extrusion molding machine 10 of the present invention, the plastic material can be made homogeneous in the rectifying unit 20, and in particular, the fine particle component at the center that causes the lamination crack can be dispersed. As a result, the history of the plastic material can be eliminated.

直管22の長さ、径、傾きは、使用する可塑性材料の性質を考慮して設計するが、特に、直管内部を流れる可塑性材料とそれ以外の部分を流れる可塑性材料の流れ速度が同じとなるようにすることが好ましい。また、直管の厚さは実用上強度的に問題のない程度まで薄くすること望ましい。
直管22の本数は、整流部20に導入される可塑性材料中心部の微粒成分の分散性および押出方向垂直面の均質性の点から出来る限り多い方が好ましいが、整流部の製造にかかるコストや技術的な点および可塑性材料への負荷低減の点において4〜16本、特に、4本、8本、または16本として、筒状整流部20内に軸対象となるように配置することが好ましい。
図2に示す例では、直管22群の出口端22bは整流部20の軸心側を、角度30度程度に短くカットすることにより、可塑性材料の流れをスムーズにしている。この角度は30〜60度の範囲にするのが好ましい。
The length, diameter, and inclination of the straight pipe 22 are designed in consideration of the properties of the plastic material used. In particular, the flow velocity of the plastic material flowing inside the straight pipe and the plastic material flowing in other portions is the same. It is preferable to do so. Further, it is desirable to reduce the thickness of the straight pipe to such an extent that there is no problem in practical strength.
The number of straight pipes 22 is preferably as large as possible from the viewpoints of the dispersibility of the fine particle component in the central part of the plastic material introduced into the rectifying unit 20 and the homogeneity of the vertical surface in the extrusion direction. 4 to 16, in particular, 4, 8, or 16 in terms of reducing the load on the plastic material and the technical point, it may be arranged so as to be an axial object in the cylindrical rectification unit 20. preferable.
In the example shown in FIG. 2, the outlet end 22 b of the straight tube 22 group cuts the axial center side of the rectifying unit 20 to a short angle of about 30 degrees, thereby smoothing the flow of the plastic material. This angle is preferably in the range of 30-60 degrees.

図3には、整流部20の変形例が示されている。本実施形態では、整流部入口(a−a)にフランジ23を設けた整流カセットとして、円筒形の整流部20における交換・脱着を容易にしたものである。この整流カセットでは、正面図(図3(1))と背面図(図3(2))に示すように、入口周縁部から出口中心部に流路変更するための直管24が、軸対象に4本配置されている。
直管24は断面が略ホームベース形状である以外は、図2の実施形態と同じである。直管24、24同士の間隙25は、可塑性材料を入口中心部から出口周縁部に流路変更するための流路である。なお、整流部入口(a−a)の周縁部に流入した可塑性材料の一部は、間隙25をほぼ直線的に流れて整流部出口(b−b)の周縁部に排出される。
以下、実施例を示して本発明を更に具体的に説明する。
FIG. 3 shows a modification of the rectifying unit 20. In the present embodiment, as a rectification cassette provided with a flange 23 at the rectification unit inlet (aa), replacement / desorption in the cylindrical rectification unit 20 is facilitated. In this rectification cassette, as shown in the front view (FIG. 3 (1)) and the rear view (FIG. 3 (2)), the straight pipe 24 for changing the flow path from the inlet peripheral portion to the outlet central portion is an axial object. 4 are arranged.
The straight pipe 24 is the same as the embodiment of FIG. 2 except that the cross section has a substantially home base shape. The gap 25 between the straight pipes 24 and 24 is a flow path for changing the flow path of the plastic material from the inlet center to the outlet peripheral edge. A part of the plastic material that has flowed into the peripheral portion of the rectifying unit inlet (aa) flows almost linearly through the gap 25 and is discharged to the peripheral portion of the rectifying unit outlet (bb).
Hereinafter, the present invention will be described more specifically with reference to examples.

参考例1Reference example 1

捏和物(a−1)の調製
硫酸法による酸化チタンの製造工程より得られる硫酸チタン溶液を熱加水分解してメタチタン酸スラリーを得た。このメタチタン酸スラリーを酸化チタンとして22.5kg取り出し、還流器付撹拌槽に仕込み、これにパラタングステン酸アンモニウム2.82kgを添加混合した後、15重量%アンモニア水30.5kgを加えてpHを9.5に調整した後、95℃で1時間に亘り十分な撹拌を行いつつ加熱熟成した。その後、冷却して該スラリーを取り出し、濾過、脱水、洗浄して、SO4が0.3wt%、Na2Oが0.01wt%の洗浄ケーキを得た。該洗浄ケーキを110℃で20時間乾燥した後、これを550℃で5時間焼成して、TiO2/WO3重量比が90/10の複合酸化物(a)を調製した。
次いで、複合酸化物(a)21.25kgに、モノエタノールアミン0.81kgにメタバナジン酸アンモニウム1.61kgを溶解した溶液を加え、次いでアンモニア水を加えてこの混合スラリーのpHを9とし、ニーダーにて加熱混練した。さらに、水およびグラスファイバー(以下、GFと略記することがある。)1.94kgと粘土0.83kgを添加し、60分間混練して捏和物(a−1)を調製した。
Preparation of kneaded product (a-1) A titanium sulfate solution obtained from the production process of titanium oxide by the sulfuric acid method was thermally hydrolyzed to obtain a metatitanic acid slurry. 22.5 kg of this metatitanic acid slurry was taken out as titanium oxide, charged into a stirring tank equipped with a reflux condenser, and 2.82 kg of ammonium paratungstate was added thereto and mixed, and then 30.5 kg of 15 wt% aqueous ammonia was added to adjust the pH to 9 After adjusting to 0.5, the mixture was aged by heating with sufficient stirring at 95 ° C. for 1 hour. Thereafter, the slurry was taken out by cooling, filtered, dehydrated, and washed to obtain a washed cake having SO 4 of 0.3 wt% and Na 2 O of 0.01 wt%. The washed cake was dried at 110 ° C. for 20 hours, and then fired at 550 ° C. for 5 hours to prepare a composite oxide (a) having a TiO 2 / WO 3 weight ratio of 90/10.
Next, a solution obtained by dissolving 1.61 kg of ammonium metavanadate in 0.81 kg of monoethanolamine was added to 21.25 kg of the composite oxide (a), then ammonia water was added to adjust the pH of the mixed slurry to 9, and the kneader And kneaded by heating. Further, 1.94 kg of water and glass fiber (hereinafter sometimes abbreviated as GF) and 0.83 kg of clay were added and kneaded for 60 minutes to prepare a kneaded product (a-1).

図3に示す整流カセットを内径105mmφの整流部20に組み込んだ真空押出成形機(宮崎鉄工(株)製、FM−100)を用い、捏和物(a−1)を外径73mm□、目開き2.25mm、壁厚0.45mm、長さ450mmのハニカム状に押出成形した。成形時における整流部20前後のバレル内圧力を、図1に示す圧力計P1と圧力計P2で測定した。測定結果を表1に示す。
得られた成形物を60℃で24時間乾燥後、500℃で3時間焼成して、重量比でTiO2−WO3/V25/GF/粘土が85/5/7/3の組成をもつハニカム触媒(A−1)を調製した。
ハニカム触媒(A−1)を貫通孔と平行に中心部で切断し内部を目視観察したところ、クラック(割れ)は認められなかった。
Using a vacuum extruder (FM-100, manufactured by Miyazaki Tekko Co., Ltd.) in which the rectifying cassette shown in FIG. 3 is incorporated in the rectifying unit 20 having an inner diameter of 105 mmφ, the kneaded product (a-1) has an outer diameter of 73 mm □, It was extruded into a honeycomb shape having an opening of 2.25 mm, a wall thickness of 0.45 mm, and a length of 450 mm. The pressure in the barrel before and after the rectifying unit 20 at the time of molding was measured with the pressure gauge P 1 and the pressure gauge P 2 shown in FIG. The measurement results are shown in Table 1.
The obtained molded product was dried at 60 ° C. for 24 hours and then calcined at 500 ° C. for 3 hours, and the composition of TiO 2 —WO 3 / V 2 O 5 / GF / clay was 85/5/7/3 by weight ratio. A honeycomb catalyst (A-1) having the following characteristics was prepared.
When the honeycomb catalyst (A-1) was cut at the center parallel to the through-hole and the inside was visually observed, no cracks were observed.

比較例1Comparative Example 1

図3に示す整流カセットに代えて、6.1mmφの貫通孔が151個穿孔された厚さ23mmの鋼板製の整流板を、整流部20に組み込んだ以外は実施例1と同様にして、ハニカム触媒(B−1)を調製した。圧力計P1と圧力計P2の測定結果を表1に示す。
ハニカム触媒(B−1)を貫通孔と平行に中心部を切断し、内部を目視観察したところ、45個のクラック(割れ)が認められた。
In place of the rectifying cassette shown in FIG. 3, a honeycomb rectifying plate made of 23 mm thick steel plate having 151 through holes of 6.1 mmφ was incorporated in the rectifying unit 20 in the same manner as in Example 1, except that A catalyst (B-1) was prepared. Table 1 shows the measurement results of the pressure gauges P 1 and P 2 .
When the central part of the honeycomb catalyst (B-1) was cut parallel to the through holes and the inside was visually observed, 45 cracks were observed.

比較例2Comparative Example 2

図3に示す整流カセットに代えて、図4に示すような厚さ23mmの鋼製リング30の開口中央部に、幅23mm、厚さ2mmのフラットバー31を格子状に組み込んだ整流板を、整流部20にセットした以外は実施例1と同様にして、ハニカム触媒(C−1)を調製した。圧力計P1と圧力計P2の測定結果を表1に示す。
ハニカム触媒(C−1)を貫通孔と平行に中心部を切断し、内部を目視観察したところ、40個のクラック(割れ)が認められた。
Instead of the rectifying cassette shown in FIG. 3, a rectifying plate in which a flat bar 31 having a width of 23 mm and a thickness of 2 mm is incorporated in a lattice shape at the center of the opening of a steel ring 30 having a thickness of 23 mm as shown in FIG. A honeycomb catalyst (C-1) was prepared in the same manner as in Example 1 except that the rectifying unit 20 was set. Table 1 shows the measurement results of the pressure gauges P 1 and P 2 .
When the center of the honeycomb catalyst (C-1) was cut parallel to the through holes and the inside was visually observed, 40 cracks were observed.

参考例2Reference example 2

捏和物(b−1)の調製
メタチタン酸スラリーを酸化チタンとして21.25kg取り出し、還流器付撹拌槽に仕込み、これにシリカゾル(SiO2濃度20wt%、商品名“カタロイドS−20L”触媒化成工業(株)製)6.25kgを添加混合した後、15重量%アンモニア水30.5kgを加えてpHを9.5に調整した後、95℃で1時間に亘り十分な撹件を行いつつ加熱熟成した。次いで、パラタングステン酸アンモニウム2.82kgを添加し、更に、95℃で1時間加熱熟成を行った。その後、冷却して該スラリーを取り出し、濾過、脱水、洗浄して、SO4が0.3wt%、Na2Oが0.01wt%の洗浄ケーキを得た。該洗浄ケーキを110℃で20時間乾燥した後、これを650℃で5時間焼成して、TiO2/SiO2/WO3重量比が85/5/10の複合酸化物(b)を調製した。
次いで複合酸化物(a)19.83kgと複合酸化物(b)3.75kgの混合物に、モノエタノールアミン0.25kgにメタバナジン酸アンモニウム0.23kgを溶解した溶液を加え、次いでアンモニア水を加えこの混合スラリーのpHを9とし、ニーダーにて加熱混練した。さらに、水およびグラスファイバー(GF)1.39kgを添加して60分間混練し、捏和物(b−1)を調製した。
Preparation of the kneaded product (b-1) 21.25 kg of the metatitanic acid slurry as titanium oxide was taken out and charged into a stirring tank equipped with a reflux condenser, and silica sol (SiO 2 concentration 20 wt%, trade name “Cataloid S-20L” catalyst chemical conversion) (Industry Co., Ltd.) 6.25 kg was added and mixed, then 30.5 kg of 15 wt% aqueous ammonia was added to adjust the pH to 9.5, and sufficient stirring was performed at 95 ° C. for 1 hour. Aged by heating. Next, 2.82 kg of ammonium paratungstate was added, and further heat aging was performed at 95 ° C. for 1 hour. Thereafter, the slurry was taken out by cooling, filtered, dehydrated, and washed to obtain a washed cake having SO 4 of 0.3 wt% and Na 2 O of 0.01 wt%. The washed cake was dried at 110 ° C. for 20 hours and then calcined at 650 ° C. for 5 hours to prepare a composite oxide (b) having a TiO 2 / SiO 2 / WO 3 weight ratio of 85/5/10. .
Next, a solution prepared by dissolving 0.23 kg of ammonium metavanadate in 0.25 kg of monoethanolamine was added to a mixture of 19.83 kg of the composite oxide (a) and 3.75 kg of the composite oxide (b). The mixed slurry was adjusted to pH 9 and kneaded by heating with a kneader. Further, 1.39 kg of water and glass fiber (GF) were added and kneaded for 60 minutes to prepare a kneaded product (b-1).

図3に示す整流カセットを内径105mmφの整流部20に組み込んだ真空押出成形機(宮崎鉄工(株)製、FM−100)を用い、該捏和物(b−1)を外径80mm□、目開き6.70mm、壁厚1.20mm、長さ450mmのハニカム状に押出成形した。成形時における整流部20前後のバレル内圧力を、図1に示す圧力計P1と圧力計P2で測定した。測定結果を表1に示す。
得られた成形物を60℃で24時間乾燥後、500℃で3時間焼成して、重量比でTiO2−WO3/TiO2−WO3−SiO2/V25/GFが79.3/15/0.7/5の組成をもつハニカム触媒(A−2)を調製した。
ハニカム触媒(A−2)を貫通孔と平行に中心部で切断し、内部を写実したスケッチを図5(A)に示す。また、該スケッチから数えたクラック(割れ)の個数を表1に示した。
Using a vacuum extrusion molding machine (FM-100, manufactured by Miyazaki Tekko Co., Ltd.) in which the rectifying cassette shown in FIG. 3 is incorporated in the rectifying unit 20 having an inner diameter of 105 mmφ, the kneaded product (b-1) is 80 mm □ in outer diameter, The resultant was extruded into a honeycomb shape having an opening of 6.70 mm, a wall thickness of 1.20 mm, and a length of 450 mm. The pressure in the barrel before and after the rectifying unit 20 at the time of molding was measured with the pressure gauge P 1 and the pressure gauge P 2 shown in FIG. The measurement results are shown in Table 1.
The obtained molded product was dried at 60 ° C. for 24 hours and then calcined at 500 ° C. for 3 hours, and the weight ratio of TiO 2 —WO 3 / TiO 2 —WO 3 —SiO 2 / V 2 O 5 / GF was 79.75. A honeycomb catalyst (A-2) having a composition of 3/15 / 0.7 / 5 was prepared.
FIG. 5A shows a sketch in which the honeycomb catalyst (A-2) is cut at the center in parallel with the through-hole and the inside is realized. Table 1 shows the number of cracks counted from the sketch.

比較例3Comparative Example 3

実施例2の整流カセットに代えて、比較例1で使用した鋼板製の整流板を整流部20に組み込んだ以外は実施例2と同様にして、ハニカム触媒(B−2)を調製した。圧力計P1と圧力計P2の測定結果を表1に示す。
ハニカム触媒(B−2)を貫通孔と平行に中心部で切断し、内部を写実したスケッチを図5(B)に示す。また、該スケッチから数えたクラック(割れ)の個数を表1に示した。
Instead of the rectifying cassette of Example 2, a honeycomb catalyst (B-2) was prepared in the same manner as in Example 2 except that the rectifying plate made of steel plate used in Comparative Example 1 was incorporated in the rectifying unit 20. Table 1 shows the measurement results of the pressure gauges P 1 and P 2 .
FIG. 5B shows a sketch in which the honeycomb catalyst (B-2) is cut at the center in parallel with the through hole and the inside is reproduced. Table 1 shows the number of cracks counted from the sketch.

比較例4Comparative Example 4

実施例2の整流カセットに代えて、比較例2で使用した鋼製整流板を整流部20にセットした以外は実施例2と同様にして、ハニカム触媒(C−2)を調製した。圧力計P1と圧力計P2の測定結果を表1に示す。
ハニカム触媒(C−2)を貫通孔と平行に中心部を切断し、内部を目視観察したところ、6個のクラック(割れ)が認められた。
Instead of the rectifying cassette of Example 2, a honeycomb catalyst (C-2) was prepared in the same manner as in Example 2 except that the steel rectifying plate used in Comparative Example 2 was set in the rectifying unit 20. Table 1 shows the measurement results of the pressure gauges P 1 and P 2 .
When the center part of the honeycomb catalyst (C-2) was cut in parallel with the through holes and the inside was visually observed, six cracks were observed.

[表1]
ハニカム 1 2 割れ
(MPa) (MPa) (箇所)
実施例1 (A−1) 4.0 3.0 0
比較例1 (B−1) 4.5 3.1 45
比較例2 (C−1) 4.1 3.0 40
実施例2 (A−2) 3.0 1.9 0
比較例3 (B−2) 3.2 2.0 5
比較例4 (C−2) 3.0 1.9 6
[Table 1]
Honeycomb P 1 P 2 crack
(MPa) (MPa) (Location)
Example 1 (A-1) 4.0 3.0 0
Comparative Example 1 (B-1) 4.5 3.1 45
Comparative Example 2 (C-1) 4.1 3.0 40
Example 2 (A-2) 3.0 1.9 0
Comparative Example 3 (B-2) 3.2 2.0 5
Comparative Example 4 (C-2) 3.0 1.9 6

上記比較例2および比較例4の結果から、図4に示すような整流板を使用することによって、供給部12から整流部20に導入される可塑性材料の押出方向垂直面の出速度(流れ)を、フラットバー31で部分的に調節しても、比較例1および比較例3で使用した均一な貫通孔を穿孔した整流板と同様に、ハニカム内部にはクラック(割れ)が生じたことが分かる。   From the results of Comparative Example 2 and Comparative Example 4, by using a rectifying plate as shown in FIG. 4, the exit speed (flow) of the vertical surface of the plastic material introduced from the supply unit 12 to the rectifying unit 20 is shown. Even when the flat bar 31 was partially adjusted, cracks were generated inside the honeycomb as in the case of the rectifying plate having the uniform through holes used in Comparative Example 1 and Comparative Example 3. I understand.

本発明の押出成形機は、プラスチック、セラミックスの押出成形に利用することができる。また、円筒、円柱、角筒、角柱、ハニカム、その他各種形状の成形体を押出成形することができる。   The extrusion molding machine of the present invention can be used for extrusion molding of plastics and ceramics. In addition, it is possible to extrude cylinders, columns, prisms, prisms, honeycombs, and other shaped articles.

本発明に係る押出成形機の要部縦断側面図である。It is a principal part vertical side view of the extrusion molding machine concerning the present invention. 本発明の整流部20の内部説明図であり、a−aは整流部入口の端面図であり、b−bは整流部出口の端面図である。It is internal explanatory drawing of the rectification | straightening part 20 of this invention, aa is an end elevation of a rectification part entrance, bb is an end elevation of a rectification part exit. 整流部20の変形態様を示しており、図3(1)は正面図、図3(2)は背面図、図3(3)は正面側斜視図、図3(4)は背面側斜視図である。FIG. 3 (1) is a front view, FIG. 3 (2) is a rear view, FIG. 3 (3) is a front perspective view, and FIG. 3 (4) is a rear perspective view. It is. 比較例2および比較例4で使用した鋼製整流板を、正面やや上方から見た斜視図である。It is the perspective view which looked at the steel rectifier plate used by the comparative example 2 and the comparative example 4 from the front a little upwards. 図5(A)はハニカム触媒(A−2)の内部を切断したスケッチ図であり、図5(B)はハニカム触媒(B−2)の内部を切断したスケッチ図である。FIG. 5A is a sketch drawing of the inside of the honeycomb catalyst (A-2), and FIG. 5B is a sketch drawing of the inside of the honeycomb catalyst (B-2).

符号の説明Explanation of symbols

10 押出成形機の要部
11 供給用スクリュー
12 供給部
13 成形ダイス
14 押出部
20 整流部
22 流路としての直管
22a 直管の入口端
22b 直管の出口端
24 流路としての直管
25 流路としての間隙
DESCRIPTION OF SYMBOLS 10 Main part of an extrusion molding machine 11 Supply screw 12 Supply part 13 Forming die 14 Extrusion part 20 Straightening part 22 Straight pipe 22a as flow path Inlet end 22b of straight pipe Outlet end 24 of straight pipe Straight pipe 25 as flow path Gaps as flow paths

Claims (4)

供給用スクリューと成形ダイスの間に可塑性材料の流れを整えるための筒状整流部を備えた押出成形機において、前記整流部内に入口と出口を結ぶ複数の流路を形成して可塑性材料の流れを分割し、整流部入口において中心部に流入する可塑性材料を整流部出口において周縁部に、整流部入口において周縁部に流入する可塑性材料を整流部出口において中心部に、それぞれ変更する押出成形機であって、
前記流れを周縁部から中心部に変更する流路を直管群により形成し、整流部入口において該直管群の入口端を整流部の内壁に接触させて分散配置し、整流部出口において該直管群の出口端を整流部の中心部に集合配置したことを特徴とする押出成形機。
In an extrusion molding machine having a cylindrical rectification unit for adjusting the flow of a plastic material between a supply screw and a molding die, a plurality of flow paths connecting an inlet and an outlet are formed in the rectification unit, and the flow of the plastic material Extruders that change the plastic material flowing into the central part at the rectifying unit inlet to the peripheral part at the rectifying part outlet and the plastic material flowing into the peripheral part at the rectifying part inlet into the central part at the rectifying part outlet Because
A flow path for changing the flow from the peripheral portion to the central portion is formed by a straight pipe group, and the inlet end of the straight pipe group is in contact with the inner wall of the rectifying section at the inlet of the rectifying section, and the flow path is changed at the outlet of the rectifying section. An extrusion molding machine characterized in that the outlet ends of the straight tube group are collectively arranged at the center of the rectifying unit .
前記流れを周縁部から中心部に変更する流路が、4〜16本のいずれか複数本の直管群により前記整流部内に軸対象に形成されてなる請求項記載の押出成形機。 A flow path for changing the flow in the central portion from the peripheral portion, an extrusion molding machine according to claim 1, wherein comprising formed in axial symmetry to the rectifying portion by a straight tube bundle of one plurality of 4 to 16 present. 請求項1または2に記載の押出成形機を用いて可塑性材料を押出成形する押出成形方法。 An extrusion molding method for extruding a plastic material using the extrusion molding machine according to claim 1 or 2 . 請求項記載の方法によりセラミックスハニカム成形体を押出成形するセラミックスハニカム成形体の押出成形方法。 A method for extruding a ceramic honeycomb formed body by extruding a ceramic honeycomb formed body by the method according to claim 3 .
JP2004290851A 2004-10-04 2004-10-04 Extruder and molding method Active JP4410649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290851A JP4410649B2 (en) 2004-10-04 2004-10-04 Extruder and molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290851A JP4410649B2 (en) 2004-10-04 2004-10-04 Extruder and molding method

Publications (2)

Publication Number Publication Date
JP2006103072A JP2006103072A (en) 2006-04-20
JP4410649B2 true JP4410649B2 (en) 2010-02-03

Family

ID=36373323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290851A Active JP4410649B2 (en) 2004-10-04 2004-10-04 Extruder and molding method

Country Status (1)

Country Link
JP (1) JP4410649B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171043B2 (en) * 2007-01-09 2013-03-27 日揮触媒化成株式会社 Extrusion machine
CN107322766A (en) * 2017-08-28 2017-11-07 天津宏辉创意科技有限公司 A kind of novel extrusion brick mud cake extrusion molding apparatus

Also Published As

Publication number Publication date
JP2006103072A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
EP1844918B1 (en) Extrusion-molding machine and method for manufacturing honeycomb structured body
WO1998005602A1 (en) Ceramic honeycomb structure and method of production thereof
US11642813B2 (en) Ceramic honeycomb bodies, honeycomb extrusion dies, and methods of making ceramic honeycomb bodies
WO2003091182A1 (en) Honeycomb structure producing method, and honeycomb structure
DE112013000714T5 (en) Honeycomb structural body
EP1594687A2 (en) Ceramic honeycomb body and process for manufacture
CN108698252B (en) Extrusion assembly for honeycomb bodies
EP2641644B1 (en) Honeycomb structure and manufacturing method of honeycomb structure
EP2233265B1 (en) Extrusion-forming device and method for manufacturing formed article by use of the device
JP2006239603A (en) Honeycomb structural body
EP1341650A1 (en) Method for extruding ceramic honeycombs
EP3171961B1 (en) Honeycomb monolith structure
DE102019203984A1 (en) Conductive honeycomb structure
JP4410649B2 (en) Extruder and molding method
DE102019107525A1 (en) Porous material, cell structure and method of making porous material
JP5171043B2 (en) Extrusion machine
JP5478308B2 (en) Filter and manufacturing method thereof
JP2021531994A (en) High isostatic strength honeycomb structures and extrusion dies for honeycomb structures
CN210880198U (en) Ceramic pipe fitting die with novel structure
CN104797390B (en) It can extrude the bi-material layers mould and method of material for crush and grind
JPH08169005A (en) Honeycomb molding mouthpiece and manufacture of honeycomb molding
JP4916405B2 (en) Manufacturing method of honeycomb structure
CN114849683B (en) Preparation method of low-deformation ultrathin-wall honeycomb ceramic carrier
EP3192630B1 (en) Extrusion die
US20150008625A1 (en) Method of producing honeycomb structured body, and die for extrusion molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R150 Certificate of patent or registration of utility model

Ref document number: 4410649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250