以下、添付図面を参照して本発明の望ましい実施の形態を詳細に説明する。
いま、幅T0、ピークパワーP0の光パルスU(z,T)が光ファイバ中を伝搬する場合を考える。ここに、Tは光パルスとともに動く座標系での時間である。この光ファイバの波長分散β2があまり大きくなく、分散長LD=T0 2/|β2|が光パルスに対する非線形長LNL=1/γP0(γは3次非線形定数)に比べて十分長い(LD≫LNL)場合には、SPM(自己位相変調)による位相シフトφNL(z,L)は以下のように表せる。
ここに、zeff=[1−exp(−αz)]/αは有効(非線形)相互作用長である。
このとき、チャープδωNLは以下で与えられる。
|U(0,T)|2はピークパワーに相当するから、(2)式によれば、光パルスの各部分におけるチャーピングは、パワー傾斜がきつい部分ほど大きくなる。また、伝搬距離zが長くなり非線形長LNLが短くなる(γP0が大きくなる)とともに大きくなる。こうして、SPMによるチャーピングは新しい周波数成分を光パルスに与え、結果としてスペクトルを拡大する。
特に、用いるパルスが数ps或いはそれより短いパルスであり、しかもピークパワーが数ワット或いはそれよりも大きい場合には、チャープδωNLは非常に大きなものとなり、所謂スーパーコンティニューム(Supercontinuum:SC)と称される広帯域スペクトルを有する光(SC光)となる。例えば光ファイバ中の3次非線形効果の応答時間はフェムト秒オーダであるため、SC光の各スペクトル成分はもとの入力信号パルスにほぼ完全に同期している。従って、光帯域通過フィルタを用いてSC光の一部を取り出すと、入力信号パルスに同期した1つ又は複数のパルスを抽出することができる。このことは、SC光の帯域内の任意の波長の入力信号パルスに同期したパルスを生成可能であることを示している。
一例として、m次のスーパーガウシアン(Super−Gaussian)型の光パルス
を光ファイバに入力する場合を考えると、(2)式より、
である。特に、通常のガウシアン(Gaussian)パルス(m=1)については、
である。(3)−(5)式の様子を図1の(A)及び(B)に示す。図1の(A)及び(B)において、実線はガウシアンパルス(m=1)の場合を示しており、破線はm=3のときのスーパーガウシアンパルスの場合を示している。パルスのスロープに沿ってチャープが発生し、先頭部分では、δω<0、後尾部分ではδω>0となる(アップチャープ)。また、ガウシアンパルスにおいては、パルスのピーク付近ではほぼ線形なチャープとなっている。
図1の(A)及び(B)は、光パルスにSPMによるチャープを与えることによって、パルスの時間成分をスペクトル上で分解できることを示している。特に重要なのは、チャープの大きなスロープ中央付近とチャープの小さなピーク付近及び裾部分とを区別できる点である。このことを用いて、例えばピーク及び裾付近の微小なパワー変動や累積した雑音を光フィルタを用いて除去することができる。
即ち、先ず光パルスを光ファイバ中を伝搬させ、強制的にSPMを発生させ、チャープの大きな部分と小さな部分に周波数的に分離した後、チャープの小さな(δω〜0)付近のスペクトル成分を光バンドストップフィルタ(BSP)を用いて集中的に除去する。
このようにして、全光2R(リアンプリフィケイション及びリシェイピング)再生を行う方法については既に特願2000―34454号(平成12年2月14日出願)において示した。もし、信号パルスが十分にピークパワーの大きな短パルスであるとすると、SPMによるチャーピングによりSC光が発生する。このようなSC光においても、スペクトルの中心波長(入力信号光の波長)付近には、上述と同様に比較的小さなチャープの雑音成分が集中する。従って、このように雑音が多く含まれる帯域よりも外側のスペクトル成分から光帯域通過フィルタにより抽出すれば、雑音が除去されたクロックパルスを再生することができる。
SPMによるチャープを効果的に発生させるためには、波長に依存しない小さな正常分散を与える分散フラットファイバ(DFF)を用いたり、光ファイバのγ値を大きくすることが有効である。DFFは例えばコア径や比屈折率差を適切に制御することにより得ることができる。一方、光ファイバのγは、
で表される。ここに、ωは光角周波数、cは真空中の光速を表し、n2とAeffはファイバの非線形屈折率と有効コア断面積をそれぞれ表す。従来のDSF(分散シフトファイバ)の非線形係数はγ=2.6W-1km-1程度と小さいので、十分なチャープを得るためには数km〜10km以上の長さが必要であった。より短尺で十分大きなチャープを発生するためには、(6)式においてn2を大きくするかモード・フィールド径(MFD)、従ってAeffを小さくして光強度を高くするのが有効である。n2を大きくする手段としては、クラッドにフッ素等を添加し、コアにGeO2等をかなり高濃度に添加するなどの方法がある。GeO2の添加濃度が25〜30mol%の場合で5×10-20m2/W以上の大きなn2値が得られている(通常のシリカファイバではn2〜3.2×10-20m2/W)。一方、MFDを小さくすることは、コアとクラッドの比屈折率差やコア形状の設計により可能である。上記GeO2添加ファイバにおいて比屈折率差Δが2.5〜3%程度の場合に、MFD〜4μm程度のものが得られている。これらの効果の総合効果として15W-1km-1以上の大きなγ値のファイバが得られている。
また、分散長を非線形長に比べて十分長くしたり、チャープ補償をするためには、こうしたファイバのGVDを任意に調整可能であることが望まれる。この点に関しても上記パラメータを以下のように設定することにより可能である。先ず、通常のDCFにおいて、一般にMFDを一定にした条件でΔを大きくすると分散値は正常分散領域で大きくなる。一方、コア径を大きくすると分散は減少し、逆にコア径を小さくすると分散は大きくなる。従って、与えられた波長帯においてMFDをある値に設定した状態で、コア径を大きくしていくと分散を零とすることが可能となる。逆に所望の正常分散ファイバを得ることも可能である。
このような方法により、γ=15W-1km-1以上の高非線形分散シフトファイバ(HNL−DSF)やDCF(分散補償ファイバ)が実現している。例えば、γ=15W-1km-1のファイバは通常のDSFに比べて2.6/15〜1/5.7程度の長さで同じ効率を達成可能である。上記のように通常のDSFでは10km程度の長さが必要であるが、このようなファイバでは1〜2km程度の長さで同様の効果が達成できる。実際には、短くなる分損失が少なくなるから更に短い長さでよい。
図2は本発明による装置の第1実施形態を示すブロック図である。非線形光学効果を提供する光導波構造として、光ファイバ2が用いられている。光ファイバ2のGVDはβ2であり、光ファイバ2は例えば供給された光信号に正常分散及び3次の非線形光学効果を与える。
中心波長λSを有する光信号としての信号パルス4は、光増幅器6により所要のチャーピングを発生させるのに十分な程度のパワーまで増幅された後、光ファイバ2に入力される。光ファイバ2内においては、SPMによりチャーピングが発生し、スペクトルが拡大(拡散)される。チャーピングが与えられて光ファイバ2から出力された出力光信号は、通過帯域の中心波長がλS´の光帯域通過フィルタ(BPF)8を通過してチャーピングの小さい成分以外の成分が抽出されて、中心波長λS´を有する再生パルス10が出力される。
チャーピングの小さな成分には、主にオフパワー(0符合)成分の零点からの変動分(例えばGVDによる波形劣化)やパルスのピーク付近のスロープの小さな成分が含まれる。これらの成分は光信号対雑音比(OSNR)を決定付けるものであるので、この部分をBPFにより除去することにより、これらの成分のパワー変動、消光比劣化、雑音累積等によるOSNRの低下を改善することができる。従って、本発明により、OSNRの改善を伴う波長変換及びクロックパルスの抽出が可能になる。
BPF8の通過帯域の中心波長λS´は、雑音を含むチャープの小さい成分が出力信号パルス10に含まれないように、信号パルスの中心波長λSから十分にしておくことが望ましい。また、BPF8の通過帯域の幅及び形状は、必要とされるパルスの幅及び形状に応じて適宜設定しておくことが望ましい。基本的には、入力信号パルス4のスペクトル形状とほぼ等しく設定される。
ここで、本発明の実施可能性を評価するために、チャープの程度を見積っておく。例えばT0=5psのパルスがβ2=1ps2/km、γ=20W-1km-1の正常分散ファイバを伝搬する場合を考える。P0=1W程度で入力するとすると、LD=25km、LNL=0.05kmであるから、LD≫LNLが成り立つ。従って、ここではチャープに対する分散の影響は無視する。
このときチャープδωは、L=0.5kmのとき1.68THz(13nm)である。同様の条件でP0=2Wとすれば、3.33THz(26nm)となる。5〜10psの短パルスに対しては、例えば40Gb/s程度の信号であっても、1W程度のピークパワーは比較的容易に実現可能であり、上記見積もりを考慮しても本発明は実施可能である。
図3は本発明による装置の第2実施形態を示すブロック図である。この実施形態では、複数の(図では2つの)通過帯域を有する光帯域通過フィルタ8が用いられている。これらの通過帯域の中心波長は、λS´及びλS´´である。このように多峰性のBPFを用いることによって、中心波長λS´及びλS´´を有する2つの光信号を含む出力WDM信号パルスを得ることができる。多峰性のBPFとしては、AWG(アレイドウエイブガイド)やインターリーバフィルタ、或いはタンデム接続されたファイバグレーティング等を用いることができる。
次に、図4を用いて、本発明による雑音除去の原理について説明する。
図4は本発明による処理前の信号パルス内の強度揺らぎを示しており、その横軸は時間(T)である。このパルスの各部分のSPMによるチャーピングを考えると、先ず、a及びa´の部分は光増幅器の自然放出光(ASE)雑音或いはファイバ伝送による波形歪等に由来するものである。a及びa´で示される部分は本来零レベルにあるべきであり、従って強度が低い。従って、a及びa´で示される部分は、光ファイバ内で受けるチャープも小さい。
次に、b及びb´で示されるように、パルスのピーク付近及びスロープ上の揺らぎは主に信号パルスと光増幅器のASEとのビート雑音、光ファイバ伝送による波形歪み等によるものであり、信号の帯域と同等或いは若干広い帯域を持つものであるから、傾斜はパルス自体の傾斜と同等か或いは若干きつい程度である。この場合の強度の変動の山と谷の部分では、傾斜が零となるため、その付近のチャープは小さい。
但し、c及びc´で示されるように、極端にピーキーな変動成分も存在するであろう。このような特異点では、チャープがパルス自体のスロープにおけるものよりも大きく、スペクトルはメインスロープのそれよりも外側に位置する。
従って、比較的チャープの小さな成分及び特異点の部分から発生するような極端にチャープの大きなチャープ成分を除いたスペクトル成分からBPFにより抽出した光パルスは、雑音による強度揺らぎが抑圧されたものとなる。
図5は本発明により抽出される全体の透過帯域(通過帯域)を示している。ここでは、中心波長λSの信号スペクトルに対して波長λSに関して対象な2つの透過帯域が与えられている。2つの透過帯域の間の阻止帯域は例えば光バンドストップフィルタによって与えられ、2つの透過帯域の外側の阻止帯域は例えば光バンドパスフィルタによって与えられる。この場合、光バンドストップフィルタによる阻止帯域のほうが光バンドパスフィルタの通過帯域よりも狭い。2つの透過帯域の間の阻止帯域によって図4にa,a´,b及びb´で示される雑音成分を除去することができ、2つの透過帯域の外側の阻止帯域によってc及びc´で示される雑音成分を除去することができる。
光バンドストップフィルタとしては、例えば狭帯域のファイバグレーティングを用いることができる。また、光バンドパスフィルタとしては、ファイバグレーティングによる反射を用いたり或いはダブルキャビティ型の多層膜フィルタ等の高次フィルタを用いることができる。
ところで、図5においては、中心付近の強度が最も大きな形でスペクトルが表示されているが、分散やパルスのパワーを適当に設定すると、スペクトルの形状をフラットにすることが可能である。正常分散(β2>0)に設定した場合などがそうであるし、(この場合パルスは矩形状に広がりつつチャープしていく)、極端な場合には、スーパーコンティニューム(Supercontinuum)と称される超広帯域の白色スペクトルになる(この場合にはSPMだけでなく四光波混合等の寄与が大きい)。こうしたフラットなチャープスペクトルに本発明を適用すれば、入力ピークパワーに依存しない一定の出力が得られるので、ピーク付近の揺らぎを効果的に抑圧することができる。
図6は本発明による装置の第3実施形態を示すブロック図である。中心波長λSを有する入力信号光12は、タイミング抽出光回路14に供給され、中心波長λS’を有するクロックパルス16が抽出される。クロックパルス16は、光増幅器6により所要のチャーピングを発生させるのに十分な程度のパワーまで増幅された後、非線形光学効果を提供する光導波構造としての光ファイバ2に入力される。光ファイバ2内においては、SPMによりチャーピングが発生し、スペクトルが拡大される。チャーピングが与えられて光ファイバ2から出力された出力光信号は、通過帯域の中心波長がλS’’の光帯域通過フィルタ8を通過してチャーピングの小さい成分以外の成分が抽出されて、中心波長λS’’の出力クロックパルス18が出力される。
この実施形態によると、タイミング抽出光回路により発生させたクロックパルス16に各種の雑音や波形歪がある場合でも、それらを抑圧し、より品質の高いクロックパルスを得ることができる。また、タイミング抽出光回路により発生したクロックパルスの波長が元の信号波長と異なる場合(λS≠λS’)であっても、λS’’=λSとなるように光帯域通過フィルタ8の通過帯域の中心波長を設定することによって、もとの信号波長と同じ波長を有するクロックパルスを発生することができる。更に、光帯域通過フィルタ8の通過帯域の中心波長を適宜設定することによって、任意の波長を有するクロックパルスを発生することができる。
図7は本発明によるシステムの実施形態を示すブロック図である。このシステムは、光信号を伝送する第1の光ファイバ伝送路20と、第1の光ファイバ伝送路により伝送された光信号が入力される光中継器22と、光中継器22から出力された光信号を伝送する第2の光ファイバ伝送路24とを備えている。
第1の光ファイバ伝送路20から光中継器22に供給される光信号は、波長λSの入力信号光26であり、光中継器22から第2の光ファイバ伝送路24に供給される光信号は、波長λS’の出力信号光28である。
光中継器22は本発明による装置の構成を含むことができる。より特定的には次の通りである。
入力信号光26は、光増幅器30により増幅された後、光分岐器32により第1及び第2の光信号に分岐される。第1の光信号は波形成形器38に入力され、本発明によるタイミング抽出器34が第2の光信号に基づいてクロックパルス36を生成する。クロックパルス36の波長はλS’である。波形成形器38から出力された光信号及びタイミング抽出器34から出力されたクロックパルス36は光AND回路40に入力される。その結果、光AND回路40から出力信号光28が出力される。タイミング抽出器34は例えば図2に示される実施形態によって提供され得る。
この実施形態によると、本発明による装置をタイミング抽出器34に適用しているので、雑音や波形歪が抑圧された品質の高いクロックパルスを得ることができ、効果的な3R再生が実現可能である。尚、光AND回路40としてNOLM(非線形光学ループミラー)やマッハツェンダ干渉器等の光ゲートを用いる場合には、信号光の持つ情報はクロックパルスに転化されるので、出力信号光28の波長はクロックパルス36の波長に一致する。また、このような光ゲートを用いることによって、光AND動作と共に波形成形効果も得られる。
図7に示される実施形態では、タイミング抽出器34に本発明による装置を適用しているが、波形整形器38に本発明による装置を適用することもできる。
光ファイバ伝送路20及び24の各々としては、単一モードのシリカファイバ(SMF)を用いることができ、その例としては、1.3μm零分散ファイバや1.55μm分散シフトファイバ(DSF)がある。光ファイバ伝送路20及び24の各々は、少なくとも1つの光増幅器を含む光増幅中継伝送路であり得る。この場合、光信号の減衰を光増幅器により補償することができるので、長距離伝送が可能になる。
本発明を実施するに際しては、効果的にチャープを発生させるために、伝送路のGVDや非線形効果による波形歪は予め補償しておくことが望ましい。従って、光ファイバ伝送路20及び24の各々には、適当な分散補償器或いは光位相共益器等が含まれる場合がある他、光ソリトン伝送が行われる場合もある。
本発明によれば、高品質なタイミング再生が可能であるので、本発明を中継器に適用する場合には伝送路途中でのS/N比の改善が、また本発明を受信機に適用する場合には、受信感度の改善等が可能となる。
ところで、従来、光クロックを発生するには、入力信号光を一旦光/電気変換機により電気信号に変換した後、電気的にクロックを抽出し、再びレーザで光信号に変換することによりクロックを発生する方法が最も一般的である。しかし、この発生方法では、第1に電気的帯域制限により入力信号光の伝送速度が制限される。その上、複数波長の光クロックを発生するには、クロック発生用レーザが波長数分だけ必要になる。従って、波長分割多重用の光クロック発生装置の構成規模は、概ね波長数に比例して大きくなる。また、電気回路は信号光のフォーマットに依存するので、入力信号光の波形等に対する柔軟性が殆ど無い。
一方、全て光段で処理する全光型クロック発生方法によると、電気的な帯域制限は無くなる。図8を参照すると、全光型クロック発生方法によるタイミング調整器の構成の一例が示されている。異なる波長λ1,…,λnの光信号を波長分割多重して得られるWDM信号光(多波長の入力信号光)は光デマルチプレクサ42によって各波長の光信号に分けられる。各光信号はタイミング調整器44に供給される。タイミング調整器44は、入力光信号に基きクロックを抽出するクロック抽出回路48と、抽出されたクロック及び入力光信号が供給される光AND回路46とを含む。光AND回路46によりタイミング調整された光信号は光マルチプレクサ50により再び波長分割多重され、光マルチプレクサ50からWDM信号光(多波長の出力信号光)が出力される。
この従来技術によると、全光型クロック発生方法が適用されているので電気的帯域制限は無くなるものの、依然波長数分だけ光クロックが必要なため、WDM信号光の波長数に概ね比例して装置規模が大きくなる。
このように、WDMにおける波長数が増大するとそれだけ光クロックの数が必要になるのが光クロック発生装置における現状であり、一括して多波長のクロックを発生することができる方法及び装置の提供が期待されている。
よって、本発明の以下の実施形態の目的は、単一波長の信号光を基に多波長の光クロックを一括して発生する方法を提供することである。
この目的を達成するために、本発明によると、複数のクロックパルスを得るための方法が提供される。この方法では、先ず、入力信号光に基づき単一波長を有するクロックパルスが生成される。次いで、非線形光学効果を提供する光導波構造にクロックパルスが供給され、クロックパルスのスペクトルが拡散させられる。そして、複数の通過帯域を有する光フィルタにスペクトルが拡散されたクロックパルスが供給され、複数の波長を有する複数のクロックパルスが生成される。
以下、スペクトルの拡散を中心にこの方法における原理を詳細に説明する。
信号光の強度に比例した位相変化を生じる非線形効果γ(カー効果)と波長分散β2を有する中心対称の非線形光導波路中を伝搬する光パルスの電界との関係は、次式の非線形シュレディンガー方程式で記述できる。
ここで、Ld,Ln1はそれぞれ次式で定義される分散長及び非線形長を表している。また、光Uは光パルスのピークパワーで規格化した光電界、ξは分散長で規格化した非線形光導波路長、τは入射パルス幅T0で規格化した時間をそれぞれ表している。
波長分散よりこの方程式の解は大きく異なるので、次の三通りに分けて説明する。(a)波長分散が正(正常分散領域:β2>0)、(b)波長分散が零(零分散領域:β2=0)、(c)波長分散が負(異常分散領域:β2<0)。
(a) 波長分散が正(正常分散領域:β2>0)
正常分散領域では、非線形効果が大きい条件のとき(Ld>>Ln1)、非線形光導波路の入射端付近では非線形効果のカー効果が支配的になり、非線形周波数チャープが生じる。この周波数チャープは、やがて群速度分散により線形化されると共に蓄積される。この蓄積したチャープにより、スペクトルが平坦に拡散する。Ld/Ln1でスペクトル拡散率が規定され、この値が大きいほど大きなスペクトル拡散率を達成できる。
この原理の詳細は、文献「OSA, J. Opt. Soc. Am. B(vol.1, no.2, pp.139-149, 1984)」等で参照できる。
(b)波長分散が零(零分散波長:β2=0)
波長分散が無い場合、信号光パルスはパルス波形を全く変化させずに非線形光導波路中を伝搬し、非線形カー効果により生じる非線形周波数チャープが蓄積する。この蓄積量は入射パルスがガウス型の場合、解析的に求められ、次式で与えられる。
ここで、zは非線形光導波路の実効長を示す。非線形長が小さい(γPが大きい)程、大きなチャープが生じるのでよりスペクトルが拡散する。同様に、実効長が大きいほどスペクトルが拡散することも分かる。
詳細は、文献「Phys. Rev. A, (vol.17, no.4, pp.1448-1453, 1978)」等で参照できる。
(c)波長分散が負(異常分散領域:β2<0)
異常分散領域では、解析解が存在する。非線形光導波路に入射する光パルスがLd/Ln1=1を満たすとき、固有値が唯一存在し、その固有解は次式になる。
これは、基本光ソリトンと呼ばれ、非線形光導波路中で波形及びスペクトルが変化しない。また、Ld/Ln1>1では、複数の固有値が存在するので複数の固有解の重ね合わせが、解析解として求まる。これらは、高次光ソリトンと呼ばれる。異常分散領域では、次の二通りの方法でスペクトルを拡散できる。
(i)ソリトン断熱圧縮
基本光ソリトンは、長手方向の波長分散値の大きさが小さくなる非線形光導波路中で、伝搬中チャープすることなくパルス圧縮される。この過程で、スペクトルが拡散する。スペクトル拡散効率は、非線形光導波路の出力端の分散値に対する入力端の分散値の比で求められる。
この原理の詳細は、例えば文献「OSA, J. Opt. Soc. Am. B(vol.5, no.3, pp.709-713, 1988)」で参照できる。
(ii)高次ソリトン圧縮
非線形光導波路を伝搬中、高次光ソリトンはソリトン長と呼ばれる長さを一周期として周期的な変化をする。非線形光導波路の入射端付近では、非線形効果により必ずパルス圧縮が生じるので、スペクトルは拡散する。非線形光導波路長をスペクトルが最も拡散する長さに調節すれば、スペクトル拡散が可能となる。
この原理は、文献「OSA, Opt. Lett.(vol.8, no.5, pp.289-291, 1983)」で参照できる。
図9は本発明による装置の第4実施形態を示すブロック図である。この装置は、クロック抽出部52、光増幅部54、スペクトル拡散部56及び多波長光クロック発生部58を備えている。クロック抽出部52は、入力信号光に基づき単一波長(λS)を有するクロックパルスを生成する。光増幅部54は、クロック抽出部52から出力されたクロックパルスを増幅する光増幅器60と、光増幅器60により増幅されたクロックパルスが通過する光帯域通過フィルタ(BPF)62とを含む。光帯域通過フィルタ62は光増幅器60で付加された雑音を除去するために設けられており、その通過帯域の中心波長はλSに設定されている。
光増幅部54から出力されたクロックパルスはスペクトル拡散部56に供給される。スペクトル拡散部56は、非線形光学効果によりクロックパルスのスペクトルを拡散させる非線形光導波路64を含む。非線形光導波路64としては、光ファイバ、半導体光増幅器等を用いることができる。非線形光導波路64として光ファイバが用いられている場合、光ファイバは正常分散、異常分散及び零分散の何れかを提供する。何れの場合であっても、前述した原理に従ってクロックパルスのスペクトルが拡散させられる。
スペクトルが拡散したクロックパルスは多波長光クロック発生部58に供給される。クロック発生部58は、複数の通過帯域を有する多峰性光波長フィルタ66を含む。複数の通過帯域の中心波長はλ1,…,λnである。スペクトルが拡散したクロックパルスが多峰性光波長フィルタ66を通過することによって、複数の波長を有する複数のクロックパルスが発生する。
このように、本実施形態によると、複数の波長を有する複数のクロックパルスを一括して得ることができるので、WDMが適用される装置の規模を小さくすることができる。
図10は本発明による装置の第5実施形態を示すブロック図である。この装置においては、図8に示される従来技術における各タイミング調整器44に代えて、クロック抽出器48が除去されたタイミング調整器68が用いられている。その代わりに、この実施形態では、本発明が適用される多波長クロック抽出器70が用いられている。多波長クロック抽出器70は例えば図9に示される装置によって提供される。
光デマルチプレクサ42に供給されるWDM信号光の一部は光カプラ72により分岐されて光帯域通過フィルタ74に供給される。光帯域通過フィルタ74は、波長λ1,…,λnから選択される任意の波長λiの光信号を通過させる。フィルタ74を通過した光信号は多波長クロック抽出器70に供給される。
多波長クロック抽出器70は本発明に従って複数の波長をλ1,…,λnを有する複数のクロックパルスを発生する。これらのクロックパルスはそれぞれ対応するタイミング調整器68に供給される。各タイミング調整器68では、光デマルチプレクサ42から供給された光信号とクロックパルスとが光AND回路46に供給され、これにより各光信号のタイミング調整が行われる。タイミング調整が行われた光信号は光マルチプレクサ50により波長分割多重され、その結果得られたWDM信号光が光マルチプレクサ50から出力される。
光デマルチプレクサ42及び光マルチプレクサ50の各々としては、例えばアレイ導波路格子(AWG)を用いることができる。また、光AND回路46としては、非線形ループミラーやマッハツェンダ構成の光スイッチを用いることができる。
この実施形態によると、WDMの波長数が増大した場合であっても1つの多波長クロック抽出器70でクロックパルスの供給が間に合うので、装置構成を簡単にすることができる。
図11は本発明による装置の第6実施形態を示すブロック図である。この装置は光クロックパルスの監視方法に関連している。従来方法による場合、光クロックは波長毎に発生するので、それぞれの光クロックパルスを監視しなくてはならない。
本発明が適用される多波長クロック抽出器70にあっては、発生した複数のクロックパルスの中から最低1波長のクロックパルスを監視するだけで、残り全てのクロックパルスの波形、スペクトル形状及び品質が分かる。そのために、この実施形態では、多波長クロック抽出器70にクロック監視装置76が接続されており、クロック監視装置76は、複数の波長λ1,…,λnから選択される任意のモニタリング波長λmonのクロックパルスを受け、そのクロックパルスを監視している。この監視方法が可能になる理由は、本発明ではクロック抽出した単一波長のクロックパルスのスペクトルを拡散しているので、そのクロックパルスの複製がそれぞれの波長で発生していることに基づく。
図12は本発明による装置の第7実施形態を示すブロック図である。この実施形態は図10に示される実施形態の具体例に相当し、図10に示される各タイミング調整器68に代えて3Rリジェネレータ78が用いられている。3Rリジェネレータ78は、リアンプリフィケーションのための光増幅器80と、リシェーピング及びリタイミングのための波形整形器81とを含む。
光増幅器80は光デマルチプレクサ42から出力された各波長の光信号を増幅する。増幅された光信号は波形整形器81に供給される。波形成形器81は、光増幅器80からの光信号と本発明による多波長クロック抽出器70からのクロックパルスとが供給される非線形光ループミラー(NOLM)82と、NOLM82から出力された光信号が通過する光帯域通過フィルタ84とを含む。フィルタ84は対応する光信号の波長を中心波長とする通過帯域を有している。NOLM82においては、その非線形性により光信号の波形が成形されると共に、クロックパルスとの同期によって光信号の位相雑音が除去される。
3Rリジェネレータ78から出力された光信号は光マルチプレクサ50によって波長分割多重され、その結果得られたWDM信号光が光マルチプレクサ50から出力される。
図13は本発明による装置の第8実施形態を示すブロック図である。異なる波長λ1,…,λnを有する複数の光信号を波長分割多重して得られたWDM信号光がこの装置に供給されると、先ず、WDM信号光は光カプラ等からなる光分岐器72により第1及び第2のWDM信号光に分けられる。第1のWDM信号光は、光増幅器86により増幅された後WDM−TDM変換器88に供給される。変換器88は供給されたWDM信号光を時分割多重信号(TDM信号)に変換する。
光分岐器72からの第2のWDM信号光が光帯域通過フィルタ74を通過することによって、複数の波長λ1,…,λnから選択される任意の波長λiの光信号が得られ、その光信号は本発明が適用される多波長クロック抽出器70に供給される。多波長クロック抽出器70は、供給された光信号に基き、複数の波長λ1,…,λnを有する複数のクロックパルスを生成する。
WDM−TDM変換器88からのTDM信号及び多波長クロック抽出器70からの複数のクロックパルスは、TDM−WDM変換器90に供給される。変換器90は、供給された複数のクロックパルスに基づきTDM信号をWDM信号光に変換して出力する。
WDM−TDM変換器88は、中間波長λiのCW(連続波)光を出力する光源92と、光源92からの光と光増幅器86により増幅されたWDM信号光とが供給されるNOLM94とを含む。WDM信号光及びCW光がNOLM94に供給されることによって、WDM信号光は中間波長λiを有する時分割多重信号に変換される。この変換に際しては、NOLM94の作用によって信号の波形成形が行われる。得られたTDM信号は、中間波長λiを通過帯域の中心波長とする光帯域通過フィルタ96を通過して出力される。
TDM−WDM変換器90は、WDM−TDM変換器88からのTDM信号が供給されるNOLM98を含む。NOLM98には、多波長クロック抽出器70からの複数のクロックパルスが遅延回路100を介して供給される。遅延回路100は、複数のクロックパルスが波長毎にタイミングをずらしてTDM信号に同期するように作用する。
TDM信号及び複数のクロックパルスがNOLM98に供給されることによって、TDM信号がWDM信号光に変換されると共に信号の位相雑音が除去される。このようにして得られたWDM信号光はこの装置から出力される。
この実施形態によると、基本的には本発明による多波長クロック抽出器及び2つのNOLMのみにより、電気信号を介すことなく多波長の信号を一括して再生することができる。その結果、装置構成を簡単にすることができると共に、波長数増大に柔軟に対応することができる。
図14は本発明による装置の第9実施形態を示すブロック図である。ここでは、本発明による装置110が光アッド/ドロップ装置における多波長光源として用いられている。具体的には次の通りである。
この装置に供給されたWDM信号光は、光デマルチプレクサ102により波長λ1,…,λnの光信号に分けられ、各光信号は光アッド/ドロップのための光スイッチ104に供給される。
光スイッチ104に挿入すべき光信号を供給するために、挿入信号処理装置106が設けられている。挿入信号処理装置106から出力された信号により光変調器108が動作する。光変調器108は波長数分だけ設けられており、これらには本発明による装置110からそれぞれクロックパルスが供給されている。挿入信号により光変調器108が動作することによって得られた光信号は、光スイッチ104により伝送路に挿入される。
一方、光スイッチ104で分岐した光信号を処理するために、分岐信号処理装置112が設けられている。また、光スイッチ104から出力された光信号は、光マルチプレクサ114により波長分割多重され、その結果得られたWDM信号光がこの装置から出力される。
従来の光アッド/ドロップ装置では、複数の光変調器に供給すべきクロックパルス或いはCW光を得るために、複数の光源が必要になる。そのために、装置の小型化が困難であった。これに対して、図14に示される実施形態によると、複数のクロックパルスを得るために本発明による装置110が1台あれば足りるので、装置の小型化や低価格化が可能になると共に、信頼性の向上が可能になる。
図15は図9に示される装置の具体的構成例を示すブロック図である。より特定的には、図9に示されるクロック抽出部52の内部構成が示されており、スペクトル拡散のための非線形光導波路64として光ファイバ116が用いられている。クロック抽出部52は、フォトディテクタ(PD)118、電気的な帯域通過フィルタ120及びモードロックレーザ(MLL)122を含む。フォトディテクタ118は、入力信号光としての単一の任意波長を有する光信号を受け、これを電気信号に変換する。この電気信号が帯域通過フィルタ120を通過することにより、光信号のビットレート成分が抽出される。このようにして、ビットレートに対応する単一周波数の電気信号を得ることができる。得られた電気信号によりモードロックレーザ122が変調され、単一の波長λiを有する光クロックパルスが得られる。
このように本実施形態では、電気的に抽出されたビットレート成分に基づきモードロックレーザ122により光クロックパルスを再生しているので、よりクリアーな複数のクロックパルスを発生させることができる。
本発明は以下の付記を含むものである。
(付記1)
異なる波長を有する複数の光信号を波長分割多重して得られたWDM信号光を第1のWDM信号光と第2のWDM信号光とに分岐する光分岐器と、
入力ポート及び複数の出力ポートを有し、上記入力ポートには上記第1のWDM信号光が供給され、上記複数の出力ポートからは異なる波長を有する複数の光信号が出力される光デマルチプレクサと、
上記第2のWDM信号光を受け、複数の波長を有する複数のクロックパルスを生成する多波長クロック発生器と、
上記光デマルチプレクサの複数の出力ポートに接続され、上記複数のクロックパルスに基づき上記複数の光信号の波形整形を行う複数の波形整形器とを備え、
上記多波長クロック発生器は、
上記第2のWDM信号光に基づき単一波長を有するクロックパルスを生成するクロック抽出器と、
上記クロックパルスを供給されて非線形光学効果により上記クロックパルスのスペクトルを拡散させる光導波構造と、
複数の通過帯域を有し、上記スペクトルが拡散されたクロックパルスを供給されて複数の波長を有する複数のクロックパルスを生成する光フィルタとを備えている装置。
(付記2)
付記1に記載の装置であって、
上記波形整形された光信号を波長分割多重する光マルチプレクサを更に備えた装置。
(付記3)
付記1に記載の装置であって、
上記複数の波形整形器の各々は非線形ループミラーを含む装置。
(付記4)
異なる波長を有する複数の光信号を波長分割多重して得られたWDM信号光を第1のWDM信号光と第2のWDM信号光とに分岐する光分岐器と、
上記第1のWDM信号光を時分割多重信号に変換する第1の変換器と、
上記第2のWDM信号光を受け、複数の波長を有する複数のクロックパルスを生成する多波長クロック発生器と、
上記複数のクロックパルスに基づき上記時分割多重信号をWDM信号光に変換する第2の変換器とを備え、
上記多波長クロック発生器は、
上記第2のWDM信号光に基づき単一波長を有するクロックパルスを生成するクロック抽出器と、
上記クロックパルスを供給されて非線形光学効果により上記クロックパルスのスペクトルを拡散させる光導波構造と、
複数の通過帯域を有し、上記スペクトルが拡散されたクロックパルスを供給されて複数の波長を有する複数のクロックパルスを生成する光フィルタとを備えている装置。
(付記5)
付記4に記載の装置であって、
上記第1及び第2の変換器の各々は非線形ループミラーを含む装置。