JP4406948B2 - Biotin intermediate production method - Google Patents

Biotin intermediate production method Download PDF

Info

Publication number
JP4406948B2
JP4406948B2 JP37467298A JP37467298A JP4406948B2 JP 4406948 B2 JP4406948 B2 JP 4406948B2 JP 37467298 A JP37467298 A JP 37467298A JP 37467298 A JP37467298 A JP 37467298A JP 4406948 B2 JP4406948 B2 JP 4406948B2
Authority
JP
Japan
Prior art keywords
group
formula
general formula
compound
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37467298A
Other languages
Japanese (ja)
Other versions
JP2000191665A (en
Inventor
雅彦 関
敏晃 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Tanabe Pharma Corp
Original Assignee
Mitsubishi Tanabe Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Tanabe Pharma Corp filed Critical Mitsubishi Tanabe Pharma Corp
Priority to JP37467298A priority Critical patent/JP4406948B2/en
Publication of JP2000191665A publication Critical patent/JP2000191665A/en
Application granted granted Critical
Publication of JP4406948B2 publication Critical patent/JP4406948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビオチンの製法並びにビオチン合成中間体及びその製法に関する。
【0002】
【従来の技術】
ビオチンは、飼料添加物や医薬品として有用なアミノ酸である。次式
【0003】
【化9】

Figure 0004406948
【0004】
(式中、Bnはベンジル基を表す。)
で示されるチオラクトン化合物を用いてビオチン又はその中間体を製造する方法としては、従来、例えばケミカル レビュース(Chemical Reviews,1997,Vol.97,No.6,p1757)に記載の方法があるが、工程が長い等の問題があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、工業的に有利なビオチンの製造方法を提供することにある。より詳細には、ビオチン中間体であるヒドロキシチエノイミダゾール化合物及びその製法、並びにそれを用いたビオチンの製法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、種々研究した結果、チオラクトン化合物と亜鉛試薬とから新規なヒドロキシチエノイミダゾール化合物が得られることを見出すとともに、該化合物を用いてビオチンを製造し得ることを見出し、本発明を完成するに到った。
【0007】
すなわち、本発明は、
(1)一般式[I]
【0008】
【化10】
Figure 0004406948
【0009】
(式中、R1及びR2は同一又は異なって、水素原子又はイミノ基の保護基を表す。)
で示されるチオラクトン化合物と、一般式[II]
XZn−CH2−Q−Y [II]
(式中、Xはハロゲン原子;Qは炭素数3の飽和若しくは不飽和直鎖炭化水素の2価基;Yはハロゲン原子、低級アルコキシ基、トシルオキシ基、メシルオキシ基、エステル化されたカルボキシル基、アミド化されたカルボキシル基又はシアノ基を表す。)
で示される亜鉛試薬を付加反応させ、次いで生成物を加水分解することを特徴とする一般式[III]
【0010】
【化11】
Figure 0004406948
【0011】
(式中、記号は前記と同じ意味を有する。)
で示されるヒドロキシチエノイミダゾール化合物の製法、及び
(2)一般式[I]
【0012】
【化12】
Figure 0004406948
【0013】
(式中、R1及びR2は同一又は異なって、水素原子又はイミノ基の保護基を表す。)
で示されるチオラクトン化合物と、一般式[II]
XZn−CH2−Q−Y [II]
(式中、Xはハロゲン原子;Qは炭素数3の飽和若しくは不飽和直鎖炭化水素の2価基;Yはハロゲン原子、低級アルコキシ基、トシルオキシ基、メシルオキシ基、エステル化されたカルボキシル基、アミド化されたカルボキシル基又はシアノ基を表す。)
で示される亜鉛試薬を付加反応させ、次いで生成物を加水分解することにより、一般式[III]
【0014】
【化13】
Figure 0004406948
【0015】
(式中、記号は前記と同じ意味を有する。)
で示されるヒドロキシチエノイミダゾール化合物を得、この化合物を脱水して、一般式[IV]
【0016】
【化14】
Figure 0004406948
【0017】
(式中、記号は前記と同じ意味を有する。)
で示される不飽和直鎖炭化水素置換チエノイミダゾール化合物を得、この化合物を還元して、一般式[V]
【0018】
【化15】
Figure 0004406948
【0019】
(式中、記号は前記と同じ意味を有する。)
で示される飽和直鎖炭化水素置換チエノイミダゾール化合物を得、この化合物のYで示される基をカルボキシル基に変換し、必要であればイミノ基の保護基を脱保護することを特徴とする式[VI]
【0020】
【化16】
Figure 0004406948
【0021】
で示されるビオチンの製法、並びに
(3)一般式[III]
【0022】
【化17】
Figure 0004406948
【0023】
(式中、R1及びR2は同一又は異なって、Qは炭素数3の飽和若しくは不飽和直鎖炭化水素の2価基;Yはハロゲン原子、低級アルコキシ基、トシルオキシ基、メシルオキシ基、エステル化されたカルボキシル基、アミド化されたカルボキシル基又はシアノ基を表す。)
で示されるヒドロキシチエノイミダゾール化合物
に関する。
【0024】
【発明の実施の形態】
本発明において、化合物[I]、化合物[III]、化合物[IV]及び化合物[V]は、ラセミ体、光学活性体のいずれであってもよいが、シス型の光学活性化合物、即ちイミダゾロン環とチオファン環がシス結合している右旋性の光学活性体は、ビオチンの天然型光学活性体であるd−ビオチンに効率よく導くことが出来る点で有利である。
【0025】
本発明において、R1及びR2は同一又は異なって、水素原子又はイミノ基の保護基であるが、該イミノ基の保護基としては、例えば、メチル基、エチル基などの低級アルキル基;低級アルコキシアルキル基;ニトロ基置換低級アルキル基;ハロ低級アルキル基;ビニルなどの低級アルケニル基;低級アルコキシアルケニル基;ニトロ基置換低級アルケニル基;ハロ低級アルケニル基;プロパルギル、エチニルなどの低級アルキニル基;低級アルコキシアルキニル基;ニトロ基置換低級アルキニル基;ハロ低級アルキニル基;ベンジリデン基などのアラルキリデン基;ベンジル基などのアラルキル基;ホルミル基、アセチル基などの低級アルカノイル基;クロロアセチル基などのハロ低級アルカノイル基;2−ヨードエトキシカルボニル基などのハロ置換低級アルコキシカルボニル基;2−プロペニルオキシカルボニルなどのアルケニルオキシカルボニル基;フェニルアセチル基などのアリールアルカノイル基;メトキシカルボニル基などの低級アルコキシカルボニル基;ベンジルオキシカルボニル基などのアラルキルオキシカルボニル基;t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基、トリメチルシリル基などのシリル基などが挙げられる。R1及びR2としては、同一又は異なって、水素原子又はアセチル基、ベンジル基、ベンジルオキシカルボニル基がとりわけ好ましい。
【0026】
本発明において、Xとしては、好適には臭素原子またはヨウ素原子が挙げられるが、とりわけヨウ素原子が好ましい。
【0027】
Qで示される基のうち、「炭素数3の飽和直鎖炭化水素の2価基」としては、トリメチレン基(−CH2CH2CH2−)が挙げられ、「炭素数3の不飽和直鎖炭化水素の2価基」としては、プロペニレン基(−CH=CHCH2−、−CH2CH=CH−)、プロピニレン基(−C≡CCH2−、−CH2C≡C−)又はプロパジエン基(−CH=C=CH−)が挙げられる。これら2価基のうち、とりわけトリメチレン基が好ましい。
【0028】
Yで示される基のうち、「エステル化されたカルボキシル基」としては、基−COOR3が挙げられる。ここで、R3は、例えば、メチル基、エチル基などの低級アルキル基;ビニルなどの低級アルケニル基;プロパルギル、エチニルなどの低級アルキニル基;ハロ低級アルキル基;ヒドロキシ低級アルキル基;ベンジル基などのアラルキル基(アラルキル基中のアリール基はニトロ基、ハロゲン原子、低級アルキル基、低級アルコキシ基などの基で置換されていてもよい。);シリル基を挙げることができる。これらのうち、とりわけ低級アルキル基、なかでもメチル基、エチル基が好ましい。
【0029】
また、Yで示される基のうち、「アミド化されたカルボキシル基」としては、基−CON(R4)(R5)が挙げられる。ここで、R4及びR5は、同一又は異なって、水素原子;メチル基、エチル基などの低級アルキル基;ビニルなどの低級アルケニル基;エチニルなどの低級アルキニル基;ピリジル基、チエニル基、ピロリル基、ピロジニル基などの5又は6員の複素環基で置換された低級アルキル;ベンジル基などのアラルキル基(アラルキル基中のアリール基はニトロ基、ハロゲン原子、低級アルキル基、低級アルコキシ基などの基で置換されていてもよい。)を挙げることができる。これらのうち、とりわけ水素原子、メチル基が好ましい。
【0030】
次に、本発明の反応を順次説明する。
【0031】
(A)チオラクトン化合物[I]と亜鉛試薬[II]を付加反応させ、次いで生成物を加水分解することにより、ヒドロキシチエノイミダゾール化合物[III]を得る工程。
【0032】
(i)チオラクトン化合物[I]と亜鉛試薬[II]との付加反応は、無溶媒又は溶媒中、触媒存在下、好適に実施できる。
【0033】
使用される触媒としては、パラジウム触媒、ニッケル触媒が挙げられる。具体的には、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、ビス(トリフェニルホスフィン)パラジウム(II)ジブロミド、ビス(トリフェニルホスフィン)パラジウム(II)ジアセテート、テトラキス(トリフェニルホスフィン)パラジウム(0)、ビス(アセトニトリル)パラジウム(II)ジクロリド、[1,1'−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド、トリス(ジベンジリデンアセトン)ジパラジウム(0)、[1,2−ビス(ジフェニルホスフィノ)エタン]ジクロロパラジウム(II)、酢酸パラジウム、パラジウムブラック、パラジウム炭素などのパラジウム触媒;ニッケル(II)アセテート、ニッケル(II)アセチルアセトネート、ニッケル、ラネーニッケル、ビス(トリフェニルホスフィン)ニッケル(II)ジクロリド、ニッケル炭素などのニッケル触媒が挙げられる。これらのうち、とりわけビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、パラジウム炭素が好ましい。
【0034】
使用される溶媒としては、反応を阻害しないものであれば特に限定はないが、好適には、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールなどのエーテル類;トルエンなどの芳香族炭化水素類;ジクロロエタン、トリクロロメタン、四塩化炭素、クロロベンゼンなどのハロゲン系溶媒;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒を挙げることができる。これらのうち、とりわけテトラヒドロフラン、トルエンが好ましい。 この付加反応は−78℃〜150℃、好適には室温〜80℃で行う。
【0035】
亜鉛試薬[II]は、例えば、シンセティックコミュニケイションズ(Synth.Commum.,11,p763−767,1981)記載の方法に準じて、δ−バレロラクトンとアルコールを、トリメチルシリルアイオダイド(TMS−I)存在下、反応させ5−ヨウ化吉草酸エステルを得、次いで、ジャーナルオブケミカルソサイアティ(J.Am.Chem.Soc.,Vol.117,p6126−6127、1995)記載の方法に準じて、該5−ヨウ化吉草酸エステルと亜鉛を、触媒量のトリメチルシリルクロライド(TMS−Cl)及びジブロモエタン存在下、反応させることにより製することができる。また、ケミカル レビュース(Chemical Reviews,1993,Vol.93,p2117)記載の方法に準じて製することができる。
【0036】
かくして得られる付加生成物は、一般式[III−a]
【0037】
【化18】
Figure 0004406948
【0038】
(式中、記号は前記と同じ意味を有する。)
で示される化合物と推定される。
【0039】
(ii)上記付加反応で得られる生成物の加水分解反応は、水又は酸を用いて処理することにより実施できる。
【0040】
使用される酸としては、加水分解反応において、通常酸として使用されるものであれば特に限定はないが、好適には塩酸、臭化水素酸、硫酸などの無機酸;ギ酸、酢酸、トリフルオロ酢酸、プロピオン酸、ベンゼンスルホン酸、p−トルエンスルホン酸などの有機酸が挙げられる。
【0041】
(B)ヒドロキシチエノイミダゾール化合物[III]を脱水することにより、不飽和直鎖炭化水素置換チエノイミダゾール化合物[IV]を得る工程
この脱水反応は、例えば溶媒中、酸触媒の存在下に好適に実施することができる。
【0042】
使用される酸触媒としては、脱水反応において、通常酸触媒として使用されるものであれば特に限定はないが、好適には塩酸、硫酸、過塩素酸、燐酸のような無機酸又は酢酸、ギ酸、シュウ酸、メタンスルホン酸、p−トルエンスルホン酸、カンファースルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸のような有機酸等を挙げることができる。このうち、とりわけp−トルエンスルホン酸、酢酸又は硫酸が好ましい。
【0043】
使用される溶媒としては、反応を阻害しないものであれば特に限定はないが、好適には、トルエンなどの芳香族炭化水素類を挙げることができる。また、酸触媒が液体の場合はそれを溶媒として使用することもできる。 この反応は−78℃〜150℃、好適には室温〜80℃で行う。
【0044】
かくして得られる化合物[IV]は、常法により、例えばケミカル レビュース(Chemical Reviews,1997,Vol.97,No.6,p1755−1792)に記載の方法又はそれに準じた方法により、ビオチンに導くことができる。以下、具体的にその方法を説明する。
【0045】
(C)不飽和直鎖炭化水素置換チエノイミダゾール化合物[IV]を還元することにより、飽和直鎖炭化水素置換チエノイミダゾール化合物[V]を得る工程
この還元反応は、常法により実施することができ、例えば適当な溶媒中、触媒を用いて水素添加することにより行うことができる。触媒としては、例えば、白金触媒;パラジウム炭素(Pd−C)、パラジウムブラックなどのパラジウム触媒;イリジウムなどの白金族触媒;ラネーニッケルなどのニッケル触媒;ラネーコバルトなどのコバルト触媒;還元鉄などの鉄触媒;更に銅や亜鉛のようなその他の金属触媒が挙げられる。これらのうち、とりわけパラジウム炭素が好ましい。
【0046】
使用される溶媒としては、反応を阻害しないものであれば特に限定はないが、好適には、メタノールなどの低級アルコール類、水、酢酸、酢酸エチルなどの酢酸エステル類、テトラヒドロフランなどのエーテル類、トルエンなどの芳香族炭化水素類、シクロヘキサンなどのシクロアルカン類、n−ヘキサンなどのn−アルカン類が挙げられる。
【0047】
この反応は、通常水素圧常圧又は加圧下、具体的には1〜150気圧、好ましくは1〜60気圧にて、通常室温〜200℃、好ましくは室温〜100℃で行うことができる。
【0048】
(D)飽和直鎖炭化水素置換チエノイミダゾール化合物[V]の基Yを常法によりカルボキシル基に変換し、必要であればイミノ基の保護基を脱保護することにより、ビオチン[VI]を得る工程。
【0049】
(i)基Yのカルボキシル基への変換は、基Yの種類に応じて以下のように行うことができる。
【0050】
(a)基Yがエステル化されたカルボキシル基(−COOR3)又はアミド化されたカルボキシル基(−CON(R4)(R5))の場合
常法により、例えば泉屋信夫他著、「ペプチド合成の基礎と実験」丸善(株)1985年や、グリーン他(Greene)著「プロテクティブ グループス イン オーガニック シンセシス(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS)」に記載された方法またはそれに準じた方法で、加水分解することによりカルボキシル基に変換することができる。
【0051】
具体的には、例えば水酸化ナトリウムなどの塩基;硫酸などの酸を用いた加水分解によって、カルボキシル基に変換することができる。使用される溶媒としては、反応を阻害しないものであれば特に限定はないが、好適には、水、又は水とアルコール類(メタノール,エタノールなど)もしくはエーテル類(テトラヒドロフラン、ジオキサンなど)とを適宜の割合で混合したものが挙げられる。R3がベンジル基の場合は、接触還元によってもカルボキシル基に変換することができる。
【0052】
(b)基Yがシアノ基の場合
常法により、例えば水酸化ナトリウムなどの塩基;塩酸などの酸を用いた加水分解によってカルボキシル基に変換することができる。使用される溶媒としては、反応を阻害しないものであれば特に限定はないが、好適には、水、又は水とアルコール類(メタノール,エタノールなど)もしくはエーテル類(テトラヒドロフラン、ジオキサンなど)とを適宜の割合で混合したものが挙げられる。
【0053】
(c)基Yがハロゲン原子、トシルオキシ基又はメシルオキシ基の場合
常法により、例えばシアノ化剤と反応させてYをシアノ基とした後、該シアノ基を上述の方法によりカルボキシル基に変換することができる。シアノ化剤としては、例えばシアン化ナトリウム、シアン化カリウムなどのアルカリ金属シアン化物;シアン化ジエチルアルミニウムなどのシアン化ジ低級アルキルアルミニウムが挙げられる。シアノ化反応に使用される溶媒としては、反応を阻害しないものであれば特に限定はないが、好適には、水;メタノール,エタノールなどのアルコール類;テトラヒドロフラン、ジオキサンなどのエーテル類;ジクロロメタンなどのハロゲン系溶媒が挙げられる。
【0054】
(d)基Yが低級アルコキシ基の場合
常法により、例えばハロゲン化剤と反応させてYをハロゲン原子とした後、該ハロゲン原子を上記(c)の方法によりシアノ基とし、次いで該シアノ基を上記(b)の方法によりカルボキシル基に変換することができる。ハロゲン化剤としては、例えば、臭化水素などのハロゲン化水素が挙げられる。ハロゲン化反応に使用される溶媒としては、反応を阻害しないものであれば特に限定はないが、好適には、ジクロロメタンなどのハロゲン系溶媒;酢酸、プロピオン酸が挙げられる。
【0055】
(ii)イミノ基の保護基(R1及びR2)の脱保護は、常法により、例えばグリーン他(Greene)著「プロテクティブ グループス イン オーガニックシンセシス(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS)」に記載された方法またはそれに準じた方法により行うことができる。
【0056】
具体例としては、臭化水素酸などのハロゲン化水素酸で処理することによって脱保護することができる。使用される溶媒としては、反応を阻害しないものであれば特に限定はないが、好適には、水、又は水とアルコール類(メタノール,エタノールなど)もしくはエーテル類(テトラヒドロフラン、ジオキサンなど)とを適宜の割合で混合したものが挙げられる。
【0057】
本発明において、低級アルキル基としては炭素数1〜6のアルキル基、とりわけ1〜4のアルキル基;低級アルコキシ基としては炭素数1〜6のアルコキシ基、とりわけ1〜4のアルコキシ基;低級アルカノイル基としては炭素数1〜6のアルカノイル基、とりわけ1〜4のアルカノイル基;低級アルケニル基としては炭素数2〜6のアルケニル基、とりわけ2〜4のアルケニル基;低級アルキニル基としては炭素数2〜6のアルキニル基、とりわけ2〜4のアルキニル基が挙げられる。
【0058】
【実施例】
以下に、実施例を挙げて、本発明を更に具体的に説明する。
【0059】
実施例1
シス−1,3−ジベンジル−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2,4−ジオン1.5g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド0.32g及びトルエン15mlをナスコルベンに仕込み攪拌した。該コルベン中へ、室温で、参考例1記載の方法で調製した亜鉛試薬(吉草酸エチル−5−イルヨウ化亜鉛)のテトラヒドロフラン(THF)溶液を滴下し、室温で62時間反応させた。該反応液に酢酸エチル及び3%塩酸を入れ分液し、有機層を水及び食塩水で洗浄した。有機層を脱水後、不溶物をろ過し、更に酢酸エチルで洗浄した。ろ洗液を合わせ、減圧濃縮し、残さを2.8g得た。該残さをシリカゲルカラム(溶出溶媒:n―ヘキサン/酢酸エチル=5/3)で精製し、油状物として、シス−1,3−ジベンジル−4−ヒドロキシ−4−(4−メトキシカルボニルブチル)−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2−オンを1.2g得た(収率:58%)。
【0060】
1H−NMR(200MHz,CDCl3)δ:1.2−1.3(3H,m),1.5−2.1(6H,m),2.2−2.4(2H,m),2.7−3.1(2H,m),3.6−3.7(1H,m),3.9−4.2(5H,m),4.7−5.2(2H,m),7.0−7.6(10H,m) 。
【0061】
実施例2
シス−1,3−ジベンジル−4−ヒドロキシ−4−(4−メトキシカルボニルブチル)−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2−オン1.07gをトルエン50mlに溶かし、p−トルエンスルホン酸0.1gを加え、室温で3時間攪拌した。該反応液を飽和重曹水、水、飽和食塩水で洗浄した。有機層を脱水後、不溶物をろ別、洗浄した。ろ洗液を合わせ、減圧濃縮し、選られた残さをシリカゲルカラム(溶出溶媒:n―ヘキサン/酢酸エチル=5/2)で精製し、油状物として、シス−1,3−ジベンジル−4−(4−メトキシカルボニルブチリデン)−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2−オンを0.86g得た(収率:84%)。
【0062】
1H−NMR(200MHz,CDCl3)δ:1.26(3H,t,J=7.1),1.6−1.8(2H,m),2.0−2.2(2H,m),2.2−2.3(2H,m),4.0−4.3(4H,m),4.13(2H,q,J=7.1),4.7−5.0(2H,m),5.43(1H,t,J=7.1),7.2−7.4(10H,m) 。
【0063】
実施例3
(1)シス−1,3−ジベンジル−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2,4−ジオン6.6g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド1.37g及びトルエン66mlをナスコルベンに仕込み攪拌した。該コルベン中へ、室温で、参考例2記載の方法で調製した亜鉛試薬(吉草酸エチル−5−イルヨウ化亜鉛)のテトラヒドロフラン(THF)溶液を滴下し、室温で23時間反応させた。該反応液をセライトをプレコートしてろ過し、THFで洗浄し、ろ洗液を合わせ減圧濃縮した。得られた残さに、酢酸エチル100ml、水200mlを加え、攪拌下、濃塩酸20mlを入れ分液した。有機層を1N−塩酸、水、チオ硫酸ナトリウム水溶液、水、飽和食塩水で、順次洗浄した。有機層に脱水剤(硫酸マグネシウム)及び活性炭を入れ、不溶物をろ過し、酢酸エチルで洗浄した。ろ洗液を合わせて、減圧濃縮し、シス−1,3−ジベンジル−4−ヒドロキシ−4−(4−メトキシカルボニルブチル)−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2−オン19.6gを残さとして得た。
【0064】
(2)該残さをトルエン150mlに溶かし、p−トルエンスルホン酸0.74gを加え、室温で5時間攪拌した。該反応液に酢酸エチルを加え不溶物を溶かした後、飽和重曹水、水、飽和食塩水で洗浄した。有機層を脱水後、不溶物をろ別、洗浄した。ろ洗液を合わせ、減圧濃縮し、選られた残さ(16.0g)をシリカゲルカラム(溶出溶媒:n―ヘキサン/酢酸エチル=5/2)で精製し、油状物として、シス−1,3−ジベンジル−4−(4−メトキシカルボニルブチリデン)−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2−オン7.0gを得た(シス−1,3−ジベンジル−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2,4−ジオンからの収率:80%)。
【0065】
実施例4
(1)コルベンにシス−1,3−ジベンジル−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2,4−ジオン0.56g、10%パラジウム炭素(Pd−C)0.18g、トルエン6mlを入れ攪拌する。コルベン中に、参考例3記載の方法で調製した亜鉛試薬(吉草酸エチル−5−イルヨウ化亜鉛)のテトラヒドロフラン(THF)溶液を加え、室温にて7時間攪拌した。反応液をセライトをプレコートしてろ過し、THFで洗浄した。ろ洗液を合わせ、減圧濃縮した。残さに酢酸エチルと1%塩酸を入れ分液し、有機層を飽和食塩水で洗浄した。ろ洗液を合わせ、減圧濃縮し、シス−1,3−ジベンジル−4−ヒドロキシ−4−(4−メトキシカルボニルブチル)−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2−オン0.97gを残さとして得た。
【0066】
(2)該残さをトルエン10mlに溶かし、p−トルエンスルホン酸63mgを加え室温で7時間攪拌し、更にp−トルエンスルホン酸64mgを加え、室温で1.5時間、60℃で30分加熱した。室温まで冷却し、飽和重曹水して、更に、酢酸エチルを加え、希食塩水、飽和食塩水で洗浄した。有機層を脱水し、不溶物をろ別、酢酸エチル洗浄した。ろ洗液を合わせ、減圧濃縮し、残さ0.83gを得た。該残さをシリカゲルカラム(溶出溶媒:n―ヘキサン/酢酸エチル=5/3)で精製し、シス−1,3−ジベンジル−4−(4−メトキシカルボニルブチリデン)−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2−オン380mgを油状物として得た(シス−1,3−ジベンジル−ヘキサヒドロ−1H−チエノ[3,4−d]イミダゾール−2,4−ジオンからの収率:51%)。
【0067】
参考例1
コルベンに亜鉛末2.0g、テトラヒドロフラン(THF)11mlを入れ攪拌した。該溶液に1,2−ジブロモエタン104μlを加え加熱し、5分間還流させた。水浴で冷却後、室温でクロロトリメチルシラン(TMS−Cl)104μlを加え、15分攪拌した。5−ヨウ化吉草酸エチル6.9gを室温で10分かけて滴下し、更に35〜40℃で15時間攪拌して、吉草酸エチル−5−イルヨウ化亜鉛のTHF溶液を調製した。
【0068】
参考例2
亜鉛末8.8g、テトラヒドロフラン(THF)47ml、1,2−ジブロモエタン0.88g、クロロトリメチルシラン(TMS−Cl)0.38g及び5−ヨウ化吉草酸エチル30.0gを、参考例1と同様に処理して、吉草酸エチル−5−イルヨウ化亜鉛のTHF溶液を調製した。
【0069】
参考例3
亜鉛末0.75g、テトラヒドロフラン(THF)4ml、1,2−ジブロモエタン40μl、クロロトリメチルシラン(TMS−Cl)40μl及び5−ヨウ化吉草酸エチル2.56gを、参考例1と同様に処理して、吉草酸エチル−5−イルヨウ化亜鉛のTHF溶液を調製した。
【0070】
【発明の効果】
本発明の方法により、ビオチンの中間体として有用な新規ヒドロキシチエノイミダゾール化合物[III]を製することができる。また、本発明の方法により、短工程で収率よくビオチン[VI]を製することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing biotin, a biotin synthesis intermediate and a method for producing the same.
[0002]
[Prior art]
Biotin is an amino acid useful as a feed additive or a pharmaceutical product. The following formula:
[Chemical 9]
Figure 0004406948
[0004]
(In the formula, Bn represents a benzyl group.)
As a method for producing biotin or an intermediate thereof using a thiolactone compound represented by formula (1), for example, there is a method described in Chemical Reviews (Chemical Reviews, 1997, Vol. 97, No. 6, p1757). There were problems such as a long process.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an industrially advantageous method for producing biotin. More specifically, it is to provide a hydroxythienoimidazole compound which is a biotin intermediate, a method for producing the same, and a method for producing biotin using the same.
[0006]
[Means for Solving the Problems]
As a result of various studies, the present inventors have found that a novel hydroxythienoimidazole compound can be obtained from a thiolactone compound and a zinc reagent, and found that biotin can be produced using the compound, thereby completing the present invention. I arrived.
[0007]
That is, the present invention
(1) General formula [I]
[0008]
[Chemical Formula 10]
Figure 0004406948
[0009]
(In the formula, R 1 and R 2 are the same or different and each represents a hydrogen atom or an imino protecting group.)
A thiolactone compound represented by the general formula [II]
XZn-CH 2 -Q-Y [ II]
(Wherein X is a halogen atom; Q is a divalent group of a saturated or unsaturated linear hydrocarbon having 3 carbon atoms; Y is a halogen atom, a lower alkoxy group, a tosyloxy group, a mesyloxy group, an esterified carboxyl group, Represents an amidated carboxyl group or cyano group.)
An addition reaction of a zinc reagent represented by general formula [III], wherein the product is hydrolyzed
[0010]
Embedded image
Figure 0004406948
[0011]
(In the formula, the symbols have the same meaning as described above.)
And (2) the general formula [I]
[0012]
Embedded image
Figure 0004406948
[0013]
(In the formula, R 1 and R 2 are the same or different and each represents a hydrogen atom or an imino protecting group.)
A thiolactone compound represented by the general formula [II]
XZn-CH 2 -Q-Y [ II]
(Wherein X is a halogen atom; Q is a divalent group of a saturated or unsaturated linear hydrocarbon having 3 carbon atoms; Y is a halogen atom, a lower alkoxy group, a tosyloxy group, a mesyloxy group, an esterified carboxyl group, Represents an amidated carboxyl group or cyano group.)
Is added to the zinc reagent, and then the product is hydrolyzed to give the general formula [III]
[0014]
Embedded image
Figure 0004406948
[0015]
(In the formula, the symbols have the same meaning as described above.)
To obtain a hydroxythienoimidazole compound represented by the general formula [IV]
[0016]
Embedded image
Figure 0004406948
[0017]
(In the formula, the symbols have the same meaning as described above.)
To obtain an unsaturated linear hydrocarbon-substituted thienoimidazole compound, which is reduced to give the general formula [V]
[0018]
Embedded image
Figure 0004406948
[0019]
(In the formula, the symbols have the same meaning as described above.)
A saturated linear hydrocarbon-substituted thienoimidazole compound represented by the formula: is obtained, the group represented by Y of this compound is converted to a carboxyl group, and the protecting group of the imino group is deprotected if necessary. VI]
[0020]
Embedded image
Figure 0004406948
[0021]
And (3) the general formula [III]
[0022]
Embedded image
Figure 0004406948
[0023]
Wherein R 1 and R 2 are the same or different, Q is a divalent group of a saturated or unsaturated linear hydrocarbon having 3 carbon atoms; Y is a halogen atom, lower alkoxy group, tosyloxy group, mesyloxy group, ester Represents an oxidized carboxyl group, an amidated carboxyl group or a cyano group.)
It relates to the hydroxythienoimidazole compound shown by these.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the compound [I], the compound [III], the compound [IV] and the compound [V] may be racemic or optically active, but are cis-type optically active compounds, that is, imidazolone rings. The dextrorotatory optically active substance in which the thiophan ring is cis-bonded is advantageous in that it can be efficiently led to d-biotin, which is a natural optically active substance of biotin.
[0025]
In the present invention, R 1 and R 2 are the same or different and each represents a hydrogen atom or an imino group protecting group. Examples of the imino group protecting group include lower alkyl groups such as a methyl group and an ethyl group; Nitro group substituted lower alkyl group; halo lower alkyl group; lower alkenyl group such as vinyl; lower alkoxy alkenyl group; nitro group substituted lower alkenyl group; halo lower alkenyl group; lower alkynyl group such as propargyl and ethynyl; Alkoxynyl group; nitro-substituted lower alkynyl group; halo lower alkynyl group; aralkylidene group such as benzylidene group; aralkyl group such as benzyl group; lower alkanoyl group such as formyl group and acetyl group; halo lower alkanoyl group such as chloroacetyl group ; 2-iodoethoxycarbonyl group, etc. An alkenyloxycarbonyl group such as 2-propenyloxycarbonyl; an arylalkanoyl group such as phenylacetyl group; a lower alkoxycarbonyl group such as methoxycarbonyl group; an aralkyloxycarbonyl group such as benzyloxycarbonyl group; Examples thereof include silyl groups such as t-butyldimethylsilyl group, t-butyldiphenylsilyl group, and trimethylsilyl group. R 1 and R 2 are the same or different and are particularly preferably a hydrogen atom, an acetyl group, a benzyl group, or a benzyloxycarbonyl group.
[0026]
In the present invention, X is preferably a bromine atom or an iodine atom, and an iodine atom is particularly preferable.
[0027]
Among the groups represented by Q, “a divalent group of a saturated straight-chain hydrocarbon having 3 carbon atoms” includes a trimethylene group (—CH 2 CH 2 CH 2 —). chain the hydrocarbon bivalent group of hydrogen ", propenylene (-CH = CHCH 2 -, - CH 2 CH = CH-), propynylene (-C≡CCH 2 -, - CH 2 C≡C-) or propadiene Group (—CH═C═CH—). Of these divalent groups, a trimethylene group is particularly preferable.
[0028]
Among the groups represented by Y, the “esterified carboxyl group” includes a group —COOR 3 . Here, R 3 is, for example, a lower alkyl group such as a methyl group or an ethyl group; a lower alkenyl group such as vinyl; a lower alkynyl group such as propargyl or ethynyl; a halo lower alkyl group; a hydroxy lower alkyl group; An aralkyl group (the aryl group in the aralkyl group may be substituted with a group such as a nitro group, a halogen atom, a lower alkyl group, or a lower alkoxy group); and a silyl group. Among these, a lower alkyl group, particularly a methyl group and an ethyl group are particularly preferable.
[0029]
Further, among the groups represented by Y, examples of the “amidated carboxyl group” include a group —CON (R 4 ) (R 5 ). Here, R 4 and R 5 are the same or different and are a hydrogen atom; a lower alkyl group such as a methyl group or an ethyl group; a lower alkenyl group such as vinyl; a lower alkynyl group such as ethynyl; a pyridyl group, a thienyl group, or a pyrrolyl group. Group, lower alkyl substituted with 5- or 6-membered heterocyclic group such as pyrrolidinyl group; aralkyl group such as benzyl group (aryl group in aralkyl group is nitro group, halogen atom, lower alkyl group, lower alkoxy group, etc. And may be substituted with a group). Among these, a hydrogen atom and a methyl group are particularly preferable.
[0030]
Next, the reaction of the present invention will be described sequentially.
[0031]
(A) A step of obtaining a hydroxythienoimidazole compound [III] by subjecting a thiolactone compound [I] and a zinc reagent [II] to an addition reaction and then hydrolyzing the product.
[0032]
(I) The addition reaction between the thiolactone compound [I] and the zinc reagent [II] can be preferably carried out in the absence of a solvent or in a solvent in the presence of a catalyst.
[0033]
Examples of the catalyst used include a palladium catalyst and a nickel catalyst. Specifically, bis (triphenylphosphine) palladium (II) dichloride, bis (triphenylphosphine) palladium (II) dibromide, bis (triphenylphosphine) palladium (II) diacetate, tetrakis (triphenylphosphine) palladium ( 0), bis (acetonitrile) palladium (II) dichloride, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride, tris (dibenzylideneacetone) dipalladium (0), [1,2- Bis (diphenylphosphino) ethane] dichloropalladium (II), palladium acetate, palladium black, palladium carbon, and other palladium catalysts; nickel (II) acetate, nickel (II) acetylacetonate, nickel, Raneynicke And nickel catalysts such as bis (triphenylphosphine) nickel (II) dichloride and nickel carbon. Of these, bis (triphenylphosphine) palladium (II) dichloride and palladium carbon are particularly preferable.
[0034]
The solvent to be used is not particularly limited as long as it does not inhibit the reaction, and preferably ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, dimethoxyethane, diethylene glycol; aromatic carbon such as toluene Hydrogens; halogen solvents such as dichloroethane, trichloromethane, carbon tetrachloride, chlorobenzene; amide solvents such as dimethylformamide and dimethylacetamide. Of these, tetrahydrofuran and toluene are particularly preferred. This addition reaction is performed at -78 ° C to 150 ° C, preferably at room temperature to 80 ° C.
[0035]
Zinc reagent [II] can be prepared by, for example, δ-valerolactone and alcohol in the presence of trimethylsilyl iodide (TMS-I) according to the method described in Synthetic Communications (Synth. Commum., 11, p763-767, 1981). To obtain a 5-iodovaleric acid ester, and according to the method described in Journal of Chemical Society (J. Am. Chem. Soc., Vol. 117, p6126-6127, 1995). It can be produced by reacting a valeric acid ester and zinc in the presence of catalytic amounts of trimethylsilyl chloride (TMS-Cl) and dibromoethane. Moreover, it can manufacture according to the method of a chemical review (Chemical Reviews, 1993, Vol.93, p2117) description.
[0036]
The addition product thus obtained has the general formula [III-a]
[0037]
Embedded image
Figure 0004406948
[0038]
(In the formula, the symbols have the same meaning as described above.)
It is estimated that it is a compound shown by.
[0039]
(Ii) The hydrolysis reaction of the product obtained by the above addition reaction can be carried out by treatment with water or acid.
[0040]
The acid used is not particularly limited as long as it is usually used as an acid in the hydrolysis reaction, but is preferably an inorganic acid such as hydrochloric acid, hydrobromic acid, sulfuric acid; formic acid, acetic acid, trifluoro Organic acids such as acetic acid, propionic acid, benzenesulfonic acid and p-toluenesulfonic acid can be mentioned.
[0041]
(B) Step of obtaining an unsaturated linear hydrocarbon-substituted thienoimidazole compound [IV] by dehydrating the hydroxythienoimidazole compound [III] This dehydration reaction is preferably carried out, for example, in a solvent in the presence of an acid catalyst. can do.
[0042]
The acid catalyst used is not particularly limited as long as it is usually used as an acid catalyst in the dehydration reaction, but is preferably an inorganic acid such as hydrochloric acid, sulfuric acid, perchloric acid or phosphoric acid, or acetic acid or formic acid. And organic acids such as oxalic acid, methanesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, trifluoroacetic acid and trifluoromethanesulfonic acid. Of these, p-toluenesulfonic acid, acetic acid or sulfuric acid is particularly preferable.
[0043]
The solvent to be used is not particularly limited as long as it does not inhibit the reaction. Preferred examples thereof include aromatic hydrocarbons such as toluene. Moreover, when an acid catalyst is a liquid, it can also be used as a solvent. This reaction is performed at -78 ° C to 150 ° C, preferably at room temperature to 80 ° C.
[0044]
The compound [IV] thus obtained is led to biotin by a conventional method, for example, the method described in Chemical Reviews (1997, Vol. 97, No. 6, p1755-1792) or a method analogous thereto. Can do. The method will be specifically described below.
[0045]
(C) Step of obtaining a saturated linear hydrocarbon-substituted thienoimidazole compound [V] by reducing an unsaturated linear hydrocarbon-substituted thienoimidazole compound [IV] This reduction reaction can be carried out by a conventional method. For example, it can be carried out by hydrogenation in a suitable solvent using a catalyst. Examples of the catalyst include platinum catalysts; palladium catalysts such as palladium carbon (Pd-C) and palladium black; platinum group catalysts such as iridium; nickel catalysts such as Raney nickel; cobalt catalysts such as Raney cobalt; iron catalysts such as reduced iron. And other metal catalysts such as copper and zinc. Of these, palladium carbon is particularly preferable.
[0046]
The solvent to be used is not particularly limited as long as it does not inhibit the reaction. Preferably, lower alcohols such as methanol, acetic esters such as water, acetic acid and ethyl acetate, ethers such as tetrahydrofuran, Examples include aromatic hydrocarbons such as toluene, cycloalkanes such as cyclohexane, and n-alkanes such as n-hexane.
[0047]
This reaction can be carried out usually under normal pressure of hydrogen or under pressure, specifically 1 to 150 atm, preferably 1 to 60 atm, and usually room temperature to 200 ° C., preferably room temperature to 100 ° C.
[0048]
(D) Biotin [VI] is obtained by converting the group Y of the saturated linear hydrocarbon-substituted thienoimidazole compound [V] to a carboxyl group by a conventional method and, if necessary, deprotecting the protecting group of the imino group. Process.
[0049]
(I) Conversion of the group Y to a carboxyl group can be performed as follows depending on the type of the group Y.
[0050]
(A) In the case where the group Y is an esterified carboxyl group (—COOR 3 ) or an amidated carboxyl group (—CON (R 4 ) (R 5 )), for example, “Peptide” by Nobuo Izumiya et al. Hydrolysis by the method described in “Protective Groups in Organic Synthesis” by Maruzen Co., Ltd., 1985, “Protective Groups in Organic Synthesis” by Greene et al. Can be converted into a carboxyl group.
[0051]
Specifically, it can be converted into a carboxyl group by hydrolysis using a base such as sodium hydroxide; an acid such as sulfuric acid. The solvent to be used is not particularly limited as long as it does not inhibit the reaction. Preferably, water or water and alcohols (such as methanol and ethanol) or ethers (such as tetrahydrofuran and dioxane) are appropriately used. What was mixed in the ratio of these is mentioned. When R 3 is a benzyl group, it can be converted to a carboxyl group by catalytic reduction.
[0052]
(B) When the group Y is a cyano group, it can be converted to a carboxyl group by hydrolysis using a base such as sodium hydroxide; an acid such as hydrochloric acid. The solvent to be used is not particularly limited as long as it does not inhibit the reaction. Preferably, water or water and alcohols (such as methanol and ethanol) or ethers (such as tetrahydrofuran and dioxane) are appropriately used. What was mixed in the ratio of these is mentioned.
[0053]
(C) When the group Y is a halogen atom, a tosyloxy group or a mesyloxy group, for example, after reacting with a cyanating agent to form Y as a cyano group, the cyano group is converted to a carboxyl group by the method described above. Can do. Examples of the cyanating agent include alkali metal cyanides such as sodium cyanide and potassium cyanide; and di-lower alkyl aluminum cyanides such as diethyl aluminum cyanide. The solvent used in the cyanation reaction is not particularly limited as long as it does not inhibit the reaction, but preferably water; alcohols such as methanol and ethanol; ethers such as tetrahydrofuran and dioxane; dichloromethane and the like Halogen type solvents are mentioned.
[0054]
(D) When the group Y is a lower alkoxy group, for example, after reacting with a halogenating agent to form Y as a halogen atom, the halogen atom is converted into a cyano group by the method (c), and then the cyano group Can be converted to a carboxyl group by the method (b) above. Examples of the halogenating agent include hydrogen halides such as hydrogen bromide. The solvent used in the halogenation reaction is not particularly limited as long as it does not inhibit the reaction, and preferred examples include halogen solvents such as dichloromethane; acetic acid and propionic acid.
[0055]
(Ii) The deprotection of the protecting groups (R 1 and R 2 ) of the imino group was described in a conventional manner, for example, in Green et al., “PROTECTIVE GROUPS IN ORGANIC SYNTHESIS”. It can carry out by the method or a method according to it.
[0056]
As a specific example, deprotection can be achieved by treatment with hydrohalic acid such as hydrobromic acid. The solvent to be used is not particularly limited as long as it does not inhibit the reaction. Preferably, water or water and alcohols (such as methanol and ethanol) or ethers (such as tetrahydrofuran and dioxane) are appropriately used. What was mixed in the ratio of these is mentioned.
[0057]
In the present invention, the lower alkyl group is an alkyl group having 1 to 6 carbon atoms, particularly an alkyl group having 1 to 4 carbon atoms; the lower alkoxy group is an alkoxy group having 1 to 6 carbon atoms, especially an alkoxy group having 1 to 4 carbon atoms; lower alkanoyl The group is an alkanoyl group having 1 to 6 carbon atoms, particularly an alkanoyl group having 1 to 4 carbon atoms; the lower alkenyl group is an alkenyl group having 2 to 6 carbon atoms, especially an alkenyl group having 2 to 4 carbon atoms; -6 alkynyl groups, especially 2-4 alkynyl groups.
[0058]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0059]
Example 1
Cis-1,3-dibenzyl-hexahydro-1H-thieno [3,4-d] imidazole-2,4-dione 1.5 g, bis (triphenylphosphine) palladium (II) dichloride 0.32 g and toluene 15 ml And stirred. To the Kolben, a tetrahydrofuran (THF) solution of a zinc reagent (ethyl-5-ylzinc valerate) prepared by the method described in Reference Example 1 was added dropwise at room temperature, and reacted at room temperature for 62 hours. Ethyl acetate and 3% hydrochloric acid were added to the reaction solution and the phases were separated, and the organic layer was washed with water and brine. After dehydrating the organic layer, the insoluble material was filtered and further washed with ethyl acetate. The filtrates were combined and concentrated under reduced pressure to obtain 2.8 g of residue. The residue was purified by a silica gel column (elution solvent: n-hexane / ethyl acetate = 5/3), and cis-1,3-dibenzyl-4-hydroxy-4- (4-methoxycarbonylbutyl)-was obtained as an oil. 1.2 g of hexahydro-1H-thieno [3,4-d] imidazol-2-one was obtained (yield: 58%).
[0060]
1 H-NMR (200 MHz, CDCl 3 ) δ: 1.2-1.3 (3H, m), 1.5-2.1 (6H, m), 2.2-2.4 (2H, m) , 2.7-3.1 (2H, m), 3.6-3.7 (1H, m), 3.9-4.2 (5H, m), 4.7-5.2 (2H, m), 7.0-7.6 (10H, m).
[0061]
Example 2
1.07 g of cis-1,3-dibenzyl-4-hydroxy-4- (4-methoxycarbonylbutyl) -hexahydro-1H-thieno [3,4-d] imidazol-2-one was dissolved in 50 ml of toluene, and p- Toluenesulfonic acid 0.1 g was added and stirred at room temperature for 3 hours. The reaction solution was washed with saturated aqueous sodium hydrogen carbonate, water, and saturated brine. After dehydrating the organic layer, insolubles were filtered off and washed. The filtrate was combined and concentrated under reduced pressure, and the selected residue was purified with a silica gel column (elution solvent: n-hexane / ethyl acetate = 5/2) to give cis-1,3-dibenzyl-4-l as an oil. 0.86 g of (4-methoxycarbonylbutylidene) -hexahydro-1H-thieno [3,4-d] imidazol-2-one was obtained (yield: 84%).
[0062]
1 H-NMR (200 MHz, CDCl 3 ) δ: 1.26 (3H, t, J = 7.1), 1.6-1.8 (2H, m), 2.0-2.2 (2H, m), 2.2-2.3 (2H, m), 4.0-4.3 (4H, m), 4.13 (2H, q, J = 7.1), 4.7-5. 0 (2H, m), 5.43 (1 H, t, J = 7.1), 7.2-7.4 (10 H, m).
[0063]
Example 3
(1) cis-1,3-dibenzyl-hexahydro-1H-thieno [3,4-d] imidazole-2,4-dione 6.6 g, bis (triphenylphosphine) palladium (II) dichloride 1.37 g and toluene 66 ml was charged into Nascolben and stirred. Into the Kolben, a tetrahydrofuran (THF) solution of a zinc reagent (ethyl-5-ylzinc valerate) prepared by the method described in Reference Example 2 was added dropwise at room temperature and reacted at room temperature for 23 hours. The reaction solution was pre-coated with celite, filtered, washed with THF, and the filtrates were combined and concentrated under reduced pressure. To the obtained residue, 100 ml of ethyl acetate and 200 ml of water were added, and 20 ml of concentrated hydrochloric acid was added and separated with stirring. The organic layer was washed successively with 1N hydrochloric acid, water, aqueous sodium thiosulfate solution, water and saturated brine. A dehydrating agent (magnesium sulfate) and activated carbon were added to the organic layer, insoluble matters were filtered, and washed with ethyl acetate. The filtrate was combined, concentrated under reduced pressure, and cis-1,3-dibenzyl-4-hydroxy-4- (4-methoxycarbonylbutyl) -hexahydro-1H-thieno [3,4-d] imidazol-2-one. 19.6 g was obtained as a residue.
[0064]
(2) The residue was dissolved in 150 ml of toluene, 0.74 g of p-toluenesulfonic acid was added, and the mixture was stirred at room temperature for 5 hours. Ethyl acetate was added to the reaction solution to dissolve insoluble matters, and the mixture was washed with saturated aqueous sodium hydrogen carbonate, water, and saturated brine. After dehydrating the organic layer, insolubles were filtered off and washed. The filtrate was combined and concentrated under reduced pressure, and the selected residue (16.0 g) was purified with a silica gel column (elution solvent: n-hexane / ethyl acetate = 5/2) to give cis-1,3 as an oil. -7.0 g of dibenzyl-4- (4-methoxycarbonylbutylidene) -hexahydro-1H-thieno [3,4-d] imidazol-2-one were obtained (cis-1,3-dibenzyl-hexahydro-1H- Yield from thieno [3,4-d] imidazole-2,4-dione: 80%).
[0065]
Example 4
(1) Colven to cis-1,3-dibenzyl-hexahydro-1H-thieno [3,4-d] imidazole-2,4-dione 0.56 g, 10% palladium carbon (Pd—C) 0.18 g, toluene Add 6 ml and stir. A solution of zinc reagent (ethyl-5-ylzinc valerate) in tetrahydrofuran (THF) prepared by the method described in Reference Example 3 was added to Kolben, and the mixture was stirred at room temperature for 7 hours. The reaction solution was precoated with celite, filtered, and washed with THF. The filtrate was combined and concentrated under reduced pressure. Ethyl acetate and 1% hydrochloric acid were added to the residue and the phases were separated, and the organic layer was washed with saturated brine. The filtrate was combined, concentrated under reduced pressure, and cis-1,3-dibenzyl-4-hydroxy-4- (4-methoxycarbonylbutyl) -hexahydro-1H-thieno [3,4-d] imidazol-2-one 0. .97 g was obtained as a residue.
[0066]
(2) The residue was dissolved in 10 ml of toluene, 63 mg of p-toluenesulfonic acid was added and stirred at room temperature for 7 hours, 64 mg of p-toluenesulfonic acid was further added, and the mixture was heated at room temperature for 1.5 hours at 60 ° C. for 30 minutes. . The mixture was cooled to room temperature, saturated aqueous sodium hydrogen carbonate, and ethyl acetate was further added, followed by washing with dilute brine and saturated brine. The organic layer was dehydrated, insolubles were filtered off, and washed with ethyl acetate. The filtrate washes were combined and concentrated under reduced pressure to obtain 0.83 g of residue. The residue was purified with a silica gel column (elution solvent: n-hexane / ethyl acetate = 5/3), and cis-1,3-dibenzyl-4- (4-methoxycarbonylbutylidene) -hexahydro-1H-thieno [3 , 4-d] imidazol-2-one as an oil (yield from cis-1,3-dibenzyl-hexahydro-1H-thieno [3,4-d] imidazole-2,4-dione: 51%).
[0067]
Reference example 1
In Kolben, 2.0 g of zinc powder and 11 ml of tetrahydrofuran (THF) were added and stirred. 104 μl of 1,2-dibromoethane was added to the solution and heated to reflux for 5 minutes. After cooling in a water bath, 104 μl of chlorotrimethylsilane (TMS-Cl) was added at room temperature and stirred for 15 minutes. 6.9 g of ethyl 5-iodovalerate was added dropwise at room temperature over 10 minutes, and the mixture was further stirred at 35-40 ° C. for 15 hours to prepare a THF solution of ethyl-5-ylzinc iodate in THF.
[0068]
Reference example 2
Zinc powder 8.8 g, tetrahydrofuran (THF) 47 ml, 1,2-dibromoethane 0.88 g, chlorotrimethylsilane (TMS-Cl) 0.38 g and ethyl 5-iodovalerate 30.0 g In the same manner, a THF solution of ethyl-5-ylzinc valerate in THF was prepared.
[0069]
Reference example 3
In the same manner as in Reference Example 1, 0.75 g of zinc powder, 4 ml of tetrahydrofuran (THF), 40 μl of 1,2-dibromoethane, 40 μl of chlorotrimethylsilane (TMS-Cl) and 2.56 g of ethyl 5-iodate valerate were treated. Then, a THF solution of ethyl-5-ylzinc valerate was prepared.
[0070]
【The invention's effect】
By the method of the present invention, a novel hydroxythienoimidazole compound [III] useful as an intermediate of biotin can be produced. In addition, biotin [VI] can be produced in a high yield with a short process by the method of the present invention.

Claims (3)

一般式[I]
Figure 0004406948
(式中、R及びRは同一又は異なって、水素原子又はイミノ基の保護基を表す。)
で示されるチオラクトン化合物と、一般式[II]
XZn−CH−Q−Y [II]
(式中、Xはハロゲン原子;Qは炭素数3の飽和若しくは不飽和直鎖炭化水素の2価基;Yはハロゲン原子、低級アルコキシ基、トシルオキシ基、メシルオキシ基、エステル化されたカルボキシル基、アミド化されたカルボキシル基又はシアノ基を表す。)
で示される亜鉛試薬をパラジウム触媒又はニッケル触媒の存在下、付加反応させ、次いで生成物を加水分解することを特徴とする一般式[III]
Figure 0004406948
(式中、記号は前記と同じ意味を有する。)
で示されるヒドロキシチエノイミダゾール化合物の製法。
Formula [I]
Figure 0004406948
(In the formula, R 1 and R 2 are the same or different and each represents a protecting group for a hydrogen atom or an imino group.)
A thiolactone compound represented by the general formula [II]
XZn-CH 2 -Q-Y [ II]
(Wherein X is a halogen atom; Q is a divalent group of a saturated or unsaturated linear hydrocarbon having 3 carbon atoms; Y is a halogen atom, a lower alkoxy group, a tosyloxy group, a mesyloxy group, an esterified carboxyl group, Represents an amidated carboxyl group or cyano group.)
Wherein the zinc reagent is subjected to an addition reaction in the presence of a palladium catalyst or a nickel catalyst , and then the product is hydrolyzed.
Figure 0004406948
(In the formula, the symbols have the same meaning as described above.)
The manufacturing method of the hydroxy thienoimidazole compound shown by these.
一般式[I]
Figure 0004406948
(式中、R及びRは同一又は異なって、水素原子又はイミノ基の保護基を表す。)
で示されるチオラクトン化合物と、一般式[II]
XZn−CH−Q−Y [II]
(式中、Xはハロゲン原子;Qは炭素数3の飽和若しくは不飽和直鎖炭化水素の2価基;Yはハロゲン原子、低級アルコキシ基、トシルオキシ基、メシルオキシ基、エステル化されたカルボキシル基、アミド化されたカルボキシル基又はシアノ基を表す。)
で示される亜鉛試薬をパラジウム触媒又はニッケル触媒の存在下、付加反応させ、次いで生成物を加水分解することにより、一般式[III]
Figure 0004406948
(式中、記号は前記と同じ意味を有する。)
で示されるヒドロキシチエノイミダゾール化合物を得、この化合物を脱水して、一般式[IV]
Figure 0004406948
(式中、記号は前記と同じ意味を有する。)
で示される不飽和直鎖炭化水素置換チエノイミダゾール化合物を得、この化合物を還元して、一般式[V]
Figure 0004406948
(式中、記号は前記と同じ意味を有する。)
で示される飽和直鎖炭化水素置換チエノイミダゾール化合物を得、この化合物の基Yをカルボキシル基に変換し、必要であればイミノ基の保護基を脱保護することを特徴とする式[VI]
Figure 0004406948
で示されるビオチンの製法。
Formula [I]
Figure 0004406948
(In the formula, R 1 and R 2 are the same or different and each represents a protecting group for a hydrogen atom or an imino group.)
A thiolactone compound represented by the general formula [II]
XZn-CH 2 -Q-Y [ II]
(Wherein X is a halogen atom; Q is a divalent group of a saturated or unsaturated linear hydrocarbon having 3 carbon atoms; Y is a halogen atom, a lower alkoxy group, a tosyloxy group, a mesyloxy group, an esterified carboxyl group, Represents an amidated carboxyl group or cyano group.)
The zinc reagent represented by the general formula [III] is subjected to an addition reaction in the presence of a palladium catalyst or a nickel catalyst , and then the product is hydrolyzed.
Figure 0004406948
(In the formula, the symbols have the same meaning as described above.)
To obtain a hydroxythienoimidazole compound represented by the general formula [IV]
Figure 0004406948
(In the formula, the symbols have the same meaning as described above.)
To obtain an unsaturated linear hydrocarbon-substituted thienoimidazole compound, which is reduced to give the general formula [V]
Figure 0004406948
(In the formula, the symbols have the same meaning as described above.)
A saturated linear hydrocarbon-substituted thienoimidazole compound represented by formula (VI) is obtained, the group Y of this compound is converted to a carboxyl group, and if necessary, the protecting group of the imino group is deprotected [VI]
Figure 0004406948
Production method of biotin indicated by
及びRが水素原子、ベンジル基、アセチル基又はベンジルオキシカルボニル基、Xがヨウ素原子、Qがトリメチレン基、Yがメチルオキシカルボニル基又はエチルオキシカルボニル基である請求項1又は2記載の製法。The R 1 and R 2 are a hydrogen atom, a benzyl group, an acetyl group or a benzyloxycarbonyl group, X is an iodine atom, Q is a trimethylene group, and Y is a methyloxycarbonyl group or an ethyloxycarbonyl group. Manufacturing method.
JP37467298A 1998-12-28 1998-12-28 Biotin intermediate production method Expired - Fee Related JP4406948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37467298A JP4406948B2 (en) 1998-12-28 1998-12-28 Biotin intermediate production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37467298A JP4406948B2 (en) 1998-12-28 1998-12-28 Biotin intermediate production method

Publications (2)

Publication Number Publication Date
JP2000191665A JP2000191665A (en) 2000-07-11
JP4406948B2 true JP4406948B2 (en) 2010-02-03

Family

ID=18504240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37467298A Expired - Fee Related JP4406948B2 (en) 1998-12-28 1998-12-28 Biotin intermediate production method

Country Status (1)

Country Link
JP (1) JP4406948B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200300676A (en) 2001-12-04 2003-06-16 Tanabe Seiyaku Co Biotin intermediate and its production
CN101215293B (en) * 2008-01-10 2011-05-04 复旦大学 Method for preparing (3aS,6aR)-1,3-substituted benzyl-tetrahydro-1H-thieno[3,4-d]imidazole derivatives
US10689349B2 (en) 2016-08-04 2020-06-23 Tokuyama Corporation Method for producing intermediate of biotin and method for producing biotin
WO2023120711A1 (en) * 2021-12-24 2023-06-29 株式会社トクヤマ Biotin derivative production method
WO2024080317A1 (en) * 2022-10-13 2024-04-18 株式会社トクヤマ Method for producing hydroxybiotin derivative and vinylbiotin derivative

Also Published As

Publication number Publication date
JP2000191665A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
Wei et al. Efficient preparations of novel ynamides and allenamides
US6946556B1 (en) Preparation of opioid analgesics by a one-pot process
JP4406948B2 (en) Biotin intermediate production method
CN108774129A (en) The method that visible light catalytic organic boronic prepares esters of alpha, beta, unsaturated carboxylic acids derivative
WO2008015977A1 (en) PROCESS FOR PRODUCTION OF (±)-3a,6,6,9a– TETRAMETHYLDECAHYDRONAPHTHO[2,1-b]FURAN-2(1H)-ONE
JPS63165387A (en) Production of (+)-biotin
Kido et al. Carbocyclic construction by the [2, 3] sigmatropic rearrangement of cyclic sulfonium ylides. A new entry for the stereoselective synthesis of substituted cyclohexanones
CN112778347B (en) Synthetic method of boron nitrogen benzocarbazole derivative
CN1105996A (en) Preparation of imidazopyridine derivative
WO2022260168A1 (en) Hydroxy thienoimidazole derivative, vinyl sulfide derivative, n-butylidene sulfide derivative, and production method for saturated straight-chain hydrocarbon-substituted thienoimidazole derivative
CN1139590C (en) Process for preparing citrat
CN87105818A (en) The derivative of 2,3 dihydro furan, their preparation method and as their utilization for the intermediate of preparation tetrahydrofuran (THF)
Csákÿ et al. Asymmetric synthesis of cyclopentenones with benzylic α-quaternary carbon stereogenic centres from furans
JP2769058B2 (en) Preparation of cyclopropane derivatives
KR100763770B1 (en) Process for preparing chiral intermediates useful in synthesis of atorvastatin
CN112961042B (en) Synthesis method of trans-4- (trans-4' -alkyl cyclohexyl) cyclohexyl formaldehyde
CN1092660C (en) Process for preparing Xidinafei
CN1075495C (en) Process for producing 2-('omega'-alkoxycarbonylalkanoyl)-4-butanolide and long-chain 'omega'-hydroxy carboxylic acid
US5580989A (en) Process for the preparation of N-4-[(substituted phenyl)alkylheterocyclic]-N
US5296603A (en) 3-amino-5-o-chlorobenzyl-4,5,6,7-tetrahydrothieno[3,2-c]-pyridine-2-carboxylic acid compounds
KR100225534B1 (en) Stereospecific process for preparing (2r,3s)-beta--phenylisoserine
US5939551A (en) Process for producing 4a-aryldecahydroisoquinoline derivatives
JP7168161B2 (en) Method for producing heterol multimer
JP3056875B2 (en) Preparation of D-(+)-biotin and novel intermediates in this preparation
CN107602337B (en) Preparation method of 1,4-dicyano-2-butene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees