JP4406727B2 - Magnetic field applied single crystal manufacturing equipment - Google Patents

Magnetic field applied single crystal manufacturing equipment Download PDF

Info

Publication number
JP4406727B2
JP4406727B2 JP2002276608A JP2002276608A JP4406727B2 JP 4406727 B2 JP4406727 B2 JP 4406727B2 JP 2002276608 A JP2002276608 A JP 2002276608A JP 2002276608 A JP2002276608 A JP 2002276608A JP 4406727 B2 JP4406727 B2 JP 4406727B2
Authority
JP
Japan
Prior art keywords
quartz tube
single crystal
magnetic field
mirror
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002276608A
Other languages
Japanese (ja)
Other versions
JP2004115281A (en
Inventor
功 田中
敏司 綿打
光二 岸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2002276608A priority Critical patent/JP4406727B2/en
Publication of JP2004115281A publication Critical patent/JP2004115281A/en
Application granted granted Critical
Publication of JP4406727B2 publication Critical patent/JP4406727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明の磁場印加式単結晶製造装置は、強磁場を印加した状態でフローティング・ゾーン法により大口径の酸化物、金属、半導体等の単結晶を育成する装置であり、特に、高融点材料や白金などの一般に用いられるルツボ材と反応しやすい材料の単結晶を製造するのに適している。
さらに、強磁場印加により強制撹拌効果、磁気浮上効果などの強磁場効果により高品質単結晶を安定にしかも高速に製造することが期待される。
特にこの発明の適用可能な単結晶製造の分野として、光学材料、超伝導体、強誘電体、半導体などの情報通信産業の要となる材料の高品質単結晶を製造するために有用である。
【0002】
【従来の技術】
従来の単結晶製造装置としては引き上げ法単結晶製造装置が知られており、シリコン単結晶の製造において石英ルツボ内のシリコン原料の対流を抑えるために磁場印加が有効であることが知られている。しかし、引き上げ法単結晶育成装置は、高融点材料やルツボ材と反応しやすい材料には適せず、さらに、育成雰囲気が自由に選択できないという問題がある。
【0003】
フローティング・ゾーン法は、原料の一部を溶融させて原料と種結晶の間に溶融帯を形成させた後、その溶融帯を移動させたり、あるいは原料と種結晶を同時に下方に移動させることで溶融帯を相対的に移動させることにより原料の溶融→凝固を経て単結晶を育成する方法として知られており、ルツボを用いないために高融点材料やルツボ材と反応しやすい材料などの単結晶育成にも適している。
【0004】
上記フローティング・ゾーン法のための単結晶育成装置には、加熱源として一般に高周波加熱式と赤外線集光加熱式が知られており、高周波加熱式は金属や半導体などの導電性の良い材料の単結晶育成に限定される。一方、赤外線加熱式は金属や半導体の他に絶縁性酸化物など適用範囲が幅広い。従来の赤外線加熱式単結晶育成装置の一例を図5に示す。図5に示すように、従来の赤外線加熱式単結晶育成装置では、直径150mm以上の楕円面鏡を1つあるいは複数個組み合わせて一つの焦点位置にあるランプからの赤外線をもう一方の焦点に集光させている。そのため、電磁石のボアのような直径150mm以下の狭い円筒状空間内に赤外線加熱装置を組み込むことができない。また、ハロゲンランプやキセノンランプは70ガウス以上の磁場では加熱が不安定になってしまう。
【0005】
また、電磁石のボアのような直径150m以下の狭い円筒状空間の一部を局部的に加熱して単結晶を製造する方法としては、レーザー加熱ペデスタル法が知られている。レーザー加熱ペデスタル装置の一例を図6に示す。同方法は、炭酸ガスレーザーやNd3+:YAG固体レーザーを加熱源として用い円錐鏡、円錐面鏡、平面鏡、放物面鏡を組み合わせてレーザー光を1点に集光させることにより、原料を溶融させて種結晶と原料の間に溶融帯を形成させて単結晶を育成する方法であり、これまでサファイア、YAG、LiNbO3などの直径3mm以下の単結晶が育成されている(例:M.M.Fejer他、Proc.SPIE、Advances in Infrared Fibers II、VOL.32、PP.50(1982))。また、レーザー光を熱源とした同様な光学系を超伝導マグネットに組み込んだ単結晶育成装置が報告されている(特開2001−261478号公報参照)。
【0006】
これらのレーザー加熱法は、レーザー光の高指向性により集光効率が良いのでファイバー結晶を育成するには適しているが、結晶径が増大するにしたがって集光密度が極端に低下するために、結晶育成に必要な十分な大きさの溶融帯を形成することが困難になるという問題があり、さらに、大出力のレーザーを用いるとレーザーの高指向性のため溶融帯の温度勾配が大きすぎて溶融帯成分の蒸発が激しくなるという問題が生じる。
【0007】
なお、上記従来の単結晶育成装置では、種々の育成雰囲気ガスを流せるように透明石英管で結晶育成部を外気から遮断しており、結晶育成部周辺には広い空間があるために上回転軸を上げて下回転軸を下げることで透明石英管を設置できたが、磁場印加のための電磁石のボア内に結晶育成部を設置すると、従来の方法では透明石英管を挿入できないという問題がある。
【0008】
【発明が解決しようとする課題】
最近、小型のヘリウムフリー超伝導磁石が開発され比較的容易に強磁場を発生させることができるようになったことから、強磁場効果を利用した材料開発や新強磁場効果の探索に関する研究が盛んに行われている。単結晶育成の分野では、これまでシリコンなどの半導体に強磁場印加が行われてきたが、酸化物のような非電導性材料の融液においても磁場印加によって強制対流が起こることがわかってから、酸化物の単結晶育成においても何らかの磁場効果が期待されるようになり、強磁場印加における単結晶育成に関する研究が注目されるようになってきた(Y.Miyazawa他、Journal of Crystal Growth、Vol.166、pp.286(1996))。
【0009】
上記単結晶育成法のうちフローティング・ゾーン法は溶融帯を原料棒と種結晶に挟んだ状態で表面張力により維持されていることから、特に強磁場の影響を受けやすいことが予想され、強磁場効果を研究するのに適していると考えられており、磁場印加式フローティング・ゾーン単結晶育成装置の開発が望まれた。
【0010】
上記従来の技術の利点を生かしつつ前記の問題点を克服し、強磁場印加下で大口径の単結晶を育成する装置を開発するためには、ハロゲンランプやキセノンランプを加熱光源として用い、その光源から放射された赤外線を平行光として効率よく取り出して平面鏡で電磁石のボア内に導入し放物面鏡で集光させる必要がある。そこで、従来の技術を応用した磁場印加式単結晶製造装置が考えられている。図7はこの原理図であり、この構造・原理は次のとおりである。ランプ1は電磁石のボア外に配置され、このランプ1から放射状に発された赤外線の一部が放物面鏡3で反射して平行光となり、平面鏡6に反射して電磁石のボア内に導入され放物面鏡7に反射して集光される。ところが、この加熱方式においては集光効率が低く、たとえ放物面鏡7の直径を電磁石のボア径より大きくしても集光効率は向上しないため、1500℃以上の高温が得られない。
【0011】
ここで、回転楕円面鏡は一方の焦点位置にランプを置くとそのランプから放射された光がもう一方の焦点位置に集光する性質があり、放物面鏡の場合には、焦点位置から放出された光が放物面鏡に反射されると平行光となる性質がある。そこで、回転楕円面鏡の集光する焦点位置を放物面鏡の焦点位置と一致させることにより回転楕円面鏡の焦点位置のランプから放射された光は放物面鏡に反射されてより指向性の高い平行光が得られることに着目し、磁場印加式フローティング・ゾーン単結晶育成装置を発明するに至った。
【0012】
【課題を解決するための手段】
すなわちこの発明の磁場印加式単結晶製造装置は、
鉛直方向に設置された透明石英管内で加熱溶融するフローティング・ゾーン方式の単結晶製造装置であって、
フローティング・ゾーンの周囲に配置した磁気印加手段の漏れ磁場から影響を受けない位置に配置した赤外線の光源と、
赤外線の光源の周囲に配置した回転楕円面鏡と、回転楕円面鏡からの反射光を平行光とする放物面鏡と、これを透明石英管に向けて導光する円筒面鏡とを備えることにより、赤外線からなる光を指向性を持たせて平行光とする第1の光学系と、
その平行光を前記透明石英管に沿う中空円筒状の光として反射させ、反射した中空円筒状の光を前記フローティング・ゾーンの周囲から照射する第2の光学系と、
フローティング・ゾーンの周囲に配置した磁気印加手段を備えたことを特徴とするものである。
【0013】
この発明の磁場印加式単結晶製造装置は、上記磁気印加手段が、超伝導磁石であることをも特徴としている。
【0014】
この発明の磁場印加式単結晶製造装置は、上記単結晶製造装置が駆動系として下回転軸と石英管支持管を横方向にスライドさせる下回転軸移動機構を備え、下回転軸移動機構を最低位置に移動させた後、下回転軸移動機構とともに石英管支持管を横にスライドさせ、透明石英管をフローティング・ゾーンに挿入してから石英管支持管を元の位置にもどし、透明石英管を石英管支持管に載せて固定するようにしたことをも特徴としている。
【0015】
本発明の二次的な特徴は、次のとおりである。
(1)回転楕円面鏡の大きさを大きくすることによって集光効率が高まること。
(2)溶融帯周辺を均一に加熱できること。
(3)平行光を平板鏡で反射させることによりランプを電磁石から150cm以上離すことができるので、10Tの強磁場でも単結晶育成ができること。
(4)ボア内の放物面鏡の位置を上下移動させることができるので、磁場分布や磁場強度の異なった磁場条件で結晶育成ができること。
(5)透明石英管で結晶育成領域を外気と遮断できるので、いろいろな雰囲気ガスを流すことができ、磁気アルキメデス効果の実験を行うことができること。
(6)集光領域が5mm以上あるので直径5mm以上の大口径の単結晶育成ができること。
(7)円筒鏡を取り付けたことにより、平行光以外の赤外線もボア内に導入して結晶周辺の保温効果をもたらすとともに赤外線照射による目へのダメージに対して安全保護の役割を果たすこと。
【0016】
【発明の実施の形態】
以下にこの発明の磁場印加式単結晶製造装置の実施の形態を図面および実施例に基いて詳細に説明する。
【0017】
この発明に係る単結晶製造装置の1実施例を図1に示す。加熱光源1にはキセノンランプあるいはハロゲンランプを用いる。光学系は、赤外線からなる光を指向性を持たせて平行光とする第1の光学系と、その平行光を前記透明石英管に沿う中空円筒状の光として反射させる第2の光学系と、第2の光学系で反射した中空円筒状の光をフローティング・ゾーンの周囲から照射する第3の光学系とを備えている。
第1の光学系は回転楕円面鏡2、放物面鏡3、平面鏡4、円筒面鏡5で構成され、第2の光学系は透明石英管の周囲に配置した平面鏡6と、フローティング・ゾーンの周囲に配置された放物面鏡7とでそれぞれ構成されている。
第1の光学系においては、加熱光源1を回転楕円面鏡2の一つの焦点位置に配置し、回転楕円面鏡2のもう一つの焦点位置と放物面鏡3の焦点位置が一致するように放物面鏡3が配置されている。加熱光源1から放射された赤外線は回転楕円面鏡2のもう一つの焦点を通過して放物面鏡3で反射されて輪状の平行光となる。その平行光は45ーに傾斜した平面鏡4と平面鏡6に反射して電磁石13のボア内に導入される。なお、加熱光源2から放物面鏡3に直接反射される赤外線は、平面鏡4から円筒面鏡5内を通過し、平面鏡6に送られる。
円筒面鏡5内を通過してきた赤外線の光は、第2の光学系を構成する平面鏡6で反射して電磁石13のボア内に導入される。そして、ボア内に導入された赤外線は放物面鏡7に反射して集光される。
【0018】
ここで、円筒面鏡5を挟んだ平面鏡4と平面鏡6の距離は、用いる電磁石13の容量に応じて電磁石からの漏れ磁場が加熱光源に影響を与えないように変えることができる。具体的には次の通りである。10テスラ超伝導磁石の場合の漏れ磁場を図2に示す。5kWキセノンランプの場合、70ガウスの漏れ磁場で点灯しなくなるので、この図にしたがってキセノンランプあるいはハロゲンランプの加熱光源1を電磁石13の磁場中心から150cm以上離す必要があり、装置の省スペース化も考慮すると加熱光源1と電磁石13の磁場中心の距離が150cmから200cmとなるように円筒面鏡5を挟んだ平面鏡4と平面鏡6の距離を調節する。
【0019】
また、回転楕円面鏡2の直径は電磁石13のボア径より大きくすることができ、回転楕円面鏡2を大きくすることにより赤外線の反射効率を増大させることができる。さらに、平面鏡4を用いずにランプ1、回転楕円面鏡2、放物面鏡3を垂直に配置してもよい。
【0020】
次に、この発明に係る単結晶製造装置の実施例の結晶育成周辺の拡大図を図3に示す。放物面鏡7は放物面鏡支持管8で固定されており、さらに、その放物面鏡支持管8には小型CCDカメラ17と平面鏡18が固定されている。放物面鏡支持管8は、上回転軸9や下回転軸10とは独立して上下に駆動する構造になっているので、放物面鏡支持管8を上下に移動させて電磁石13の磁場分布や磁場強度を変化させて結晶育成を行うことができる。14は上回転軸9の下端に取り付けた原料棒、16は種結晶、15は集光加熱される溶融帯である。なお、結晶育成の様子は平面鏡18に反射されて小型CCDカメラ17を通して観察できる。
【0021】
駆動系は、上回転軸移動機構20、石英管支持管移動機構21、下回転軸移動機構22、放物面鏡支持棒移動機構23からなっており、それらの駆動系は独立して稼動させたり、上回転軸移動機構20、石英管固定軸移動機構21、下回転軸移動機構22の3つの移動機構を連動させて稼動させることができる。また、下回転軸10と石英管支持管12は、下回転軸移動機構22に取り付けてあり、横方向にスライドさせる機能がある。
【0022】
上記石英管支持管12を長くすることで透明石英管の長さを短くでき、例えば電磁石13のボア長さが60cmの場合には石英管支持管12の長さを20cm以上〜60cm以下、好ましくは40cmとすることで透明石英管11の長さが1m以下となり、市販されている標準規格の透明石英管を利用できるようになる。透明石英管11を取り付ける場合には、まず、下回転軸移動機構22を最低位置に移動させた後、石英管支持管12を横にスライドさせて透明石英管11を電磁石13のボア内に挿入してから石英管支持管12をもどし、透明石英管11を石英管支持管12に載せて固定する。次に、下回転軸移動機楕22を上昇させて透明石英管11をボア上部へ通し、さらに平面鏡6を通した後、石英管固定軸移動機構21を下降させて透明石英管11上端に固定する。それ以降の操作では石英管支持管移動機構21と下回転軸移動機構22を連動して上下に移動させる。
【0023】
電磁石13のボア内壁に沿って水冷ジャケットが取り付けてあり、赤外線導入による電磁石13の加熱を防ぎ、長時間にわたって安定な磁場が得られる構造になっている。
【0024】
この発明に係る単結晶製造装置の他の実施例を図4に示す。この実施例では、光学系が回転楕円面鏡2、放物面鏡3、円筒面鏡5、平面鏡6、放物面鏡7からなっており、実施例1から平面鏡4を取り除いた横造となっている。この実施例においては、加熱光源1から放射された赤外線は回転楕円面鏡2のもう一つの焦点を通過して放物面鏡3で反射されて輪状の平行光となる。その平行光は45ーに傾斜した平面鏡6に反射して電磁石のボア内に導入される。なお、加熱光源1から放物面鏡3に直接反射される赤外線は、円筒面鏡5を通過した上、平面鏡6に反射して電磁石13のボア内に導入される。そして、ボア内に導入された赤外線は放物面鏡7に反射して集光する。
【0025】
この場合には、放物面鏡3と平面鏡6の距離を、用いる電磁石13の容量に応じて電磁石13からの漏れ磁場が加熱光源1に影響を与えないように150cmから200cm離す。
【0026】
この発明に係る単結晶製造装置の各実施例では、キセノンランプやハロゲンランプ等の加熱光源1から放射された赤外線を回転楕円面鏡2と放物面鏡3に反射させることで輪状の平行光を形成させ、その平行光を45ーに傾斜した2枚の平面鏡4と6、もしくは平面鏡6のみに反射させて電磁石13のボア内に導入する。そして、ボア内に導入された赤外線は放物面鏡7に反射して集光することにより溶融帯の全周を均一に加熱することができる。
【0027】
また、第1実施例では2枚の平面鏡4、6間の距離、第2実施例では放物面鏡3と平面鏡6の距離を変えることで電磁石13からの漏れ磁場による加熱光源1への影響を防ぐことができる。さらに、回転楕円面鏡2の直径は電磁石13のボア径より大きくすることができ、回転楕円面鏡2を大きくすることにより赤外線の反射効率を増大させることができる。
【0028】
電磁石13のボア内の放物面鏡7は上下に移動できる構造となっているので、電磁石13の最大磁場位置や最大磁気力位置での結晶育成を行うことができる。また、結晶育成の様子は平面鏡18に反射されて小型CCDカメラ17を通して観察できる。
【0029】
各実施例において駆動系は上回転軸移動機構20、石英管支持管移動機構21、下回転軸移郵機構22、放物面鏡支持棒移動機構23からなっており、それらの駆動系は独立して上下させたり、上回転軸移動機構20、石英管支持管移動機構21、下回転軸移動機構22の3つの移動機構を連動させて上下する構造とすることができる。また、下回転軸10と石英管支持管12は、下回転軸移動機構22に取り付けてあり、横方向にスライドさせる機能を持っているので、石英管支持管12を横にスライドさせてから透明石英管11を電磁石13のボア内に挿入することができる。このような石英管支持管12を組み込むことにより、標準規格の長さ1m以下の透明石英管11を使うことができる。
【0030】
【発明の効果】
この発明の磁場印加式単結晶製造装置によれば、キセノンランプやハロゲンランプ等の加熱光源から放射された赤外線を輪状の平行光にした後、電磁石のボア内の結晶育成軸の外周に沿ってその輪状の平行光を導入し、ボア内の放物面鏡で集光することにより、溶融帯の全周を均一に加熱することができる。ここで、加熱光源からの放射状に発せられた赤外線を平行光に変えているので、加熱光源を電磁石から遠ざけても集光効率は下がらず、電磁石からの漏れ磁場による加熱光源への影響を防ぐことができる。そのため、強磁場下で安定した単結晶育成ができ、溶融→凝固における新規磁場効果を調べることができる。また、溶融帯の形成位置を電磁石の垂直方向に沿って変えることができるので、種々の磁場分布や磁場強さで単結晶育成ができ、特に、最大磁場下や最大磁気力下における単結晶育成を行うことができる。
【0031】
また、石英管支持管と回転軸を結晶育成軸上から横方向にスライドする機能を備えており、透明石英管を電磁石のボア内に挿入することができる。また、石英管支持管に透明石英管を固定することにより1m以下の透明石英管が使用できる。そのため、単結晶製造装置の高さを3m以下に下げることができ、研究用実験室でも設置が可能である。また、このように、透明石英管を装着することにより結晶育成部を外気から遮断して種々のガスを流すことができ、単結晶育成における雰囲気ガスによる磁場効果の違いを調べることができる。
【図面の簡単な説明】
【図1】本発明の磁場印加式単結晶製造装置の実施例1を示す平面図。
【図2】10テスラ超電導磁石からの距離と漏れ磁場の関係図。
【図3】本発明の磁場印加式単結晶製造装置の結晶育成領域の拡大図。
【図4】本発明の磁場印加式単結晶製造装置の実施例2を示す平面図。
【図5】従来の赤外線集中加熱フローティング・ゾーン単結晶育成装置の説明図。
【図6】従来のレーザー加熱ペデスタル装置の説明図。
【図7】従来の技術を応用した磁場印加式単結晶製造装置の原理図。
【符号の説明】
1 加熱光源
2 回転楕円面鏡
3 放物面鏡
4 平面鏡
5 円筒面鏡
6 平面鏡
7 放物面鏡
8 放物面鏡支持管
9 上回転軸
10 下回転軸
11 透明石英管
12 石英管支持管
13 電磁石
17 小型CCDカメラ
18 平面鏡
20 上回転軸移動機構
21 石英管支持管移動機構
22 下回転軸移動機構
23 放物面鏡支持棒移動機構
[0001]
BACKGROUND OF THE INVENTION
The magnetic field application type single crystal production apparatus of the present invention is an apparatus for growing single crystals of large diameter oxides, metals, semiconductors, etc. by a floating zone method with a strong magnetic field applied. It is suitable for producing a single crystal of a material that easily reacts with a generally used crucible material such as platinum.
Furthermore, it is expected that a high quality single crystal can be produced stably and at high speed by applying a strong magnetic field and by applying a strong magnetic field effect such as a forced stirring effect and a magnetic levitation effect.
In particular, the present invention is useful in the field of manufacturing single crystals applicable to the present invention for manufacturing high-quality single crystals of materials that are essential for the information and communication industry, such as optical materials, superconductors, ferroelectrics, and semiconductors.
[0002]
[Prior art]
As a conventional single crystal manufacturing apparatus, a pulling method single crystal manufacturing apparatus is known, and it is known that application of a magnetic field is effective in suppressing convection of silicon raw material in a quartz crucible in manufacturing a silicon single crystal. . However, the pulling method single crystal growing apparatus is not suitable for a material that easily reacts with a high melting point material or a crucible material, and further has a problem that a growing atmosphere cannot be freely selected.
[0003]
In the floating zone method, a part of the raw material is melted to form a melting zone between the raw material and the seed crystal, and then the melting zone is moved, or the raw material and the seed crystal are simultaneously moved downward. Known as a method of growing a single crystal through melting and solidification of the raw material by moving the melting zone relatively, and a single crystal such as a high melting point material or a material that easily reacts with the crucible material because no crucible is used. Suitable for training.
[0004]
In the single crystal growth apparatus for the floating zone method, a high-frequency heating type and an infrared condensing heating type are generally known as a heating source, and the high-frequency heating type is a single unit of a material having good conductivity such as metal or semiconductor. Limited to crystal growth. On the other hand, the infrared heating type has a wide range of applications such as insulating oxides in addition to metals and semiconductors. An example of a conventional infrared heating type single crystal growing apparatus is shown in FIG. As shown in FIG. 5, in a conventional infrared heating type single crystal growth apparatus, one or more ellipsoidal mirrors having a diameter of 150 mm or more are combined to collect infrared rays from a lamp at one focal point at the other focal point. I am making it light. Therefore, an infrared heating device cannot be incorporated in a narrow cylindrical space having a diameter of 150 mm or less such as an electromagnet bore. In addition, halogen lamps and xenon lamps become unstable in heating at a magnetic field of 70 gauss or more.
[0005]
A laser heating pedestal method is known as a method for producing a single crystal by locally heating a part of a narrow cylindrical space having a diameter of 150 m or less such as an electromagnet bore. An example of a laser heating pedestal device is shown in FIG. This method uses a carbon dioxide laser or Nd 3+ : YAG solid-state laser as a heating source, and condenses the laser light at one point by combining a conical mirror, a conical mirror, a plane mirror, and a parabolic mirror. This is a method of growing a single crystal by melting and forming a melting zone between a seed crystal and a raw material, and single crystals having a diameter of 3 mm or less such as sapphire, YAG, LiNbO 3 have been grown so far (example: M M. Fejer et al., Proc. SPIE, Advances in Infrared Fibers II, VOL.32, PP.50 (1982)). In addition, a single crystal growing apparatus in which a similar optical system using laser light as a heat source is incorporated in a superconducting magnet has been reported (see Japanese Patent Application Laid-Open No. 2001-261478 ).
[0006]
These laser heating methods are suitable for growing fiber crystals because of their high condensing efficiency due to the high directivity of laser light, but the condensing density extremely decreases as the crystal diameter increases, There is a problem that it becomes difficult to form a sufficiently large melting zone necessary for crystal growth, and when a high-power laser is used, the temperature gradient of the melting zone is too large due to the high directivity of the laser. There arises a problem that the evaporation of the melting zone component becomes intense.
[0007]
In the conventional single crystal growth apparatus, the crystal growth part is shielded from the outside air by a transparent quartz tube so that various growth atmosphere gases can flow. The transparent quartz tube could be installed by raising the lower rotation shaft and lowering the lower rotating shaft. However, if the crystal growth part is installed in the bore of the electromagnet for applying the magnetic field, there is a problem that the conventional method cannot insert the transparent quartz tube. .
[0008]
[Problems to be solved by the invention]
Recently, a small helium-free superconducting magnet has been developed, and it has become possible to generate a strong magnetic field relatively easily. Therefore, research on the development of materials using the strong magnetic field effect and the search for a new strong magnetic field effect is active. Has been done. In the field of single crystal growth, a strong magnetic field has been applied to semiconductors such as silicon, but it has been found that forced convection occurs even in melts of non-conductive materials such as oxides. In the growth of single crystals of oxides, some magnetic field effect is expected, and research on single crystal growth in the application of a strong magnetic field has attracted attention (Y. Miyazawa et al., Journal of Crystal Growth, Vol. 166, pp. 286 (1996)).
[0009]
Of the single crystal growth methods described above, the floating zone method is maintained by surface tension with the melting zone sandwiched between the raw material rod and the seed crystal, and is expected to be particularly susceptible to strong magnetic fields. It is considered suitable for studying the effect, and the development of a magnetic field application type floating zone single crystal growth device was desired.
[0010]
In order to overcome the above-mentioned problems while taking advantage of the above-mentioned conventional technology and develop a device for growing a large-diameter single crystal under the application of a strong magnetic field, a halogen lamp or a xenon lamp is used as a heating light source. It is necessary to efficiently extract infrared rays radiated from the light source as parallel light, introduce them into the bores of the electromagnet with a plane mirror, and collect them with a parabolic mirror. In view of this, a magnetic field application type single crystal manufacturing apparatus to which a conventional technique is applied has been considered. FIG. 7 is a diagram showing this principle, and the structure and principle are as follows. The lamp 1 is arranged outside the bore of the electromagnet, and a part of the infrared rays emitted radially from the lamp 1 is reflected by the parabolic mirror 3 to become parallel light, reflected by the plane mirror 6 and introduced into the bore of the electromagnet. Then, it is reflected by the parabolic mirror 7 and collected. However, in this heating method, the light collection efficiency is low, and even if the diameter of the parabolic mirror 7 is larger than the bore diameter of the electromagnet, the light collection efficiency is not improved, so that a high temperature of 1500 ° C. or higher cannot be obtained.
[0011]
Here, the spheroid mirror has the property that when the lamp is placed at one focal position, the light emitted from the lamp is condensed at the other focal position. When the emitted light is reflected by a parabolic mirror, it has the property of becoming parallel light. Therefore, the light emitted from the lamp at the focal position of the spheroid mirror is reflected by the parabolic mirror and directed more by matching the focal position of the spheroid mirror with the focal position of the parabolic mirror. Focusing on the fact that highly parallel light can be obtained, the inventors have invented a magnetic field application type floating zone single crystal growth apparatus.
[0012]
[Means for Solving the Problems]
That is, the magnetic field application type single crystal manufacturing apparatus of this invention is
A floating zone type single crystal manufacturing device that heats and melts in a transparent quartz tube installed in a vertical direction,
An infrared light source arranged at a position not affected by the leakage magnetic field of the magnetic application means arranged around the floating zone ;
A spheroid mirror disposed around an infrared light source, a parabolic mirror that collimates reflected light from the spheroid mirror, and a cylindrical mirror that guides the light toward a transparent quartz tube A first optical system that converts the light composed of infrared rays into parallel light with directivity;
A second optical system for reflecting the parallel light as hollow cylindrical light along the transparent quartz tube and irradiating the reflected hollow cylindrical light from the periphery of the floating zone;
The magnetic application means is provided around the floating zone.
[0013]
The magnetic field application type single crystal manufacturing apparatus of the present invention is also characterized in that the magnetic application means is a superconducting magnet.
[0014]
A magnetic field application type single crystal manufacturing apparatus according to the present invention includes a lower rotating shaft moving mechanism that slides a lower rotating shaft and a quartz tube support tube in a lateral direction as a driving system. After moving to the position, slide the quartz tube support tube to the side along with the lower rotation axis moving mechanism, insert the transparent quartz tube into the floating zone, and then return the quartz tube support tube to its original position. It is also characterized in that it is fixed on a quartz tube support tube.
[0015]
The secondary features of the present invention are as follows.
(1) The light collection efficiency is increased by increasing the size of the spheroid mirror.
(2) The area around the melting zone can be heated uniformly.
(3) Since the lamp can be separated from the electromagnet by 150 cm or more by reflecting the parallel light with a flat mirror, the single crystal can be grown even in a strong magnetic field of 10T.
(4) Since the position of the parabolic mirror in the bore can be moved up and down, crystals can be grown under magnetic field conditions with different magnetic field distributions and magnetic field strengths.
(5) Since the crystal growth region can be blocked from the outside air by the transparent quartz tube, various atmospheric gases can be flowed and the magnetic Archimedes effect can be tested.
(6) Since the condensing region is 5 mm or more, a single crystal having a large diameter of 5 mm or more can be grown.
(7) By attaching a cylindrical mirror, infrared rays other than parallel light are also introduced into the bore to bring about a heat retaining effect around the crystal and to play a role of safety protection against damage to eyes caused by infrared irradiation.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a magnetic field application type single crystal manufacturing apparatus according to the present invention will be described below in detail with reference to the drawings and examples.
[0017]
One embodiment of a single crystal manufacturing apparatus according to the present invention is shown in FIG. A xenon lamp or a halogen lamp is used as the heating light source 1. The optical system includes a first optical system that converts light made of infrared rays into parallel light with directivity, and a second optical system that reflects the parallel light as hollow cylindrical light along the transparent quartz tube. And a third optical system for irradiating the hollow cylindrical light reflected by the second optical system from the periphery of the floating zone.
The first optical system includes a spheroid mirror 2, a parabolic mirror 3, a plane mirror 4, and a cylindrical mirror 5. The second optical system includes a plane mirror 6 disposed around a transparent quartz tube, and a floating zone. And a parabolic mirror 7 disposed around the periphery.
In the first optical system, the heating light source 1 is arranged at one focal position of the spheroid mirror 2 so that the other focal position of the spheroid mirror 2 and the focal position of the parabolic mirror 3 coincide. A paraboloidal mirror 3 is arranged. Infrared radiation emitted from the heating light source 1 passes through another focal point of the spheroid mirror 2 and is reflected by the parabolic mirror 3 to become ring-shaped parallel light. The parallel light is reflected by the plane mirror 4 and the plane mirror 6 inclined by 45- and introduced into the bore of the electromagnet 13. The infrared light directly reflected from the heating light source 2 to the parabolic mirror 3 passes through the cylindrical mirror 5 from the plane mirror 4 and is sent to the plane mirror 6.
The infrared light that has passed through the cylindrical mirror 5 is reflected by the plane mirror 6 constituting the second optical system and introduced into the bore of the electromagnet 13. The infrared light introduced into the bore is reflected by the parabolic mirror 7 and collected.
[0018]
Here, the distance between the plane mirror 4 and the plane mirror 6 sandwiching the cylindrical mirror 5 can be changed according to the capacity of the electromagnet 13 used so that the leakage magnetic field from the electromagnet does not affect the heating light source. Specifically, it is as follows. The leakage magnetic field in the case of a 10 Tesla superconducting magnet is shown in FIG. In the case of a 5 kW xenon lamp, it does not light up with a leakage field of 70 gauss, so the heating light source 1 of the xenon lamp or halogen lamp needs to be separated from the magnetic field center of the electromagnet 13 by 150 cm or more according to this figure. In consideration, the distance between the plane mirror 4 and the plane mirror 6 sandwiching the cylindrical mirror 5 is adjusted so that the distance between the center of the magnetic field of the heating light source 1 and the electromagnet 13 is 150 cm to 200 cm.
[0019]
Further, the diameter of the spheroid mirror 2 can be made larger than the bore diameter of the electromagnet 13, and the reflection efficiency of infrared rays can be increased by making the spheroid mirror 2 larger. Further, the lamp 1, the ellipsoidal mirror 2, and the parabolic mirror 3 may be arranged vertically without using the plane mirror 4.
[0020]
Next, an enlarged view around the crystal growth of the embodiment of the single crystal manufacturing apparatus according to the present invention is shown in FIG. The parabolic mirror 7 is fixed by a parabolic mirror support tube 8, and a small CCD camera 17 and a plane mirror 18 are fixed to the parabolic mirror support tube 8. Since the parabolic mirror support tube 8 is configured to be driven up and down independently of the upper rotary shaft 9 and the lower rotary shaft 10, the paraboloid mirror support tube 8 is moved up and down to move the electromagnet 13. Crystal growth can be performed by changing the magnetic field distribution and the magnetic field strength. 14 is a raw material rod attached to the lower end of the upper rotary shaft 9, 16 is a seed crystal, and 15 is a melting zone that is condensed and heated. The state of crystal growth is reflected by the plane mirror 18 and can be observed through the small CCD camera 17.
[0021]
The drive system includes an upper rotary shaft moving mechanism 20, a quartz tube support tube moving mechanism 21, a lower rotary shaft moving mechanism 22, and a parabolic mirror support bar moving mechanism 23. These drive systems are operated independently. Alternatively, the three moving mechanisms of the upper rotating shaft moving mechanism 20, the quartz tube fixed shaft moving mechanism 21, and the lower rotating shaft moving mechanism 22 can be operated in conjunction with each other. The lower rotating shaft 10 and the quartz tube support tube 12 are attached to the lower rotating shaft moving mechanism 22 and have a function of sliding in the lateral direction.
[0022]
The length of the transparent quartz tube can be shortened by making the quartz tube support tube 12 long. For example, when the bore length of the electromagnet 13 is 60 cm, the length of the quartz tube support tube 12 is preferably not less than 20 cm and not more than 60 cm. By setting the length to 40 cm, the length of the transparent quartz tube 11 becomes 1 m or less, and a commercially available standard transparent quartz tube can be used. When attaching the transparent quartz tube 11, first, the lower rotary shaft moving mechanism 22 is moved to the lowest position, and then the quartz tube support tube 12 is slid sideways to insert the transparent quartz tube 11 into the bore of the electromagnet 13. Then, the quartz tube support tube 12 is returned, and the transparent quartz tube 11 is placed on the quartz tube support tube 12 and fixed. Next, the lower rotary shaft moving machine 22 is raised to pass the transparent quartz tube 11 through the upper part of the bore, and further through the plane mirror 6, and then the quartz tube fixing shaft moving mechanism 21 is lowered and fixed to the upper end of the transparent quartz tube 11. To do. In subsequent operations, the quartz tube support tube moving mechanism 21 and the lower rotating shaft moving mechanism 22 are moved up and down in conjunction with each other.
[0023]
A water cooling jacket is attached along the inner wall of the bore of the electromagnet 13 to prevent the electromagnet 13 from being heated by introducing infrared rays and to obtain a stable magnetic field for a long time.
[0024]
FIG. 4 shows another embodiment of the single crystal manufacturing apparatus according to the present invention. In this embodiment, the optical system is composed of a spheroid mirror 2, a parabolic mirror 3, a cylindrical mirror 5, a plane mirror 6, and a parabolic mirror 7. The horizontal structure in which the plane mirror 4 is removed from the first embodiment. It has become. In this embodiment, the infrared light emitted from the heating light source 1 passes through another focal point of the spheroid mirror 2 and is reflected by the parabolic mirror 3 to become ring-shaped parallel light. The parallel light is reflected by the plane mirror 6 inclined at 45- and introduced into the bore of the electromagnet. The infrared light directly reflected from the heating light source 1 to the parabolic mirror 3 passes through the cylindrical mirror 5 and is then reflected by the plane mirror 6 and introduced into the bore of the electromagnet 13. The infrared light introduced into the bore is reflected by the parabolic mirror 7 and collected.
[0025]
In this case, the distance between the parabolic mirror 3 and the plane mirror 6 is separated from 150 cm to 200 cm so that the leakage magnetic field from the electromagnet 13 does not affect the heating light source 1 according to the capacity of the electromagnet 13 to be used.
[0026]
In each embodiment of the single crystal manufacturing apparatus according to the present invention, the infrared rays radiated from the heating light source 1 such as a xenon lamp or a halogen lamp are reflected by the spheroid mirror 2 and the parabolic mirror 3 so that the ring-shaped parallel light is reflected. Then, the parallel light is reflected by two plane mirrors 4 and 6 inclined by 45 ° or only by the plane mirror 6 and introduced into the bore of the electromagnet 13. And the infrared rays introduced into the bore are reflected by the parabolic mirror 7 and condensed, whereby the entire circumference of the melting zone can be heated uniformly.
[0027]
Further, in the first embodiment, the distance between the two plane mirrors 4 and 6 is changed. In the second embodiment, the distance between the paraboloidal mirror 3 and the plane mirror 6 is changed. Can be prevented. Furthermore, the diameter of the spheroid mirror 2 can be made larger than the bore diameter of the electromagnet 13, and the infrared reflection efficiency can be increased by increasing the size of the spheroid mirror 2.
[0028]
Since the parabolic mirror 7 in the bore of the electromagnet 13 has a structure that can move up and down, crystal growth can be performed at the maximum magnetic field position and the maximum magnetic force position of the electromagnet 13. The state of crystal growth is reflected by the plane mirror 18 and can be observed through the small CCD camera 17.
[0029]
In each embodiment, the drive system includes an upper rotary shaft moving mechanism 20, a quartz tube support tube moving mechanism 21, a lower rotary shaft transfer mechanism 22, and a parabolic mirror support bar moving mechanism 23, and these drive systems are independent. Thus, it is possible to adopt a structure that moves up and down, or moves up and down in conjunction with the three moving mechanisms of the upper rotating shaft moving mechanism 20, the quartz tube support tube moving mechanism 21, and the lower rotating shaft moving mechanism 22. Further, the lower rotary shaft 10 and the quartz tube support tube 12 are attached to the lower rotary shaft moving mechanism 22 and have a function of sliding in the horizontal direction. Therefore, after the quartz tube support tube 12 is slid horizontally, it is transparent. The quartz tube 11 can be inserted into the bore of the electromagnet 13. By incorporating such a quartz tube support tube 12, a standard transparent quartz tube 11 having a length of 1 m or less can be used.
[0030]
【The invention's effect】
According to the magnetic field application type single crystal manufacturing apparatus of the present invention, infrared light emitted from a heating light source such as a xenon lamp or a halogen lamp is converted into a ring-shaped parallel light, and then along the outer periphery of the crystal growth axis in the bore of the electromagnet. By introducing the ring-shaped parallel light and condensing with a parabolic mirror in the bore, the entire circumference of the melting zone can be heated uniformly. Here, since the infrared rays emitted radially from the heating light source are changed to parallel light, the light collection efficiency does not decrease even if the heating light source is moved away from the electromagnet, and the influence of the leakage magnetic field from the electromagnet on the heating light source is prevented. be able to. Therefore, a stable single crystal can be grown under a strong magnetic field, and a new magnetic field effect in melting → solidification can be investigated. In addition, since the position of the melting zone can be changed along the vertical direction of the electromagnet, single crystal growth is possible with various magnetic field distributions and magnetic field strengths, especially single crystal growth under maximum magnetic field and maximum magnetic force. It can be performed.
[0031]
In addition, the quartz tube support tube and the rotating shaft are provided with a function of sliding horizontally from the crystal growth axis, and the transparent quartz tube can be inserted into the bore of the electromagnet. Moreover, a transparent quartz tube of 1 m or less can be used by fixing the transparent quartz tube to the quartz tube support tube. Therefore, the height of the single crystal manufacturing apparatus can be lowered to 3 m or less, and it can be installed in a laboratory for research. In addition, by attaching a transparent quartz tube in this way, the crystal growth part can be shut off from the outside air and various gases can be flowed, and the difference in magnetic field effect due to the atmospheric gas in single crystal growth can be investigated.
[Brief description of the drawings]
FIG. 1 is a plan view showing Example 1 of a magnetic field application type single crystal manufacturing apparatus of the present invention.
FIG. 2 is a relationship diagram between a distance from a 10 Tesla superconducting magnet and a leakage magnetic field.
FIG. 3 is an enlarged view of a crystal growth region of a magnetic field application type single crystal manufacturing apparatus of the present invention.
FIG. 4 is a plan view showing Example 2 of the magnetic field application type single crystal manufacturing apparatus of the present invention.
FIG. 5 is an explanatory view of a conventional infrared intensive heating floating zone single crystal growing apparatus.
FIG. 6 is an explanatory diagram of a conventional laser heating pedestal device.
FIG. 7 is a principle view of a magnetic field application type single crystal manufacturing apparatus to which a conventional technique is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heating light source 2 Rotating ellipsoidal mirror 3 Parabolic mirror 4 Plane mirror 5 Cylindrical surface mirror 6 Plane mirror 7 Parabolic mirror 8 Parabolic mirror support tube 9 Upper rotating shaft 10 Lower rotating shaft 11 Transparent quartz tube 12 Quartz tube supporting tube 13 Electromagnet 17 Small CCD camera 18 Plane mirror 20 Upper rotation shaft moving mechanism 21 Quartz tube support tube moving mechanism 22 Lower rotation shaft moving mechanism 23 Parabolic mirror support bar moving mechanism

Claims (3)

鉛直方向に設置された透明石英管内で加熱溶融するフローティング・ゾーン方式の単結晶製造装置であって、
フローティング・ゾーンの周囲に配置した磁気印加手段の漏れ磁場から影響を受けない位置に配置した赤外線の光源と、
赤外線の光源の周囲に配置した回転楕円面鏡と、回転楕円面鏡からの反射光を平行光とする放物面鏡と、これを透明石英管に向けて導光する円筒面鏡とを備えることにより、赤外線からなる光を指向性を持たせて平行光とする第1の光学系と、
その平行光を前記透明石英管に沿う中空円筒状の光として反射させ、反射した中空円筒状の光を前記フローティング・ゾーンの周囲から照射する第2の光学系と、
フローティング・ゾーンの周囲に配置した磁気印加手段を備えたことを特徴とする磁場印加式単結晶製造装置。
A floating zone type single crystal manufacturing device that heats and melts in a transparent quartz tube installed in a vertical direction,
An infrared light source arranged at a position not affected by the leakage magnetic field of the magnetic application means arranged around the floating zone ;
A spheroid mirror disposed around an infrared light source, a parabolic mirror that collimates reflected light from the spheroid mirror, and a cylindrical mirror that guides the light toward a transparent quartz tube A first optical system that converts the light composed of infrared rays into parallel light with directivity;
A second optical system for reflecting the parallel light as hollow cylindrical light along the transparent quartz tube and irradiating the reflected hollow cylindrical light from the periphery of the floating zone;
A magnetic field application type single crystal manufacturing apparatus comprising magnetic application means arranged around a floating zone.
磁気印加手段が、超伝導磁石からなる請求項1に記載の磁場印加式単結晶製造装置。2. The magnetic field application type single crystal manufacturing apparatus according to claim 1, wherein the magnetic application means comprises a superconducting magnet. 単結晶製造装置の駆動系が、下回転軸と石英管支持管を横方向にスライドさせる下回転軸移動機構を備え、下回転軸移動機構を最低位置に移動させた後、下回転軸移動機構とともに石英管支持管を横にスライドさせ、透明石英管をフローティング・ゾーンに挿入してから石英管支持管を元の位置にもどし、透明石英管を石英管支持管に載せて固定するようにしてなる請求項1または2に記載の磁場印加式単結晶製造装置。The drive system of the single crystal manufacturing apparatus includes a lower rotating shaft moving mechanism that slides the lower rotating shaft and the quartz tube support tube in the horizontal direction, and after moving the lower rotating shaft moving mechanism to the lowest position, the lower rotating shaft moving mechanism At the same time, slide the quartz tube support tube horizontally, insert the transparent quartz tube into the floating zone, return the quartz tube support tube to its original position, and place the transparent quartz tube on the quartz tube support tube and fix it. The magnetic field application type single crystal manufacturing apparatus according to claim 1 or 2 .
JP2002276608A 2002-09-24 2002-09-24 Magnetic field applied single crystal manufacturing equipment Expired - Lifetime JP4406727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276608A JP4406727B2 (en) 2002-09-24 2002-09-24 Magnetic field applied single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276608A JP4406727B2 (en) 2002-09-24 2002-09-24 Magnetic field applied single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2004115281A JP2004115281A (en) 2004-04-15
JP4406727B2 true JP4406727B2 (en) 2010-02-03

Family

ID=32272429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276608A Expired - Lifetime JP4406727B2 (en) 2002-09-24 2002-09-24 Magnetic field applied single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4406727B2 (en)

Also Published As

Publication number Publication date
JP2004115281A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
KR101286431B1 (en) Floating-zone melting apparatus
KR101473788B1 (en) Single-crystal manufacturing apparatus and manufacturing method
JP5181396B2 (en) Single crystal growth apparatus and single crystal growth method
CN1139678C (en) Single crystal growth method
WO2015109687A1 (en) Pulse laser deposition system assisted by strong magnetic field
US20100037817A1 (en) Floating zone melting apparatus
TWI400368B (en) Floating band melting device
JP2004131369A (en) Method for manufacturing terbium-aluminum-based paramagnetic garnet single crystal
CN102877032A (en) Preparation system for pulse laser deposition film under intense magnetic field
US6387178B1 (en) Single crystal producing method and apparatus
JP4406727B2 (en) Magnetic field applied single crystal manufacturing equipment
JP4119439B2 (en) Rapid modulation growth molecular beam epitaxy apparatus and its operation method
JP2002249399A (en) Method for manufacturing single crystal and single crystal
JP2550344B2 (en) Infrared heating single crystal manufacturing equipment
JP2004143013A (en) Manufacturing apparatus of single crystal with application of magnetic field
KR100569118B1 (en) Apparatus of crystalization of large-area amorphos silicon film and method thereof
JPH04190088A (en) Plasma lamp image heating device
JP2007145629A (en) Method and apparatus for growing single crystal
JP4895134B2 (en) Floating zone melting device
JPS62138383A (en) Crystal growing and producing device
JP2017154919A (en) Floating zone melting apparatus
JP2765180B2 (en) Induction heating device and induction heating method
JPH08208368A (en) Suspended zone melting device
JP4405320B2 (en) Infrared heating single crystal manufacturing equipment
JP2558659B2 (en) Infrared heating single crystal manufacturing equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4406727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term