JP4404986B2 - Spindle joint structure of high-speed rotor - Google Patents

Spindle joint structure of high-speed rotor Download PDF

Info

Publication number
JP4404986B2
JP4404986B2 JP10617999A JP10617999A JP4404986B2 JP 4404986 B2 JP4404986 B2 JP 4404986B2 JP 10617999 A JP10617999 A JP 10617999A JP 10617999 A JP10617999 A JP 10617999A JP 4404986 B2 JP4404986 B2 JP 4404986B2
Authority
JP
Japan
Prior art keywords
disk
main shaft
rotor
center
disk part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10617999A
Other languages
Japanese (ja)
Other versions
JP2000297782A (en
Inventor
元昭 飯塚
光徳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Vacuum Ltd
Original Assignee
Osaka Vacuum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Vacuum Ltd filed Critical Osaka Vacuum Ltd
Priority to JP10617999A priority Critical patent/JP4404986B2/en
Publication of JP2000297782A publication Critical patent/JP2000297782A/en
Application granted granted Critical
Publication of JP4404986B2 publication Critical patent/JP4404986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高速回転体のロータ、特にターボ分子ポンプや複合分子ポンプにおけるロータの円盤部と主軸とを接合するのに最適な接合構造に関する。
【0002】
【従来の技術】
従来この種の分子ポンプのロータでは、主としてアルミ合金製のロータの円盤部と鋼製の主軸部とをボルト等を用いて締結し、一体に形成している。
【0003】
第1の従来例として複合分子ポンプの縦断面図の一例を図4に示した。
【0004】
即ち同図4において、ロータaの円盤部bの中心にテーパ穴cを貫通して設けると共に主軸Sの先を円錐状のテーパ部dに形成し、該テーパ部dをテーパ穴cに嵌入して押え金eを介してボルトfを締め付けることにより、これら円盤部bと主軸Sとを接合して一体のロータに形成している。
【0005】
又、図5に示す第2の従来例では、主軸S1の前部にフランジgを形成し、円盤部b1と主軸S1とを複数のボルトh1で締結すると共にノックピンkを用いて両者の位置決めを行なうようにしている。
【0006】
更に又、図6に示す第3の従来例では、円盤部b2の中心部に設けた貫通孔mに主軸S2の前端の円柱状の突出部nを締め代を有して嵌入させ、ボルトh2を用いて両者を締結して一体に形成している。
【0007】
【発明が解決しようとする課題】
しかし、図4に示す第1の従来例の主軸接合方法では、ロータaの高速回転時にテーパ穴c部に大きな応力が発生するという問題があった。更に同接合方法によれば、高速回転時の遠心力によって該テーパ穴cに変形を生じ、このため、該テーパ穴cと前記主軸Sのテーパ部dとの嵌合部の剛性が低下するという問題があった。
【0008】
次に、図5に示す第2の従来例の主軸接合方法においては、円盤部b1と主軸S1との再組立て時に、ロータa1のバランスの再現性が悪いという問題があった。更に同接合方法によれば、ボルトh1に働く廻り止め力は該ボルトh1の締め付け時の引張り力によるねじ部の摩擦力だけなので、該ボルトh1の締め付け部に緩みを生ずる危険性があった。
【0009】
次の図6に示す第3の従来例の主軸接合方法においては、前記第1の従来例におけると同様に、高速回転時に貫通孔m部に大きな応力が発生するという問題があった。
【0010】
更に又、前記第2の従来例と同様に、ボルトh2が緩む危険性があった。
【0011】
本発明はこれらの問題点を解消し、ロータの円盤部内に過大な応力の発生箇所がなく、締結ボルトに緩みを生ずる危険性がなく、又、再組立て時にもロータのバランスの再現性が優れている高速回転体のロータの主軸接合構造を提供することを特徴とする。
【0012】
【課題を解決するための手段】
本発明は上記の目的を達成すべく、ロータの円盤部の片面に主軸の前端面を当接させ、両者をボルトで締結してなる高速回転体のロータにおいて、前記円盤部の前記片面の中心部から円錐台状の中実の突出部を突出させると共に前記前端面の中心部に先細の円錐台状のテーパ穴を設け、両者を前記ボルトで締結したときに該突出部が該テーパ穴に締め代を有して嵌入すると共に該締結によって前記円盤部の弾発力に逆らって該円盤部の中心部近傍が背後方向に膨出し、該円盤部の腹側が凹んで前記当接面の内周側に狭い空間部を生ずるように形成したことを特徴とする。
【0013】
【発明の実施の形態】
本発明の第1の実施の形態を図1及び図2により説明する。
【0014】
図1は本発明の高速回転体のロータの主軸接合構造によるロータ1の円盤部2と主軸3の接合部の縦断面図を示し、4はこれら円盤部2と主軸3とを締結しているボルトで、同一のピッチ円上に多数のボルト4が配置されている。
【0015】
前記円盤部2はアルミ合金製で、該円盤部2は鋼製の主軸3の前端面と環状の当接面2bにおいて当接している。
【0016】
前記円盤部2の中心部からは円錐台状の中実の突出部2cが突出しており、前記主軸3の前端面の中心部に設けた円錐台状のテーパ穴3aに該突出部2cの大部分が締め代を有して嵌入した構造となっている。又、該嵌入部の外周には前記当接面2bとの間に狭いすき間の空間部2aを有している。
【0017】
尚、3bは主軸3の前端部に設けたフランジ部で、前記円盤部2との当接面2bを充分に得られるような大径に形成されている。
【0018】
図2は円盤部2と主軸3の組立て時の状態を示し、円盤側の突出部2cを主軸側のテーパ穴3aに係合させて、前記ボルト4は未だ捩じ込んでいない状態にある。この時、円盤部2と主軸3の前端面との間は僅かなすき間2eを存して両者が離間している。
【0019】
この状態においてボルト4を捩じ込むようにすれば、前記突出部2cとテーパ穴3aとの嵌合部の弾発力、及び前記円盤部2の弾発力に逆らってこれら円盤部2と主軸3とが締結され、前記環状の当接面2bが形成されると共に該円盤部2の中心部近傍が背後方向へ膨出し、該円盤部2の腹側が凹んで前記空間部2aが形成される。
【0020】
尚、円盤部2の前記膨出は、該円盤部2の弾性域内での変形となるようにした。
【0021】
次に、本実施の形態の作用及び効果について説明する。
【0022】
本実施の形態の円盤部2は中心部に貫通孔がないので、この種の貫通孔部に発生しがちな過大な応力の発生がない。
【0023】
又、円盤部2と主軸3とを締結しているボルト4は、前記円盤部2の弾発力によって常に該ボルト4の軸方向に引張り力を受けているので、これらのボルト4に緩みを生ずる心配がない。
【0024】
更に又、前記突出部2cとテーパ穴3aとの係合により円盤部2と主軸3との芯出しが容易に行なわれるので、ロータ1の再組立て時におけるロータバランスの再現性が良い。
【0025】
本発明の第2の実施の形態を図3により説明する。
【0026】
図3は本発明の高速回転体のロータの主軸接合方法の第2の実施の形態における円盤部5と主軸6の接合部の縦断面図を示す。
【0027】
円盤部5はアルミ合金製で、ボルト4の締付けにより該円盤部5と鋼製の主軸6の前端面とが環状の当接面5bにおいて当接している。
【0028】
前記円盤部5の中心部には先細の円錐台状のテーパ穴5cを貫通させずに設けてあり、前記主軸6の前端面の中心部に突出させて設けた中実の円錐台状の突出部6aの大部分が該テーパ穴5cに締め代を有して嵌入した構造としている。
【0029】
尚、当該円盤部5も前記ボルト4の締付けによって中心部近傍が背後方向へ膨出すると共に該円盤部5の腹側に空間部5aが形成される。
【0030】
次に本実施の形態の作用及び効果について説明する。
【0031】
本実施の形態においても前記第1の実施の形態におけるのと同様に、前記円盤部5の弾発力によって締結ボルト4の軸方向に常に引張り力が掛かっているので、これらのボルト4が緩むことがない。
【0032】
又、前記突出部6aとテーパ穴5cとの係合により円盤部5と主軸6との芯出しが容易に行なわれるので、再組立て時におけるロータバランスの再現性が良い。
【0033】
更に又、前記円盤部5のテーパ穴5cは貫通していないので、ロータの高速回転時にも貫通孔を有する従来の円盤部に較べて低い応力で済んでいる。
【0034】
【発明の効果】
このように本発明によれば、ロータの円盤部に過大な応力の発生箇所がなく、締結ボルトに緩みを生ずることがなく、又、再組立て時にもロータのバランスの再現性に優れているような高速回転体のロータの主軸接合構造を提供できる効果を有する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における円盤部と主軸の接合部の縦断面図である。
【図2】同上円盤部と主軸の組立て途中の状態を示す縦断面図である。
【図3】本発明の第2の実施の形態における円盤部と主軸の接合部の縦断面図である。
【図4】円盤部と主軸の接合方法を用いた複合分子ポンプの第1の従来例の縦断面図である。
【図5】円盤部と主軸との接合方法の第2の従来例の縦断面図である。
【図6】円盤部と主軸との接合方法の第3の従来例の縦断面図である。
【符号の説明】
1 ロータ
2、5 円盤部
2a、5a 空間部
2b、5b 当接面
2c、6a 突出部
2e すき間
3、6 主軸
3a、5a テーパ穴
3b フランジ部
4 ボルト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joining structure that is optimal for joining a rotor and a main shaft of a rotor of a high-speed rotating body, particularly a turbo molecular pump or a composite molecular pump.
[0002]
[Prior art]
Conventionally, in a rotor of this type of molecular pump, a disk portion of a rotor made mainly of an aluminum alloy and a main shaft portion made of steel are fastened using bolts or the like, and are integrally formed.
[0003]
FIG. 4 shows an example of a longitudinal sectional view of a complex molecular pump as a first conventional example.
[0004]
That is, in FIG. 4, a tapered hole c is provided through the center of the disk part b of the rotor a, the tip of the main shaft S is formed into a conical tapered part d, and the tapered part d is fitted into the tapered hole c. By tightening the bolt f through the presser foot e, the disk part b and the main shaft S are joined to form an integral rotor.
[0005]
Further, in the second conventional example shown in FIG. 5, a flange g is formed at the front portion of the main shaft S1, the disk portion b1 and the main shaft S1 are fastened by a plurality of bolts h1, and positioning of both is performed using a knock pin k. I try to do it.
[0006]
Furthermore, in the third conventional example shown in FIG. 6, a cylindrical protrusion n at the front end of the main shaft S2 is fitted with a tightening margin into a through hole m provided at the center of the disk part b2, and a bolt h2 is inserted. The two are fastened together and formed integrally.
[0007]
[Problems to be solved by the invention]
However, the first conventional spindle joining method shown in FIG. 4 has a problem that a large stress is generated in the tapered hole c portion when the rotor a rotates at high speed. Further, according to the joining method, the taper hole c is deformed by the centrifugal force at the time of high speed rotation, so that the rigidity of the fitting part between the taper hole c and the taper part d of the spindle S is reduced. There was a problem.
[0008]
Next, the spindle joining method of the second conventional example shown in FIG. 5 has a problem that the reproducibility of the balance of the rotor a1 is poor when the disk part b1 and the spindle S1 are reassembled. Further, according to the joining method, since the detent force acting on the bolt h1 is only the frictional force of the screw portion due to the tensile force at the time of tightening the bolt h1, there is a risk of loosening the tightening portion of the bolt h1.
[0009]
In the spindle connecting method of the third conventional example shown in FIG. 6, there is a problem that a large stress is generated in the through-hole m part during high-speed rotation, as in the first conventional example.
[0010]
Furthermore, similarly to the second conventional example, there is a risk that the bolt h2 is loosened.
[0011]
The present invention solves these problems, there is no place where excessive stress is generated in the disk portion of the rotor, there is no risk of loosening of the fastening bolts, and the reproducibility of the balance of the rotor is excellent even during reassembly. The present invention provides a main shaft joining structure of a rotor of a high-speed rotating body.
[0012]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a rotor of a high-speed rotating body in which a front end surface of a main shaft is brought into contact with one surface of a disk portion of a rotor and both are fastened with bolts, and the center of the one surface of the disk portion is A solid frustoconical protrusion is projected from the center and a tapered frustoconical taper hole is provided in the center of the front end surface, and when the two bolts are fastened together with the bolt, the protrusion becomes a taper hole. Inserted with a tightening allowance and, by the tightening , against the elastic force of the disk part, the vicinity of the center part of the disk part bulges backward, the ventral side of the disk part is recessed and the inside of the contact surface It is characterized by forming a narrow space on the circumferential side.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS.
[0014]
FIG. 1 is a longitudinal sectional view of a joint portion of a disk portion 2 and a main shaft 3 of a rotor 1 having a main shaft joining structure of a rotor of a high-speed rotating body according to the present invention, and 4 is fastening these disk portion 2 and the main shaft 3 together. A number of bolts 4 are arranged on the same pitch circle.
[0015]
The disk portion 2 is made of an aluminum alloy, and the disk portion 2 is in contact with the front end surface of the steel main shaft 3 at the annular contact surface 2b.
[0016]
A solid frustoconical protrusion 2 c protrudes from the center of the disk portion 2, and a large conical taper hole 3 a provided at the center of the front end surface of the main shaft 3 has a large protrusion 2 c. It has a structure in which the portion has a tightening allowance. In addition, a space portion 2a having a narrow gap is formed between the fitting portion and the contact surface 2b.
[0017]
Incidentally, 3b is a flange portion provided at the front end portion of the main shaft 3, and has a large diameter so that a sufficient contact surface 2b with the disk portion 2 can be obtained.
[0018]
FIG. 2 shows a state in which the disk portion 2 and the main shaft 3 are assembled. The disk-side protruding portion 2c is engaged with the taper hole 3a on the main shaft side, and the bolt 4 is not yet screwed. At this time, there is a slight gap 2e between the disk portion 2 and the front end surface of the main shaft 3, and the two are separated.
[0019]
If the bolt 4 is screwed in this state, the disk portion 2 and the main shaft are opposed to the elastic force of the fitting portion between the protruding portion 2c and the tapered hole 3a and the elastic force of the disk portion 2. 3 is fastened, the annular contact surface 2b is formed, and the vicinity of the center portion of the disc portion 2 bulges backward, and the abdomen side of the disc portion 2 is recessed to form the space portion 2a. .
[0020]
The bulge of the disk portion 2 is deformed within the elastic region of the disk portion 2.
[0021]
Next, the operation and effect of the present embodiment will be described.
[0022]
Since the disk portion 2 of the present embodiment has no through hole in the central portion, there is no excessive stress that tends to occur in this kind of through hole portion.
[0023]
Further, the bolts 4 that fasten the disk part 2 and the main shaft 3 are always subjected to a tensile force in the axial direction of the bolts 4 due to the elastic force of the disk part 2, so that these bolts 4 are loosened. There is no worry about it occurring.
[0024]
Furthermore, since the centering of the disk portion 2 and the main shaft 3 is easily performed by the engagement between the protruding portion 2c and the tapered hole 3a, the reproducibility of the rotor balance when the rotor 1 is reassembled is good.
[0025]
A second embodiment of the present invention will be described with reference to FIG.
[0026]
FIG. 3 shows a longitudinal sectional view of the joint between the disk portion 5 and the main shaft 6 in the second embodiment of the main shaft joining method of the rotor of the high-speed rotating body of the present invention.
[0027]
The disk part 5 is made of an aluminum alloy, and the disk part 5 and the front end surface of the steel main shaft 6 are in contact with each other at the annular contact surface 5b by tightening the bolts 4.
[0028]
A solid frustoconical protrusion is provided at the center of the disk portion 5 without penetrating a tapered frustum-shaped tapered hole 5c and protruding from the center of the front end surface of the main shaft 6. The most part 6a has a structure in which the taper hole 5c is fitted with a margin.
[0029]
The disk portion 5 also bulges in the vicinity of the center portion by tightening the bolt 4, and a space portion 5 a is formed on the ventral side of the disk portion 5.
[0030]
Next, the operation and effect of the present embodiment will be described.
[0031]
Also in the present embodiment, as in the first embodiment, the tensile force is always applied in the axial direction of the fastening bolt 4 due to the elastic force of the disk portion 5, so that these bolts 4 are loosened. There is nothing.
[0032]
Further, since the disk portion 5 and the main shaft 6 can be easily centered by the engagement between the protruding portion 6a and the tapered hole 5c, the reproducibility of the rotor balance at the time of reassembly is good.
[0033]
Furthermore, since the taper hole 5c of the disk part 5 does not penetrate, even when the rotor rotates at a high speed, a lower stress is required as compared with a conventional disk part having a through hole.
[0034]
【The invention's effect】
As described above, according to the present invention, there is no location where excessive stress is generated in the disk portion of the rotor, the fastening bolt is not loosened, and the reproducibility of the balance of the rotor is excellent even during reassembly. This has the effect of providing a main shaft joining structure for a rotor of a high-speed rotating body.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a joint between a disk portion and a main shaft in a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a state in the course of assembling the disk part and the spindle.
FIG. 3 is a longitudinal sectional view of a joint portion between a disk portion and a main shaft in a second embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of a first conventional example of a complex molecular pump using a method of joining a disk portion and a main shaft.
FIG. 5 is a longitudinal sectional view of a second conventional example of a method for joining a disk portion and a main shaft.
FIG. 6 is a longitudinal sectional view of a third conventional example of a method for joining a disk portion and a main shaft.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotor 2, 5 Disk part 2a, 5a Space part 2b, 5b Contact surface 2c, 6a Protruding part 2e Clearance 3, 6 Main shaft 3a, 5a Taper hole 3b Flange part 4 Bolt

Claims (4)

ロータの円盤部の片面に主軸の前端面を当接させ、両者をボルトで締結してなる高速回転体のロータにおいて、前記円盤部の前記片面の中心部から円錐台状の中実の突出部を突出させると共に前記前端面の中心部に先細の円錐台状のテーパ穴を設け、両者を前記ボルトで締結したときに該突出部が該テーパ穴に締め代を有して嵌入すると共に該締結によって前記円盤部の弾発力に逆らって該円盤部の中心部近傍が背後方向に膨出し、該円盤部の腹側が凹んで前記当接面の内周側に狭い空間部を生ずるように形成したことを特徴とする高速回転体のロータの主軸接合構造。In a rotor of a high-speed rotating body in which a front end surface of a main shaft is brought into contact with one surface of a disk portion of a rotor and both are fastened with bolts, a solid protruding portion having a truncated cone shape from the center portion of the one surface of the disk portion And a tapered frustoconical tapered hole is provided in the center of the front end surface, and when the two are fastened by the bolt, the protruding portion is fitted into the tapered hole with a tightening margin and tightened. Due to the elastic force of the disk part, the vicinity of the center part of the disk part bulges in the backward direction, and the ventral side of the disk part is recessed to form a narrow space part on the inner peripheral side of the contact surface The main shaft joining structure of the rotor of the high-speed rotating body characterized by the above. ロータの円盤部の片面に主軸の前端面を当接させ、両者をボルトで締結してなる高速回転体のロータにおいて、前記円盤部の前記片面の中心部に先細の円錐台状のテーパ穴を貫通させずに設けると共に前記前端面の中心部に円錐台状の中実の突出部を突出して設け、両者を前記ボルトで締結したときに前記突出部が前記テーパ穴に締め代を有して嵌入すると共に該締結によって前記円盤部の弾発力に逆らって該円盤部の中心部近傍が背後方向に膨出し、該円盤部の腹側が凹んで前記当接面の内周側に狭い空間部を生ずるように形成したことを特徴とする高速回転体のロータの主軸接合構造。In a rotor of a high-speed rotating body in which the front end surface of the main shaft is brought into contact with one side of the disk part of the rotor and both are fastened with bolts, a tapered truncated cone-shaped tapered hole is formed in the center part of the one side of the disk part. Provided without penetrating and provided with a solid frustoconical projecting portion at the center of the front end surface, and when both are tightened with the bolt, the projecting portion has a tightening margin in the tapered hole Inserted and fastened against the elastic force of the disc portion by the fastening, the vicinity of the center portion of the disc portion bulges backward, the ventral side of the disc portion is recessed, and the narrow space portion on the inner peripheral side of the contact surface spindle joint structure of a rotor of the high speed rotation body, characterized in that it has formed to produce a. 前記円盤部と前記主軸との組立て時において、前記突出部と前記テーパ穴とを係合させた状態では、これら円盤部と主軸との前記当接面は僅かなすき間を存して両者が離間しており、同一のピッチ円上に配置された複数の前記ボルトを締め付けることによってこれら円盤部と主軸との当接面を環状に形成すると共に該円盤部の弾発力に逆らって該円盤部の中心部近傍が背後方向に膨出し、該円盤部の腹側が凹んで前記当接面の内周側に空間部を形成したことを特徴とする請求項1又は請求項2に記載の高速回転体のロータの主軸接合構造。When the disk portion and the main shaft are assembled, in the state where the protruding portion and the tapered hole are engaged, the contact surface between the disk portion and the main shaft has a slight gap so that they are separated from each other. And a plurality of bolts arranged on the same pitch circle are tightened to form an annular contact surface between the disk part and the main shaft, and the disk part against the elastic force of the disk part. The high-speed rotation according to claim 1 or 2, characterized in that the vicinity of the center portion of the disk portion bulges in the rear direction, and the abdomen side of the disk portion is recessed to form a space portion on the inner peripheral side of the contact surface. The main spindle connection structure of the body rotor. 前記主軸の前端部を径の大きなフランジ部に形成したことを特徴とする請求項1又は請求項2又は請求項3に記載の高速回転体のロータの主軸接合構造。  4. The main shaft joining structure for a rotor of a high-speed rotating body according to claim 1, wherein the front end portion of the main shaft is formed in a flange portion having a large diameter.
JP10617999A 1999-04-14 1999-04-14 Spindle joint structure of high-speed rotor Expired - Lifetime JP4404986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10617999A JP4404986B2 (en) 1999-04-14 1999-04-14 Spindle joint structure of high-speed rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10617999A JP4404986B2 (en) 1999-04-14 1999-04-14 Spindle joint structure of high-speed rotor

Publications (2)

Publication Number Publication Date
JP2000297782A JP2000297782A (en) 2000-10-24
JP4404986B2 true JP4404986B2 (en) 2010-01-27

Family

ID=14427022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10617999A Expired - Lifetime JP4404986B2 (en) 1999-04-14 1999-04-14 Spindle joint structure of high-speed rotor

Country Status (1)

Country Link
JP (1) JP4404986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720679A (en) * 2012-05-29 2012-10-10 苏州市太湖风机制造有限公司 Stably operating fan

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7717684B2 (en) * 2003-08-21 2010-05-18 Ebara Corporation Turbo vacuum pump and semiconductor manufacturing apparatus having the same
KR101532820B1 (en) 2010-02-16 2015-06-30 가부시키가이샤 시마쓰세사쿠쇼 Vacuum pump
CN102242728A (en) * 2011-06-30 2011-11-16 常州市西城减速机有限公司 Anti-flying transmission shaft
JP6606365B2 (en) * 2015-07-09 2019-11-13 エドワーズ株式会社 Vacuum pump and its rotor and rotor shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720679A (en) * 2012-05-29 2012-10-10 苏州市太湖风机制造有限公司 Stably operating fan
CN102720679B (en) * 2012-05-29 2015-05-13 苏州市太湖风机制造有限公司 Stably operating fan

Also Published As

Publication number Publication date
JP2000297782A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
JP4339782B2 (en) Fixing device for fixing the impeller to the shaft
US6896479B2 (en) Turbocharger rotor
JP4705570B2 (en) Wheel hub / Rotating joint / Assembly
JPS63184501A (en) Wheel bearing/synchronous rotary joint unit
JP4404986B2 (en) Spindle joint structure of high-speed rotor
JP2002519564A (en) Turbomachine rotor
US6663343B1 (en) Impeller mounting system and method
JPH06257669A (en) Support structure for friction coupling drum
JP4905953B2 (en) Flanged hub
JPS60129412A (en) Press-in pin
JP4736092B2 (en) Disc brake rotor
JPS5835203A (en) Bucket locking mechanism
JP2001200701A (en) Turbine rotor blade and coupling method therefor
JP2006523802A (en) Self-locking nut and stack wheel assembly for rotor shaft stud shaft
JPS6248472B2 (en)
JPH11325022A (en) Fastening structure of low cycle fatigue service life parts
JPS6162618A (en) Rotating body fixing tool
KR102119259B1 (en) Wheel bearing assembly
JP2569318Y2 (en) Floating brake disc
US20240011545A1 (en) Welded torque converter component
JPS61104102A (en) Rotor of gas bearing-supported turbo machine
JP3062558B2 (en) Elastic joint
CN114382723A (en) Fan with rotor and fan impeller
JP2001173597A (en) Shaft fastening part of centrifugal impeller
JPH01153820A (en) Fixing tool for rotary body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term