JP4404717B2 - Photocurrent sensor - Google Patents

Photocurrent sensor Download PDF

Info

Publication number
JP4404717B2
JP4404717B2 JP2004225041A JP2004225041A JP4404717B2 JP 4404717 B2 JP4404717 B2 JP 4404717B2 JP 2004225041 A JP2004225041 A JP 2004225041A JP 2004225041 A JP2004225041 A JP 2004225041A JP 4404717 B2 JP4404717 B2 JP 4404717B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
light source
faraday
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004225041A
Other languages
Japanese (ja)
Other versions
JP2006046978A (en
Inventor
潔 黒澤
和臣 白川
章 島岡
正弘 栢木
英治 板倉
敏晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Takaoka Electric Mfg Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc, Takaoka Electric Mfg Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2004225041A priority Critical patent/JP4404717B2/en
Publication of JP2006046978A publication Critical patent/JP2006046978A/en
Application granted granted Critical
Publication of JP4404717B2 publication Critical patent/JP4404717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は光電流センサに関する。   The present invention relates to a photocurrent sensor.

ファラデー効果を利用した光電流センサは電磁雑音の影響を受けないなどの利点があり、電力分野における電流の測定に利用されている。このような光電流センサは例えば、1998年発行の電気学会電線ケーブル研究会資料EC−98−8や、特開平7−248338に開示されている。   The photocurrent sensor using the Faraday effect has an advantage that it is not affected by electromagnetic noise, and is used for current measurement in the power field. Such a photocurrent sensor is disclosed in, for example, the IEEJ Electric Wire and Cable Research Society document EC-98-8 published in 1998 and JP-A-7-248338.

研究会資料(EC−98−8)に記載の光電流センサの構成の概要を図2に示す。光電流センサは、光源11、偏光解消素子(デポラライザ)13、光電変換器14から成る信号処理部10と、センサ部30と、信号処理部10とセンサ部30とを接続する入力光ファイバ21および出力光ファイバ22から成る光伝送路20により構成されている。ここで、光源11に高輝度発光ダイオード(高輝度LED)を、入力光ファイバ21および出力光ファイバ22に単一モードファイバを使用している。   FIG. 2 shows an outline of the configuration of the photocurrent sensor described in the study group document (EC-98-8). The photocurrent sensor includes a signal processing unit 10 including a light source 11, a depolarizing element (depolarizer) 13, and a photoelectric converter 14, a sensor unit 30, an input optical fiber 21 that connects the signal processing unit 10 and the sensor unit 30, and The optical transmission line 20 is composed of an output optical fiber 22. Here, a high-intensity light-emitting diode (high-intensity LED) is used for the light source 11, and a single mode fiber is used for the input optical fiber 21 and the output optical fiber 22.

この構成の光電流センサは、光源11が有する偏波の偏りを偏光解消素子13で解消した後、入力光ファイバ21を介してセンサ部30に送ることにより、センサ部30に供給する光強度を一定にできる。そのため、入力光ファイバ21が受ける外乱により生じる光電流センサの出力変動を小さくすることができる。   In the photocurrent sensor having this configuration, the polarization intensity of the light source 11 is eliminated by the depolarization element 13 and then sent to the sensor unit 30 via the input optical fiber 21, whereby the light intensity supplied to the sensor unit 30 is increased. Can be constant. Therefore, the output fluctuation of the photocurrent sensor caused by the disturbance received by the input optical fiber 21 can be reduced.

一方、電力用送電線は架空地線に単一モード光ファイバを内蔵した構造のもの(OPGW)が普及している。そのため、信号処理部10とセンサ部30とを接続する光伝送路20を単一モードファイバにすることにより、光伝送路を新たに敷設することなく光電流センサを利用することができる。   On the other hand, a power transmission line (OPGW) having a structure in which a single mode optical fiber is built in an aerial ground wire is widely used. Therefore, by using a single mode fiber for the optical transmission line 20 that connects the signal processing unit 10 and the sensor unit 30, the photocurrent sensor can be used without newly laying the optical transmission line.

次に、前記公報(特開平7−248338)記載の光電流センサの構成の概要を図3に示す。光電流センサは、光源11、分光素子12、光電変換器14から成る信号処理部10と、偏光素子31、光学バイアス素子32、ファラデー素子33、反射ミラー34より成るセンサ部30と、信号処理部10センサと部30とを接続する入力光ファイバ21および出力光ファイバ22から成る光伝送路20により構成されている。ここで、分光素子12に偏光素子および45度のファラデー回転子から成る偏波依存型サーキュレータを、入力光ファイバ21に偏波面保持ファイバを、出力光ファイバ22にマルチモードファイバを使用している。   Next, FIG. 3 shows an outline of the configuration of the photocurrent sensor described in the publication (Japanese Patent Laid-Open No. 7-248338). The photocurrent sensor includes a signal processing unit 10 including a light source 11, a spectroscopic element 12, and a photoelectric converter 14, a sensor unit 30 including a polarizing element 31, an optical bias element 32, a Faraday element 33, and a reflection mirror 34, and a signal processing unit. The optical transmission line 20 is composed of an input optical fiber 21 and an output optical fiber 22 that connect the 10 sensors and the unit 30. Here, a polarization-dependent circulator comprising a polarizing element and a 45-degree Faraday rotator is used as the spectroscopic element 12, a polarization plane holding fiber is used as the input optical fiber 21, and a multimode fiber is used as the output optical fiber 22.

この構成の光電流センサは、ファラデー素子33を光ファイバで形成し、その一端に反射ミラー34を設けることにより、被測定電流が流れる導体40を切り離すことなく当該センサ部30を取り付けることができる。また、センサ部30から出力される位相が反転した2つの光信号を使用することにより、ファラデー素子33が受ける外乱により生じる複屈折の影響をキャンセルできるため、電流計測精度を向上できる。   In the photocurrent sensor having this configuration, the Faraday element 33 is formed of an optical fiber, and the reflection mirror 34 is provided at one end thereof, so that the sensor unit 30 can be attached without separating the conductor 40 through which the current to be measured flows. Further, by using two optical signals whose phases outputted from the sensor unit 30 are inverted, the influence of birefringence caused by the disturbance received by the Faraday element 33 can be canceled, so that the current measurement accuracy can be improved.

しかし、図2の構成では、光源11に使用する高輝度LEDの発光量と、光電変換器14の最低受光量から光伝送路20の最大距離を算出すると5km程度となる。   However, in the configuration of FIG. 2, when the maximum distance of the optical transmission line 20 is calculated from the light emission amount of the high-intensity LED used for the light source 11 and the minimum light reception amount of the photoelectric converter 14, it is about 5 km.

一方、電力分野では架空送電線と地中送電線の混在線路において事故が発生した場合、事故区間が架空送電線で生じたものか、地中送電線で生じたものかを判定できる装置(地中線事故区間判定装置)が実用化されている。この判定には地中送電線の両端に存在する架空送電線との接続部に流れる零相電流の大きさと位相を比較する必要がある。そのため、この装置に使用する光電流センサは電流情報を長距離伝送できなければならない。地中送電線は長いものでは20kmを越えるものがあるため、従来の伝送距離を更に長距離化できる光電流センサが望まれている。   On the other hand, in the electric power field, when an accident occurs on a mixed line of overhead and underground transmission lines, a device that can determine whether the accident section is caused by an overhead transmission line or an underground transmission line (ground Middle line accident section judgment device) has been put into practical use. For this determination, it is necessary to compare the magnitude and phase of the zero-phase current flowing through the connection with the overhead power transmission line existing at both ends of the underground power transmission line. Therefore, the photocurrent sensor used in this apparatus must be able to transmit current information over a long distance. Since some underground transmission lines exceed 20 km, a photocurrent sensor that can further increase the conventional transmission distance is desired.

また、図2の構成による光電流センサは、センサ部30から出射する光を1つしか使用しないため、センサ部30が受ける外乱の影響を除去することができない。その結果、光電流センサの電流計測精度が低下する。   In addition, since the photocurrent sensor having the configuration of FIG. 2 uses only one light emitted from the sensor unit 30, the influence of the disturbance received by the sensor unit 30 cannot be removed. As a result, the current measurement accuracy of the photocurrent sensor decreases.

一方、前述した地中線事故区間判定装置では判定精度を上げるために、より高い電流計測精度を有した光電流センサが望まれている。   On the other hand, in the underground accident section determination apparatus described above, a photocurrent sensor with higher current measurement accuracy is desired in order to increase the determination accuracy.

また、図3の構成では、精度の良い電流計測ができるものの、入力光ファイバ21に偏波面保持ファイバを使用しているため、前述したOPGWに収納された単一モードファイバを使用することは困難である。そのため、この光電流センサの出力を長距離伝送するためには、新たに光伝送路を敷設する必要が生じる。しかし、偏波面保持ファイバは単一モードファイバと比較して高価であるため、偏波面保持ファイバを敷設することは現実的とは言えない。   In addition, in the configuration of FIG. 3, although current measurement can be performed with high accuracy, since the polarization maintaining fiber is used for the input optical fiber 21, it is difficult to use the single mode fiber housed in the OPGW described above. It is. Therefore, in order to transmit the output of this photocurrent sensor for a long distance, it is necessary to newly lay an optical transmission line. However, since the polarization-maintaining fiber is more expensive than the single mode fiber, it is not practical to install the polarization-maintaining fiber.

仮に図3における入力光ファイバ21を単一モードファイバで構成すると、単一モードファイバには偏波方位を安定に伝送する機能が無いため、分光素子12である偏波依存型サーキュレータを通過した直線偏波光の方位は、単一モードファイバが外乱を受けることにより生じる複屈折により、単一モードファイバ伝搬中に任意に変化する。その結果、センサ部30に到達する光の偏波方位は時間毎に変化する。センサ部30に入射する光の偏波方位が時間毎に変化すると、それに伴って偏光素子31を通過しファラデー素子33に供給される光量が変動する。その結果、被測定電流が無通電の状態において光電変換器14に入射する光量が変化する。この光量変動は光電流センサの電流測定精度を低下させる原因となる。   If the input optical fiber 21 in FIG. 3 is formed of a single mode fiber, the single mode fiber does not have a function of stably transmitting the polarization direction, and therefore a straight line that has passed through the polarization-dependent circulator as the spectroscopic element 12. The direction of the polarized light is arbitrarily changed during propagation of the single mode fiber due to birefringence caused by the disturbance of the single mode fiber. As a result, the polarization direction of the light reaching the sensor unit 30 changes with time. When the polarization direction of the light incident on the sensor unit 30 changes with time, the amount of light that passes through the polarizing element 31 and is supplied to the Faraday element 33 varies accordingly. As a result, the amount of light incident on the photoelectric converter 14 changes when the measured current is not energized. This variation in the amount of light causes a decrease in the current measurement accuracy of the photocurrent sensor.

そこで本発明は、光伝送路に単一モードファイバを使用し、なおかつ計測精度が高く、長距離伝送が可能な光電流センサの構成を提案することにある。   Therefore, the present invention proposes a configuration of a photocurrent sensor that uses a single mode fiber for an optical transmission line, has high measurement accuracy, and can perform long-distance transmission.

また、その光電流センサを使用した地中線事故区間判定装置を提案することにある。   Another object of the present invention is to propose an underground line accident zone determination device using the photocurrent sensor.

本発明の請求項1では、被測定電流が流れる導体に光ファイバで形成されたファラデー素子を周回させ、ファラデー効果により回転する光の偏波方位を光強度に変換する手段を設け、その光強度の変化から被測定導体に流れる電流の大きさを算出する光電流センサにおいて、光源と、被測定導体に流れる電流の大きさを位相が反転した2つの光強度信号に変換するセンサ部と、そのセンサ部から得られる2つの光信号を電気信号に変換し、その電気信号を演算することにより電流値を算出する光電変換器と、前記光源と前記センサ部とを接続する単一モードファイバで形成した入力光ファイバと、前記センサ部と前記光電変換器とを接続する単一モードファイバで形成した出力光ファイバと、前記光源と前記入力光ファイバとの間に配置した偏光解消素子と、前記光源と前記偏光解消素子との間に配置し、前記光源から出射した光を偏光状態と強度を変化させることなく前記偏光解消素子に供給するとともに、前記入力光ファイバおよび前記偏光解消素子を介して前記センサ部から入力される光を偏光状態と強度を変化させることなく前記光電変換器に供給する分光素子と、を備えたことを特徴とする。   According to a first aspect of the present invention, there is provided means for circulating a Faraday element formed of an optical fiber around a conductor through which a current to be measured flows, and converting the polarization direction of light rotated by the Faraday effect into light intensity. In the photocurrent sensor for calculating the magnitude of the current flowing through the measured conductor from the change of the light source, the sensor section for converting the magnitude of the current flowing through the measured conductor into two light intensity signals whose phases are inverted, and Formed with a photoelectric converter that converts two optical signals obtained from the sensor unit into electrical signals and calculates the current value by calculating the electrical signal, and a single mode fiber that connects the light source and the sensor unit The input optical fiber, the output optical fiber formed by a single mode fiber connecting the sensor unit and the photoelectric converter, and the light source and the input optical fiber. A light cancellation element, disposed between the light source and the depolarization element, and supplies the light emitted from the light source to the polarization cancellation element without changing the polarization state and intensity, and the input optical fiber and the And a spectroscopic element that supplies light input from the sensor unit via the depolarization element to the photoelectric converter without changing the polarization state and intensity.

本発明の請求項2では、前記光源が希土類元素添加物ファイバを半導体レーザ等の励起用光源で励起することにより生じた自然放出光がファイバ内を導波するに従い増幅する現象を利用した光源であることを特徴とする。   According to a second aspect of the present invention, the light source is a light source utilizing a phenomenon in which spontaneous emission light generated by exciting the rare earth element-added fiber with an excitation light source such as a semiconductor laser is amplified as it is guided in the fiber. It is characterized by being.

本発明の請求項3では、架空線路と地中線路が混在する送電線路における事故区間判定装置において、請求項1および請求項2記載の光電流センサを備えたことを特徴とする。   According to a third aspect of the present invention, in the fault section determination apparatus for a power transmission line in which an overhead line and an underground line are mixed, the photocurrent sensor according to the first and second aspects is provided.

上記構成による光電流センサでは、光伝送路に単一モードファイバを使用でき、なおかつ計測精度が高く、長距離伝送が可能な光電流センサを提供できる。   In the photocurrent sensor having the above-described configuration, it is possible to provide a photocurrent sensor that can use a single mode fiber for the optical transmission line, has high measurement accuracy, and can perform long-distance transmission.

また、その光電流センサを使用した地中線事故区間判定装置を提供できる。   Moreover, it is possible to provide an underground accident section determination device using the photocurrent sensor.

以上のように、上記構成による光電流センサでは、光伝送路に単一モードファイバを使用でき、なおかつ計測精度が高く、長距離伝送が可能な光電流センサを提供できる。また、その光電流センサを使用した地中線事故区間判定装置を提供できる。   As described above, in the photocurrent sensor having the above-described configuration, it is possible to provide a photocurrent sensor that can use a single mode fiber for an optical transmission line, has high measurement accuracy, and can perform long-distance transmission. Moreover, it is possible to provide an underground accident section determination device using the photocurrent sensor.

以下2つの実施例について説明する。   Two examples will be described below.

以下、本発明の実施の形態について、図面を参照して説明する。尚、以下の説明では、上記従来の技術で参照した図において、同一もしくは相当する部分には同一符号を付してその説明は省略している。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, in the drawings referred to in the above prior art, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted.

図1は本発明のうち請求項1および請求項2の実施形態である光電流センサの構成を示した一例である。図1では、光源11と偏光解消素子13との間に分光素子12を配置する。また、センサ部30は電流計測精度を向上させるために2つの光信号を出力するものとし、一方の出力光は出力光ファイバ22を介して、もう一方の出力光は入力光ファイバ21、偏光解消素子13および分光素子12を介して光電変換器14に入射する構造となっている。   FIG. 1 shows an example of the configuration of a photocurrent sensor according to the first and second embodiments of the present invention. In FIG. 1, the spectroscopic element 12 is disposed between the light source 11 and the depolarizing element 13. The sensor unit 30 outputs two optical signals to improve current measurement accuracy. One output light is output via the output optical fiber 22, and the other output light is the input optical fiber 21. The light is incident on the photoelectric converter 14 via the element 13 and the spectroscopic element 12.

ここで、光源11には希土類元素添加物ファイバを半導体レーザ等の励起用光源で励起することにより生じた自然放出光がファイバ内を導波するに従い増幅する現象を利用した光源(ASE)を使用する。また、入力光ファイバ21および出力光ファイバ22に単一モード光ファイバを使用する。ASEは、出力光量が大きい(数十mW)、時間的コヒーレンスが低い、空間的コヒーレンスが高いなどの特徴を有しており、光電流センサの光源として適している。また、出力光の偏光度は小さいため、偏光解消素子による無偏光化が容易となる。そのため、入力光ファイバ21を単一モードファイバとする光電流センサにおける光源として優れている。   Here, the light source 11 is a light source (ASE) using a phenomenon in which spontaneous emission light generated by exciting a rare earth element-doped fiber with a pumping light source such as a semiconductor laser is amplified as it is guided in the fiber. To do. In addition, single-mode optical fibers are used for the input optical fiber 21 and the output optical fiber 22. ASE has features such as a large output light quantity (several tens of mW), low temporal coherence, and high spatial coherence, and is suitable as a light source for a photocurrent sensor. In addition, since the degree of polarization of the output light is small, it becomes easy to depolarize by the depolarizing element. Therefore, it is excellent as a light source in a photocurrent sensor in which the input optical fiber 21 is a single mode fiber.

また、分光素子12に偏波無依存型サーキュレータを使用する。偏波無依存型サーキュレータを分光素子12として使用することにより、光源11から出射した光を偏波状態と強度を変化させることなく偏光解消素子13に供給するとともに、入力光ファイバ21、偏光解消素子13を介して偏光素子31から入力される光を偏光状態と強度を変化させることなく光電変換器14に供給することができる。   In addition, a polarization-independent circulator is used for the spectroscopic element 12. By using a polarization-independent circulator as the spectroscopic element 12, the light emitted from the light source 11 is supplied to the depolarization element 13 without changing the polarization state and intensity, and the input optical fiber 21, depolarization element The light input from the polarizing element 31 via 13 can be supplied to the photoelectric converter 14 without changing the polarization state and intensity.

以下に、図1に示す光電流センサの構成により、長距離伝送が可能である理由を試験データを踏まえて説明する。長距離伝送が可能であることを裏付けるために、光伝送路20を長距離にした状態で戻り光量が十分確保できること、光伝送路20が受ける外乱により光電流センサの出力が変動しないこと、の2項目について検証を行った。   The reason why long distance transmission is possible with the configuration of the photocurrent sensor shown in FIG. 1 will be described below based on test data. In order to confirm that the long-distance transmission is possible, a sufficient amount of return light can be secured with the optical transmission line 20 in a long distance, and the output of the photocurrent sensor does not fluctuate due to the disturbance that the optical transmission line 20 receives. Two items were verified.

まず、図1に示す光電流センサの構成により長距離伝送が可能となることを示す試験として、分光素子12に偏波無依存型サーキュレータ、偏波依存型サーキュレータ、カプラの3種類を用いて光挿入損失の測定を行った。その結果を下表に示す。光損失(P)は、光源11の発光量(P0)から光電変換器14の受光量(分光素子12側をP1、出力光ファイバ22側をP2)を引いた値を示している。この試験では入力光ファイバ21、出力光ファイバ22の長さをそれぞれ10kmとしている。この表より分光素子12に偏波無依存型サーキュレータを使用することにより、他の分光素子を使用したものより約6dB低減できることがわかる。   First, as a test to show that the configuration of the photocurrent sensor shown in FIG. 1 enables long-distance transmission, the spectroscopic element 12 uses three types of light, a polarization-independent circulator, a polarization-dependent circulator, and a coupler. The insertion loss was measured. The results are shown in the table below. The light loss (P) indicates a value obtained by subtracting the amount of light received by the photoelectric converter 14 (P1 on the spectroscopic element 12 side and P2 on the output optical fiber 22 side) from the light emission amount (P0) of the light source 11. In this test, the lengths of the input optical fiber 21 and the output optical fiber 22 are each 10 km. From this table, it can be seen that by using a polarization-independent circulator for the spectroscopic element 12, it can be reduced by about 6 dB from that using other spectroscopic elements.

Figure 0004404717
Figure 0004404717

一方、光源11にASEを使用した場合の発光量(P0)は+10dBm以上である。また、電流計測精度を保証するためには少なくとも−20dBmの光量が必要となる。ここで、片道10kmの光伝送路20の光損失を含む光電流センサの光損失を20dB、光伝送路20の光損失を0.5dB/kmとすると、試験に使用した光伝送路20の距離を更に10km延長することが可能であることが分かる。つまり、図1に示す構成の光電流センサでは20km以上の長距離伝送が可能となる。   On the other hand, the light emission amount (P0) when ASE is used for the light source 11 is +10 dBm or more. Further, in order to guarantee current measurement accuracy, a light amount of at least −20 dBm is required. Here, assuming that the optical loss of the photocurrent sensor including the optical loss of the optical transmission line 20 of 10 km one way is 20 dB and the optical loss of the optical transmission line 20 is 0.5 dB / km, the distance of the optical transmission line 20 used in the test. It can be seen that the distance can be further extended by 10 km. That is, the photocurrent sensor having the configuration shown in FIG. 1 can perform long-distance transmission of 20 km or more.

次に、図1に示す光電流センサの構成により、光伝送路20が受ける外乱により光電流センサの出力が変動しないことを検証した試験結果を説明する。試験は図1に示す光電流センサの構成において単一モードファイバを使用した入力光ファイバ21を揺動させ、そのときの光電流センサの出力を測定した。また、分光素子12の特性が比較できるように、偏波無依存型サーキュレータ、偏波依存型サーキュレータ、カプラの3種類について行った。試験結果を下表に示す。この試験結果より、偏波無依存型サーキュレータを使用した場合と、カプラを使用した場合の入力光ファイバ21の揺動に対する影響は実用上問題が無い程度に小さいが、偏波依存型サーキュレータを使用した場合は実用に耐えられない程の影響を受けることがわかる。   Next, a test result for verifying that the output of the photocurrent sensor does not fluctuate due to the disturbance received by the optical transmission line 20 with the configuration of the photocurrent sensor shown in FIG. 1 will be described. In the test, the input optical fiber 21 using a single mode fiber was swung in the configuration of the photocurrent sensor shown in FIG. 1, and the output of the photocurrent sensor at that time was measured. Further, in order to compare the characteristics of the spectroscopic element 12, three types of polarization independent circulator, polarization dependent circulator, and coupler were used. The test results are shown in the table below. From this test result, the influence on the oscillation of the input optical fiber 21 when using a polarization-independent circulator and when using a coupler is so small that there is no practical problem, but a polarization-dependent circulator is used. It can be seen that it is affected to such a degree that it cannot be put into practical use.

Figure 0004404717
Figure 0004404717

図4は本発明のうち請求項3の実施形態である地中線故障区間判定装置の一例を示す。架空線路と地中線路が混在する送電線路において、架空送電線41と地中送電線42との一方の接続部付近にセンサ部30aを、もう一方の接続部付近にセンサ部30bを取り付ける。   FIG. 4 shows an example of an underground line fault section determination device according to the third embodiment of the present invention. In a transmission line in which an overhead line and an underground line are mixed, a sensor part 30a is attached near one connection part between the overhead transmission line 41 and the underground transmission line 42, and a sensor part 30b is attached near the other connection part.

光源31aを出射した光は分光素子12a、偏光解消素子13a、入力光ファイバ21aを介してセンサ部30aに入射する。センサ部ではファラデー効果を利用することで、入射した光を地中送電線42に流れる電流により発生する磁界の大きさに依存した光の偏波方位の回転角度を2つの光強度に変換して出射する。一方の光信号は出力光ファイバ22aと介して光電変換器14aに入射される。もう一方の光信号は入力光ファイバ21a、偏光解消素子13a、分光素子12aを介して光電変換器14aに入射される。光電変換器14aでは2つの光信号を電気信号に変換した後、所定の演算を行い、センサ部30aを取り付けた位置の地中送電線42に流れる電流を算出する。   The light emitted from the light source 31a enters the sensor unit 30a via the spectroscopic element 12a, the depolarization element 13a, and the input optical fiber 21a. By utilizing the Faraday effect, the sensor unit converts the rotation angle of the polarization direction of the light depending on the magnitude of the magnetic field generated by the current flowing through the underground transmission line 42 into two light intensities. Exit. One optical signal enters the photoelectric converter 14a through the output optical fiber 22a. The other optical signal enters the photoelectric converter 14a via the input optical fiber 21a, the depolarizing element 13a, and the spectroscopic element 12a. In the photoelectric converter 14a, two optical signals are converted into electric signals, and then a predetermined calculation is performed to calculate the current flowing through the underground power transmission line 42 at the position where the sensor unit 30a is attached.

同様に、光電変換器14bではセンサ部30bを取り付けた位置の地中送電線42に流れる電流を算出する。   Similarly, the photoelectric converter 14b calculates the current flowing through the underground power transmission line 42 at the position where the sensor unit 30b is attached.

光電変換器14a、14bで得られた電流情報は、区間検出装置15に送られ、電流値と位相差から地絡事故が架空送電線41で発生したのか、地中送電線42で発生したのかを判定する。   Current information obtained by the photoelectric converters 14a and 14b is sent to the section detection device 15, and whether a ground fault has occurred in the overhead power transmission line 41 or in the underground power transmission line 42 from the current value and the phase difference. Determine.

本発明の第1の実施の形態に係わる、光電流センサの構成の一例を示す図である。It is a figure which shows an example of a structure of the photocurrent sensor concerning the 1st Embodiment of this invention. 従来の光電流センサの構成の一例を示した図である。It is the figure which showed an example of the structure of the conventional photocurrent sensor. 従来の光電流センサの構成の別の一例を示した図である。It is the figure which showed another example of the structure of the conventional photocurrent sensor. 本発明の第2の実施の形態に係わる、光電流センサを使用した地中線事故区間判定装置構成の一例を示す図である。It is a figure which shows an example of the underground line fault area determination apparatus structure using a photocurrent sensor concerning the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10 信号処理部
11 光源
12 分光素子
13 偏光解消素子
14 光電変換器
15 区間検出装置
20 光伝送路
21 入力光ファイバ
22 出力光ファイバ
30 センサ部
31 偏光素子
32 光学バイアス素子
33 ファラデー素子
34 反射ミラー
40 導体
41 架空送電線
42 地中送電線
DESCRIPTION OF SYMBOLS 10 Signal processing part 11 Light source 12 Spectroscopic element 13 Depolarization element 14 Photoelectric converter 15 Section detection apparatus 20 Optical transmission path 21 Input optical fiber 22 Output optical fiber 30 Sensor part 31 Polarization element 32 Optical bias element 33 Faraday element 34 Reflection mirror 40 Conductor 41 Overhead transmission line 42 Underground transmission line

Claims (2)

被測定電流が流れる導体に光ファイバで形成されたファラディ素子を周回させ、ファラディ効果により回転する光の偏波方位を光強度に変換する手段を設け、その光強度の変化から被測定導体に流れる電流の大きさを算出する光電流センサにおいて、
光源と、
前記光源の光を偏光解消素子に送り、前記偏光解消素子から送られて来る前記ファラディ素子の
2つの出力光の一つ(以降A光と称する)を偏光状態と強度を変更することなく光電変換器に送る分光素子と、
前記光源の光の前記分光素子を経由した光の偏光を解消し単一モードファイバで形成した
入力光ファイバに送るとともに前記入力光ファイバから前記A光の偏光を解消して、前記
分光素子に送る偏光解消素子と、
前記偏光解消素子から光源の光を受け取り、前記ファラディ素子の偏光素子に光を送り、
前記ファラディ素子の前記偏光素子からくる前記A光を前記偏光解消素子に送る前記入力光ファイバと
前記入力光ファイバから送られた光を前記ファラディ素子に送るために直線偏光を生成し、同時にファラディ素子から、ファラディ効果により偏光角が回転した光を前記A光とそれと直交した偏光成分を持った光(以降B光と称する)に分解する偏光素子と、
前記B光を前記光電変換機に送る単一モードファイバで形成した出力光ファイバ
を備えたことを特徴とする光電流センサ。
A Faraday element formed of an optical fiber is circulated in the conductor through which the current to be measured flows, and a means for converting the polarization direction of the rotating light to the light intensity by the Faraday effect is provided, and flows from the change in the light intensity to the conductor to be measured. In the photocurrent sensor that calculates the magnitude of the current,
A light source;
The light from the light source is sent to the depolarization element, and the Faraday element is sent from the depolarization element.
A spectroscopic element that sends one of the two output lights (hereinafter referred to as A light) to the photoelectric converter without changing the polarization state and intensity;
The light of the light source is formed of a single mode fiber by depolarizing the light passing through the spectroscopic element.
Sending to the input optical fiber and depolarizing the A light from the input optical fiber,
A depolarizing element to be sent to the spectroscopic element;
Receiving light from the light source from the depolarizing element, sending light to the polarizing element of the Faraday element,
The input optical fiber for sending the A light coming from the polarizing element of the Faraday element to the depolarizing element;
Linearly polarized light is generated in order to send the light transmitted from the input optical fiber to the Faraday element. At the same time, light having a polarization angle rotated by the Faraday effect from the Faraday element has the polarization component orthogonal to the A light. A polarizing element that decomposes into light (hereinafter referred to as B light);
A photocurrent sensor comprising: an output optical fiber formed of a single mode fiber for sending the B light to the photoelectric converter .
光源は、希土類元素添加物ファイバを半導体レーザ等の励起用光源で励起することにより生じた自然放出光がファイバ内を導波するに従い増幅する現象を利用した光源であることを特徴とする、請求項1に記載の光電流センサ。 The light source is a light source utilizing a phenomenon in which spontaneous emission light generated by exciting a rare earth element-doped fiber with a pumping light source such as a semiconductor laser is amplified as it is guided in the fiber. Item 2. The photocurrent sensor according to Item 1.
JP2004225041A 2004-08-02 2004-08-02 Photocurrent sensor Active JP4404717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225041A JP4404717B2 (en) 2004-08-02 2004-08-02 Photocurrent sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225041A JP4404717B2 (en) 2004-08-02 2004-08-02 Photocurrent sensor

Publications (2)

Publication Number Publication Date
JP2006046978A JP2006046978A (en) 2006-02-16
JP4404717B2 true JP4404717B2 (en) 2010-01-27

Family

ID=36025707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225041A Active JP4404717B2 (en) 2004-08-02 2004-08-02 Photocurrent sensor

Country Status (1)

Country Link
JP (1) JP4404717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969501A (en) * 2014-05-15 2014-08-06 北京航佳科技有限公司 Optical current sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840869B2 (en) * 2007-03-01 2011-12-21 株式会社高岳製作所 Optical fiber current sensor device
JP2010025766A (en) * 2008-07-18 2010-02-04 Tokyo Electric Power Co Inc:The Fiber-optic current sensor, current measurement method and accident area detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318592A (en) * 1994-05-26 1995-12-08 Nissin Electric Co Ltd Optical fiber current measuring instrument
JP3685906B2 (en) * 1997-05-21 2005-08-24 東京電力株式会社 Current measurement method
JP4234885B2 (en) * 2000-07-07 2009-03-04 日本航空電子工業株式会社 Sagnac interferometer type current sensor
JP2003258732A (en) * 2002-03-06 2003-09-12 Mitsubishi Cable Ind Ltd Laser light source, power feeding apparatus using the same, wireless carrier discharge system, and portable telephone base station
JP3767528B2 (en) * 2002-07-25 2006-04-19 株式会社日立製作所 Ground fault location method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969501A (en) * 2014-05-15 2014-08-06 北京航佳科技有限公司 Optical current sensor

Also Published As

Publication number Publication date
JP2006046978A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US20210285987A1 (en) Reflective current and magnetic sensors based on optical sensing with integrated temperature sensing
US6229599B1 (en) Apparatus for measuring characteristics of an optical fiber
WO2010008029A1 (en) Fiber optic current sensor, current-measuring method and fault section-detection device
US8922194B2 (en) Master-slave fiber optic current sensors for differential protection schemes
CN101427142B (en) Fiber-optic current sensor with polarimetric detection scheme
JP5083321B2 (en) Optical fiber current measuring device and current measuring method
JP4234885B2 (en) Sagnac interferometer type current sensor
US20100284018A1 (en) Systems and methods for effective relative intensity noise (rin) subtraction in depolarized gyros
CN101915866A (en) All-fiber current transformer and working method thereof
CA2120850C (en) Optical fiber gyro
JP4404717B2 (en) Photocurrent sensor
JP6027927B2 (en) Fiber optic current sensor
JP3611975B2 (en) Optical CT with failure judgment function
JP5044100B2 (en) Electromagnetic wave measuring device, electromagnetic wave measuring probe, electromagnetic wave measuring probe array
KR102383843B1 (en) Current Sensing System using Optical Cable for Sensing
JP2004301769A (en) Optical current measuring instrument and current differential protecting system using the same
KR102581771B1 (en) current sensor integrated polarization maintaining optical fiber and magneto-optical device
WO2012045873A1 (en) Lightning detection system
US11789043B2 (en) Method and apparatus for measuring the current circulating through a conductor
KR20240066822A (en) optical current sensor for both AC and DC
JP2000088939A (en) Detecting apparatus for magneto-optical field
KR100307639B1 (en) Current / temperature measurement optical sensor using multi-wavelength light source and its method
JP3350280B2 (en) Optical current transformer
JP3505669B2 (en) Electric field sensor
CN116068249A (en) Optical fiber current transformer formed by laser resonant cavity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4404717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250