JP4403889B2 - Evaporative fuel processing device for internal combustion engine - Google Patents

Evaporative fuel processing device for internal combustion engine Download PDF

Info

Publication number
JP4403889B2
JP4403889B2 JP2004176414A JP2004176414A JP4403889B2 JP 4403889 B2 JP4403889 B2 JP 4403889B2 JP 2004176414 A JP2004176414 A JP 2004176414A JP 2004176414 A JP2004176414 A JP 2004176414A JP 4403889 B2 JP4403889 B2 JP 4403889B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
purge
stop
automatic start
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004176414A
Other languages
Japanese (ja)
Other versions
JP2006002574A (en
Inventor
貴幸 柿原
寿 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004176414A priority Critical patent/JP4403889B2/en
Publication of JP2006002574A publication Critical patent/JP2006002574A/en
Application granted granted Critical
Publication of JP4403889B2 publication Critical patent/JP4403889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、燃料タンクに発生する蒸発燃料をパージ制御する内燃機関の蒸発燃料処理装置に関するもので、特に、アイドル時に、内燃機関を自動停止させたのち自動始動させる所謂、アイドルストップ機能を備えた内燃機関に適用される内燃機関の蒸発燃料処理装置に関するものである。   The present invention relates to an evaporative fuel processing apparatus for an internal combustion engine that performs purge control of evaporative fuel generated in a fuel tank, and in particular, has a so-called idle stop function that automatically stops an internal combustion engine and then automatically starts the engine when idling. The present invention relates to an evaporated fuel processing apparatus for an internal combustion engine applied to the internal combustion engine.

従来、内燃機関の蒸発燃料処理装置に関連する先行技術文献としては、特開2001−295688号公報にて開示されたものが知られている。   Conventionally, as a prior art document related to an evaporative fuel processing apparatus for an internal combustion engine, one disclosed in Japanese Patent Application Laid-Open No. 2001-295688 is known.

このものでは、酸素センサからの出力値に基づき設定される空燃比フィードバック補正量が所定の領域となるようにパージ率を変化させ、このパージ率を変化させる前後におけるパージ率及び空燃比フィードバック補正量により蒸発燃料の濃度を検出する技術が示されている。
特開2001−295688号公報(第2頁〜第3頁)
In this case, the purge rate is changed so that the air-fuel ratio feedback correction amount set based on the output value from the oxygen sensor falls within a predetermined region, and the purge rate and the air-fuel ratio feedback correction amount before and after the purge rate is changed. A technique for detecting the concentration of evaporated fuel is shown.
JP 2001-295688 A (pages 2 to 3)

ところで、前述のものでは、アイドルストップ機能を備えた内燃機関のパージ制御については開示されていない。ここで、アイドルストップ機能を備えた内燃機関の自動停止後における自動始動直後では、蒸発燃料の濃度の学習値が自動停止前の通常運転時のパージ制御における蒸発燃料の濃度の学習値と異なっており、適切なパージ制御が実行できなくて、エミッション悪化を生じるという不具合があった。   By the way, in the above, the purge control of the internal combustion engine having the idle stop function is not disclosed. Here, immediately after the automatic start of the internal combustion engine having the idle stop function, immediately after the automatic start, the learned value of the evaporated fuel concentration differs from the learned value of the evaporated fuel concentration in the purge control during the normal operation before the automatic stop. As a result, there is a problem in that proper purge control cannot be performed and emission is deteriorated.

そこで、この発明はかかる不具合を解決するためになされたもので、内燃機関の自動停止後における自動始動時に適切なパージ制御が実行でき、エミッション悪化を防止可能な内燃機関の蒸発燃料処理装置の提供を課題としている。   Accordingly, the present invention has been made to solve such a problem, and provides an evaporated fuel processing apparatus for an internal combustion engine that can execute appropriate purge control at the time of automatic start after the internal stop of the internal combustion engine and can prevent emission deterioration. Is an issue.

請求項の内燃機関の蒸発燃料処理装置によれば、自動始動停止制御手段による内燃機関のアイドル時の自動停止中またはこの後における内燃機関の自動始動からの所定期間では、キャニスタに蓄えられた燃料タンクに発生する蒸発燃料が、パージ制御手段により内燃機関の運転状態に応じて吸気通路内に放出される通常運転時のパージ制御とは異なったパージ制御となるようパージ制御切換手段によって切換えられる。これにより、内燃機関のアイドル時の自動停止中では、実際のパージ制御は休止されるが、パージ制御の再開に備えた通常運転時と異なるパージ制御、また、自動停止後における自動始動からの所定期間では、通常運転時と異なるパージ制御に切換えられ、内燃機関の自動停止後における自動始動直後の所定期間であっても、適切なパージ制御が実行でき、エミッション悪化が防止されるという効果が得られる。
更に、前記パージ制御切換手段では、自動始動停止制御手段による内燃機関の自動停止後における自動始動復帰後の所定期間では、通常運転時のパージ制御とは異なり、パージ制御における蒸発燃料を含む空気のパージ率の単位時間当たりの増加率が、通常運転時よりも遅くなるよう設定される。つまり、通常運転時でない自動停止後の自動始動復帰後の所定期間にあっては、パージ制御における蒸発燃料の濃度の学習値の信頼性が低いことから、パージ率の増加率が安全性を考慮して通常運転時よりも遅く設定される。これにより、内燃機関の自動停止後における自動始動直後であってもエミッション悪化を防止したパージ制御が実行できるという効果が得られる。
According to the evaporated fuel processing apparatus for an internal combustion engine according to claim 1 , the automatic start / stop control means is stored in the canister during the automatic stop when the internal combustion engine is idling or during a predetermined period after the automatic start of the internal combustion engine thereafter. Vaporized fuel generated in the fuel tank is switched by the purge control switching means so that the purge control means has a purge control different from the purge control during the normal operation which is discharged into the intake passage according to the operating state of the internal combustion engine. . Thus, the actual purge control is suspended during the automatic stop when the internal combustion engine is idling. However, the purge control is different from the normal operation in preparation for the restart of the purge control, and the predetermined start from the automatic start after the automatic stop is performed. During the period, switching to purge control different from that during normal operation is performed, and even during a predetermined period immediately after the automatic start of the internal combustion engine, appropriate purge control can be performed and the effect of preventing emission deterioration can be obtained. It is done.
Further, the purge control switching means differs from the purge control during the normal operation in the predetermined period after the automatic start of the internal combustion engine is automatically stopped by the automatic start / stop control means, unlike the purge control during the normal operation. The rate of increase of the purge rate per unit time is set to be slower than that during normal operation. In other words, during the predetermined period after automatic start recovery after automatic stop that is not during normal operation, the learning value of the evaporated fuel concentration in purge control is not reliable, so the increase rate of the purge rate takes safety into consideration. Set later than during normal operation. As a result, it is possible to perform the purge control that prevents the emission deterioration even immediately after the automatic start of the internal combustion engine.

請求項の内燃機関の蒸発燃料処理装置によれば、自動始動停止制御手段による内燃機関のアイドル時の自動停止中またはこの後における内燃機関の自動始動からの所定期間では、キャニスタに蓄えられた燃料タンクに発生する蒸発燃料が、パージ制御手段により内燃機関の運転状態に応じて吸気通路内に放出される通常運転時のパージ制御とは異なったパージ制御となるようパージ制御切換手段によって切換えられる。これにより、内燃機関のアイドル時の自動停止中では、実際のパージ制御は休止されるが、パージ制御の再開に備えた通常運転時と異なるパージ制御、また、自動停止後における自動始動からの所定期間では、通常運転時と異なるパージ制御に切換えられ、内燃機関の自動停止後における自動始動直後の所定期間であっても、適切なパージ制御が実行でき、エミッション悪化が防止されるという効果が得られる。
更に、前記パージ制御切換手段では、自動始動停止制御手段による内燃機関の自動停止後における自動始動復帰後の所定期間では、通常運転時のパージ制御とは異なり、パージ制御における蒸発燃料の濃度の学習速度が、通常運転時よりも速くなるよう設定される。つまり、通常運転時でない自動停止後の自動始動復帰後の所定期間にあっては、なるべく速やかに正確な蒸発燃料の濃度の学習値を知ることができるようパージ制御における蒸発燃料の濃度の学習速度が通常運転時よりも速く設定される。これにより、内燃機関の自動始動後のパージ制御におけるエミッション悪化を防止しつつ、蒸発燃料の濃度の学習値が速やかに通常運転時に移行できるという効果が得られる。
According to the evaporated fuel processing apparatus for an internal combustion engine according to claim 2 , during the automatic stop when the internal combustion engine is idle by the automatic start / stop control means or during a predetermined period after the automatic start of the internal combustion engine thereafter, the fuel is stored in the canister. Vaporized fuel generated in the fuel tank is switched by the purge control switching means so that the purge control means has a purge control different from the purge control during the normal operation which is discharged into the intake passage according to the operating state of the internal combustion engine. . Thus, the actual purge control is suspended during the automatic stop when the internal combustion engine is idling. However, the purge control is different from the normal operation in preparation for the restart of the purge control, and the predetermined start from the automatic start after the automatic stop is performed. During the period, switching to purge control different from that during normal operation is performed, and even during a predetermined period immediately after the automatic start of the internal combustion engine, appropriate purge control can be performed and the effect of preventing emission deterioration can be obtained. It is done.
Further, in the purge control switching means, the evaporative fuel concentration learning in the purge control is different from the purge control in the normal operation in the predetermined period after the automatic start return after the automatic stop of the internal combustion engine by the automatic start / stop control means. The speed is set to be higher than that during normal operation. In other words, during a predetermined period after the automatic start return after the automatic stop that is not during normal operation, the evaporative fuel concentration learning speed in the purge control is determined so that the accurate evaporative fuel concentration learned value can be obtained as quickly as possible. Set faster than normal operation. As a result, it is possible to obtain an effect that the learning value of the concentration of the evaporated fuel can be quickly transferred during normal operation while preventing emission deterioration in purge control after the automatic start of the internal combustion engine.

以下、本発明を実施するための最良の形態を実施例に基づいて説明する。   Hereinafter, the best mode for carrying out the present invention will be described based on examples.

図1は本発明の一実施例にかかる内燃機関の蒸発燃料処理装置が適用された内燃機関及びその周辺機器を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing an internal combustion engine and peripheral devices to which an evaporated fuel processing apparatus for an internal combustion engine according to an embodiment of the present invention is applied.

図1において、車両には複数気筒からなる内燃機関1が搭載され、この内燃機関1には吸気通路2と排気通路3とが接続されている。吸気通路2の上流側には空気を濾過するエアクリーナ4が配設され、このエアクリーナ4を介して空気が吸気通路2内に導入される。また、エアクリーナ4には吸気温センサ5が配設されており、この吸気温センサ5により吸気通路2内に導入される吸入空気の温度である吸気温が検出される。   In FIG. 1, an internal combustion engine 1 composed of a plurality of cylinders is mounted on a vehicle, and an intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1. An air cleaner 4 for filtering air is disposed upstream of the intake passage 2, and air is introduced into the intake passage 2 through the air cleaner 4. The air cleaner 4 is provided with an intake air temperature sensor 5, and the intake air temperature, which is the temperature of intake air introduced into the intake passage 2, is detected by the intake air temperature sensor 5.

そして、エアクリーナ4の下流側には内燃機関1への吸入空気量を調節するためのスロットルバルブ6が配設されている。このスロットルバルブ6にはスロットル開度センサ7が配設されており、このスロットル開度センサ7によりスロットルバルブ6のスロットル開度が検出される。スロットルバルブ6の下流側の吸気通路2途中のサージタンク8には吸気圧センサ9が配設されており、吸気圧センサ9によりスロットルバルブ6の下流側の吸気圧が検出される。   A throttle valve 6 for adjusting the amount of intake air to the internal combustion engine 1 is disposed downstream of the air cleaner 4. The throttle valve 6 is provided with a throttle opening sensor 7. The throttle opening sensor 7 detects the throttle opening of the throttle valve 6. An intake pressure sensor 9 is provided in the surge tank 8 in the intake passage 2 on the downstream side of the throttle valve 6, and the intake pressure downstream of the throttle valve 6 is detected by the intake pressure sensor 9.

更に、燃料タンク20に貯留された液体燃料は、プレッシャレギュレータ(図示略)を内蔵したインタンク式の燃料ポンプ21にて汲出される。このため、燃料ポンプ21から吐出される液体燃料は、その燃圧が所定圧に調整されたのち燃料供給経路22を通り、途中、燃料フィルタ23にて濾過され、インジェクタ(燃料噴射弁)10から内燃機関1の各気筒の吸気ポート11側に向かって噴射供給される。このインジェクタ10から噴射供給された液体燃料と、吸気通路2内でスロットルバルブ6を通過しサージタンク8を経たのちの吸入空気とが混合された混合気は、内燃機関1の各気筒の吸気ポート11から吸気バルブ12が開状態となるタイミングにて各気筒の燃焼室13内に供給される。   Further, the liquid fuel stored in the fuel tank 20 is pumped out by an in-tank type fuel pump 21 having a built-in pressure regulator (not shown). For this reason, the liquid fuel discharged from the fuel pump 21 passes through the fuel supply path 22 after its fuel pressure is adjusted to a predetermined pressure, and is filtered by the fuel filter 23 on the way, and is injected from the injector (fuel injection valve) 10 into the internal combustion engine. Injection is supplied toward the intake port 11 side of each cylinder of the engine 1. The air-fuel mixture obtained by mixing the liquid fuel injected and supplied from the injector 10 and the intake air that has passed through the throttle valve 6 and passed through the surge tank 8 in the intake passage 2 is an intake port of each cylinder of the internal combustion engine 1. 11 is supplied into the combustion chamber 13 of each cylinder at the timing when the intake valve 12 is opened.

一方、燃料タンク20は蒸発燃料通路25を介してキャニスタ30と接続されている。このキャニスタ30内には活性炭からなる吸着体31が収納されている。このため、燃料タンク20内にて発生する蒸発燃料は逐次、キャニスタ30内の吸着体31に吸着保持される。そして、キャニスタ30内の吸着体31に吸着保持された蒸発燃料は、内燃機関1の運転状態に応じたパージバルブ33の開閉に伴って吸着体31から脱離され、キャニスタ30に接続されたパージ通路32及びパージバルブ33を通りサージタンク8の上流側に接続されたパージ通路34から吸気通路2内に導入される。なお、キャニスタ30に形成された大気孔35には閉塞バルブ36が配設され、必要に応じて閉塞バルブ36の開度が調整されることで大気孔35を通過しキャニスタ30内に導入される空気量が制御される。   On the other hand, the fuel tank 20 is connected to the canister 30 via the evaporated fuel passage 25. An adsorbent 31 made of activated carbon is accommodated in the canister 30. For this reason, the evaporated fuel generated in the fuel tank 20 is successively adsorbed and held by the adsorbent 31 in the canister 30. Then, the evaporated fuel adsorbed and held by the adsorbent 31 in the canister 30 is desorbed from the adsorbent 31 with the opening and closing of the purge valve 33 corresponding to the operating state of the internal combustion engine 1, and is connected to the canister 30. The gas is introduced into the intake passage 2 from a purge passage 34 that passes through the purge valve 32 and the purge valve 33 and is connected to the upstream side of the surge tank 8. The atmospheric hole 35 formed in the canister 30 is provided with a closing valve 36, and the opening degree of the closing valve 36 is adjusted as necessary to pass through the atmospheric hole 35 and be introduced into the canister 30. The amount of air is controlled.

内燃機関1の各気筒の燃焼室13内に供給された混合気は、その頭頂部に配設された点火プラグ14によって所定の燃焼タイミングにて燃焼される。そして、燃焼後の排気ガスは燃焼室13内から排気バルブ15を介して排気通路3内に排出される。この排気通路3内には排気ガス中の酸素(O2 )濃度を検出するための酸素センサ16が配設されている。なお、17は内燃機関1の冷却水温を検出するための水温センサであり、18は内燃機関1の機関回転速度を検出するためのクランク角センサである。 The air-fuel mixture supplied into the combustion chamber 13 of each cylinder of the internal combustion engine 1 is combusted at a predetermined combustion timing by a spark plug 14 disposed at the top of the cylinder. Then, the exhaust gas after combustion is discharged from the combustion chamber 13 into the exhaust passage 3 via the exhaust valve 15. An oxygen sensor 16 for detecting the oxygen (O 2 ) concentration in the exhaust gas is disposed in the exhaust passage 3. In addition, 17 is a water temperature sensor for detecting the cooling water temperature of the internal combustion engine 1, and 18 is a crank angle sensor for detecting the engine rotation speed of the internal combustion engine 1.

40はECU(Electronic Control Unit:電子制御ユニット)であり、ECU40は、周知の各種演算処理を実行する中央処理装置としてのCPU、制御プログラムや制御マップ等を格納したROM、各種データ等を格納するRAM、B/U(バックアップ)RAM、入出力回路及びそれらを接続するバスライン等からなる論理演算回路として構成されている。   Reference numeral 40 denotes an ECU (Electronic Control Unit). The ECU 40 stores a CPU as a central processing unit that executes various known arithmetic processes, a ROM that stores a control program and a control map, and various data. The logic operation circuit includes a RAM, a B / U (backup) RAM, an input / output circuit, and a bus line connecting them.

このECU40にて、内燃機関1の運転状態を判定するため吸気温センサ5からの吸気温、スロットル開度センサ7からのスロットル開度、吸気圧センサ9からの吸気圧、酸素センサ16からの酸素濃度、水温センサ17からの冷却水温及びクランク角センサ18からの機関回転速度やその他の各種センサ信号等が読込まれる。そして、ECU40にて演算設定された制御信号に基づき液体燃料を噴射供給するためのインジェクタ10、液体燃料を吐出供給する燃料ポンプ21、蒸発燃料をパージ制御するためのパージバルブ33、キャニスタ30内に大気導入するための閉塞バルブ36等への通電が行なわれる。   In this ECU 40, in order to determine the operating state of the internal combustion engine 1, the intake air temperature from the intake air temperature sensor 5, the throttle opening from the throttle opening sensor 7, the intake pressure from the intake pressure sensor 9, the oxygen from the oxygen sensor 16 The concentration, the coolant temperature from the water temperature sensor 17, the engine speed from the crank angle sensor 18 and other various sensor signals are read. Then, an injector 10 for injecting and supplying liquid fuel based on a control signal calculated and set by the ECU 40, a fuel pump 21 for discharging and supplying the liquid fuel, a purge valve 33 for purging the evaporated fuel, and the canister 30 in the atmosphere Energization to the closing valve 36 and the like for introduction is performed.

次に、本発明の一実施例にかかる内燃機関の蒸発燃料処理装置で使用されているECU40におけるアイドルストップ経過時間(アイドル時の自動停止期間)に応じたエバポ(Evaporative Emission:エバポエミッション;蒸発燃料)濃度学習値演算の処理手順を示す図2のフローチャートに基づき、図3を参照して説明する。ここで、図3は図2の処理に対応する各種制御量等の遷移状態を示すタイムチャートである。なお、このエバポ濃度学習値演算ルーチンは所定時間毎にECU40にて繰返し実行される。なお、キャニスタ30内のエバポ濃度は、図3に示すように、アイドルストップ実行フラグが「ON(オン)」である内燃機関1の自動停止期間に応じて徐々にリニアに上昇するものとする。   Next, an evaporation (evaporative emission) according to an idle stop elapsed time (automatic stop period during idling) in the ECU 40 used in the evaporated fuel processing apparatus for an internal combustion engine according to one embodiment of the present invention. ) Based on the flowchart of FIG. 2 showing the processing procedure of the density learning value calculation, it will be described with reference to FIG. Here, FIG. 3 is a time chart showing transition states of various control amounts corresponding to the processing of FIG. The evaporation concentration learning value calculation routine is repeatedly executed by the ECU 40 at predetermined time intervals. As shown in FIG. 3, the evaporation concentration in the canister 30 gradually increases linearly in accordance with the automatic stop period of the internal combustion engine 1 in which the idle stop execution flag is “ON”.

図2において、まず、ステップS101にて、アイドルストップ実行条件が成立するかが判定される。ここで、アイドルストップ実行条件としては、ブレーキペダル踏込によりブレーキスイッチが「ON」、かつ車速が「0(零)〔km/h〕」等である。ステップS101では、アイドルストップ実行条件の成立により、アイドルストップ実行フラグが「OFF(オフ)」から「ON」となるまで待ってステップS102に移行する(図3に示す時刻t1 )。ステップS102では、アイドルストップ経過時間が内部タイマのカウントアップにより算出される。次にステップS103に移行して、アイドルストップ経過時間が予め設定された経過時間学習値クリア閾値αを越えているかが判定される。   In FIG. 2, first, in step S101, it is determined whether an idle stop execution condition is satisfied. Here, the idle stop execution condition is that the brake switch is “ON” when the brake pedal is depressed, and the vehicle speed is “0 (zero) [km / h]”. In step S101, when the idle stop execution condition is satisfied, the process waits until the idle stop execution flag is changed from "OFF (off)" to "ON", and the process proceeds to step S102 (time t1 shown in FIG. 3). In step S102, the idle stop elapsed time is calculated by counting up the internal timer. Next, the process proceeds to step S103, and it is determined whether the idle stop elapsed time exceeds a preset elapsed time learning value clear threshold value α.

ここで、アイドルストップ実行開始直後では、当然のことながら、ステップS103の判定条件が成立せず、即ち、アイドルストップ経過時間は経過時間学習値クリア閾値α以下と短いためステップS104に移行する。ステップS104では、アイドルストップ経過時間が予め設定された経過時間補正開始閾値βを越えているかが判定される。なお、経過時間補正開始閾値βは経過時間学習値クリア閾値αより短く設定されている。ステップS104の判定条件が成立せず、即ち、アイドルストップ経過時間が経過時間補正開始閾値β以下と短いとき(図3に示す時刻t1 〜時刻t2 )にはステップS105に移行し、補正不要であるとしてアイドルストップ開始直前の学習値がそのままエバポ濃度学習値とされ、本ルーチンを終了する。   Here, immediately after the start of idle stop execution, of course, the determination condition of step S103 is not satisfied, that is, the idle stop elapsed time is as short as the elapsed time learning value clear threshold value α, and the process proceeds to step S104. In step S104, it is determined whether the idle stop elapsed time exceeds a preset elapsed time correction start threshold value β. The elapsed time correction start threshold β is set shorter than the elapsed time learning value clear threshold α. When the determination condition of step S104 is not satisfied, that is, when the idle stop elapsed time is as short as the elapsed time correction start threshold value β or less (time t1 to time t2 shown in FIG. 3), the process proceeds to step S105, and no correction is required. Then, the learning value immediately before the start of the idle stop is directly used as the evaporation concentration learning value, and this routine is finished.

一方、ステップS104の判定条件が成立、即ち、アイドルストップ経過時間が経過時間補正開始閾値βを越え長く経過時間学習値クリア閾値αより短いとき(図3に示す時刻t2 〜時刻t3 )にはステップS106に移行する。ステップS106では、アイドルストップ開始直前の学習値にそのときの経過時間補正量が加算されエバポ濃度学習値とされ、本ルーチンを終了する。なお、経過時間補正量は、図3に矢印幅にて示すように、アイドルストップ経過時間をパラメータとしてアイドルストップ経過時間が長くなるほど大きくなる特性を有するテーブル(図示略)に基づき算出される。   On the other hand, if the determination condition of step S104 is satisfied, that is, if the idle stop elapsed time exceeds the elapsed time correction start threshold value β and is longer than the elapsed time learning value clear threshold value α (time t2 to time t3 shown in FIG. 3), step The process proceeds to S106. In step S106, the elapsed time correction amount at that time is added to the learning value immediately before the start of idling stop to obtain the evaporation concentration learning value, and this routine is terminated. The elapsed time correction amount is calculated based on a table (not shown) having a characteristic that increases as the idle stop elapsed time becomes longer with the idle stop elapsed time as a parameter, as indicated by the arrow width in FIG.

一方、ステップS103の判定条件が成立、即ち、アイドルストップ経過時間が経過時間学習値クリア閾値αを越え長いとき(図3に示す時刻t3 〜時刻t4 )にはステップS107に移行する。ステップS107では、アイドルストップ経過時間が長過ぎるとしてエバポ濃度学習値がリセット処理により初期値に戻されたのち、本ルーチンを終了する。   On the other hand, when the determination condition of step S103 is satisfied, that is, when the idle stop elapsed time exceeds the elapsed time learning value clear threshold value α (time t3 to time t4 shown in FIG. 3), the process proceeds to step S107. In step S107, the evaporative concentration learning value is returned to the initial value by the reset process because the idle stop elapsed time is too long, and then this routine is terminated.

次に、本発明の一実施例にかかる内燃機関の蒸発燃料処理装置で使用されているECU40におけるアイドルストップ経過時間に応じたアイドルストップ解除後にパージ率を増加する際のパージ速度設定の処理手順を示す図4のフローチャートに基づき、図5を参照して説明する。ここで、図5は図4の処理に対応する各種制御量等の遷移状態を示すタイムチャートである。なお、このパージ速度設定ルーチンは所定時間毎にECU40にて繰返し実行される。   Next, a procedure for setting the purge speed when increasing the purge rate after releasing the idle stop according to the idle stop elapsed time in the ECU 40 used in the evaporated fuel processing apparatus of the internal combustion engine according to one embodiment of the present invention will be described. Based on the flowchart of FIG. 4 shown, it demonstrates with reference to FIG. Here, FIG. 5 is a time chart showing transition states of various control amounts corresponding to the processing of FIG. The purge speed setting routine is repeatedly executed by the ECU 40 every predetermined time.

図4において、まず、ステップS201では、パージ実行条件が成立するかが判定される。ここで、パージ実行条件としては、内燃機関1の機関回転速度が低回転速度・低負荷領域、冷却水温が所定値以上、かつ空燃比F/B(フィードバック)制御の実行条件の成立等である。ステップS201では、パージ実行条件の成立により、パージ実行フラグが「OFF」から「ON」となるまで待ってステップS202に移行する。ステップS202では、パージバルブ制御処理として、パージバルブ33が全閉状態から例えば、徐々に開側となるように駆動され、これに伴って酸素センサ16からの出力値に基づく周知の空燃比F/B制御が実行される。   In FIG. 4, first, in step S201, it is determined whether a purge execution condition is satisfied. Here, the purge execution condition is that the engine rotation speed of the internal combustion engine 1 is a low rotation speed / low load region, the cooling water temperature is equal to or higher than a predetermined value, and the execution condition of the air-fuel ratio F / B (feedback) control is satisfied. . In step S201, when the purge execution condition is satisfied, the process waits until the purge execution flag is changed from “OFF” to “ON”, and the process proceeds to step S202. In step S202, as the purge valve control process, the purge valve 33 is driven so as to gradually open from the fully closed state, for example, and a known air-fuel ratio F / B control based on the output value from the oxygen sensor 16 is accompanied accordingly. Is executed.

次にステップS203に移行して、エバポ濃度学習実行条件が成立するかが判定される。ここで、エバポ濃度学習実行条件としては、パージ率が所定値(エバポ濃度学習実行パージ率)以上、燃料供給系の学習が完了、空燃比F/B補正量が所定値以下、かつ内燃機関1の機関回転速度及び負荷の状態が定常等である。なお、燃料供給系の学習とは、吸気圧センサ9やインジェクタ10等の燃料供給系の劣化等による空燃比ずれを抑制するための学習であり、この学習が完了していない状態ではパージのみに起因する空燃比ずれを検出できないこととなる。ステップS203では、エバポ濃度学習実行条件の成立により、エバポ濃度学習実行フラグが「OFF」から「ON」となるまで待ってステップS204に移行する。   Next, the process proceeds to step S203, where it is determined whether the evaporation concentration learning execution condition is satisfied. Here, as the evaporation concentration learning execution condition, the purge rate is equal to or greater than a predetermined value (evaporation concentration learning execution purge rate), the learning of the fuel supply system is completed, the air-fuel ratio F / B correction amount is equal to or less than the predetermined value, and the internal combustion engine 1 The engine speed and load state of the engine are steady. Note that the learning of the fuel supply system is learning for suppressing an air-fuel ratio shift due to deterioration of the fuel supply system such as the intake pressure sensor 9 and the injector 10, and only the purge is performed when this learning is not completed. The resulting air-fuel ratio shift cannot be detected. In step S203, when the evaporation concentration learning execution condition is satisfied, the process waits until the evaporation concentration learning execution flag is changed from “OFF” to “ON”, and the process proceeds to step S204.

ステップS204では、アイドルストップ実行フラグが「ON」から「OFF」となり(図5に示す時刻t4 )、アイドルストップからの再始動であるかが判定される。ステップS204の判定条件が成立、即ち、アイドルストップからの再始動であるときにはステップS205に移行し、再始動以前におけるアイドルストップ実行フラグの「ON」から「OFF」までに対応するアイドルストップ経過時間が経過時間学習値クリア閾値αを越えているかが判定される。ステップS205の判定条件が成立せず、即ち、アイドルストップ経過時間が経過時間学習値クリア閾値α以下と短いときにはステップS206に移行する。   In step S204, the idle stop execution flag is changed from "ON" to "OFF" (time t4 shown in FIG. 5), and it is determined whether the restart is from the idle stop. When the determination condition in step S204 is satisfied, that is, when the restart is from the idle stop, the process proceeds to step S205, and the idle stop elapsed time corresponding to the idle stop execution flag from “ON” to “OFF” before the restart. It is determined whether the elapsed time learning value clear threshold value α is exceeded. When the determination condition of step S205 is not satisfied, that is, when the idle stop elapsed time is as short as the elapsed time learning value clear threshold value α, the process proceeds to step S206.

ステップS206では、アイドルストップ経過時間が経過時間補正開始閾値βを越えているかが判定される。ステップS206の判定条件が成立せず、即ち、アイドルストップ経過時間が経過時間補正開始閾値β以下と短いときにはステップS207に移行し、上述のエバポ濃度学習値演算ルーチンにより、エバポ濃度学習値がアイドルストップ開始直前の学習値のままであるため、パージ率を増加する際のパージ速度が、図5の時刻t7 以降で実線にて示されるように、通常運転時の速い(傾きが大きい)定数γに設定される。   In step S206, it is determined whether the idle stop elapsed time exceeds the elapsed time correction start threshold β. When the determination condition of step S206 is not satisfied, that is, when the idle stop elapsed time is as short as the elapsed time correction start threshold value β or less, the process proceeds to step S207, and the evaporation concentration learned value is set to the idle stop by the above-described evaporation concentration learned value calculation routine. Since the learning value immediately before the start is maintained, the purge speed when increasing the purge rate is set to a constant (γ with a large slope) during normal operation as indicated by the solid line after time t7 in FIG. Is set.

一方、ステップS206の判定条件が成立、即ち、アイドルストップ経過時間が経過時間補正開始閾値βを越え長く経過時間学習値クリア閾値αより短いときにはステップS208に移行する。ステップS208では、上述のエバポ濃度学習値演算ルーチンにより、エバポ濃度学習値がアイドルストップ開始直前の学習値にアイドルストップ経過時間に応じた経過時間補正量が加算されているため、パージ率を増加する際のパージ速度が、図5の時刻t7 以降で破線にて示されるように、アイドルストップ経過時間をパラメータとして通常運転時より遅い(傾きが通常運転時より小さい)定数δに設定される。   On the other hand, when the determination condition in step S206 is satisfied, that is, when the idle stop elapsed time exceeds the elapsed time correction start threshold value β and is shorter than the elapsed time learning value clear threshold value α, the process proceeds to step S208. In step S208, the purge concentration is increased because the elapsed time correction amount corresponding to the idle stop elapsed time is added to the learned value immediately before the start of idle stop in the evaporated concentration learned value by the above-described evaporation concentration learned value calculation routine. As shown by the broken line after time t7 in FIG. 5, the purge speed at this time is set to a constant δ that is slower than the normal operation (the inclination is smaller than that in the normal operation) with the idle stop elapsed time as a parameter.

一方、ステップS204の判定条件が成立せず、即ち、アイドルストップからの再始動でないとき、またはステップS205の判定条件が成立、即ち、アイドルストップ経過時間が経過時間学習値クリア閾値αを越え長いときにはステップS209に移行する。ステップS209では、上述のエバポ濃度学習値演算ルーチンにより、エバポ濃度学習値がクリアされ初期値に戻されているため、パージ率を増加する際のパージ速度が、図5の時刻t7 以降で二点鎖線にて示されるように、エミッション悪化を防止するよう最も遅い(傾きが最も小さい)定数εに設定される。   On the other hand, when the determination condition of step S204 is not satisfied, that is, when the restart is not from the idle stop, or when the determination condition of step S205 is satisfied, that is, when the idle stop elapsed time is longer than the elapsed time learning value clear threshold value α. The process proceeds to step S209. In step S209, since the evaporation concentration learning value is cleared and returned to the initial value by the above-described evaporation concentration learning value calculation routine, the purge speed when increasing the purge rate is two points after time t7 in FIG. As indicated by the chain line, the slowest (smallest slope) constant ε is set so as to prevent emission deterioration.

ステップS207、ステップS208またはステップS209でそれぞれパージ速度が設定されたのちステップS210に移行し、周知のエバポ濃度学習処理が実行され、本ルーチンを終了する。なお、パージ制御により上述のパージ率を増加する際のパージ速度が速いほど素早く多量の蒸発燃料が内燃機関1の吸気通路2内に放出されることとなるため、図5に示すように、それに見合うように燃料F/B(フィードバック)値が小さく設定され、内燃機関1の吸気通路2内にインジェクタ10から噴射供給される燃料量が少なく設定されることとなる。   After the purge speed is set in step S207, step S208, or step S209, the process proceeds to step S210, where a known evaporation concentration learning process is executed, and this routine ends. Note that, as the purge rate when the purge rate is increased by the purge control is faster, a larger amount of evaporated fuel is quickly discharged into the intake passage 2 of the internal combustion engine 1, so that as shown in FIG. As appropriate, the fuel F / B (feedback) value is set small, and the amount of fuel injected and supplied from the injector 10 into the intake passage 2 of the internal combustion engine 1 is set small.

このように、本実施例の内燃機関の蒸発燃料処理装置は、車両に搭載された内燃機関1のアイドル時に、所定の自動停止条件を満足するときには、内燃機関1を自動停止させると共に、この自動停止後に所定の自動始動条件を満足するときには、内燃機関1を自動始動させるよう制御するECU40にて達成される自動始動停止制御手段と、燃料タンク20に発生する蒸発燃料をキャニスタ30に蓄え、内燃機関1の運転状態に応じてパージバルブ33を開閉することにより、キャニスタ30に蓄えられた蒸発燃料を内燃機関1の吸気通路2内に放出するパージ制御を実行するECU40にて達成されるパージ制御手段と、前記自動始動停止制御手段による内燃機関1の自動停止中またはこの後における内燃機関1の自動始動からの所定期間では、これ以外の通常運転時と異なるパージ制御に切換えるECU40にて達成されるパージ制御切換手段とを具備するものである。   As described above, the evaporative fuel processing apparatus for an internal combustion engine according to this embodiment automatically stops the internal combustion engine 1 when the internal combustion engine 1 mounted on the vehicle satisfies the predetermined automatic stop condition when idling. When a predetermined automatic start condition is satisfied after the stop, the automatic start / stop control means achieved by the ECU 40 that controls the internal combustion engine 1 to start automatically, and the evaporated fuel generated in the fuel tank 20 are stored in the canister 30, Purge control means achieved by the ECU 40 that performs purge control for releasing the evaporated fuel stored in the canister 30 into the intake passage 2 of the internal combustion engine 1 by opening and closing the purge valve 33 according to the operating state of the engine 1 And a predetermined period from the automatic start of the internal combustion engine 1 during or after the automatic stop of the internal combustion engine 1 by the automatic start / stop control means Is for and a purge control switching means which is achieved by ECU40 to switch to normal operation with different purge control other than this.

また、本実施例の内燃機関の蒸発燃料処理装置のECU40にて達成されるパージ制御切換手段は、前記自動始動停止制御手段による内燃機関1の自動停止中では、内燃機関1の状態に応じてパージ制御におけるエバポ濃度学習値を補正するものである。そして、本実施例の内燃機関の蒸発燃料処理装置のECU40にて達成されるパージ制御切換手段は、内燃機関1の状態を現す自動停止期間であるアイドルストップ経過時間に応じて、パージ制御におけるエバポ濃度学習値を補正するものである。更に、本実施例の内燃機関の蒸発燃料処理装置のECU40にて達成されるパージ制御切換手段は、内燃機関1の状態を現す自動停止期間であるアイドルストップ経過時間が所定値としての経過時間学習値クリア閾値α以上であるときには、パージ制御におけるエバポ濃度学習値を初期値に戻すものである。   Further, the purge control switching means achieved by the ECU 40 of the evaporated fuel processing apparatus for an internal combustion engine of the present embodiment corresponds to the state of the internal combustion engine 1 during the automatic stop of the internal combustion engine 1 by the automatic start / stop control means. The evaporation concentration learning value in the purge control is corrected. The purge control switching means achieved by the ECU 40 of the evaporated fuel processing apparatus for an internal combustion engine according to the present embodiment is an evaporation in the purge control in accordance with the idle stop elapsed time that is an automatic stop period that represents the state of the internal combustion engine 1. The density learning value is corrected. Further, the purge control switching means achieved by the ECU 40 of the fuel vapor processing apparatus for an internal combustion engine according to the present embodiment is an elapsed time learning in which an idle stop elapsed time, which is an automatic stop period showing the state of the internal combustion engine 1, is a predetermined value. When the value is equal to or larger than the value clear threshold value α, the evaporation concentration learning value in the purge control is returned to the initial value.

つまり、内燃機関1の通常運転時においては、内燃機関1の運転状態に応じてパージバルブ33が開閉され、キャニスタ30に蓄えられた蒸発燃料が内燃機関1の吸気通路2内に放出されパージ制御が実行される。これに対して、内燃機関1がアイドルストップ中では、当然のことながら、通常運転時のパージ制御を実行することができないため、通常運転時と異なる制御として、内燃機関1の状態を特定する自動停止期間としてのアイドルストップ経過時間に応じてパージ制御におけるエバポ濃度学習値が補正され、また、アイドルストップ経過時間が経過時間学習値クリア閾値α以上であるときには、パージ制御におけるエバポ濃度学習値が初期値に戻される。   That is, during the normal operation of the internal combustion engine 1, the purge valve 33 is opened and closed according to the operation state of the internal combustion engine 1, and the evaporated fuel stored in the canister 30 is released into the intake passage 2 of the internal combustion engine 1 to perform purge control. Executed. On the other hand, when the internal combustion engine 1 is in the idling stop, naturally, the purge control during the normal operation cannot be executed. Therefore, the automatic control for specifying the state of the internal combustion engine 1 is performed as a control different from the normal operation. The evaporation concentration learning value in the purge control is corrected according to the idle stop elapsed time as the stop period, and when the idle stop elapsed time is equal to or greater than the elapsed time learning value clear threshold value α, the evaporation concentration learning value in the purge control is initially set. Returned to value.

即ち、通常運転時でない内燃機関1のアイドルストップ中にあっては、そのアイドルストップ経過時間に応じてエバポ濃度が徐々に上昇することとなるため、それに見合うようにパージ制御におけるエバポ濃度学習値が補正される。また、アイドルストップ経過時間が経過時間学習値クリア閾値α以上と長くなるとエバポ濃度学習値の信頼性が低くなるため、パージ制御におけるエバポ濃度学習値が初期値に戻される。これにより、アイドルストップ後の自動始動直後であってもパージ制御におけるエバポ濃度学習値が適切に設定されるためエミッション悪化を防止することができる。   That is, during the idling stop of the internal combustion engine 1 that is not during normal operation, the evaporation concentration gradually increases in accordance with the idle stop elapsed time, and accordingly, the evaporation concentration learning value in the purge control corresponds to that. It is corrected. Further, if the idle stop elapsed time becomes longer than the elapsed time learning value clear threshold value α, the reliability of the evaporation concentration learning value becomes low, so the evaporation concentration learning value in the purge control is returned to the initial value. As a result, even immediately after the automatic start after the idle stop, the evaporation concentration learning value in the purge control is set appropriately, so that the emission deterioration can be prevented.

更にまた、本実施例の内燃機関の蒸発燃料処理装置のECU40にて達成されるパージ制御切換手段は、前記自動始動停止手段による内燃機関1の自動停止後における自動始動からの所定期間では、パージ制御における蒸発燃料を含む空気のパージ率の単位時間当たりの増加率を、通常運転時よりも遅くするものである。加えて、本実施例の内燃機関の蒸発燃料処理装置のECU40にて達成されるパージ制御切換手段は、前記自動始動停止制御手段による内燃機関1の自動停止後における自動始動からの所定期間では、パージ制御におけるエバポ濃度の学習速度を、通常運転時よりも速くするものである。   Furthermore, the purge control switching means achieved in the ECU 40 of the evaporated fuel processing apparatus for an internal combustion engine according to the present embodiment is the purge in a predetermined period after the automatic start of the internal combustion engine 1 by the automatic start stop means. The increase rate per unit time of the purge rate of the air containing the evaporated fuel in the control is made slower than that during normal operation. In addition, the purge control switching means achieved by the ECU 40 of the fuel vapor processing apparatus for an internal combustion engine of the present embodiment is a predetermined period after the automatic start after the automatic stop of the internal combustion engine 1 by the automatic start / stop control means. The evaporating concentration learning speed in the purge control is made higher than that in the normal operation.

つまり、内燃機関1のアイドルストップ後における自動始動復帰後の所定期間では、通常運転時のパージ制御とは異なり、パージ制御における蒸発燃料を含む空気のパージ率の単位時間当たりの増加率であるパージ速度が、通常運転時よりも遅くなるよう設定され、また、パージ制御におけるエバポ濃度の学習速度が、通常運転時よりも速くなるよう設定される。   That is, in the predetermined period after the automatic start return after the idling stop of the internal combustion engine 1, the purge that is an increase rate per unit time of the purge rate of the air including the evaporated fuel in the purge control is different from the purge control in the normal operation. The speed is set to be slower than in normal operation, and the evaporation concentration learning speed in the purge control is set to be higher than in normal operation.

即ち、通常運転時でないアイドルストップ後の自動始動復帰後の所定期間にあっては、パージ制御におけるエバポ濃度学習値の信頼性が低いことから、パージ速度が安全性を考慮して通常運転時よりも遅く設定され、なるべく速やかに正確なエバポ濃度学習値を知ることができるようパージ制御におけるエバポ濃度の学習速度が通常運転時よりも速く設定される。これにより、アイドルストップ後の自動始動後のパージ制御におけるエミッション悪化を防止しつつ、エバポ濃度学習値を速やかに通常運転時に移行させることができる。   That is, during a predetermined period after the automatic start return after idle stop that is not during normal operation, the evaporative concentration learning value in purge control is less reliable, so the purge speed is higher than during normal operation in consideration of safety. The learning speed of the evaporation concentration in the purge control is set to be higher than that in the normal operation so that the accurate learning value of the evaporation concentration can be obtained as soon as possible. As a result, the evaporation concentration learned value can be promptly shifted during normal operation while preventing emission deterioration in purge control after automatic start after idle stop.

ところで、上記実施例では、内燃機関1の自動停止期間としてのアイドルストップ経過時間に応じてエバポ濃度学習値を補正しているが、本発明を実施する場合には、これに限定されるものではなく、この際のパラメータとしては、この他、内燃機関1の油温、冷却水温、吸気温、外気温、燃焼温度、またはこれらの変化率、変化量、積算値のうち少なくとも1つによれば、上述の実施例と同様の作用・効果が期待できる。   By the way, in the said Example, although the evaporation density learning value is correct | amended according to the idle stop elapsed time as an automatic stop period of the internal combustion engine 1, when implementing this invention, it is not limited to this. In addition, as a parameter at this time, according to at least one of the oil temperature, the cooling water temperature, the intake air temperature, the outside air temperature, the combustion temperature, or the rate of change, the amount of change, and the integrated value of the internal combustion engine 1, The same operation and effect as the above-mentioned embodiment can be expected.

また、上記実施例では、内燃機関1の自動停止期間としてのアイドルストップ経過時間に応じてエバポ濃度学習値を初期値に戻しているが、本発明を実施する場合には、これに限定されるものではなく、この際のパラメータとしては、この他、内燃機関1の油温、冷却水温、吸気温、外気温、燃焼温度、またはこれらの変化率、変化量、積算値のうち少なくとも1つによれば、上述の実施例と同様の作用・効果が期待できる。   In the above embodiment, the evaporation concentration learning value is returned to the initial value in accordance with the idle stop elapsed time as the automatic stop period of the internal combustion engine 1, but the present invention is limited to this. In addition to this, as a parameter at this time, at least one of the oil temperature, the cooling water temperature, the intake air temperature, the outside air temperature, the combustion temperature, or the rate of change, the amount of change, and the integrated value of the internal combustion engine 1 is used. According to this, the same operation and effect as the above-described embodiment can be expected.

図1は本発明の一実施例にかかる内燃機関の蒸発燃料処理装置が適用された内燃機関及びその周辺機器を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an internal combustion engine and peripheral devices to which an evaporated fuel processing apparatus for an internal combustion engine according to an embodiment of the present invention is applied. 図2は本発明の一実施例にかかる内燃機関の蒸発燃料処理装置で使用されているECUにおけるエバポ濃度学習値演算の処理手順を示すフローチャートである。FIG. 2 is a flowchart showing a processing procedure of the evaporation concentration learning value calculation in the ECU used in the evaporated fuel processing apparatus for an internal combustion engine according to one embodiment of the present invention. 図3は図2の処理に対応する各種制御量等の遷移状態を示すタイムチャートである。FIG. 3 is a time chart showing transition states such as various control amounts corresponding to the processing of FIG. 図4は本発明の一実施例にかかる内燃機関の蒸発燃料処理装置で使用されているECUにおけるパージ速度設定の処理手順を示すフローチャートである。FIG. 4 is a flowchart showing a processing procedure for setting the purge speed in the ECU used in the evaporated fuel processing apparatus for an internal combustion engine according to one embodiment of the present invention. 図5は図4の処理に対応する各種制御量等の遷移状態を示すタイムチャートである。FIG. 5 is a time chart showing transition states such as various control amounts corresponding to the processing of FIG.

符号の説明Explanation of symbols

1 内燃機関
2 吸気通路
20 燃料タンク
30 キャニスタ
33 パージバルブ
40 ECU(電子制御ユニット)
1 Internal combustion engine 2 Intake passage 20 Fuel tank 30 Canister 33 Purge valve 40 ECU (electronic control unit)

Claims (2)

車両に搭載された内燃機関のアイドル時に、所定の自動停止条件を満足するときには、前記内燃機関を自動停止させると共に、この自動停止後に所定の自動始動条件を満足するときには、前記内燃機関を自動始動させるよう制御する自動始動停止制御手段と、When the internal combustion engine mounted on the vehicle is idle, when the predetermined automatic stop condition is satisfied, the internal combustion engine is automatically stopped. When the predetermined automatic start condition is satisfied after the automatic stop, the internal combustion engine is automatically started. Automatic start / stop control means for controlling
燃料タンクに発生する蒸発燃料をキャニスタに蓄え、前記内燃機関の運転状態に応じてパージバルブを開閉することにより、前記キャニスタに蓄えられた蒸発燃料を前記内燃機関の吸気通路内に放出するパージ制御を実行するパージ制御手段と、Purging control is performed in which the evaporated fuel generated in the fuel tank is stored in the canister, and the purge valve is opened / closed according to the operating state of the internal combustion engine to release the evaporated fuel stored in the canister into the intake passage of the internal combustion engine. Purge control means to be executed;
前記自動始動停止制御手段による前記内燃機関の自動停止中またはこの後における前記内燃機関の自動始動からの所定期間では、これ以外の通常運転時と異なるパージ制御に切換えるパージ制御切換手段とを具備し、Purge control switching means for switching to a purge control different from that during normal operation during a predetermined period from the automatic start of the internal combustion engine during or after the automatic stop of the internal combustion engine by the automatic start / stop control means. ,
前記パージ制御切換手段は、前記自動始動停止制御手段による前記内燃機関の自動停止後における自動始動からの所定期間では、前記パージ制御における蒸発燃料を含む空気のパージ率の単位時間当たりの増加率を、前記通常運転時よりも遅くすることを特徴とする内燃機関の蒸発燃料処理装置。The purge control switching means is configured to increase an increase rate per unit time of a purge rate of air including evaporated fuel in the purge control in a predetermined period after the automatic start of the internal combustion engine by the automatic start / stop control means. An evaporative fuel treatment apparatus for an internal combustion engine, which is slower than the normal operation.
車両に搭載された内燃機関のアイドル時に、所定の自動停止条件を満足するときには、前記内燃機関を自動停止させると共に、この自動停止後に所定の自動始動条件を満足するときには、前記内燃機関を自動始動させるよう制御する自動始動停止制御手段と、When the internal combustion engine mounted on the vehicle is idle, when the predetermined automatic stop condition is satisfied, the internal combustion engine is automatically stopped. When the predetermined automatic start condition is satisfied after the automatic stop, the internal combustion engine is automatically started. Automatic start / stop control means for controlling
燃料タンクに発生する蒸発燃料をキャニスタに蓄え、前記内燃機関の運転状態に応じてパージバルブを開閉することにより、前記キャニスタに蓄えられた蒸発燃料を前記内燃機関の吸気通路内に放出するパージ制御を実行するパージ制御手段と、Purging control is performed in which the evaporated fuel generated in the fuel tank is stored in the canister, and the purge valve is opened / closed according to the operating state of the internal combustion engine to release the evaporated fuel stored in the canister into the intake passage of the internal combustion engine. Purge control means to be executed;
前記自動始動停止制御手段による前記内燃機関の自動停止中またはこの後における前記内燃機関の自動始動からの所定期間では、これ以外の通常運転時と異なるパージ制御に切換えるパージ制御切換手段とを具備し、Purge control switching means for switching to a purge control different from that during normal operation during a predetermined period from the automatic start of the internal combustion engine during or after the automatic stop of the internal combustion engine by the automatic start / stop control means. ,
前記パージ制御切換手段は、前記自動始動停止制御手段による前記内燃機関の自動停止後における自動始動からの所定期間では、前記パージ制御における蒸発燃料の濃度の学習速度を、前記通常運転時よりも速くすることを特徴とする内燃機関の蒸発燃料処理装置。The purge control switching means makes the evaporative fuel concentration learning speed in the purge control faster than during normal operation in a predetermined period after the automatic start of the internal combustion engine by the automatic start / stop control means. An evaporative fuel processing apparatus for an internal combustion engine.
JP2004176414A 2004-06-15 2004-06-15 Evaporative fuel processing device for internal combustion engine Expired - Lifetime JP4403889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176414A JP4403889B2 (en) 2004-06-15 2004-06-15 Evaporative fuel processing device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176414A JP4403889B2 (en) 2004-06-15 2004-06-15 Evaporative fuel processing device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006002574A JP2006002574A (en) 2006-01-05
JP4403889B2 true JP4403889B2 (en) 2010-01-27

Family

ID=35771192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176414A Expired - Lifetime JP4403889B2 (en) 2004-06-15 2004-06-15 Evaporative fuel processing device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4403889B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631807B2 (en) * 2006-06-07 2011-02-16 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
KR100936983B1 (en) * 2008-05-07 2010-01-15 현대자동차주식회사 Vapor gas control system and mehtod thereof
KR100962199B1 (en) 2008-05-08 2010-06-10 현대자동차주식회사 Vapor gas control system
FR2990174B1 (en) * 2012-05-02 2015-06-05 Peugeot Citroen Automobiles Sa CANISTER LOAD ESTIMATING METHOD AND METHOD AND DEVICE FOR DETERMINING THE NEED FOR CANISTER PURGING FOR A HYBRID VEHICLE
FR2990163B1 (en) * 2012-05-03 2015-07-03 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING A FUEL SUPPLY OF AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
JP2006002574A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
KR100320279B1 (en) Evaporative Fuel Control System of Engine
JP2007146739A (en) Internal combustion engine control device
JPH0617714A (en) Evaporative fuel treatment device for internal combustion engine
JPH0494445A (en) Vaporized fuel processing control device for internal combustion engine
JP2007146797A (en) Evaporated fuel treating device
US7069916B2 (en) Evaporative fuel treatment apparatus for internal combustion engine
US5203870A (en) Method and apparatus for detecting abnormal state of evaporative emission-control system
JP4403889B2 (en) Evaporative fuel processing device for internal combustion engine
WO2011129267A1 (en) Air-fuel ratio learning control device for bifuel engine
CN111108283A (en) Engine system
JPH07269419A (en) Evaporated fuel treatment device
JP7211325B2 (en) vehicle controller
JP4375209B2 (en) Evaporative fuel processing equipment
JP3620210B2 (en) Control device for internal combustion engine
KR100428112B1 (en) Method for canister purge controlling of engine in vehicle
JPS6329050A (en) Trouble diagnostics for air-fuel ratio control system
JP4269593B2 (en) Secondary air supply control device for internal combustion engine
JPH0723706B2 (en) Evaporative fuel processor for engine
JP3823010B2 (en) Evaporative fuel processing device for internal combustion engine
JP6906856B2 (en) Internal combustion engine control device
JP3102156B2 (en) Engine evaporative fuel control system
JP2007218123A (en) Evaporated fuel treatment device for internal combustion engine
JP3065176B2 (en) Engine air-fuel ratio control device
JP3147416B2 (en) Purge control device
JP2023090018A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4403889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250