JP4401406B2 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP4401406B2
JP4401406B2 JP2007216614A JP2007216614A JP4401406B2 JP 4401406 B2 JP4401406 B2 JP 4401406B2 JP 2007216614 A JP2007216614 A JP 2007216614A JP 2007216614 A JP2007216614 A JP 2007216614A JP 4401406 B2 JP4401406 B2 JP 4401406B2
Authority
JP
Japan
Prior art keywords
cooling gas
base
cooling
discharge lamp
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007216614A
Other languages
Japanese (ja)
Other versions
JP2008004560A (en
Inventor
孝夫 長沼
武弘 林
昭芳 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2007216614A priority Critical patent/JP4401406B2/en
Publication of JP2008004560A publication Critical patent/JP2008004560A/en
Application granted granted Critical
Publication of JP4401406B2 publication Critical patent/JP4401406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、半導体、液晶、あるいはプリント基板などのワークを光処理する光源装置に関し、特に、放電灯の口金部を適切に冷却して理想的な冷却バランスを実現する光源装置に関する。   The present invention relates to a light source device that optically processes a workpiece such as a semiconductor, a liquid crystal, or a printed circuit board, and more particularly, to a light source device that realizes an ideal cooling balance by appropriately cooling a base portion of a discharge lamp.

従来、半導体、液晶、あるいはプリント基板などのワークを光処理する放電灯としては、例えば、図5に示すものがあった。この放電灯は、発光管2、陰極3、陽極4、第1内部リード5、第2内部リード6、第1ビーズ管7、第2ビーズ管8、第1石英ガラス棒9、第2石英ガラス棒10、第1口金11、および第2口金12を備えている。   Conventionally, as a discharge lamp for optically processing a workpiece such as a semiconductor, a liquid crystal, or a printed circuit board, for example, there is one shown in FIG. The discharge lamp includes an arc tube 2, a cathode 3, an anode 4, a first internal lead 5, a second internal lead 6, a first bead tube 7, a second bead tube 8, a first quartz glass rod 9, and a second quartz glass. A rod 10, a first base 11, and a second base 12 are provided.

発光管2は、石英ガラスにより略球状あるいは楕円球状に形成された発光部と、その両側に管状に形成された一対の封止部とを有する。発光部の内部では陰極3と陽極4が対向している。陰極3の後方には第1内部リード5が接続され、陽極4の後方には第2内部リード6が接続されている。第1内部リード5は第1ビーズ管7に挿通され、その後端は第1石英ガラス棒9内に挿入されている。同様に、第2内部リード6は第2ビーズ管8に挿通され、その後端は第2石英ガラス棒10内に挿入されている。   The arc tube 2 has a light emitting portion formed in a substantially spherical or elliptical shape with quartz glass, and a pair of sealing portions formed in a tubular shape on both sides thereof. Inside the light emitting portion, the cathode 3 and the anode 4 are opposed to each other. A first internal lead 5 is connected behind the cathode 3, and a second internal lead 6 is connected behind the anode 4. The first internal lead 5 is inserted through the first bead tube 7 and the rear end thereof is inserted into the first quartz glass rod 9. Similarly, the second internal lead 6 is inserted into the second bead tube 8 and the rear end thereof is inserted into the second quartz glass rod 10.

封止部の内、第1石英ガラス棒9を収納している部分の外側には第1口金11が固定され、第2石英ガラス棒10を収納している部分の外側には第2口金12が固定されている。   A first base 11 is fixed to the outside of the portion containing the first quartz glass rod 9 in the sealing portion, and a second base 12 is placed outside the portion containing the second quartz glass rod 10. Is fixed.

図6は、図5における陽極側の封止部、および口金の内部の構造を示す断面図である。この図5に示すように、第2石英ガラス棒10の一端(陽極側の端)には第2内部リード6が挿入されている。また、第2石英ガラス棒10の他端には電流導入用金属棒14の先端側が挿入されている。電流導入用金属棒14の後端側は接合部16を介して給電線15が接続されている。さらに、第2石英ガラス棒10の外周面には電流導入用金属箔(図示せず)が配置され、発光管2の内面に溶融密着されている。そして、前記接合部16を覆うように第2口金12が配設されている。以上、陽極側の封止部について説明したが、陰極側の構造も同様である。   FIG. 6 is a cross-sectional view illustrating the internal structure of the sealing portion on the anode side and the base in FIG. 5. As shown in FIG. 5, the second internal lead 6 is inserted into one end (the end on the anode side) of the second quartz glass rod 10. The other end of the second quartz glass rod 10 is inserted with the tip end side of a current introducing metal rod 14. A power supply line 15 is connected to the rear end side of the current-introducing metal rod 14 via a joint 16. Further, a current introducing metal foil (not shown) is disposed on the outer peripheral surface of the second quartz glass rod 10 and is melt-adhered to the inner surface of the arc tube 2. And the 2nd nozzle | cap | die 12 is arrange | positioned so that the said junction part 16 may be covered. Although the anode side sealing portion has been described above, the structure on the cathode side is the same.

このように封止された発光管2の内部には、水銀、およびアルゴンやキセノンなどの希ガスからなる放電媒体が封入され、高圧放電灯を構成している。   The arc tube 2 sealed in this manner is filled with a discharge medium made of mercury and a rare gas such as argon or xenon to constitute a high-pressure discharge lamp.

以上のように構成された放電灯における点灯中での理想的な冷却バランスについて説明する。まず発光部は、低温時の水銀の未蒸発や、高温時の破裂の危険性を回避するために、500〜800℃が理想である。また、封止部は電流導入用金属箔の熱膨脹による封止部クラックや前記金属箔の発光部側の剥がれの誘発を防止するために、400℃以下が理想である。さらに、給電線15と電流導入用金属棒14との接合部16は、接合部16およびその周辺の酸化やそれに伴う電流導入用金属棒14の熱膨脹による封止部クラックの発生を防止するために、100℃以下が理想である。そして、このような理想的な冷却バランスを作成するために、放電灯の口金に気体(空気、窒素ガスなど)を吹きつける方法が一般的に行われていた。
特開2001−216938号公報
The ideal cooling balance during lighting in the discharge lamp configured as described above will be described. First, the light emitting part is ideally 500 to 800 ° C. in order to avoid unevaporated mercury at a low temperature and the risk of explosion at a high temperature. Also, the sealing portion is ideally 400 ° C. or lower in order to prevent sealing portion cracking due to thermal expansion of the current-introducing metal foil and peeling of the metal foil on the light emitting portion side. Further, the joint 16 between the power supply line 15 and the current introduction metal rod 14 is used to prevent the occurrence of a crack in the sealing portion due to oxidation of the junction 16 and its surroundings and the accompanying thermal expansion of the current introduction metal rod 14. 100 ° C. or lower is ideal. In order to create such an ideal cooling balance, a method of blowing gas (air, nitrogen gas, etc.) to the base of the discharge lamp has been generally performed.
JP 2001-216938 A

しかしながら、従来の冷却方法では理想的な冷却バランスが実現されていなかった。以下、この点について図7〜図11に基づいて説明する。   However, an ideal cooling balance has not been realized by the conventional cooling method. Hereinafter, this point will be described with reference to FIGS.

図7は、空気孔のない口金に冷却用気体を吹きつけた場合を示す図である。この図7(a)は斜視図であり、図7(b)は口金部分の水平断面である。図7に示すように、同一水平面内で90°異なるA、Bの方向の冷却ノズルにより、空気孔のない口金12に対して冷却用気体を吹きつけた場合には、給電線15と電流導入用金属棒14との接合部16が適正温度内(100℃以下)となるように冷却すると、冷却用気体の流量が膨大になり、発光部が冷却されすぎてしまい、水銀の未蒸発が発生してしまう。その理由は、図7(a)に示すように、口金12に衝突した冷却用気体が曲線E1、F1で示すように発光管2へ回り、発光管2の温度を低下させるからである。   FIG. 7 is a diagram showing a case where cooling gas is blown onto a die having no air holes. FIG. 7A is a perspective view, and FIG. 7B is a horizontal cross section of the cap portion. As shown in FIG. 7, when the cooling gas is blown to the base 12 having no air holes by the cooling nozzles in the directions of A and B which are different by 90 ° in the same horizontal plane, the feeder 15 and the current are introduced. If the joint 16 with the metal rod 14 is cooled so that it is within the proper temperature (100 ° C or less), the flow rate of the cooling gas becomes enormous, the light emitting part is cooled too much, and mercury is not evaporated. Resulting in. The reason for this is that, as shown in FIG. 7A, the cooling gas that has collided with the base 12 travels to the arc tube 2 as shown by the curves E1 and F1 to lower the temperature of the arc tube 2.

図8に示すように、発光部において陰極側を第1発光部R、陽極側を第2発光部S、陰極側の封止部を第1封止部Q、陽極側の封止部を第2封止部T、陰極側の接合部を第1接合部P、陽極側の接合部を第2接合部Uとし、同一水平面内で90°異なるC、Dの方向の冷却ノズルにより第1口金11に冷却用気体を吹きつけ、前述したA、Bの方向の冷却ノズルにより第2口金12に冷却用気体を吹きつけた場合の各部の温度と前記冷却用気体(ここでは空気とした)の流量との関係の測定データを図9の特性曲線図に示す。なお、図8の第2発光部S、第2封止部T、第2接合部Uは、それぞれ図6におけるS、T、Uに対応する。すなわち、第2発光部S、第2封止部Tは発光管の表面上に存在し、第2接合部Uは接合部16自体である。第1発光部R、第1封止部Q、第1接合部Pについても同様である。また、この測定は各ノズルから等量の冷却用気体を噴射するように調整されており、使用した放電灯の仕様は以下のとおりである。
電圧:約50V、電流:約100A、電力:約5kW、発光部径:φ82mm、水銀量:約30mg/cc
As shown in FIG. 8, in the light emitting part, the cathode side is the first light emitting part R, the anode side is the second light emitting part S, the cathode side sealing part is the first sealing part Q, and the anode side sealing part is the first side. 2 The sealing part T, the cathode-side joining part as the first joining part P, the anode-side joining part as the second joining part U, and the first nozzle by the cooling nozzles in the directions of C and D different by 90 ° in the same horizontal plane. When the cooling gas is blown to 11 and the cooling gas is blown to the second base 12 by the cooling nozzles in the directions of A and B described above, the temperature of each part and the cooling gas (in this case, air) The measurement data of the relationship with the flow rate is shown in the characteristic curve diagram of FIG. In addition, the 2nd light emission part S of FIG. 8, the 2nd sealing part T, and the 2nd junction part U respond | correspond to S, T, and U in FIG. 6, respectively. That is, the second light emitting portion S and the second sealing portion T exist on the surface of the arc tube, and the second joint portion U is the joint portion 16 itself. The same applies to the first light emitting portion R, the first sealing portion Q, and the first joint portion P. In addition, this measurement is adjusted so that an equal amount of cooling gas is ejected from each nozzle, and the specifications of the discharge lamp used are as follows.
Voltage: about 50V, current: about 100A, power: about 5kW, light emitting part diameter: φ82mm, mercury content: about 30mg / cc

図9の特性曲線図に示すように、第1接合部P、および第2接合部Uを100℃以下に保つためには、毎分250リットル程度の膨大な冷却用気体が必要となる。そして、その場合、第2発光部Sの温度は450℃程度に下がってしまうことが判る。   As shown in the characteristic curve diagram of FIG. 9, in order to keep the first joint portion P and the second joint portion U at 100 ° C. or less, a huge amount of cooling gas of about 250 liters per minute is required. And in that case, it turns out that the temperature of the 2nd light emission part S will fall to about 450 degreeC.

これに対し、接合部を効率良く冷却するため、図10に示すように、4個の空気孔(同一水平面上で互いに直交する2個の貫通孔)17-1〜17-4を形成した第2口金12-1を備えた放電灯も知られている。ここで、空気孔17-1を真っ直ぐに延長した位置に空気孔17-3があり、空気孔17-2を真っ直ぐに延長した位置に空気孔17-4がある。そして、空気孔17-1と空気孔17-3を結ぶ線分と、空気孔17-2と空気孔17-4とを結ぶ線分とは、互いに直交している。   On the other hand, in order to efficiently cool the joint portion, as shown in FIG. 10, four air holes (two through holes orthogonal to each other on the same horizontal plane) 17-1 to 17-4 are formed. A discharge lamp having a two-piece base 12-1 is also known. Here, there is an air hole 17-3 at a position where the air hole 17-1 is extended straight, and there is an air hole 17-4 at a position where the air hole 17-2 is extended straight. The line segment connecting the air hole 17-1 and the air hole 17-3 and the line segment connecting the air hole 17-2 and the air hole 17-4 are orthogonal to each other.

しかし、図10に示す冷却方法では、A方向のノズルから噴射した冷却用気体は、F2に示すように空気孔17-1から空気孔17-3へと通り抜けてしまい、発光部および封止部へ回らない。B方向のノズルから噴射した冷却用気体についても同様にE2のように通り抜け、発光部および封止部へ回らない。このため、発光部と封止部とが充分に冷却されず高温となってしまった。その結果、発光部が高温となることによる放電灯の短寿命化と破裂の危険性の増加が避けられない。また、封止部が高温となることにより、電流導入用金属箔の熱膨脹に起因する封止部クラックや前記金属箔の剥がれを誘発してしまうおそれがあった。   However, in the cooling method shown in FIG. 10, the cooling gas injected from the nozzle in the A direction passes from the air hole 17-1 to the air hole 17-3 as shown by F2, and the light emitting part and the sealing part Do not turn. Similarly, the cooling gas injected from the nozzle in the B direction passes through like E2 and does not turn to the light emitting part and the sealing part. For this reason, the light emitting part and the sealing part are not cooled sufficiently and become high temperature. As a result, it is inevitable that the life of the discharge lamp is shortened and the risk of explosion is increased due to the high temperature of the light emitting part. Moreover, when the sealing part becomes high temperature, there is a risk of inducing cracks in the sealing part and peeling of the metal foil due to thermal expansion of the metal foil for current introduction.

図10に示した放電灯の点灯中の各部の温度と冷却用気体の流量との関係の測定データを図11の特性曲線図に示す。ここで、放電灯の仕様および各ノズルの流量の関係は図9のデータの測定時と同じである。   Measurement data of the relationship between the temperature of each part during lighting of the discharge lamp shown in FIG. 10 and the flow rate of the cooling gas is shown in the characteristic curve diagram of FIG. Here, the relationship between the specification of the discharge lamp and the flow rate of each nozzle is the same as in the data measurement of FIG.

図11の特性曲線図に示すように、第1、第2の接合部P、Uは常に適正温度である100℃以下に維持されているが、第1、第2の発光部R、Sと第1、第2の封止部Q、Tとをそれぞれの適正温度にするためには、毎分250リットル程度の膨大な冷却用気体が必要となってしまう。   As shown in the characteristic curve diagram of FIG. 11, the first and second joints P and U are always maintained at an appropriate temperature of 100 ° C. or lower, but the first and second light emitting parts R and S In order to set the first and second sealing portions Q and T to appropriate temperatures, a huge amount of cooling gas of about 250 liters per minute is required.

また、実験データ上は、冷却用気体の流量を大きくすれば各部を適正温度にすることが可能であることを確認できたが、実際には機械装置により冷却用気体の流量や排気能力のバラツキが存在するため、全ての放電灯に対して適正温度が確保できるとは限らない。   In addition, it has been confirmed from experimental data that each part can be brought to an appropriate temperature by increasing the flow rate of the cooling gas, but in reality, the flow rate of the cooling gas and the exhaust capacity vary depending on the mechanical device. Therefore, it is not always possible to ensure an appropriate temperature for all discharge lamps.

本発明はこのような問題点に鑑みてなされたものであって、膨大な量の冷却用気体を使用せずに理想的な冷却バランスを作成することのできる放電灯およびその冷却方法を提供することを目的とするものである。   The present invention has been made in view of such problems, and provides a discharge lamp capable of creating an ideal cooling balance without using a huge amount of cooling gas and a cooling method thereof. It is for the purpose.

本発明に係る光源装置は、発光部に連設される封止部と、この封止部に固定される口金とを有する放電ランプと、前記口金を冷却用気体により冷却する手段とを有し、
前記口金には複数の空気孔を設け、前記口金の円周面が2つの異なる方向から前記冷却用気体により冷却されるように構成した光源装置において、
前記複数の空気孔は、円周方向において互いに対向しない位置関係にあり、前記複数の空気孔の1つは冷却用気体の流入孔とし、他の空気孔は前記冷却用気体の流出孔とし、前記複数の空気孔が形成されていない前記口金の外周面を前記冷却用気体の吹付け面としたものである。
A light source device according to the present invention includes a discharge lamp having a sealing portion provided continuously to a light emitting portion, a base fixed to the sealing portion, and means for cooling the base with a cooling gas. ,
In the light source device provided with a plurality of air holes in the base, and configured so that the circumferential surface of the base is cooled by the cooling gas from two different directions,
The plurality of air holes are in a positional relationship that do not oppose each other in the circumferential direction, one of the plurality of air holes is an inflow hole for cooling gas, and the other air hole is an outflow hole for the cooling gas, The outer peripheral surface of the base in which the plurality of air holes are not formed is used as the cooling gas spraying surface.

本発明によれば、放電灯の口金に複数の空気孔をあけるとともに、冷却用気体の一部を前記空気孔から口金内部へ流入させることにより接合部を冷却し、前記冷却用気体の他の一部を前記口金の外周面から発光管の外周面へ伝搬させることで封止部および発光部を冷却することにより、冷却用気体の一部で接合部を冷却し、他の一部で封止部および発光部を冷却することができるので、膨大な量の冷却用気体を使用せずに理想的な冷却バランスを作成することができる。   According to the present invention, a plurality of air holes are formed in the base of the discharge lamp, and the joint is cooled by allowing a part of the cooling gas to flow into the base from the air hole, and the other cooling gas is supplied. By cooling a sealing part and a light emitting part by propagating a part from the outer peripheral surface of the base to the outer peripheral surface of the arc tube, the joint part is cooled with a part of the cooling gas and sealed with the other part. Since the stop portion and the light emitting portion can be cooled, an ideal cooling balance can be created without using a huge amount of cooling gas.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態の放電灯における陽極側の封止部および口金の内部の構造を示す断面図である。この図1において、図6と対応する構成要素には図6で使用した符号を付した。図1に示すように、本実施の形態の放電灯は口金12に口金空気孔(以下、単に空気孔という)17を備えている。その他の構成は図6の放電灯と同じである。   FIG. 1 is a cross-sectional view showing the internal structure of an anode-side sealing portion and a base in a discharge lamp according to an embodiment of the present invention. In FIG. 1, the components corresponding to those in FIG. As shown in FIG. 1, the discharge lamp according to the present embodiment includes a base air hole (hereinafter simply referred to as an air hole) 17 in a base 12. Other configurations are the same as those of the discharge lamp of FIG.

図2は、本発明の実施の形態の放電灯を冷却する方法を説明するための斜視図である。 FIG. 2 is a perspective view for explaining a method of cooling the discharge lamp according to the embodiment of the present invention.

図2に示すように、第2口金12-2の外周面に複数の空気孔が形成されている。図3の断面図に示すように、互いに対向しない位置関係に複数の空気孔17-2、17-5、17-6が形成されている。また、第2口金12-2の周辺には、冷却用気体を第2口金12-2に吹きつけるための一対の冷却ノズルが配置されている。そして、一つの冷却ノズルは図のA方向に冷却用気体を噴射し、他の一つの冷却ノズルは図のB方向に冷却用気体を噴射する。 As shown in FIG. 2, a plurality of air holes are formed in the outer peripheral surface of the second base 12-2 . As shown in the cross-sectional view of FIG. 3, a plurality of air holes 17-2, 17-5, and 17-6 are formed in a positional relationship that does not face each other . A pair of cooling nozzles for blowing a cooling gas to the second base 12-2 is disposed around the second base 12-2. One cooling nozzle injects a cooling gas in the direction A in the figure, and the other one cooling nozzle injects a cooling gas in the direction B in the figure.

A方向に噴射した冷却用気体は、第2口金12-2の外周面に衝突した後、発光管2の外周面に沿って上昇することにより、第2封止部Tおよび第2発光部Sを冷却する。また、B方向に噴射した冷却用気体は、空気孔17-2を通って第2口金12-2の内部に入り、第2接合部Uを冷却し、空気孔17-5、17-6を通って流路E5、E6を経て外部に抜ける。 The cooling gas sprayed in the direction A collides with the outer peripheral surface of the second base 12-2 and then rises along the outer peripheral surface of the arc tube 2, whereby the second sealing portion T and the second light emitting portion S. Cool down. Further, the cooling gas injected in the direction B enters the inside of the second base 12-2 through the air hole 17-2, cools the second joint U, and sets the air holes 17-5 and 17-6 . Passes through the passages E5 and E6 to the outside.

したがって、B方向に噴射した冷却用気体により、第2接合部Uおよびその周辺の温度を抑制することができ、A方向に噴射した冷却用気体は第2封止部Tおよび第2発光部Sへ回り、それらの部分を適度に冷却することができる。これにより、膨大な量の冷却用気体を使用せずに放電灯の各部に対して理想的な冷却バランスを作成することができる。なお、図2は第2口金を冷却する方法を示したが、第1口金も同じ方法で冷却することができる。   Therefore, the cooling gas injected in the B direction can suppress the temperature of the second joint portion U and its surroundings, and the cooling gas injected in the A direction includes the second sealing portion T and the second light emitting portion S. You can go around and cool those parts moderately. This makes it possible to create an ideal cooling balance for each part of the discharge lamp without using a huge amount of cooling gas. In addition, although FIG. 2 showed the method of cooling a 2nd nozzle | cap | die, a 1st nozzle | cap | die can also be cooled by the same method.

図1および図2に示した放電灯の点灯中の各部の温度と冷却用気体の流量との関係の測定データを図4の特性曲線図に示す。ここで、口金の構造以外の放電灯の仕様、温度測定部位、および各ノズルの流量の関係は、図9のデータの測定時と同じである。図4から明らかなように、本発明の実施形態の放電灯の冷却方法によれば、毎分140リットル程度の冷却用気体を用いることにより、第1、第2の発光部R、S、第1、第2の封止部Q、T、および第1、第2の接合部P、Uをそれぞれの適正温度に設定することができる。   The measurement data of the relationship between the temperature of each part during lighting of the discharge lamp shown in FIGS. 1 and 2 and the flow rate of the cooling gas is shown in the characteristic curve diagram of FIG. Here, the relationship between the specifications of the discharge lamp other than the structure of the base, the temperature measurement site, and the flow rate of each nozzle is the same as in the data measurement of FIG. As is clear from FIG. 4, according to the cooling method for the discharge lamp of the embodiment of the present invention, the first and second light emitting units R, S, The first and second sealing portions Q and T and the first and second joint portions P and U can be set to appropriate temperatures.

このように、本発明の実施形態によれば、B方向に噴射した冷却用気体により接合部およびその周辺の温度を抑制することができるので、電流導入用金属箔が高温になり熱膨脹することにより発生する封止部クラックを防止することができる。また、発光部への大量の冷却用気体の回り込みがなくなるので、過冷却による水銀の未蒸発の発生も防止することができる。さらに、A方向に噴射した冷却用気体により封止部および発光部を冷却することができるので、発光部が高温となることによる放電灯の短寿命化や破裂の危険性の増加、および封止部が高温となることによる電流導入用金属箔の熱膨脹による封止部クラックや前記金属箔の発光部側密着剥がれを防止することができる。   As described above, according to the embodiment of the present invention, the temperature of the joint and its surroundings can be suppressed by the cooling gas jetted in the B direction, so that the current-introducing metal foil becomes hot and thermally expands. The generated sealing part crack can be prevented. In addition, since a large amount of cooling gas does not circulate to the light emitting portion, it is possible to prevent the occurrence of non-evaporation of mercury due to overcooling. Further, since the sealing portion and the light emitting portion can be cooled by the cooling gas injected in the A direction, the life of the discharge lamp is shortened and the risk of rupture increases due to the high temperature of the light emitting portion, and the sealing is performed. It is possible to prevent sealing portion cracks due to thermal expansion of the current-introducing metal foil due to the high temperature of the portion, and light-emitting portion side adhesion peeling of the metal foil.

なお、本発明において、口金一つ当たりにあける空気孔は、口金強度を保持しながら、口金側面の全表面積の70%以下の範囲内に設定すれば良い。   In the present invention, the number of air holes per cap may be set within a range of 70% or less of the total surface area of the cap side surface while maintaining the cap strength.

本発明の放電灯の実施形態における陽極側の封止部および口金の内部の構造を示す断面図、Sectional drawing which shows the structure of the inside of the sealing part by the side of the anode in the embodiment of the discharge lamp of this invention, and a nozzle | cap | die, 本発明の放電灯を冷却する方法の実施形態を説明するための斜視図、 The perspective view for demonstrating embodiment of the method of cooling the discharge lamp of this invention , 本発明の放電灯の実施形態における口金の構造の一例を示す断面図、Sectional drawing which shows an example of the structure of the nozzle | cap | die in embodiment of the discharge lamp of this invention, 図1および図2に示した放電灯の点灯中の各部の温度と冷却用気体の流量との関係の測定データを示す特性曲線図、FIG. 3 is a characteristic curve diagram showing measurement data of the relationship between the temperature of each part during lighting of the discharge lamp shown in FIGS. 1 and 2 and the flow rate of the cooling gas; 従来の放電灯の構成を示す縦断面図、A longitudinal sectional view showing the configuration of a conventional discharge lamp, 従来の放電灯における陽極側の封止部および口金の内部の構造を示す断面図、Sectional drawing which shows the internal structure of the sealing part on the anode side in a conventional discharge lamp, and a nozzle | cap | die, 従来の放電灯における空気孔のない口金に冷却用気体を吹きつけた状態を示す斜視図および断面図、A perspective view and a cross-sectional view showing a state in which cooling gas is blown to a base without an air hole in a conventional discharge lamp, 従来の放電灯における温度測定部位を示す図、The figure which shows the temperature measurement site | part in the conventional discharge lamp, 従来の空気孔のない口金に冷却用気体を吹きつけた場合の各部の温度と前記冷却用気体の流量との関係の測定データを示す特性曲線図、A characteristic curve diagram showing measurement data of the relationship between the temperature of each part and the flow rate of the cooling gas when the cooling gas is blown onto a conventional base without air holes, 従来の放電灯における空気孔のある口金に冷却用気体を吹きつけた状態を示す斜視図および断面図、、A perspective view and a cross-sectional view showing a state in which a cooling gas is blown to a base having an air hole in a conventional discharge lamp, 従来の空気孔のある口金に冷却用気体を吹きつけた場合の各部の温度と前記冷却用気体の流量との関係の測定データを示す特性曲線図である。It is a characteristic curve figure which shows the measurement data of the relationship between the temperature of each part at the time of spraying the cooling gas to the nozzle | cap | die with the conventional air hole, and the flow volume of the said cooling gas.

符号の説明Explanation of symbols

2 発光管
3 陰極
4 陽極
11、12 口金
15 給電線
16 接合部
17 空気孔
2 arc tube 3 cathode 4 anode
11, 12 base
15 Feed line
16 joints
17 Air hole

Claims (1)

発光部に連設される封止部と、該封止部に固定される口金とを有する放電ランプと、前記口金を冷却用気体により冷却する手段とを有し、
前記口金には複数の空気孔を設け、前記口金の円周面が2つの異なる方向から前記冷却用気体により冷却されるように構成した光源装置において、
前記複数の空気孔は、円周方向において互いに対向しない位置関係にあり、前記複数の空気孔の1つは冷却用気体の流入孔とし、他の空気孔は前記冷却用気体の流出孔とし、前 記複数の空気孔が形成されていない前記口金の外周面を前記冷却用気体の一部の吹付け面としたこと特徴とする光源装置。
A discharge lamp having a sealing portion connected to the light emitting portion, a base fixed to the sealing portion, and means for cooling the base with a cooling gas;
In the light source device provided with a plurality of air holes in the base, and configured so that the circumferential surface of the base is cooled by the cooling gas from two different directions,
The plurality of air holes are in a positional relationship that do not oppose each other in the circumferential direction, one of the plurality of air holes is an inflow hole for cooling gas, and the other air hole is an outflow hole for the cooling gas, A light source device characterized in that an outer peripheral surface of the base in which the plurality of air holes are not formed is a partial spraying surface of the cooling gas.
JP2007216614A 2007-08-23 2007-08-23 Light source device Expired - Lifetime JP4401406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216614A JP4401406B2 (en) 2007-08-23 2007-08-23 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216614A JP4401406B2 (en) 2007-08-23 2007-08-23 Light source device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000260800A Division JP4386555B2 (en) 2000-08-30 2000-08-30 Discharge lamp and cooling method thereof

Publications (2)

Publication Number Publication Date
JP2008004560A JP2008004560A (en) 2008-01-10
JP4401406B2 true JP4401406B2 (en) 2010-01-20

Family

ID=39008742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216614A Expired - Lifetime JP4401406B2 (en) 2007-08-23 2007-08-23 Light source device

Country Status (1)

Country Link
JP (1) JP4401406B2 (en)

Also Published As

Publication number Publication date
JP2008004560A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
CN1332779C (en) Solder bonding method and solder bonding device
JP2001216938A (en) Short arc type discharge lamp and light source device
JP2008305782A (en) Electrode structure for discharge lamp
CN104002041B (en) Equipment for manufacturing mask
JP4401406B2 (en) Light source device
JP4401405B2 (en) Discharge lamp
JP4386555B2 (en) Discharge lamp and cooling method thereof
JP2011050982A (en) Insert chip, plasma torch, and plasma machining apparatus
JP2020009624A (en) Discharge lamp and manufacturing method of electrode for discharge lamp
US6297591B1 (en) Chimney-cooled arc lamp electrode
JP4946842B2 (en) Short arc type discharge lamp and light source device including the short arc type discharge lamp
CN104584186B (en) Discharge lamp
JPH10208696A (en) Short arc type discharge lamp
JP6523868B2 (en) Lighting device provided with a windproof member
JP5271855B2 (en) Illumination device provided with windproof member
CN207621709U (en) LED light source component fixed structure and full glass ball bulb lamp
JP2017119297A (en) Plasma arc torch
JP2532695Y2 (en) UV irradiation device
CN202517164U (en) Novel plasma braze welding gun head
US6672923B1 (en) Method of manufacturing arc tube
JP3005902B2 (en) Plasma spraying equipment
CN210451303U (en) Welding gun for automobile plate production line
JP2013004503A (en) Light source device
JP5258473B2 (en) Short arc type discharge lamp
JP2010043341A (en) Composite torch type plasma generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Ref document number: 4401406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term