JP4400567B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP4400567B2
JP4400567B2 JP2005507373A JP2005507373A JP4400567B2 JP 4400567 B2 JP4400567 B2 JP 4400567B2 JP 2005507373 A JP2005507373 A JP 2005507373A JP 2005507373 A JP2005507373 A JP 2005507373A JP 4400567 B2 JP4400567 B2 JP 4400567B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
epoxy
resin
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005507373A
Other languages
Japanese (ja)
Other versions
JPWO2005012383A1 (en
Inventor
容三 松川
正志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Publication of JPWO2005012383A1 publication Critical patent/JPWO2005012383A1/en
Application granted granted Critical
Publication of JP4400567B2 publication Critical patent/JP4400567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、表示装置分野、照明装置分野、光学分野、光情報伝送分野または光情報処理分野等で用いられる、高い透明性、耐熱性および耐UV性(耐黄変性)を有する、熱硬化性または放射硬化性樹脂に関するものである。  The present invention is used in the display device field, lighting device field, optical field, optical information transmission field, optical information processing field, etc., and has high transparency, heat resistance and UV resistance (yellowing resistance), and thermosetting. Or it relates to a radiation curable resin.

近年、多くの光半導体装置は、光半導体素子をエポキシ樹脂組成物で封止することによって製造されており、そのような組成物の主成分として、ビスフェノールAグリシジルエーテル構造の繰返し単位を有するビスフェノールA型エポキシ樹脂が広く用いられている。
一方、現在では、半導体素子はInGan組成を有する発光ダイオードなど、発光波長の紫外領域、近紫外領域などの短波長化が進んでいる。このような紫外‐近紫外線発光ダイオードを封止するためには、ビスフェノールA型エポキシ樹脂を使用することは好ましくない。なぜなら、そのようなビスフェノールA型エポキシ樹脂は、分子中の芳香環が紫外線を吸収することにより黄変するからである。
そのため、紫外‐近紫外線発光ダイオードの透明樹脂部材として、芳香環を有さない水添ビスフェノールA型エポキシ樹脂または脂環式エポキシ樹脂を使用することが提案されている。
この点、上記の紫外‐近紫外線発光ダイオードを封止するのに適した透明性および耐UV性を有するエポキシ樹脂は、すべて低分子量のもので、常温で液状のものばかりである。なぜなら、このようなエポキシ樹脂の分子量を加熱またはカルボン酸等の添加などにより上昇させることはできるが、かかる工程を経ることにより、樹脂自体が変色ないし黄変してしまい、これら樹脂の透明性という特徴を損なうからである。
現在、液状の樹脂部材を使用した半導体パッケージ封止は、一般にディスペンサーと呼ばれるノズルから押し出しながらパターンを作る方法や、半導体パッケージを樹脂の中に直接つけた状態で熱硬化するポッティングと呼ばれる方法が主流となっている。
一般的にこれらの液状封止は、固体の樹脂部材を使用する半導体パッケージ封止に比べて、以下のような点で劣っている:
・液状封止は、生産性に課題がある、特に時間当たりの生産量が小さい、
・液状の樹脂部材は、固体の樹脂部材に比較して一般的に耐湿信頼性が低い。
またこれらの液状封止は、固体樹脂を用いる封止の主流であるトランスファー成形と比べて、以下のような点で劣っている:
・トランスファー成形は樹脂硬化時に加圧を行うのに対して、液状封止では無圧状態で封止を行うため、パッケージ内ボイドが発生しやすい、
・トランスファー成形は厚み精度や外形精度が金型で規定されるのに対して、液状封止では樹脂流動が生ずるため、封止品の寸法精度が悪い。
In recent years, many optical semiconductor devices have been manufactured by sealing an optical semiconductor element with an epoxy resin composition, and bisphenol A having a repeating unit of bisphenol A glycidyl ether structure as a main component of such a composition. Type epoxy resins are widely used.
On the other hand, at present, semiconductor elements are being shortened in the ultraviolet region, near ultraviolet region, etc. of the emission wavelength, such as a light emitting diode having an InGan composition. In order to seal such an ultraviolet-near ultraviolet light emitting diode, it is not preferable to use a bisphenol A type epoxy resin. This is because such a bisphenol A type epoxy resin yellows when an aromatic ring in the molecule absorbs ultraviolet rays.
Therefore, it has been proposed to use a hydrogenated bisphenol A type epoxy resin or an alicyclic epoxy resin having no aromatic ring as a transparent resin member of an ultraviolet-near ultraviolet light emitting diode.
In this respect, all of the epoxy resins having transparency and UV resistance suitable for sealing the above-mentioned ultraviolet-near ultraviolet light emitting diodes are low molecular weight and are only liquid at room temperature. Because the molecular weight of such an epoxy resin can be increased by heating or addition of carboxylic acid or the like, the resin itself is discolored or yellowed through this process, and the transparency of these resins is called This is because the characteristics are impaired.
At present, semiconductor package sealing using a liquid resin member is mainly performed by a method of forming a pattern while extruding from a nozzle called a dispenser, or a method called potting in which a semiconductor package is directly cured in a resin. It has become.
In general, these liquid seals are inferior to semiconductor package seals that use solid resin components in the following respects:
・ Liquid sealing has a problem in productivity, especially the production volume per hour is small.
-Liquid resin members generally have low moisture resistance reliability compared to solid resin members.
Also, these liquid seals are inferior to the transfer molding, which is the mainstream of sealing using a solid resin, in the following points:
・ Transfer molding is pressurized when the resin is cured, whereas liquid sealing performs sealing without pressure, so voids in the package are likely to occur.
In transfer molding, thickness accuracy and outer shape accuracy are specified by the mold, whereas in liquid sealing, resin flow occurs, so the dimensional accuracy of the sealed product is poor.

従って、紫外‐近紫外線発光ダイオードを固体樹脂を用いて封止するため、特にトランスファー成形で封止するために、透明性および耐UV性を有し、かつ室温で固体であるエポキシ樹脂組成物に対する要求が高まっている。
そこで本発明は、分子中に2個またはそれ以上のエポキシ基を有する化合物と、分子中に2個の第2級アミノ基を有するヒダントインまたはその誘導体とを反応させて得られる反応性オリゴマーまたはポリマーを含むことを特徴とする硬化性樹脂組成物を提供する。
2個またはそれ以上のエポキシ基を有する化合物とヒダントインまたはその誘導体とを用いることで、1段階の反応で容易にオリゴマー化またはポリマー化されたエポキシ樹脂を得ることができる。こうして得られた本発明の反応性オリゴマーまたはポリマーは、その製造工程が少ないという理由により、樹脂自体の変色が少なく、出発物質の光学特性を維持することができる。
また、本発明の反応性オリゴマーまたはポリマーから得られる硬化性樹脂組成物は、粘度が高く、成形性が良好である。また本発明の硬化性樹脂組成物から得られる硬化物は、透明性、耐UV性が良好である。
発明を実施するための形態
本発明の硬化性樹脂組成物は、分子中に2個またはそれ以上のエポキシ基を有する化合物と、分子中に2個の第2級アミノ基を有するヒダントインまたはその誘導体とを反応させて得られる反応性オリゴマーまたはポリマーを含むことを特徴とする。
反応性オリゴマーまたはポリマーを製造するために、エポキシ基を有する化合物として、基本的にあらゆるエポキシ樹脂を使用し得る。エポキシ樹脂の具体例としては、脂環式エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル骨格を有するビフェニル型エポキシ樹脂、芳香環などを水素添加した水添系エポキシ樹脂、ナフタレン環含有エポキシ樹脂、ジシクロペンタジエン骨格を有するジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、臭素含有エポキシ樹脂、脂肪族系エポキシ樹脂、イソシアヌル酸骨格エポキシ樹脂、ヒダントイン骨格エポキシ樹脂等を挙げることができる。ここで「エポキシ樹脂」には、繰返し単位が1つだけの低分子量化合物(モノマー化合物)も含まれる。例えばビスフェノールA型エポキシ樹脂には、ビスフェノールAグリシジルエーテルが含まれる。
これらの中から、水素添加系エポキシ樹脂、特に水添ビスフェノールA型エポキシ樹脂、飽和脂肪族から構成される環の上にエポキシ基を有する脂環式エポキシ樹脂、イソシアヌル酸骨格を有するエポキシ樹脂またはこれらの混合物を使用することが、その高い透明性および耐UV性(耐黄変性)の故に、特に望ましい。
本発明において使用し得るヒダントインまたはその誘導体は、好ましくは、一般式(A):

Figure 0004400567
〔式中、Rは、水素またはC〜Cアルキル基を表し、Rは、水素またはC〜Cアルキル基を表す。〕
で示されるヒダントインまたはその誘導体である。
上記の一般式(A)において、Rが、水素またはメチル基を表し、Rが、水素、メチル基またはイソプロピル基を表すヒダントインまたはその誘導体が、より好ましい。ヒダントイン誘導体としてジメチルヒダントインまたはメチルヒダントインが、さらに好ましい。反応性、耐UV性、安定性において優れた特性を有しているため、5,5−ジメチルヒダントインを使用することが特に望ましい。
エポキシ化合物およびヒダントインまたはその誘導体を、例えば、それぞれの融点以上の温度で溶融させ、必要であれば触媒を添加して、攪拌混合することにより反応させることができる。反応性オリゴマーまたはポリマーの分子量は、エポキシ基を有する化合物とヒダントインまたはその誘導体とのモル比を制御することによりコントロールすることができる。
本発明の反応性オリゴマーまたはポリマーは、分子量が高く、常温で固体である。またこの反応性オリゴマーまたはポリマーは、エポキシモノマーよりも可塑性があり、透明性が高く、UV照射に対して黄変しにくいという特徴を持っている。さらにこの反応性オリゴマーまたはポリマーは、窒素原子を多く含んでいて燃えにくいので、封止材や積層板電子機器への使用において望ましい性質を有している。
本発明の硬化性樹脂組成物は、上記反応性オリゴマーまたはポリマーを含むことを特徴とする。本発明の硬化性樹脂組成物は、好ましくは、光や電子線などの活性エネルギー線あるいは熱によって樹脂の硬化反応を開始する硬化触媒を含む。
本発明の硬化性樹脂組成物は、上記反応性オリゴマー以外に、あらゆるエポキシ樹脂を含むことができる。エポキシ樹脂として、例えば、エポキシ基を有する化合物として上で記載したエポキシ樹脂の具体例を挙げることができる。これらのエポキシ樹脂の1種のみ、または2種若しくはそれ以上を使用することができる。
また本発明の硬化性樹脂組成物において、硬化物中で3次元網目構造を形成する、いわゆる硬化剤を使用することができる。透明性や耐熱性などを害さない範囲であれば、分子中に酸無水物の基を有する酸無水物硬化剤、例えばテトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物または水素化メチルナジック酸無水物、分子中にフェノール性水酸基を2つ以上有するフェノール系硬化剤、例えばビスフェノールA、フェノールノボラック、クレゾールノボラックまたはナフトールノボラック、または第1級アミンなどの硬化剤を使用できる。また限定する趣旨ではないが、硬化剤は、透明性、硬化時の高温や硬化後の環境から受ける高温により着色しにくいため、酸無水物であるものが好ましい。
上記のエポキシ樹脂(「主剤」と称する)と硬化剤との化学量論上の反応基のモル比、即ち、主剤当量と硬化剤当量との比率(当量比)は、好ましくは100:60〜100:120、より好ましくは100:75〜100:110である。主剤当量100に対して硬化剤当量が60未満であると、組成物が硬化し難くなったり、硬化しても硬化物の耐熱性が低下したり、硬化物の強度が低下したりする恐れがある。また逆に、硬化剤当量が120を超えると、硬化物の耐熱性が低下したり、硬化後の接着強度が低下したり、硬化物の吸湿率が高くなったりする恐れがある。
本発明において使用し得る硬化開始剤としては、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、シラノールアルミニウム錯体類などの光や熱でカチオン重合を開始させるものや、ジアザビシクロアルケン類若しくはその塩、イミダゾール類若しくはその塩、有機酸金属塩、第4級アンモニウム塩、ホスフィン類などを例示することができる。これらは、硬化触媒とも言われるものであり、エポキシ基の硬化反応を引き起こすものであれば良い。
さらに本発明の樹脂組成物には、本発明の目的を損なわない限り、必要に応じて他の物質を配合することもできる。このような物資としては、紫外線吸収剤、ラジカル安定剤、酸化防止剤、難燃剤、低弾性化剤、着色剤、希釈剤、消泡剤、イオントラップ剤等を例示することができる。
また、本発明の樹脂樹脂組成物中で、脂環式エポキシ樹脂またはトリアジン骨格エポキシ樹脂を併用することが好ましい。これらを併用することによって、硬化物の透明性を高めること、ガラス転移温度を調整すること、耐熱性を向上させることができる。
さらに、本発明の樹脂組成物中で、脂環式エポキシ樹脂を併用することが好ましい。これを併用することによって、硬化物の透明性を高め、屈折率を低く調整することができる。また脂環式エポキシ樹脂の中でも分子構造中にエステル基を持たないものが、耐加水分解性に優れるので、特に好ましい。例えば、水添ビスフェノールA型エポキシ樹脂または水添ビスフェノールF型エポキシ樹脂、あるいはビシクロヘキセンまたはシクロオクタジエンなどの環状構造と炭素−炭素二重結合とを持つオレフィンをエポキシ化して得られるもの等を、挙げることができる。
最後に、本発明の樹脂組成物中に含まれる反応性オリゴマーまたはポリマーの化学構造の例を以下に示す。
反応性オリゴマーまたはポリマーを製造するために、水添ビスフェノールA型エポキシ樹脂として、例えば水添ビスフェノールAグリシジルエーテルを使用した場合、その反応性オリゴマーまたはポリマーは、一般式(B):
Figure 0004400567
〔式中、Rは、水添ビスフェノールAグリシジルエーテルからグリシジル基を除いて得られる部分、即ち、
Figure 0004400567
を表し、Rは、水素またはC〜Cアルキル基を表し、Rは、水素またはC〜Cアルキル基を表し、1は、0以上の数を表す。〕
で示される構造をとる。
反応性オリゴマーまたはポリマーを製造するために脂環式エポキシ樹脂を使用した場合、その反応性オリゴマーまたはポリマーは、例えば一般式(C):
Figure 0004400567
〔式中、Rは、脂環式エポキシ樹脂から環状構造を除いて得られる部分、例えば、
Figure 0004400567
を表し、Rは、水素またはC〜Cアルキル基を表し、Rは、水素またはC〜Cアルキル基を表し、mは、0以上の数を表す。〕
で示される構造をとる。
反応性オリゴマーまたはポリマーを製造するためにイソシアヌル酸骨格を有するエポキシ樹脂を使用した場合、その反応性オリゴマーまたはポリマーは、例えば一般式(D):
Figure 0004400567
〔式中、Rは、グリシジル基を表し、R10は、グリシジル基またはアリル基を表し、R11は、水素またはC〜Cアルキル基を表し、R12は、水素またはC〜Cアルキル基を表し、nは、0以上の数を表す。〕
で示される構造をとる。Therefore, for sealing an ultraviolet-near ultraviolet light emitting diode with a solid resin, particularly for sealing by transfer molding, an epoxy resin composition having transparency and UV resistance and solid at room temperature. The demand is growing.
Therefore, the present invention provides a reactive oligomer or polymer obtained by reacting a compound having two or more epoxy groups in a molecule with a hydantoin having two secondary amino groups in the molecule or a derivative thereof. The curable resin composition characterized by including this is provided.
By using a compound having two or more epoxy groups and hydantoin or a derivative thereof, an epoxy resin that is easily oligomerized or polymerized by a one-step reaction can be obtained. The reactive oligomer or polymer of the present invention thus obtained is less discolored in the resin itself due to the fewer production steps and can maintain the optical properties of the starting material.
Moreover, the curable resin composition obtained from the reactive oligomer or polymer of the present invention has high viscosity and good moldability. Moreover, the cured product obtained from the curable resin composition of the present invention has good transparency and UV resistance.
BEST MODE FOR CARRYING OUT THE INVENTION The curable resin composition of the present invention comprises a compound having two or more epoxy groups in a molecule, and a hydantoin or derivative thereof having two secondary amino groups in the molecule. It contains the reactive oligomer or polymer obtained by making these react.
In order to produce a reactive oligomer or polymer, essentially any epoxy resin can be used as the compound having an epoxy group. Specific examples of epoxy resins include alicyclic epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl type epoxy resins having a biphenyl skeleton, and hydrogenated hydrogenated aromatic rings. Epoxy resin, naphthalene ring-containing epoxy resin, dicyclopentadiene type epoxy resin having dicyclopentadiene skeleton, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, bromine containing epoxy resin, aliphatic type Examples thereof include an epoxy resin, an isocyanuric acid skeleton epoxy resin, and a hydantoin skeleton epoxy resin. Here, the “epoxy resin” includes a low molecular weight compound (monomer compound) having only one repeating unit. For example, the bisphenol A type epoxy resin includes bisphenol A glycidyl ether.
Among these, hydrogenated epoxy resins, especially hydrogenated bisphenol A type epoxy resins, alicyclic epoxy resins having an epoxy group on a ring composed of saturated aliphatics, epoxy resins having an isocyanuric acid skeleton, or these Is particularly desirable because of its high transparency and UV resistance (yellowing resistance).
Hydantoin or a derivative thereof that can be used in the present invention is preferably represented by the general formula (A):
Figure 0004400567
[Wherein, R 1 represents hydrogen or a C 1 -C 4 alkyl group, and R 2 represents hydrogen or a C 1 -C 4 alkyl group. ]
Or a derivative thereof.
In the above general formula (A), hydantoin or a derivative thereof in which R 1 represents hydrogen or a methyl group and R 2 represents hydrogen, a methyl group or an isopropyl group is more preferable. As the hydantoin derivative, dimethylhydantoin or methylhydantoin is more preferable. It is particularly desirable to use 5,5-dimethylhydantoin because it has excellent properties in reactivity, UV resistance and stability.
The epoxy compound and hydantoin or a derivative thereof can be reacted by, for example, melting them at a temperature equal to or higher than their melting points, adding a catalyst if necessary, and stirring and mixing. The molecular weight of the reactive oligomer or polymer can be controlled by controlling the molar ratio of the compound having an epoxy group and hydantoin or a derivative thereof.
The reactive oligomer or polymer of the present invention has a high molecular weight and is solid at room temperature. Further, this reactive oligomer or polymer has characteristics that it is more plastic than epoxy monomers, is highly transparent, and hardly yellows upon UV irradiation. Furthermore, since this reactive oligomer or polymer contains a lot of nitrogen atoms and is difficult to burn, it has desirable properties for use in sealing materials and laminate electronic devices.
The curable resin composition of this invention is characterized by including the said reactive oligomer or polymer. The curable resin composition of the present invention preferably contains a curing catalyst that initiates a curing reaction of the resin by an active energy ray such as light or an electron beam or heat.
The curable resin composition of the present invention can contain any epoxy resin in addition to the reactive oligomer. As an epoxy resin, the specific example of the epoxy resin described above as a compound which has an epoxy group can be mentioned, for example. Only one or two or more of these epoxy resins can be used.
In the curable resin composition of the present invention, a so-called curing agent that forms a three-dimensional network structure in the cured product can be used. An acid anhydride curing agent having an acid anhydride group in the molecule, for example, tetrahydrophthalic acid anhydride, methyltetrahydrophthalic acid anhydride, hexahydrophthalic acid anhydride, as long as the transparency and heat resistance are not impaired. , Methylhexahydrophthalic anhydride or hydrogenated methyl nadic anhydride, a phenolic curing agent having two or more phenolic hydroxyl groups in the molecule, such as bisphenol A, phenol novolac, cresol novolak or naphthol novolak, or primary Curing agents such as amines can be used. Although not intended to be limited, the curing agent is preferably an acid anhydride because it is transparent and difficult to be colored due to the high temperature during curing and the high temperature received from the environment after curing.
The molar ratio of the above stoichiometric reactive groups between the epoxy resin (referred to as “main agent”) and the curing agent, that is, the ratio of the main agent equivalent to the curing agent equivalent (equivalent ratio) is preferably from 100: 60 to 100: 120, more preferably 100: 75 to 100: 110. If the curing agent equivalent is less than 60 with respect to 100 equivalents of the main agent, the composition may be difficult to cure, or the cured product may have reduced heat resistance or reduced strength. is there. Conversely, if the curing agent equivalent exceeds 120, the heat resistance of the cured product may be reduced, the adhesive strength after curing may be reduced, or the moisture absorption rate of the cured product may be increased.
Curing initiators that can be used in the present invention include those that initiate cationic polymerization with light or heat, such as phosphonium salts, iodonium salts, sulfonium salts, silanol aluminum complexes, diazabicycloalkenes or salts thereof, and imidazoles. Or the salt, organic acid metal salt, quaternary ammonium salt, phosphines, etc. can be illustrated. These are also referred to as curing catalysts and may be anything that causes an epoxy group curing reaction.
Furthermore, in the resin composition of the present invention, other substances can be blended as necessary as long as the object of the present invention is not impaired. Examples of such materials include ultraviolet absorbers, radical stabilizers, antioxidants, flame retardants, low elasticity agents, colorants, diluents, antifoaming agents, ion trapping agents, and the like.
Moreover, it is preferable to use together an alicyclic epoxy resin or a triazine frame | skeleton epoxy resin in the resin resin composition of this invention. By using these together, the transparency of the cured product can be increased, the glass transition temperature can be adjusted, and the heat resistance can be improved.
Furthermore, it is preferable to use an alicyclic epoxy resin in the resin composition of the present invention. By using this together, the transparency of the cured product can be increased and the refractive index can be adjusted low. Among the alicyclic epoxy resins, those having no ester group in the molecular structure are particularly preferable because they are excellent in hydrolysis resistance. For example, hydrogenated bisphenol A type epoxy resin or hydrogenated bisphenol F type epoxy resin, or those obtained by epoxidizing an olefin having a cyclic structure such as bicyclohexene or cyclooctadiene and a carbon-carbon double bond, etc. Can be mentioned.
Finally, an example of the chemical structure of the reactive oligomer or polymer contained in the resin composition of the present invention is shown below.
For example, when hydrogenated bisphenol A glycidyl ether is used as the hydrogenated bisphenol A type epoxy resin to produce the reactive oligomer or polymer, the reactive oligomer or polymer is represented by the general formula (B):
Figure 0004400567
[Wherein R 3 represents a moiety obtained by removing glycidyl group from hydrogenated bisphenol A glycidyl ether, ie,
Figure 0004400567
R 4 represents hydrogen or a C 1 to C 4 alkyl group, R 5 represents hydrogen or a C 1 to C 4 alkyl group, and 1 represents a number of 0 or more. ]
The structure shown by is taken.
When an alicyclic epoxy resin is used to produce a reactive oligomer or polymer, the reactive oligomer or polymer may be, for example, general formula (C):
Figure 0004400567
[Wherein R 6 is a portion obtained by removing a cyclic structure from an alicyclic epoxy resin, for example,
Figure 0004400567
R 7 represents hydrogen or a C 1 to C 4 alkyl group, R 8 represents hydrogen or a C 1 to C 4 alkyl group, and m represents a number of 0 or more. ]
The structure shown by is taken.
When an epoxy resin having an isocyanuric acid skeleton is used to produce a reactive oligomer or polymer, the reactive oligomer or polymer is, for example, the general formula (D):
Figure 0004400567
[Wherein R 9 represents a glycidyl group, R 10 represents a glycidyl group or an allyl group, R 11 represents hydrogen or a C 1 -C 4 alkyl group, and R 12 represents hydrogen or C 1- C 4 represents an alkyl group, and n represents a number of 0 or more. ]
The structure shown by is taken.

以下、本発明を実施例によって具体的に説明する。
オリゴマーの合成
オリゴマー1の合成
水添ビスフェノールA型エポキシ樹脂(大日本インキ株式会社製、品番「EXA−7015」、分子量402)20.1g、ジメチルヒダントイン(三井化学ファイン株式会社製、品番「5,5DMH」、分子量126)6.3g、および有機リン系硬化触媒(日本化学工業株式会社製、品番「PX−4ET」)0.074gを、ステンレスフラスコに入れ、150℃で溶融させながら1時間攪拌混合した後、フラスコから取り出して室温まで放冷し、融点75℃のオリゴマー1を得た。GPC分析を行うとモノマーピークは認められず、オリゴマー化していた。JIS K7236に準拠したエポキシ当量測定を行ったところエポキシ当量は264であった。
オリゴマー2の合成
トリグリシジルイソシアヌレート(日産化学株式会社製、品番「TEPIC−S」、分子量297)29.7gとジメチルヒダントイン(三井化学ファイン株式会社製、品番「5,5DMH」、分子量126)6.3gとを、ステンレスフラスコに入れ、150℃で溶融させながら1時間攪拌混合した後、フラスコから取り出して室温まで放冷し、融点70℃のオリゴマー2を得た。GPC分析を行うとモノマーピークは認められず、オリゴマー化していた。JIS K7236に準拠したエポキシ当量測定を行ったところエポキシ当量は180であった。
オリゴマー3の合成
モノアリルジグリシジルイソシアヌレート(四国化成工業株式会社製、品番「MA−DGIC」、分子量281)56.2g、ジメチルヒダントイン(三井化学ファイン株式会社製、品番「5,5DMH」、分子量126)12.6g、および有機リン系硬化触媒(日本化学工業株式会社製、品番「PX−4ET」)0.148gを、ステンレスフラスコに入れ、150℃で溶融させながら1時間攪拌混合した後、フラスコから取り出して室温まで放冷し、融点70℃のオリゴマー3を得た。GPC分析を行うとモノマーピークは認められず、オリゴマー化していた。JIS K7236に準拠したエポキシ当量測定を行ったところエポキシ当量は344であった。
オリゴマー4の合成
脂環式エポキシ樹脂(ダイセル化学株式会社製、品番「CEL−2021P」、分子量256〜280)25.6g、ジメチルヒダントイン(三井化学ファイン株式会社製、品番「5,5DMH」、分子量126)6.3g、および有機リン系硬化触媒(日本化学工業株式会社製、品番「PX−4ET」)0.074gを、ステンレスフラスコに入れ、150℃で溶融させながら1時間攪拌混合した後、フラスコから取り出して室温まで放冷し、融点70℃のオリゴマー4を得た。GPC分析を行うとモノマーピークは認められず、オリゴマー化していた。JIS K7236に準拠したエポキシ当量測定を行ったところエポキシ当量は319であった。
オリゴマーの溶融粘度測定
本発明のオリゴマー1〜4の溶融粘度を測定した。比較用として、オリゴマー1および4の合成に使用した水添ビスフェノールA型エポキシ樹脂(品番「EXA−7015」)および脂環式エポキシ樹脂(品番「CEL−2021P」)、並びに以下に記載する樹脂組成物の調製(比較例1)で使用したビスフェノールA型エポキシ樹脂(品番「1006FS」)の溶融粘度も測定した。
溶融粘度は、ICI粘度計を150℃設定で使用して測定した。

Figure 0004400567
表1にみられるように、本発明のオリゴマー1〜4はいずれも、比較用エポキシ樹脂と比較すると、溶融粘度が高い。また本発明のオリゴマー1〜4は、常温で固体のエポキシ樹脂である。従って本発明のオリゴマー1〜4は、固体樹脂を用いる封止(例えばトランスファー成形)に使用するために適している。
硬化性樹脂組成物の調製 Hereinafter, the present invention will be specifically described by way of examples.
Oligomer synthesis
Synthetic hydrogenated bisphenol A type epoxy resin of oligomer 1 (Dainippon Ink Co., Ltd., product number “EXA-7015”, molecular weight 402) 20.1 g, dimethyl hydantoin (Mitsui Chemicals Fine Co., Ltd., product number “5,5DMH”, After placing 6.3 g of molecular weight 126) and 0.074 g of an organophosphorus curing catalyst (manufactured by Nippon Chemical Industry Co., Ltd., product number “PX-4ET”) into a stainless steel flask and stirring and mixing for 1 hour while melting at 150 ° C. The product was taken out from the flask and allowed to cool to room temperature to obtain oligomer 1 having a melting point of 75 ° C. When GPC analysis was performed, no monomer peak was observed and oligomerization was observed. When the epoxy equivalent measurement based on JIS K7236 was performed, the epoxy equivalent was 264.
Synthesis of oligomer 2 29.7 g of triglycidyl isocyanurate (manufactured by Nissan Chemical Co., Ltd., product number “TEPIC-S”, molecular weight 297) and dimethylhydantoin (manufactured by Mitsui Chemicals Fine Co., Ltd., product number “5,5 DMH”, molecular weight 126) 6 .3 g was placed in a stainless steel flask, stirred and mixed for 1 hour while being melted at 150 ° C., then taken out of the flask and allowed to cool to room temperature to obtain oligomer 2 having a melting point of 70 ° C. When GPC analysis was performed, no monomer peak was observed and oligomerization was observed. When the epoxy equivalent measurement based on JIS K7236 was performed, the epoxy equivalent was 180.
Synthesis of oligomer 3 Monoallyl diglycidyl isocyanurate (manufactured by Shikoku Kasei Kogyo Co., Ltd., product number “MA-DGIC”, molecular weight 281) 56.2 g, dimethylhydantoin (manufactured by Mitsui Chemicals Fine Co., Ltd., product number “5,5 DMH”, molecular weight 126) 12.6 g and 0.148 g of an organophosphorus curing catalyst (manufactured by Nippon Chemical Industry Co., Ltd., product number “PX-4ET”) were placed in a stainless steel flask and stirred and mixed for 1 hour while being melted at 150 ° C. The oligomer 3 having a melting point of 70 ° C. was obtained by taking out from the flask and allowing to cool to room temperature. When GPC analysis was performed, no monomer peak was observed and oligomerization was observed. When the epoxy equivalent measurement based on JIS K7236 was performed, the epoxy equivalent was 344.
Synthetic alicyclic epoxy resin of oligomer 4 (manufactured by Daicel Chemical Industries, Ltd., product number “CEL-2021P”, molecular weight 256-280), 25.6 g, dimethylhydantoin (manufactured by Mitsui Chemicals Fine Co., Ltd., product number “5,5 DMH”, molecular weight 126) 6.3 g and 0.074 g of an organic phosphorus curing catalyst (manufactured by Nippon Chemical Industry Co., Ltd., product number “PX-4ET”) were placed in a stainless steel flask and stirred and mixed for 1 hour while being melted at 150 ° C. The product was taken out from the flask and allowed to cool to room temperature to obtain oligomer 4 having a melting point of 70 ° C. When GPC analysis was performed, no monomer peak was observed and oligomerization was observed. When the epoxy equivalent measurement based on JIS K7236 was performed, the epoxy equivalent was 319.
Measurement of melt viscosity of oligomer The melt viscosity of oligomers 1 to 4 of the present invention was measured. For comparison, hydrogenated bisphenol A type epoxy resin (product number “EXA-7015”) and alicyclic epoxy resin (product number “CEL-2021P”) used for the synthesis of oligomers 1 and 4 and the resin composition described below The melt viscosity of the bisphenol A type epoxy resin (product number “1006FS”) used in the preparation of the product (Comparative Example 1) was also measured.
Melt viscosity was measured using an ICI viscometer at 150 ° C setting.
Figure 0004400567
As seen in Table 1, all of the oligomers 1 to 4 of the present invention have a higher melt viscosity than the comparative epoxy resin. Moreover, the oligomers 1-4 of this invention are epoxy resins which are solid at normal temperature. Accordingly, the oligomers 1 to 4 of the present invention are suitable for use in sealing (for example, transfer molding) using a solid resin.
Preparation of curable resin composition

実施例1〜4Examples 1-4

本発明のオリゴマー1〜4を使用して、下記の表2に示す配合量(質量部)で、硬化触媒以外の成分を80℃のオイルバス中においてディスパー(特殊機化学工業製)を用いて約1時間分散・混合した後、硬化触媒を加え1分程度攪拌し、フラスコから取り出して室温まで放冷し、樹脂組成物を調製した。
比較例1
本発明のオリゴマー1〜4を使用する代りに下記のエポキシ樹脂を使用したこと以外は、実施例と同様に樹脂組成物を調製した。
表2に記載する原料は、次のものである:
エポキシ樹脂:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン、品番「1006FS」、分子量1918)
硬化剤:ヘキサヒドロフタル酸無水物(HHPA、日本理科化学工業株式会社製、品番「HHPA」、酸無水物当量154)
硬化触媒:リン系有機塩(日本化学工業株式会社製、品番「PX−4ET」)
透過率および黄色度の測定
実施例1〜4、および比較例1の樹脂組成物から得られる硬化物の透過率および黄色度(イエローインデックス)を、次の方法で測定した。測定結果を下記の表2に示す。
(1)UV未照射の初期透過率および黄色度
厚み1mmのシリコンゴムシートをスペーサーとし、エポキシ樹脂組成物をステンレス板で挟み込んで20mm×40mmの注型品を作成した。硬化条件は、120℃1時間、その後150℃3時間である。こうして得られたテストピースを島津製作所製分光光度計UV−3100PCに積分球を搭載したシステムで、800nm〜250nmにおける透過率および黄色度を計測する。
(2)UV照射後の透過率および黄色度
厚み1mmのシリコンゴムシートをスペーサーとし、エポキシ樹脂組成物をステンレス板で挟み込んで20mm×40mmの注型品を作成した。硬化条件は、120℃1時間、その後150℃3時間である。こうして得られたテストピースに、340nmにピークを有する高出力UV高圧水銀灯を光源に使用して、UV照射する(20000lm)。UV照射後に得られたサンプルの透過率および黄色度を上記の方法で計測する。

Figure 0004400567
表2に見られるように、実施例1〜4の樹脂組成物から得られた硬化物はいずれも、比較例1の樹脂組成物から得られた硬化物と比較すると、UV照射後の光透過率および黄色度の変化が小さく、耐UV性が優れていることが確認される。Using the oligomers 1 to 4 of the present invention, the components (parts by mass) shown in Table 2 below are used to dispose components other than the curing catalyst in an oil bath at 80 ° C. (manufactured by Tokki Chemical Co., Ltd.). After dispersing and mixing for about 1 hour, a curing catalyst was added, stirred for about 1 minute, taken out from the flask and allowed to cool to room temperature to prepare a resin composition.
Comparative Example 1
Resin compositions were prepared in the same manner as in the Examples except that the following epoxy resins were used instead of the oligomers 1 to 4 of the present invention.
The raw materials listed in Table 2 are:
Epoxy resin: bisphenol A type epoxy resin (Japan epoxy resin, product number “1006FS”, molecular weight 1918)
Curing agent: hexahydrophthalic anhydride (HHPA, manufactured by Nippon Kagaku Kagaku Kogyo Co., Ltd., product number “HHPA”, acid anhydride equivalent 154)
Curing catalyst: Phosphorus organic salt (manufactured by Nippon Chemical Industry Co., Ltd., product number “PX-4ET”)
Measurement of transmittance and yellowness The transmittance and yellowness (yellow index) of the cured products obtained from the resin compositions of Examples 1 to 4 and Comparative Example 1 were measured by the following method. The measurement results are shown in Table 2 below.
(1) Initial transmittance and yellowness without UV irradiation A silicon rubber sheet having a thickness of 1 mm was used as a spacer, and an epoxy resin composition was sandwiched between stainless plates to prepare a cast product of 20 mm × 40 mm. The curing conditions are 120 ° C. for 1 hour and then 150 ° C. for 3 hours. The transmittance | permeability and yellowness in 800 nm-250 nm are measured for the test piece obtained in this way by the system which mounts the integrating sphere in the spectrophotometer UV-3100PC by Shimadzu Corporation.
(2) Transmittance and yellowness after UV irradiation A silicon rubber sheet having a thickness of 1 mm was used as a spacer, and an epoxy resin composition was sandwiched between stainless plates to produce a cast product of 20 mm × 40 mm. The curing conditions are 120 ° C. for 1 hour and then 150 ° C. for 3 hours. The test piece thus obtained is irradiated with UV light using a high-power UV high-pressure mercury lamp having a peak at 340 nm as a light source (20000 lm). The transmittance and yellowness of the sample obtained after UV irradiation are measured by the above method.
Figure 0004400567
As can be seen in Table 2, the cured products obtained from the resin compositions of Examples 1 to 4 are all light-transmitted after UV irradiation as compared to the cured product obtained from the resin composition of Comparative Example 1. It is confirmed that the change in the rate and yellowness is small and the UV resistance is excellent.

Claims (3)

分子中に2個またはそれ以上のエポキシ基を有する化合物と、分子中に2個の第2級アミノ基を有するヒダントインまたはその誘導体とを反応させて得られる反応性オリゴマーまたはポリマーを含むことを特徴とする封止用の硬化性樹脂組成物。It includes a reactive oligomer or polymer obtained by reacting a compound having two or more epoxy groups in the molecule with a hydantoin having two secondary amino groups in the molecule or a derivative thereof. A curable resin composition for sealing . 分子中に2個の第2級アミノ基を有するヒダントインまたはその誘導体が、一般式(A):
Figure 0004400567
〔式中、R1は、水素またはC1〜C4アルキル基を表し、R2は、水素またはC1〜C4アルキル基を表す。〕
で示されるヒダントインまたはその誘導体であることを特徴とする、請求項1に記載の硬化性樹脂組成物。
Hydantoin or a derivative thereof having two secondary amino groups in the molecule is represented by the general formula (A):
Figure 0004400567
[Wherein, R 1 represents hydrogen or a C 1 -C 4 alkyl group, and R 2 represents hydrogen or a C 1 -C 4 alkyl group. ]
The curable resin composition according to claim 1, which is a hydantoin represented by the formula:
分子中に2個またはそれ以上のエポキシ基を有する化合物が、水添ビスフェノールA型エポキシ樹脂、飽和脂肪族から構成される環の上にエポキシ基を有する脂環式エポキシ樹脂、イソシアヌル酸骨格を有するエポキシ樹脂またはこれらの混合物であることを特徴とする、請求項1または2に記載の硬化性樹脂組成物。  A compound having two or more epoxy groups in the molecule has a hydrogenated bisphenol A type epoxy resin, an alicyclic epoxy resin having an epoxy group on a ring composed of a saturated aliphatic group, and an isocyanuric acid skeleton. The curable resin composition according to claim 1 or 2, which is an epoxy resin or a mixture thereof.
JP2005507373A 2003-07-30 2003-07-30 Resin composition Expired - Fee Related JP4400567B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009647 WO2005012383A1 (en) 2003-07-30 2003-07-30 Resin composition

Publications (2)

Publication Number Publication Date
JPWO2005012383A1 JPWO2005012383A1 (en) 2006-09-14
JP4400567B2 true JP4400567B2 (en) 2010-01-20

Family

ID=34113452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005507373A Expired - Fee Related JP4400567B2 (en) 2003-07-30 2003-07-30 Resin composition

Country Status (3)

Country Link
JP (1) JP4400567B2 (en)
AU (1) AU2003252728A1 (en)
WO (1) WO2005012383A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453707B2 (en) * 2006-05-19 2014-03-26 住友大阪セメント株式会社 Zirconia-containing epoxy resin composition, transparent composite containing the same, light-emitting element, and optical semiconductor device
JP5022265B2 (en) 2008-02-18 2012-09-12 パナソニック株式会社 Transparent laminate
JP2009256448A (en) * 2008-04-16 2009-11-05 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and cured product thereof
JP5638812B2 (en) * 2010-02-01 2014-12-10 株式会社ダイセル Curable epoxy resin composition
CN109415350A (en) * 2016-07-07 2019-03-01 日产化学株式会社 The manufacturing method of compound with hydantoins ring
CN108485187B (en) * 2018-03-29 2021-05-11 广州聚合新材料科技股份有限公司 Modified epoxy resin material, preparation method and application thereof, and leaf

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121828A (en) * 1977-04-01 1978-10-24 Dainippon Ink & Chem Inc Powder coating resin composition
JPS53143698A (en) * 1977-05-20 1978-12-14 Dainippon Ink & Chem Inc Preparation of solid epoxy resin useful for powder coating and having improved weather resistance
JPS5614567A (en) * 1979-07-16 1981-02-12 Dainippon Ink & Chem Inc Resin composition for powder paint
US5733954A (en) * 1995-12-14 1998-03-31 Minnesota Mining And Manufacturing Company Epoxy resin curing agent made via aqueous dispersion of an epoxide and an imidazole
US5717011A (en) * 1995-12-14 1998-02-10 Minnesota Mining And Manufacturing Company Curing agent compositions and a method of making

Also Published As

Publication number Publication date
JPWO2005012383A1 (en) 2006-09-14
AU2003252728A1 (en) 2005-02-15
WO2005012383A1 (en) 2005-02-10

Similar Documents

Publication Publication Date Title
KR102069010B1 (en) Epoxy resin curing agent
JP5000261B2 (en) Epoxy resin composition and cured epoxy resin
KR101297740B1 (en) Epoxy resin composition
JP5796502B2 (en) Epoxy resin, method for producing epoxy resin, and epoxy resin composition
TW201329129A (en) Composition for transfer molding
US5985954A (en) Epoxy resin composition for sealing photo-semiconductor element and photo-semiconductor device sealed with the epoxy resin composition
JP5090095B2 (en) Epoxy resin composition
KR101408006B1 (en) Epoxy silicone condensate, curable composition comprising epoxy silicone condensate, and cured product thereof
KR101763192B1 (en) Curable resin composition and cured product thereof
JP2006307063A (en) Epoxy resin composition and optoelectronic member using the same
JP4674112B2 (en) Epoxy resin composition and optical electronic member using the same
JP4400567B2 (en) Resin composition
JP5445614B2 (en) Epoxy resin composition for optical element sealing material
US5641840A (en) Epoxy resin composition for sealing photosemiconductor element and photosemiconductor device sealed with the epoxy resin composition
JP5119770B2 (en) Epoxy resin composition for optical element sealing material
JP4736560B2 (en) Epoxy resin composition
JP2006188605A (en) Hydrogenated epoxy resin, method for producing the same and epoxy resin composition
JP2012177038A (en) Epoxy resin composition
KR20150105301A (en) Epoxy resin, epoxy resin composition and cured material
JP6171284B2 (en) High-purity alicyclic diepoxy compound, curable epoxy resin composition, cured product, transparent sealing material, and light emitting device
JP2006328207A (en) Epoxy resin composition and its application
JP7567317B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
JP6583156B2 (en) White thermosetting epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JPH10158474A (en) Epoxy resin composition for semiconductor sealing and optical photoconductor device sealed therewith
KR20210038011A (en) Curable epoxy resin composition and sealing material for semiconductor emitting device including the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4400567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees