JP4400160B2 - Image processing device - Google Patents
Image processing device Download PDFInfo
- Publication number
- JP4400160B2 JP4400160B2 JP2003333687A JP2003333687A JP4400160B2 JP 4400160 B2 JP4400160 B2 JP 4400160B2 JP 2003333687 A JP2003333687 A JP 2003333687A JP 2003333687 A JP2003333687 A JP 2003333687A JP 4400160 B2 JP4400160 B2 JP 4400160B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- contour
- image
- frequency
- contour component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 claims description 74
- 238000000605 extraction Methods 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 238000012935 Averaging Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Picture Signal Circuits (AREA)
- Facsimile Image Signal Circuits (AREA)
Description
本発明は、デジタル画像を輪郭強調してシャープネスの良好な画像を得るための技術に関する。 The present invention relates to a technique for enhancing an edge of a digital image to obtain an image with good sharpness.
一般に、デジタルカメラの撮影などにより得られたデジタル画像の表示やプリントを行うのに際して、シャープネスの良好な画像とするためには、原画像に対する輪郭強調処理が行われる。 In general, when displaying or printing a digital image obtained by photographing with a digital camera or the like, contour enhancement processing is performed on the original image in order to obtain an image with good sharpness.
従来、デジタル画像の輪郭強調処理では、原画像の画像信号と該原画像の画像信号を加重平均したアンシャープ信号との差分により画像の高域成分を求め、この画像の高域成分を前記原画像に加算してやることにより輪郭を強調した画像を得ている。 Conventionally, in the edge enhancement processing of a digital image, a high frequency component of an image is obtained from a difference between an image signal of the original image and an unsharp signal obtained by weighted averaging of the image signal of the original image, and the high frequency component of the image is obtained as the original image. An image with an enhanced outline is obtained by adding to the image.
この際、前記原画像のアンシャープ信号との差分により求められた画像の高域成分に対しては、当該画像高域成分に含まれるノイズを除去するために、この画像高域成分の絶対値が所定の閾値よりも小さい場合、これを“0”または“0”に近い値にして原画像に加算している。 At this time, for the high frequency component of the image obtained by the difference from the unsharp signal of the original image, in order to remove the noise contained in the high frequency component of the image, the absolute value of this image high frequency component Is smaller than a predetermined threshold value, it is set to “0” or a value close to “0” and added to the original image.
そして、このような画像の輪郭強調方式をアンシャープマスク方式と称し、写真画像プリント装置などでの画像処理機能として採用されている(例えば、特許文献1参照。)。
しかしながら、前記従来の輪郭強調処理において、画像の高域成分Hは、注目画素と該注目画素を中心としたn×n画素領域でのガウシアン型などの加重平均によるアンシャープ信号との差分値として得られるために、一種の高域成分である画像の孤立点ノイズに対しても敏感な特性となり、得られた画像高域成分を画像輪郭成分として原画像に加算するのかノイズ成分として“0”または“0”に近い値にして原画像に加算するのかの区別が難しく、その閾値を適正な値に設定するのが非常に難しい問題がある。 However, in the conventional contour enhancement processing, the high-frequency component H of the image is a difference value between the target pixel and an unsharp signal by a weighted average such as a Gaussian type in an n × n pixel region centered on the target pixel. Therefore, the characteristic is sensitive to isolated point noise of an image which is a kind of high frequency component, and the obtained image high frequency component is added to the original image as an image contour component or “0” as a noise component. Alternatively, it is difficult to distinguish whether the value is close to “0” and added to the original image, and it is very difficult to set the threshold value to an appropriate value.
すなわち、画像の高域成分Hに対する閾値を大きく設定すると、ノイズ成分が加算強調されるのを確実に防止することができるが、輪郭成分をも除去の対象に含まれてしまい、シャープネスの乏しい画像となってしまう。 That is, if the threshold value for the high frequency component H of the image is set large, it is possible to reliably prevent the noise component from being added and emphasized, but the contour component is also included in the removal target, and the image having poor sharpness. End up.
また逆に、画像の高域成分Hに対する閾値を小さく設定すると、輪郭成分だけでなくノイズ成分をも強調されてしまい、ノイズの目立つ画像となってしまう。 Conversely, if the threshold value for the high frequency component H of the image is set small, not only the contour component but also the noise component will be emphasized, resulting in an image with noticeable noise.
本発明は、このような課題に鑑みなされたもので、原画像のノイズ成分を適切に抑制した輪郭強調画像を得ることが可能になる技術を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a technique capable of obtaining a contour-enhanced image in which a noise component of an original image is appropriately suppressed.
本発明は、The present invention
画像の高域成分を抽出する高域成分抽出手段と、High-frequency component extraction means for extracting high-frequency components of the image;
前記高域成分から輪郭強調成分を生成する輪郭強調成分生成手段と、Contour enhancement component generating means for generating a contour enhancement component from the high frequency component;
前記輪郭強調成分を前記画像に加算することにより、前記画像上の輪郭を強調した輪郭強調画像を取得する加算手段と、を備え、Addition means for acquiring a contour-enhanced image in which the contour on the image is enhanced by adding the contour-enhanced component to the image; and
前記輪郭強調成分生成手段は、The outline emphasis component generation means includes
前記高域成分を構成する各対象画素のうちの所定の閾値以上の対象画素のみでなる成分を、前記輪郭強調成分として出力するコアリング手段と、Coring means for outputting, as the contour emphasis component, a component consisting only of a target pixel equal to or higher than a predetermined threshold among the target pixels constituting the high-frequency component;
前記画像の中域の輪郭成分を検出する中域輪郭成分検出手段と、Middle region contour component detecting means for detecting a contour component of the middle region of the image;
前記画像の高域の輪郭成分を検出する高域輪郭成分検出手段と、High frequency contour component detecting means for detecting a high frequency contour component of the image;
前記対象画素について、前記中域の輪郭成分と前記高域の輪郭成分とに基づく輪郭成分値を算出する算出手段と、For the target pixel, calculation means for calculating a contour component value based on the contour component of the middle region and the contour component of the high region,
前記輪郭成分値が所定値より大きい場合には前記閾値を第1の値に設定し、前記輪郭成分値が前記所定値より小さい場合には前記閾値を前記第1の値より高い第2の値に設定する閾値設定手段と、を有する。When the contour component value is larger than a predetermined value, the threshold value is set to a first value, and when the contour component value is smaller than the predetermined value, the threshold value is set to a second value higher than the first value. Threshold setting means for setting to
これによれば、画像データの中高域輪郭成分の大きさに応じて、画像ノイズに応じた画像高域成分を適切に除去し、画像輪郭に応じた画像高域成分を輪郭強調成分として取り出すことができ、シャープネスの良好な輪郭強調画像を取得できることになる。 According to this, according to the size of the middle and high frequency contour component of the image data, the image high frequency component corresponding to the image noise is appropriately removed, and the image high frequency component corresponding to the image contour is extracted as the contour enhancement component. As a result, a contour-enhanced image with good sharpness can be acquired.
本発明に係る画像処理装置によれば、画像データの中高域輪郭成分の大きさに応じて、画像ノイズに応じた画像高域成分を適切に除去し、画像輪郭に応じた画像高域成分を輪郭強調成分として取り出すことができ、シャープネスの良好な輪郭強調画像を取得できるようになる。 According to the image processing apparatus according to the present invention, the image high frequency component corresponding to the image noise is appropriately removed according to the size of the middle and high frequency contour component of the image data, and the image high frequency component corresponding to the image contour is removed. It can be taken out as a contour enhancement component, and a contour-enhanced image with good sharpness can be acquired.
よって、本発明によれば、原画像のノイズ成分を適切に抑制した輪郭強調画像を得ることが可能になる。 Therefore, according to the present invention, it is possible to obtain an edge enhanced image in which the noise component of the original image is appropriately suppressed .
以下図面により本発明の実施の形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
(第1実施形態)
図1は本発明の画像処理装置の実施形態に係る輪郭強調機能を備えたデジタルカメラの構成を示すブロック図である。
(First embodiment)
FIG. 1 is a block diagram showing a configuration of a digital camera having an edge enhancement function according to an embodiment of an image processing apparatus of the present invention.
このデジタルカメラは、CCD(charge coupled device)を撮像素子とした撮像部10を備える。この撮像部10により得られた画像の撮像信号は、A/D変換部11を介してデジタル画像信号に変換され、べイヤデータとして画像補間回路12に入力される。
This digital camera includes an
この画像補間回路12は、入力されたベイヤデータを各画素毎のRGBデータに変換するもので、このRGBデータに変換された画像データはマトリクス回路13に入力されて輝度信号(Y)と色差信号(R−Y)(B−Y)とに分離される。
The
このマトリスク回路13により得られた輝度信号(Y),色差信号(R−Y)(B−Y)は、画像処理部14に入力される。
The luminance signal (Y) and color difference signals (RY) (BY) obtained by the
画像処理部14は、輪郭強調処理部15を備え、制御部(CPU)16からの予め記憶された画像処理プログラムに応じた制御信号に従い、前記マトリクス回路13から入力された輝度信号Yに基づいた輪郭強調画像を生成すると共に、色差信号(R−Y)(B−Y)に基づいた濃度調整処理や色相調整処理など、種々の画像処理を行う。
The
制御部(CPU)16はまた、前記マトリクス回路13から入力される輝度信号(Y),色差信号(R−Y)(B−Y)に基づき、WB(white balance),AE(auto exposure),AF(auto focus)の各制御信号を生成し前記撮像部10へ出力する。
The control unit (CPU) 16 is also WB (white balance), AE (auto exposure), WB based on the luminance signal (Y) and color difference signals (RY) (BY) input from the
前記画像処理部14において種々の画像処理が施された画像データは画像メモリ17に記録され、表示バッファ18に書き込まれて表示部19にて表示出力される。
The image data subjected to various image processes in the
また、画像メモリ17に記録された画像データは図示しないプリンタに出力されてプリントされたり、外部モニタに出力されてモニタ表示されたりする。
The image data recorded in the
図2は前記デジタルカメラの画像処理部14に備えられた第1実施形態の輪郭強調処理部15の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of the contour
この第1実施形態の輪郭強調処理部15は、原画像Siから画像高域成分Shを抽出する高域成分抽出回路21、画像高域成分Shに閾値Tを設定して輪郭強調成分Seを得るコアリング回路22、前記原画像Siに輪郭強調成分Seを加算して輪郭強調画像Soを得る加算器23、原画像Siの輪郭成分のうちの中域成分E1を検出する輪郭検出回路(中域)24、原画像Siの輪郭成分のうちの高域成分E2を検出する輪郭検出回路(高域)25、中域輪郭成分E1に所定の係数K1を乗ずる係数器26、高域輪郭成分E2に所定の係数K2を乗ずる係数器27、係数器26の出力と係数器27の出力とを加算して輪郭成分Eを得る加算器28、輪郭成分Eの変化に応じて前記コアリング回路22に対する閾値Tを可変設定するしきい値制御回路29を備えて構成する。
The contour
図3は前記輪郭強調処理部15の高域成分抽出回路21にて使用されるフィルタ係数の一例を示す図であり、同図(A)は原画像Siに乗ずることで直接的に画像高域成分Shを得るためのラプラシアン係数21aを示す図、同図(B)は原画像Siから画像低域成分SIを減算して画像高域成分Shを得る場合に当該原画像Siに乗ずることで画像低域成分SIを得るためのラプラシアン係数21bを示す図である。
FIG. 3 is a diagram showing an example of a filter coefficient used in the high frequency
高域成分抽出回路21は、原画像Siの各画素毎に、図3(A)で示したラプラシアン係数21aをその対象画素および隣接の4画素に乗ずることで画像高域成分Shを求める。
The high-frequency
図4は前記輪郭強調処理部15における高域成分抽出回路21の他の実施形態の構成を示すブロック図である。
FIG. 4 is a block diagram showing a configuration of another embodiment of the high frequency
この他の実施形態の高域成分抽出回路21では、加重平均回路211および減算器212を備え、原画像Siを加重平均回路211に入力して画像低域成分SIを取得した後、減算器212において前記原画像Siから前記画像低域成分SIを減算することにより画像高域成分Shを得る。
The high-frequency
この場合、前記加重平均回路211において原画像Siに乗じて画像低域成分SIを得るための係数を、図3(B)で示した値の加重平均係数21bに設定することにより、減算器212の出力には、前記原画像Siに図3(A)で示したラプラシアン係数21aを乗じるだけで得た画像高域成分Shと同じ値の画像高域成分Shを得ることができる。
In this case, the weighted
こうして高域成分抽出回路21により抽出された画像高域成分Shは、コアリング回路22において、しきい値制御回路29により設定される閾値T以下の信号成分を“0”または“0”の近似値にすることにより、ノイズ成分を抑圧した輪郭強調成分Seを得る。そして、このコアリング回路22から得られた輪郭強調成分Seを前記原画像Siに加算器23において加算することで輪郭強調画像Soを得る。
The image high-frequency component Sh thus extracted by the high-frequency
一方、原画像Siは第1の輪郭検出回路(中域)24および第2の輪郭検出回路(高域)25に入力され、第1の輪郭検出回路(中域)24では、原画像Siの輪郭成分のうちの中域成分E1を検出する。第2の輪郭検出回路(高域)25では、原画像Siの輪郭成分のうちの高域成分E2を検出する。 On the other hand, the original image Si is input to the first contour detection circuit (middle region) 24 and the second contour detection circuit (high region) 25, and the first contour detection circuit (middle region) 24 outputs the original image Si. Among the contour components, the middle band component E1 is detected. The second contour detection circuit (high frequency) 25 detects a high frequency component E2 among the contour components of the original image Si.
この第1の輪郭検出回路(中域)24および第2の輪郭検出回路(高域)25により求められた中域輪郭成分E1と高域輪郭成分E2とには、それぞれ係数器26,27において係数K1,K2を乗じて中域成分と高域成分のバランスを調整し、加算器28にて加算して輪郭成分Eとした後に前記しきい値制御回路29に入力する。
The mid-range contour component E1 and the high-frequency contour component E2 obtained by the first contour detection circuit (middle region) 24 and the second contour detection circuit (high region) 25 are respectively converted into
図5は前記輪郭強調処理部15における輪郭検出回路24(25)の構成を示すブロック図である。なお、この輪郭検出回路24(25)は、第1の輪郭検出回路(中域)24および第2の輪郭検出回路(高域)25共に共通の構成である。
FIG. 5 is a block diagram showing a configuration of the contour detection circuit 24 (25) in the contour
この輪郭検出回路24(25)は、水平輪郭成分Ehを求めるための輪郭検出回路(水平)30およびその絶対値化回路32と、垂直輪郭成分Evを求めるための輪郭検出回路(垂直)31およびその絶対値化回路33とを備えて構成し、水平輪郭成分Ehと垂直輪郭成分Evとを加算器34により加算して輪郭成分E(中域輪郭成分E1または高域輪郭成分E2)を求める。
The contour detection circuit 24 (25) includes a contour detection circuit (horizontal) 30 for obtaining a horizontal contour component Eh and its
図6は前記輪郭強調処理部15の第1の輪郭検出回路(中域)24において用いられる輪郭成分検出用のオペレータ係数を示す図であり、同図(A)は水平輪郭成分(中域)検出用係数24hを示す図、同図(B)は垂直輪郭成分(中域)検出用係数24vを示す図である。
FIG. 6 is a diagram showing an operator coefficient for detecting a contour component used in the first contour detection circuit (middle region) 24 of the contour
すなわち、第1の輪郭検出回路(中域)24では、輪郭検出回路(水平)30において、原画像Siの対象画素および隣接する3×3個の画素に対して、図6(A)で示した水平輪郭成分(中域)検出用係数24hを乗じて中域の水平輪郭成分Eh1を求め、同様に、輪郭検出回路(垂直)31において、原画像Siの対象画素および隣接する3×3個の画素に対して、図6(B)で示した垂直輪郭成分(中域)検出用係数24vを乗じて中域の垂直輪郭成分Ev1を求める。そして、絶対値化回路32,33により絶対値化した水平輪郭成分(中域)Eh1と垂直輪郭成分(中域)Ev1とを加算器34により加算して中域輪郭成分E1を求める。
That is, in the first contour detection circuit (middle region) 24, the contour detection circuit (horizontal) 30 shows the target pixel of the original image Si and the adjacent 3 × 3 pixels as shown in FIG. The horizontal contour component Eh1 of the middle region is obtained by multiplying the horizontal contour component (middle region)
図7は前記輪郭強調処理部15の第2の輪郭検出回路(高域)25において用いられる輪郭成分検出用のオペレータ係数を示す図であり、同図(A)は水平輪郭成分(高域)検出用係数25hを示す図、同図(B)は垂直輪郭成分(高域)検出用係数25vを示す図である。
FIG. 7 is a diagram showing an operator coefficient for detecting a contour component used in the second contour detection circuit (high frequency) 25 of the contour
すなわち、第2の輪郭検出回路(高域)25では、輪郭検出回路(水平)30において、原画像Siの対象画素および隣接する3×3個の画素に対して、図7(A)で示した水平輪郭成分(高域)検出用係数25hを乗じて高域の水平輪郭成分Eh2を求め、同様に、輪郭検出回路(垂直)31において、原画像Siの対象画素および隣接する3×3個の画素に対して、図7(B)で示した垂直輪郭成分(高域)検出用係数25vを乗じて高域の垂直輪郭成分Ev2を求める。そして、絶対値化回路32,33により絶対値化した水平輪郭成分(高域)Eh2と垂直輪郭成分(高域)Ev2とを加算器34により加算して高域輪郭成分E2を求める。
That is, in the second contour detection circuit (high frequency) 25, the contour detection circuit (horizontal) 30 shows the target pixel of the original image Si and the adjacent 3 × 3 pixels as shown in FIG. The horizontal contour component (high frequency)
なお、最終的な輪郭成分E1(E2)は、水平輪郭成分Eh1(Eh2)と垂直輪郭成分Ev1(Ev2)の自乗平均であることが好ましいが、このような絶対値の和であっても略同様の効果が得られる。 The final contour component E1 (E2) is preferably the root mean square of the horizontal contour component Eh1 (Eh2) and the vertical contour component Ev1 (Ev2). Similar effects can be obtained.
こうして第1の輪郭検出回路(中域)24により求められた中域輪郭成分E1と第2の輪郭検出回路(高域)25により求められた高域輪郭成分E2とを加算器28により加算して原画像Siの対象画素についての輪郭成分Eとし、しきい値制御回路29に入力する。
Thus, the
しきい値制御回路29は、入力される対象画素の輪郭成分Eが設定値よりも小さい場合、当該対象画素の画像成分はノイズであると判断してコアリング回路22に対する閾値Tを高く制御設定し、逆に、入力される対象画素の輪郭成分Eが設定値以上の場合、当該対象画素の画像成分は輪郭成分であると判断してコアリング回路22に対する閾値Tを低く制御設定する。
When the input contour component E of the target pixel is smaller than the set value, the
次に、前記構成のデジタルカメラの画像処理部14に備えられた第1実施形態の輪郭強調処理部15における具体的動作について説明する。
Next, a specific operation in the contour
図8は前記輪郭強調処理部15に原画像Siとして入力される画像データの具体例を示す図であり、同図(A)は中心画素に孤立点ノイズがある場合の画像データPaを示す図、同図(B)は中心画素において中域の垂直輪郭成分Ev1が高い場合の画像データPbを示す図、同図(C)は中心画素において高域の垂直輪郭成分Ev2が高い場合の画像データPcを示す図である。
FIG. 8 is a diagram illustrating a specific example of image data input as the original image Si to the contour
図9は前記輪郭強調処理部15に原画像Siとして図8で示した各画像データPa,Pb,Pcを入力した場合それぞれの中心画素を対象画素とした画像高域成分Sh,中域輪郭成分E1,高域輪郭成分E2,輪郭成分Eを対比して示す図である。
FIG. 9 shows that when the image data Pa, Pb, and Pc shown in FIG. 8 are input as the original image Si to the contour
ここで、係数器26,27における係数K1,K2は、K1=K2=1とし、また、各輪郭成分検出用係数24h,24v,25h,25vに基づく輪郭成分E1,E2の出力は、当該各係数の絶対値の和で正規化した値とする。
Here, the coefficients K1 and K2 in the
まず、図8(A)に示すような、中心画素に孤立点ノイズがある画像データPaが輪郭強調処理部15に原画像Siとして入力され、その中心画素が対象画素である場合に、高域成分抽出回路21において、図3(A)で示したラプラシアン係数21aを乗ずることで画像高域成分Shを求めると、図9の画像Paに対応して示すように、画像高域成分Sh=50が得られる。
First, as shown in FIG. 8A, when image data Pa having isolated point noise at the center pixel is input as the original image Si to the contour
また、第1の輪郭検出回路(中域)24における水平および垂直の各輪郭検出回路30,31において、前記原画像Siである画像データPaに対し、図6(A)で示した水平輪郭成分(中域)検出用係数24hおよび図6(B)で示した垂直輪郭成分(中域)検出用係数24vを乗ずることで中域の水平および垂直輪郭成分Eh1,Ev1を求め、これを絶対値化して加算器34で加算することで中域輪郭成分E1を求めると、図9の画像Paに対応して示すように、中域輪郭成分E1=0が得られる。
Further, in each of the horizontal and vertical
また、第2の輪郭検出回路(高域)25における水平および垂直の各輪郭検出回路30,31において、前記原画像Siである画像データPaに対し、図7(A)で示した水平輪郭成分(高域)検出用係数25hおよび図7(B)で示した垂直輪郭成分(高域)検出用係数25vを乗ずることで高域の水平および垂直輪郭成分Eh2,Ev2を求め、これを絶対値化して加算器34で加算することで高域輪郭成分E2を求めると、図9の画像Paに対応して示すように、高域輪郭成分E2=33.3が得られる。
Further, in each of the horizontal and vertical
すると、加算器28において、前記中域輪郭成分E1=0と高域輪郭成分E2=33.3とを加算して画像データPaの輪郭成分E=33.3が求められ、しきい値制御回路29に入力される。
Then, the
次に、図8(B)に示すような、中心画素において中域の垂直輪郭成分Ev1が高い場合の画像データPbが輪郭強調処理部15に原画像Siとして入力され、その中心画素が対象画素である場合に、高域成分抽出回路21において、前記同様にラプラシアン係数21aを乗ずることで画像高域成分Shを求めると、図9の画像Pbに対応して示すように、画像高域成分Sh=12.5が得られる。
Next, as shown in FIG. 8B, image data Pb in the case where the middle vertical contour component Ev1 is high in the central pixel is input as the original image Si to the contour
また、第1の輪郭検出回路(中域)24(30〜34)において、前記原画像Siである画像データPbに対し、前記同様に水平輪郭成分(中域)検出用係数24hおよび垂直輪郭成分(中域)検出用係数24vを乗ずることで中域の水平および垂直輪郭成分Eh1,Ev1を求め、これを絶対値化して加算することで中域輪郭成分E1を求めると、図9の画像Pbに対応して示すように、中域輪郭成分E1=50が得られる。
Further, in the first contour detection circuit (middle region) 24 (30 to 34), the horizontal contour component (middle region)
また、第2の輪郭検出回路(高域)25(30〜34)において、前記原画像Siである画像データPbに対し、前記同様に水平輪郭成分(高域)検出用係数25hおよび垂直輪郭成分(高域)検出用係数25vを乗ずることで高域の水平および垂直輪郭成分Eh2,Ev2を求め、これを絶対値化して加算することで高域輪郭成分E2を求めると、図9の画像Pbに対応して示すように、高域輪郭成分E2=25が得られる。
In the second contour detection circuit (high region) 25 (30 to 34), the horizontal contour component (high region)
すると、前記中域輪郭成分E1=50と高域輪郭成分E2=25とを加算して画像データPbの輪郭成分E=75が求められ、しきい値制御回路29に入力される。
Then, the middle region contour component E1 = 50 and the high region contour component E2 = 25 are added to obtain the contour component E = 75 of the image data Pb and input to the
さらに、図8(C)に示すような、中心画素において高域の垂直輪郭成分Ev2が高い場合の画像データPcが輪郭強調処理部15に原画像Siとして入力され、その中心画素が対象画素である場合に、高域成分抽出回路21において、前記同様にラプラシアン係数21を乗ずることで画像高域成分Shを求めると、図9の画像Pcに対応して示すように、画像高域成分Sh=25が得られる。
Further, as shown in FIG. 8C, image data Pc when the high-frequency vertical contour component Ev2 is high in the central pixel is input as the original image Si to the contour
また、第1の輪郭検出回路(中域)24(30〜34)において、前記原画像Siである画像データPcに対し、前記同様に水平輪郭成分(中域)検出用係数24hおよび垂直輪郭成分(中域)検出用係数24vを乗ずることで中域の水平および垂直輪郭成分Eh1,Ev1を求め、これを絶対値化して加算することで中域輪郭成分E1を求めると、図9の画像Pcに対応して示すように、中域輪郭成分E1=0が得られる。
In the first contour detection circuit (middle region) 24 (30 to 34), the horizontal contour component (middle region)
また、第2の輪郭検出回路(高域)25(30〜34)において、前記原画像Siである画像データPcに対し、前記同様に水平輪郭成分(高域)検出用係数25hおよび垂直輪郭成分(高域)検出用係数25vを乗ずることで高域の水平および垂直輪郭成分Eh2,Ev2を求め、これを絶対値化して加算することで高域輪郭成分E2を求めると、図9の画像Pcに対応して示すように、高域輪郭成分E2=50が得られる。
In the second contour detection circuit (high region) 25 (30 to 34), the horizontal contour component (high region)
すると、前記中域輪郭成分E1=0と高域輪郭成分E2=50とを加算して画像データPcの輪郭成分E=50が求められ、しきい値制御回路29に入力される。
Then, the contour component E = 50 of the image data Pc is obtained by adding the middle region contour component E1 = 0 and the high region contour component E2 = 50, and is input to the threshold
すなわち、前記画像データPa,Pb,Pcそれぞれの対象画素についての画像高域成分Shは、Pa>Pc>Pbの順で大きいのに対して、その輪郭成分E=E1+E2は、Pb>Pc>Paの順で大きく、画像データPaの対象画素は、その画像高域成分Shが大きくても輪郭成分Eが小さく孤立点ノイズであると適正に判別できる。そして、画像データPb,Pcの対象画素は、その画像高域成分Shが小さくても輪郭成分Eが大きく画像輪郭であると適正に判別できる。 That is, the image high-frequency component Sh for the target pixel of each of the image data Pa, Pb, and Pc is large in the order of Pa> Pc> Pb, whereas the contour component E = E1 + E2 is Pb> Pc> Pa. In this order, the target pixel of the image data Pa can be properly determined to be isolated point noise with a small contour component E even if the image high-frequency component Sh is large. The target pixels of the image data Pb and Pc can be properly determined that the contour component E is large and the image contour even if the image high-frequency component Sh is small.
しきい値制御回路29では、原画像Siの対象画像における中域輪郭成分E1および高域輪郭成分E2の加算により得られた輪郭成分Eが、例えば“50”未満と小さい場合には、コアリング回路22に対する画像高域成分Shの輪郭強調成分Seとしての取り出し閾値Tを、例えば“70”以上と高く設定制御し、逆に、原画像Siの対象画像における中域輪郭成分E1および高域輪郭成分E2の加算により得られた輪郭成分Eが、例えば“50”以上と大きい場合には、コアリング回路22に対する画像高域成分Shの輪郭強調成分Seとしての取り出し閾値Tを、例えば“10”以上と低く設定制御する。
In the
これにより、コアリング回路22では、図8(A)で示したような、対象画素が孤立点ノイズである画像データPaの画像高域成分Shは当該高域成分Shが大きくても除去されて輪郭強調成分Seとして抽出されなくなり、また、図8(B)(C)で示したような、対象画素の輪郭成分Eが大きい場合の画像データPbやPcの画像高域成分Shは当該高域成分Shが小さくても除去されずに輪郭強調成分Seとして抽出されるようになる。よって、ノイズ成分を適正に除去した正しい画像輪郭の輪郭強調成分Seのみを原画像Siに加算した輪郭強調画像Soを得ることができる。
Thereby, in the
したがって、前記構成の第1実施形態の輪郭強調機能を備えたデジタルカメラによれば、原画像Siから抽出した画像高域成分Shを閾値Tを設定したコアリング回路22によって輪郭強調成分Seとして取り出し、前記原画像Siに加算して輪郭強調画像Soを得る際に、前記原画像Siの中域での水平輪郭成分Eh1および垂直輪郭成分Ev1を加算した中域輪郭成分E1と、高域での水平輪郭成分Eh2および垂直輪郭成分Ev2を加算した高域輪郭成分E2とからなる輪郭成分E(=E1+E2)を求め、この原画像Siの中高域輪郭成分Eが大きい場合には前記コアリング回路22の閾値Tを低く設定制御し画像高域成分Shが小さくても輪郭強調成分Seとして取り出し、また中高域輪郭成分Eが小さい場合には同コアリング回路22の閾値Tを高く設定制御し画像高域成分Shが大きくても輪郭強調成分Seとして取り出さないようにしたので、画像ノイズを画像輪郭と誤判断して取り出すことを防止でき、ノイズの少ない良好な輪郭強調画像Soを得ることができる。
Therefore, according to the digital camera having the contour enhancement function of the first embodiment having the above-described configuration, the image high-frequency component Sh extracted from the original image Si is extracted as the contour enhancement component Se by the
なお、前記第1実施形態の輪郭強調処理部15におけるしきい値制御回路29では、コアリング回路22に設定する閾値Tを、原画像Siの輪郭成分E(=E1+E2)の大小に応じて例えば低/高の2段階に設定制御する構成としたが、当該輪郭成分E(=E1+E2)の大小に応じて例えば連続的に変化するよう設定制御する構成としてもよい。
In the threshold
また、前記第1実施形態の輪郭強調処理部15では、原画像Siの画像高域成分Shを輪郭強調成分Seとして取り出すためのコアリング回路22に閾値Tを設定し、当該閾値Tをしきい値制御回路29によって原画像Siの輪郭成分E(=E1+E2)に応じて可変制御する構成としたが、次の第2実施形態の輪郭強調処理部151において説明するように別の構成としてもよい。
In the edge
(第2実施形態)
図10は前記デジタルカメラの画像処理部14に備えられた第2実施形態の輪郭強調処理部151の構成を示すブロック図である。
(Second Embodiment)
FIG. 10 is a block diagram showing the configuration of the contour
この第2実施形態の輪郭強調処理部151において、原画像Siから画像高域成分Shを抽出する高域成分抽出回路21、前記原画像Siに輪郭強調成分Seを加算して輪郭強調画像Soを得る加算器23、原画像Siの輪郭成分のうちの中域成分E1を検出する輪郭検出回路(中域)24、原画像Siの輪郭成分のうちの高域成分E2を検出する輪郭検出回路(高域)25、中域輪郭成分E1に所定の係数K1を乗ずる係数器26、高域輪郭成分E2に所定の係数K2を乗ずる係数器27、中域輪郭成分E1と高域輪郭成分E2とを加算して輪郭成分Eを得る加算器28については、何れも前記第1実施形態の輪郭強調処理部15におけるそれと同様の構成である。
In the contour
この第2実施形態の輪郭強調処理部151では、高域成分抽出回路21により得られた原画像Siの画像高域成分Shを、係数器41においてゲインGを乗ずることで輪郭強調成分Seとして取り出し、当該係数器41に設定するゲインGをゲイン制御回路42によって前記原画像Siの輪郭成分E(=E1×K1+E2×K2)に応じて可変制御する構成とする。
In the contour
そして、ゲイン制御回路42は、入力される対象画素の輪郭成分Eが小さいほど、当該対象画素の画像成分はノイズである可能性が高いと判断して係数器41に対するゲインGを小さくするように制御設定し、逆に、入力される対象画素の輪郭成分Eが大きいほど、当該対象画素の画像成分は正しい輪郭成分であると判断して係数器41に対するゲインGを大きくするように制御設定する。
The
次に、前記構成のデジタルカメラの画像処理部14に備えられた第2実施形態の輪郭強調処理部151における具体的動作について説明する。
Next, a specific operation in the contour
すなわち、前記図8(A)で示した、中心画素に孤立点ノイズがある画像データPa、図8(B)で示した、中心画素において中域の垂直輪郭成分Ev1が高い場合の画像データPb、図8(C)で示した、中心画素において高域の垂直輪郭成分Ev2が高い場合の画像データPcが、それぞれ輪郭強調処理部151に原画像Siとして入力された場合、各原画像Si(Pa,Pb,Pc)についての画像高域成分Sh、中域輪郭成分E1、高域輪郭成分E2、輪郭成分Eは、図9で示したように、何れも前記第1実施形態の輪郭強調処理部15でのそれと同様に求められる。
That is, the image data Pa having isolated point noise at the center pixel shown in FIG. 8A, and the image data Pb when the vertical contour component Ev1 in the middle region is high at the center pixel shown in FIG. 8B. 8C, when the image data Pc when the high-frequency vertical contour component Ev2 is high in the center pixel is input as the original image Si to the contour
そして、前記画像データPa,Pb,Pcそれぞれの対象画素についての画像高域成分Shは、Pa>Pc>Pbの順で大きいのに対して、その輪郭成分E=E1+E2は、Pb>Pc>Paの順で大きく、画像データPaの対象画素は、その画像高域成分Shが大きくても輪郭成分Eが小さく孤立点ノイズであると適正に判別できる。また、画像データPb,Pcの対象画素は、その画像高域成分Shが小さくても輪郭成分Eが大きく画像輪郭であると適正に判別できる。 The image high-frequency component Sh for the target pixel of each of the image data Pa, Pb, and Pc is large in the order of Pa> Pc> Pb, whereas the contour component E = E1 + E2 is Pb> Pc> Pa. In this order, the target pixel of the image data Pa can be properly determined to be isolated point noise with a small contour component E even if the image high-frequency component Sh is large. Further, the target pixels of the image data Pb and Pc can be properly determined that the contour component E is large and the image contour even if the image high-frequency component Sh is small.
ゲイン制御回路42では、原画像Siの対象画像における中域輪郭成分E1および高域輪郭成分E2の加算により得られた輪郭成分Eが大きいほど、係数器41に対する画像高域成分Shの輪郭強調成分Seとしての取り出しゲインGを高く設定制御し、逆に、原画像Siの対象画像における中域輪郭成分E1および高域輪郭成分E2の加算により得られた輪郭成分Eが小さいほど、係数器41に対する画像高域成分Shの輪郭強調成分Seとしての取り出しゲインGを低く設定制御するので、前記画像データPa,Pb,Pcがそれぞれ原画像Siとして入力された場合の各ゲインGa,Gb,Gcは、その輪郭成分Eの大きさの順Pb>Pc>Paに応じてGb>Gc>Gaとして設定制御される。
In the
これにより、係数器41では、図8(A)で示したような、対象画素が孤立点ノイズである画像データPaの画像高域成分Shは当該高域成分Shが大きくても極めて低いゲインGにより抑制されて輪郭強調成分Seとして殆ど抽出されなくなり、また、図8(B)(C)で示したような、対象画素の輪郭成分Eが大きい場合の画像データPbやPcの画像高域成分Shは当該高域成分Shが小さくても大きいゲインGにより増幅された輪郭強調成分Seとして抽出されるようになる。よって、ノイズ成分を適正に抑制した正しい画像輪郭の輪郭強調成分Seのみを原画像Siにより大きく加算した輪郭強調画像Soを得ることができる。
Thereby, in the
したがって、前記構成の第2実施形態の輪郭強調機能を備えたデジタルカメラによれば、原画像Siから抽出した画像高域成分ShをゲインGを設定した係数器41を介し輪郭強調成分Seとして取り出し、前記原画像Siに加算して輪郭強調画像Soを得る際に、前記原画像Siの中域での水平輪郭成分Eh1および垂直輪郭成分Ev1を加算した中域輪郭成分E1と、高域での水平輪郭成分Eh2および垂直輪郭成分Ev2を加算した高域輪郭成分E2とからなる輪郭成分E(=E1+E2)を求め、この原画像Siの中高域輪郭成分Eが大きいほど前記係数器41のゲインGを高く設定制御し画像高域成分Shが小さくても輪郭強調成分Seとして大きく取り出し、また中高域輪郭成分Eが小さいほど同係数器41のゲインGを低く設定制御し画像高域成分Shが大きくても輪郭強調成分Seとしては極めて抑制した値で取り出すようにしたので、画像ノイズを画像輪郭として強調して取り出すことを防止でき、本来の輪郭成分のみを大きく強調したノイズの少ない良好な輪郭強調画像Soを得ることができる。
Therefore, according to the digital camera having the contour enhancement function of the second embodiment having the above configuration, the image high-frequency component Sh extracted from the original image Si is extracted as the contour enhancement component Se via the
なお、前記第1実施形態の輪郭強調処理部15、前記第2実施形態の輪郭強調処理部151では、その何れの実施形態にあっても加算器23において原画像Siに輪郭強調成分Seを加算した値をそのまま輪郭強調画像Soとして取り出す構成としたが、次の第3実施形態の輪郭強調処理部152において説明するように、加算器23において原画像Siに輪郭強調成分Seを加算した値を高域強調画像(輪郭強調画像)Sfとして取り出し、原画像Siから検出した輪郭成分E(=E1+E2)の大小に応じて、前記高域強調画像Sfを主体に輪郭強調画像Soとして取り出すか、前記原画像Siを加重平均して求めた高域抑圧画像SIを主体に輪郭強調画像Soとして取り出す構成としてもよい。
Note that, in the contour
(第3実施形態)
図11は前記デジタルカメラの画像処理部14に備えられた第3実施形態の輪郭強調処理部152の構成を示すブロック図である。
(Third embodiment)
FIG. 11 is a block diagram showing a configuration of an edge
この第3実施形態の輪郭強調処理部152において、前記第1および第2実施形態と異なる特徴的な構成部分は、当該第1および第2実施形態において説明した何れの輪郭強調処理部15,151にも適用して構成することができるが、ここでは、第1実施形態の輪郭強調処理部15に適用して構成した場合について説明し、第2実施形態の輪郭強調処理部151に適用して構成した場合についての説明を省略する。
In the contour
この第3実施形態の輪郭強調処理部152において、原画像Siから画像高域成分Shを抽出する高域成分抽出回路21、画像高域成分Shに閾値Tを設定して輪郭強調成分Seを得るコアリング回路22、前記原画像Siに輪郭強調成分Seを加算する加算器23、原画像Siの輪郭成分のうちの中域成分E1を検出する輪郭検出回路(中域)24、原画像Siの輪郭成分のうちの高域成分E2を検出する輪郭検出回路(高域)25、中域輪郭成分E1に所定の係数K1を乗ずる係数器26、高域輪郭成分E2に所定の係数K2を乗ずる係数器27、中域輪郭成分E1と高域輪郭成分E2とを加算して輪郭成分Eを得る加算器28、輪郭成分Eの変化に応じて前記コアリング回路22に対する閾値Tを可変設定するしきい値制御回路29については、何れも前記第1実施形態の輪郭強調処理部15におけるそれと同様の構成である。
In the contour
この第3実施形態の輪郭強調処理部152では、加算器23において原画像Siに輪郭強調成分Seを加算した値を高域強調画像(輪郭強調画像)Sfとして取り出し、また、原画像Siを加重平均回路50に通して高域抑圧画像(画像低域成分)SIとして取得し、前記高域強調画像Sfと高域抑圧画像SIとをその混合比が設定制御される混合回路51により混合して輪郭強調画像Soとして出力する。そして、混合回路51に設定する前記高域強調画像Sfと高域抑圧画像SIとの混合比を、混合比制御回路52によって前記原画像Siの輪郭成分E(=E1+E2)に応じて可変制御する構成とする。
In the contour
そして、混合比制御回路52は、入力される対象画素の輪郭成分Eが小さいほど、当該対象画素の画像成分はノイズである可能性が高いと判断して混合回路51に対する高域抑圧画像(画像低域成分)SIの混合割合を大きく、高域強調画像(輪郭強調画像)Sfの混合割合を小さくするように制御設定し、逆に、入力される対象画素の輪郭成分Eが大きいほど、当該対象画素の画像成分は正しい輪郭成分であると判断して混合回路51に対する高域抑圧画像(画像低域成分)SIの混合割合を小さく、高域強調画像(輪郭強調画像)Sfの混合割合を大きくするように制御設定する。
The mixture
なお、加重平均回路50は、例えば図3(B)で示した加重平均係数21bを原画像Siの対象画素および該対象画素に隣接する3×3画素の画像データに乗ずることで、高域抑圧画像(画像低域成分)SIを得る。
The weighted
次に、前記構成のデジタルカメラの画像処理部14に備えられた第3実施形態の輪郭強調処理部152における具体的動作について説明する。
Next, a specific operation in the contour
すなわち、前記図8(A)で示した、中心画素に孤立点ノイズがある画像データPa、図8(B)で示した、中心画素において中域の垂直輪郭成分Ev1が高い場合の画像データPb、図8(C)で示した、中心画素において高域の垂直輪郭成分Ev2が高い場合の画像データPcが、それぞれ輪郭強調処理部152に原画像Siとして入力された場合、各原画像Si(Pa,Pb,Pc)についての画像高域成分Sh、中域輪郭成分E1、高域輪郭成分E2、輪郭成分Eは、図9で示したように、何れも前記第1実施形態の輪郭強調処理部15でのそれと同様に求められる。
That is, the image data Pa having isolated point noise at the center pixel shown in FIG. 8A, and the image data Pb when the vertical contour component Ev1 in the middle region is high at the center pixel shown in FIG. 8B. 8C, when the image data Pc when the high-frequency vertical contour component Ev2 is high at the center pixel is input as the original image Si to the contour
そして、前記画像データPa,Pb,Pcそれぞれの対象画素についての画像高域成分Shは、Pa>Pc>Pbの順で大きいのに対して、その輪郭成分E=E1+E2は、Pb>Pc>Paの順で大きく、画像データPaの対象画素は、その画像高域成分Shが大きくても輪郭成分Eが小さく孤立点ノイズであると適正に判別できる。また、画像データPb,Pcの対象画素は、その画像高域成分Shが小さくても輪郭成分Eが大きく画像輪郭であると適正に判別できる。 The image high-frequency component Sh for the target pixel of each of the image data Pa, Pb, and Pc is large in the order of Pa> Pc> Pb, whereas the contour component E = E1 + E2 is Pb> Pc> Pa. In this order, the target pixel of the image data Pa can be properly determined to be isolated point noise with a small contour component E even if the image high-frequency component Sh is large. Further, the target pixels of the image data Pb and Pc can be properly determined that the contour component E is large and the image contour even if the image high-frequency component Sh is small.
まず、しきい値制御回路29では、原画像Siの対象画像における中域輪郭成分E1および高域輪郭成分E2の加算により得られた輪郭成分Eが大きいほど、コアリング回路22に対する画像高域成分Shの輪郭強調成分Seとしての取り出し閾値Tを低く設定制御し、逆に、原画像Siの対象画像における中域輪郭成分E1および高域輪郭成分E2の加算により得られた輪郭成分Eが小さいほど、コアリング回路22に対する画像高域成分Shの輪郭強調成分Seとしての取り出し閾値Tを高く設定制御するので、前記画像データPa,Pb,Pcがそれぞれ原画像Siとして入力された場合の各閾値Ta,Tb,Tcは、その輪郭成分Eの大きさの順Pb>Pc>Paに反比例してTa>Tc>Tbの順に高く設定制御される。
First, in the threshold
これにより、コアリング回路22では、図8(A)で示したような、対象画素が孤立点ノイズである画像データPaの画像高域成分Shは当該高域成分Shが大きくても除去されて輪郭強調成分Seとして抽出されなくなり、また、図8(B)(C)で示したような、対象画素の輪郭成分Eが大きい場合の画像データPbやPcの画像高域成分Shは当該高域成分Shが小さくても除去されずに輪郭強調成分Seとして抽出されるようになり、この段階で、ノイズ成分を適正に除去した正しい画像輪郭の輪郭強調成分Seのみを原画像Siに加算した高域強調画像(輪郭強調画像)Sfが得られる。
Thereby, in the
そして、混合比制御回路52では、前記原画像Siの輪郭成分E(=E1+E2)が大きいほど、混合回路51に対する高域強調画像(輪郭強調画像)Sfの混合割合を高く設定制御し、逆に、原画像Siの輪郭成分E(=E1+E2)が小さいほど、混合回路51に対する高域強調画像(輪郭強調画像)Sfの割合を低く、高域抑圧画像(画像低域成分)SIの混合割合を高く設定制御するので、前記画像データPa,Pb,Pcがそれぞれ原画像Siとして入力された場合の前記高域強調画像Sfの各混合割合Ma,Mb,Mcは、その輪郭成分Eの大きさの順Pb>Pc>Paに応じてTb>Tc>Taの順に設定制御される。
In the mixing
これにより、原画像Siの輪郭成分E(=E1+E2)が大きい場合には前記高域強調画像Sfの混合割合が高い輪郭強調画像Soが得られ、逆に、原画像Siの輪郭成分E(=E1+E2)が小さい場合には前記高域抑圧画像SIの混合割合が高い輪郭強調画像Soが得られるようになり、ノイズ成分を適正に抑制した正しい画像輪郭の輪郭強調画像Soが得られるだけでなく、SN比を向上した輪郭強調画像Soを得ることができる。 Thereby, when the contour component E (= E1 + E2) of the original image Si is large, the contour-enhanced image So having a high mixing ratio of the high-frequency emphasized image Sf is obtained, and conversely, the contour component E (= When E1 + E2) is small, a contour-enhanced image So having a high mixing ratio of the high-frequency-suppressed image SI can be obtained, and not only a contour-enhanced image So having a correct image contour in which noise components are appropriately suppressed can be obtained. , An edge-enhanced image So with improved SN ratio can be obtained.
したがって、前記構成の第3実施形態の輪郭強調機能を備えたデジタルカメラによれば、原画像Siから抽出した画像高域成分Shを閾値Tを設定したコアリング回路22によって輪郭強調成分Seとして取り出し、前記原画像Siに加算して高域強調画像(輪郭強調画像)Sfを得ると共に、この高域強調画像Sfと前記原画像Siを加重平均して求めた高域抑圧画像SIとを混合して輪郭強調画像Soを得る際に、前記原画像Siの中域での水平輪郭成分Eh1および垂直輪郭成分Ev1を加算した中域輪郭成分E1と、高域での水平輪郭成分Eh2および垂直輪郭成分Ev2を加算した高域輪郭成分E2とからなる輪郭成分E(=E1+E2)を求め、この原画像Siの中高域輪郭成分Eが大きい場合には前記コアリング回路22の閾値Tを低く設定制御し画像高域成分Shが小さくても輪郭強調成分Seとして取り出した高域強調画像(輪郭強調画像)Sfを得、また中高域輪郭成分Eが小さい場合には同コアリング回路22の閾値Tを高く設定制御し画像高域成分Shが大きくても輪郭強調成分Seとして取り出さない高域強調画像(輪郭強調画像)Sfを得る。さらに、前記原画像Siの中高域輪郭成分Eが大きい場合には前記高域強調画像(輪郭強調画像)Sfの混合割合を高くした輪郭強調画像Soを得、前記原画像Siの中高域輪郭成分Eが小さい場合には前記高域強調画像(輪郭強調画像)Sfの混合割合を低く前記高域抑圧画像SIの混合割合を高くした輪郭強調画像Soを得るようにしたので、画像ノイズを画像輪郭として強調して取り出すことを防止でき、本来の輪郭成分のみを大きく強調したノイズの少ない良好な輪郭強調画像Soを得ることができる。しかもSN比を向上した輪郭強調画像Soを得ることができる。
Therefore, according to the digital camera having the contour enhancement function of the third embodiment having the above-described configuration, the image high-frequency component Sh extracted from the original image Si is extracted as the contour enhancement component Se by the
なお、前記各実施形態における輪郭強調処理部15,151,152の説明では、当該輪郭強調処理の各部をハード構成により実施した場合を主体に説明したが、例えば図2、図4、図5、図10、図11でそれぞれ示したブロック構成図をコンピュータプログラムにより実施する場合の機能ブロックとして読み替えることで、コンピュータである制御部(CPU)16によるプログラム制御を主体とした輪郭強調処理を実現できる。
In the description of the contour
つまり、前記各実施形態で説明した輪郭強調処理のプログラムを、パーソナルコンピュータなどの画像処理機能を有するコンピュータにインストールことで、前記各実施形態同様に種々の画像データを対象とした輪郭強調処理を実施でき、それと同様の効果を得ることができる。 In other words, by installing the contour enhancement processing program described in each of the embodiments on a computer having an image processing function such as a personal computer, the contour enhancement processing for various image data as in the above embodiments is performed. And the same effect can be obtained.
なお、本願発明は、前記各実施形態に限定されるものではなく、実施形態ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、前記各実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、各実施形態に示される全構成要件から幾つかの構成要件が削除されたり、幾つかの構成要件が組み合わされても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除されたり組み合わされた構成が発明として抽出され得るものである。 The present invention is not limited to the above-described embodiments, and the embodiments can be variously modified without departing from the scope of the invention. Further, each of the embodiments includes inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in each embodiment or some constituent features are combined, the problems described in the column of the problem to be solved by the invention can be solved. When the effects described in the column of the effect of the invention can be obtained, a configuration in which these constituent elements are deleted or combined can be extracted as an invention.
10 …撮像部(CCD)
11 …A/D変換部
12 …画像補間回路(RGB)
13 …マトリクス回路
14 …画像処理部
15 …輪郭強調部(第1実施形態)
151…輪郭強調部(第2実施形態)
152…輪郭強調部(第3実施形態)
16 …制御部(CPU)
17 …画像メモリ
18 …表示バッファ
19 …表示部
21 …高域成分抽出回路
22 …コアリング回路
23、28、34…加算器
24 …第1の輪郭検出回路(中域)
25 …第2の輪郭検出回路(高域)
26、27…係数器
29 …しきい値制御回路
30 …輪郭検出回路(水平)
31 …輪郭検出回路(垂直)
32、33…絶対値化回路
41 …係数器(G)
42 …ゲイン(G)制御回路
50 …加重平均回路
51 …混合回路
52 …混合比制御回路
10 ... Imaging unit (CCD)
11 ... A /
DESCRIPTION OF
151... Outline emphasis unit (second embodiment)
152. Outline emphasis unit (third embodiment)
16: Control unit (CPU)
DESCRIPTION OF
25 ... Second contour detection circuit (high frequency range)
26, 27 ...
31 ... Contour detection circuit (vertical)
32, 33...
42 ... Gain (G)
Claims (6)
前記高域成分から輪郭強調成分を生成する輪郭強調成分生成手段と、Contour enhancement component generating means for generating a contour enhancement component from the high frequency component;
前記輪郭強調成分を前記画像に加算することにより、前記画像上の輪郭を強調した輪郭強調画像を取得する加算手段と、を備え、Addition means for acquiring a contour-enhanced image in which the contour on the image is enhanced by adding the contour-enhanced component to the image; and
前記輪郭強調成分生成手段は、The outline emphasis component generation means includes
前記高域成分を構成する各対象画素のうちの所定の閾値以上の対象画素のみでなる成分を、前記輪郭強調成分として出力するコアリング手段と、Coring means for outputting, as the contour emphasis component, a component consisting only of a target pixel equal to or higher than a predetermined threshold among the target pixels constituting the high-frequency component;
前記画像の中域の輪郭成分を検出する中域輪郭成分検出手段と、Middle region contour component detecting means for detecting a contour component of the middle region of the image;
前記画像の高域の輪郭成分を検出する高域輪郭成分検出手段と、High frequency contour component detecting means for detecting a high frequency contour component of the image;
前記対象画素について、前記中域の輪郭成分と前記高域の輪郭成分とに基づく輪郭成分値を算出する算出手段と、For the target pixel, calculation means for calculating a contour component value based on the contour component of the middle region and the contour component of the high region,
前記輪郭成分値が所定値より大きい場合には前記閾値を第1の値に設定し、前記輪郭成分値が前記所定値より小さい場合には前記閾値を前記第1の値より高い第2の値に設定する閾値設定手段と、を有するWhen the contour component value is larger than a predetermined value, the threshold value is set to a first value, and when the contour component value is smaller than the predetermined value, the threshold value is set to a second value higher than the first value. Threshold setting means for setting to
ことを特徴とする画像処理装置。An image processing apparatus.
前記中域の輪郭成分と前記高域の輪郭成分とに基づき、前記高域成分から輪郭強調成分を生成する輪郭強調成分生成手段と、Based on the contour component of the middle region and the contour component of the high region, contour enhancement component generation means for generating a contour enhancement component from the high region component;
前記輪郭強調成分を前記画像に加算することにより、前記画像上の輪郭を強調した輪郭強調画像を取得する加算手段と、を備え、Addition means for acquiring a contour-enhanced image in which the contour on the image is enhanced by adding the contour-enhanced component to the image; and
前記輪郭強調成分生成手段は、The outline emphasis component generation means includes
前記高域成分を構成する各対象画素を所定のゲインにより増幅した成分を、前記輪郭強調成分として出力する増幅手段と、Amplifying means for outputting a component obtained by amplifying each target pixel constituting the high-frequency component with a predetermined gain as the contour enhancement component;
前記画像の中域の輪郭成分を検出する中域輪郭成分検出手段と、Middle region contour component detecting means for detecting a contour component of the middle region of the image;
前記画像の高域の輪郭成分を検出する高域輪郭成分検出手段と、High frequency contour component detecting means for detecting a high frequency contour component of the image;
前記対象画素について、前記中域の輪郭成分と前記高域の輪郭成分とに基づく輪郭成分値を算出する算出手段と、For the target pixel, calculation means for calculating a contour component value based on the contour component of the middle region and the contour component of the high region
前記輪郭成分値が大きくなるにつれて前記ゲインを高くし、前記輪郭成分値が前記所定値より小さくなるにつれて前記ゲインを低くするゲイン制御手段と、を有するGain control means for increasing the gain as the contour component value increases and decreasing the gain as the contour component value becomes smaller than the predetermined value.
ことを特徴とする画像処理装置。An image processing apparatus.
前記高域成分から輪郭強調成分を生成する輪郭強調成分生成手段と、Contour enhancement component generating means for generating a contour enhancement component from the high frequency component;
前記輪郭強調成分を前記画像に加算することにより高域強調画像を取得する加算手段と、Adding means for obtaining a high-frequency emphasized image by adding the contour enhancement component to the image;
前記画像の低域成分を抽出する低域成分抽出手段と、Low-frequency component extracting means for extracting a low-frequency component of the image;
前記高域強調画像と前記低域成分とを所定の混合比で混合することにより輪郭強調画像を出力する混合手段と、A mixing unit that outputs an outline-enhanced image by mixing the high-frequency emphasized image and the low-frequency component at a predetermined mixing ratio;
前記画像の中域の輪郭成分を検出する中域輪郭成分検出手段と、Middle region contour component detecting means for detecting a contour component of the middle region of the image;
前記画像の高域の輪郭成分を検出する高域輪郭成分検出手段と、High frequency contour component detecting means for detecting a high frequency contour component of the image;
前記対象画素について、前記中域の輪郭成分と前記高域の輪郭成分とに基づく輪郭成分値を算出する算出手段と、For the target pixel, calculation means for calculating a contour component value based on the contour component of the middle region and the contour component of the high region
前記輪郭成分値が大きくなるにつれて前記輪郭強調画像における前記高域強調画像の割合が大きくなるように前記混合比を設定し、前記輪郭成分値が小さくなるにつれて前記輪郭強調画像における前記高域強調画像の割合が小さくなるように前記混合比を設定する混合比制御手段と、The mixing ratio is set so that the proportion of the high-frequency emphasized image in the contour-enhanced image increases as the contour component value increases, and the high-frequency emphasized image in the contour-enhanced image decreases as the contour component value decreases. Mixing ratio control means for setting the mixing ratio so that the ratio of
を備えることを特徴とする画像処理装置。An image processing apparatus comprising:
前記画像の中域の水平輪郭成分を検出する中域水平輪郭成分検出手段と、Mid-horizontal contour component detecting means for detecting a horizontal contour component of the mid-range of the image;
前記画像の中域の垂直輪郭成分を検出する中域垂直輪郭成分検出手段と、Mid-range vertical contour component detection means for detecting a vertical contour component of the mid-range of the image;
前記中域の水平輪郭成分と前記中域の垂直輪郭成分とを加算することにより、前記輪郭成分を取得する中域輪郭成分加算手段と、を有し、A mid-region contour component adding means for obtaining the contour component by adding the horizontal contour component of the mid-region and the vertical contour component of the mid-region, and
前記高域輪郭成分検出手段は、The high frequency contour component detecting means is
前記画像の高域の水平輪郭成分を検出する高域水平輪郭成分検出手段と、High-frequency horizontal contour component detecting means for detecting a high-frequency horizontal contour component of the image;
前記画像の高域の垂直輪郭成分を検出する高域垂直輪郭成分検出手段と、High frequency vertical contour component detection means for detecting a high frequency vertical contour component of the image;
前記高域の水平輪郭成分と前記高域の垂直輪郭成分とを加算することにより、前記輪郭成分を取得する高域輪郭成分加算手段と、を有するHigh-frequency contour component adding means for acquiring the contour component by adding the high-frequency horizontal contour component and the high-frequency vertical contour component;
ことを特徴とする請求項1から3のいずれか1項に記載の画像処理装置。The image processing apparatus according to claim 1, wherein the image processing apparatus is an image processing apparatus.
着目領域の中心に位置する対象画素と当該対象画素に隣接する画素とのそれぞれに対し画素の位置に対応する中域水平係数を乗じた値の総和を、前記中域の水平輪郭成分として検出し、A total sum of values obtained by multiplying each of the target pixel located at the center of the region of interest and the pixel adjacent to the target pixel by the mid-range horizontal coefficient corresponding to the pixel position is detected as the horizontal contour component of the mid-range. ,
前記中域水平係数は、The mid-range horizontal coefficient is
各係数の合計値が0であり、かつ、前記対象画素の位置に対応する係数と前記対象画素と水平方向において隣接する各画素の位置に対応する係数とがそれぞれ0であり、The total value of each coefficient is 0, and the coefficient corresponding to the position of the target pixel and the coefficient corresponding to the position of each pixel adjacent to the target pixel in the horizontal direction are each 0.
前記中域垂直輪郭成分検出手段は、The middle vertical contour component detecting means is
着目領域の中心に位置する対象画素と当該対象画素に隣接する画素とのそれぞれに対し画素の位置に対応する中域垂直係数を乗じた値の総和を、前記中域の垂直輪郭成分として検出し、The sum of values obtained by multiplying each of the target pixel located at the center of the region of interest and the pixel adjacent to the target pixel by the middle vertical coefficient corresponding to the pixel position is detected as the vertical contour component of the middle region. ,
前記中域垂直係数は、The mid-range vertical coefficient is
各係数の合計値が0であり、かつ、前記対象画素の位置に対応する係数と前記対象画素と垂直方向において隣接する各画素の位置に対応する係数とがそれぞれ0であるThe total value of each coefficient is 0, and the coefficient corresponding to the position of the target pixel and the coefficient corresponding to the position of each pixel adjacent to the target pixel in the vertical direction are each 0.
ことを特徴とする請求項4に記載の画像処理装置。The image processing apparatus according to claim 4.
着目領域の中心に位置する対象画素と当該対象画素に隣接する画素とのそれぞれに対し画素の位置に対応する高域水平係数を乗じた値の総和を、前記高域の水平輪郭成分として検出し、The sum of values obtained by multiplying the target pixel located at the center of the target region and the pixel adjacent to the target pixel by the high frequency horizontal coefficient corresponding to the pixel position is detected as the horizontal contour component of the high frequency. ,
前記高域水平係数は、The high frequency horizontal coefficient is
各係数の合計値が0であり、かつ、前記対象画素の位置に対応する係数と前記対象画素と水平方向において隣接する各画素の位置に対応する係数とがそれぞれ正の値であり、The total value of each coefficient is 0, and the coefficient corresponding to the position of the target pixel and the coefficient corresponding to the position of each pixel adjacent to the target pixel in the horizontal direction are positive values.
前記高域垂直輪郭成分検出手段は、The high frequency vertical contour component detecting means is
着目領域の中心に位置する対象画素と当該対象画素に隣接する画素とのそれぞれに対し画素の位置に対応する高域垂直係数を乗じた値の総和を、前記高域の垂直輪郭成分として検出し、The sum of values obtained by multiplying the target pixel located at the center of the target region and the pixel adjacent to the target pixel by the high frequency vertical coefficient corresponding to the pixel position is detected as the vertical contour component of the high frequency. ,
前記高域垂直係数は、The high frequency vertical coefficient is
各係数の合計値が0であり、かつ、前記対象画素の位置に対応する係数と前記対象画素と垂直方向において隣接する各画素の位置に対応する係数とがそれぞれ正の値であるThe total value of each coefficient is 0, and the coefficient corresponding to the position of the target pixel and the coefficient corresponding to the position of each pixel adjacent to the target pixel in the vertical direction are positive values.
ことを特徴とする請求項4に記載の画像処理装置。The image processing apparatus according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003333687A JP4400160B2 (en) | 2003-09-25 | 2003-09-25 | Image processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003333687A JP4400160B2 (en) | 2003-09-25 | 2003-09-25 | Image processing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005101949A JP2005101949A (en) | 2005-04-14 |
JP4400160B2 true JP4400160B2 (en) | 2010-01-20 |
Family
ID=34461630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003333687A Expired - Fee Related JP4400160B2 (en) | 2003-09-25 | 2003-09-25 | Image processing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4400160B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007028362A (en) * | 2005-07-20 | 2007-02-01 | Seiko Epson Corp | Apparatus and method for processing image data in which background image and target image are mixed |
JP4273428B2 (en) | 2006-01-31 | 2009-06-03 | ソニー株式会社 | Image processing apparatus, image processing method, program for image processing method, and recording medium recording program for image processing method |
JP4730141B2 (en) | 2006-03-06 | 2011-07-20 | ソニー株式会社 | Image processing apparatus and method, recording medium, and program |
JP4788488B2 (en) * | 2006-06-16 | 2011-10-05 | ソニー株式会社 | Image processing apparatus, image processing method, program for image processing method, and recording medium recording program for image processing method |
CN100433813C (en) * | 2006-12-28 | 2008-11-12 | 上海广电(集团)有限公司中央研究院 | Method for improving image articulation |
JP4942596B2 (en) * | 2007-09-14 | 2012-05-30 | 三洋電機株式会社 | Image processing apparatus, imaging apparatus, and display apparatus |
US20120314969A1 (en) * | 2010-02-25 | 2012-12-13 | Sharp Kabushiki Kaisha | Image processing apparatus and display device including the same, and image processing method |
JP6201634B2 (en) * | 2013-10-28 | 2017-09-27 | 株式会社Jvcケンウッド | Image processing apparatus and image processing method |
-
2003
- 2003-09-25 JP JP2003333687A patent/JP4400160B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005101949A (en) | 2005-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101247646B1 (en) | Image combining apparatus, image combining method and recording medium | |
JP4273428B2 (en) | Image processing apparatus, image processing method, program for image processing method, and recording medium recording program for image processing method | |
KR101267404B1 (en) | Image processor, image processing method, and recording medium | |
KR101099401B1 (en) | Image processing apparatus and computer-readable medium | |
CN103202022B (en) | Image processing apparatus and control method of the same | |
US8041138B2 (en) | Image processor | |
EP1480449B1 (en) | Adaptive coring for video peaking | |
JP4240324B2 (en) | Image processing apparatus, image processing method, program for image processing method, and recording medium recording program for image processing method | |
JP2001298621A (en) | Image processor and image processing method | |
US20090002562A1 (en) | Image Processing Device, Image Processing Method, Program for Image Processing Method, and Recording Medium Having Program for Image Processing Method Recorded Thereon | |
JP4320572B2 (en) | Signal processing apparatus and method, recording medium, and program | |
JP2004363853A (en) | Image signal noise reduction method and noise reduction device | |
JP4400160B2 (en) | Image processing device | |
JP4944061B2 (en) | Image processing apparatus and method, and program | |
JP5142833B2 (en) | Image processing apparatus and image processing method | |
JP5115297B2 (en) | Image processing apparatus, imaging apparatus, image processing method, and program | |
KR100700017B1 (en) | Color interpolator with adjustable threshold | |
JP5242750B2 (en) | Image processing device | |
JP4304609B2 (en) | Signal processing apparatus and method, recording medium, and program | |
JP3943762B2 (en) | Noise reduction device | |
JP4714096B2 (en) | Imaging device | |
JP2004326493A (en) | Device, method, recording medium and program for signal processing | |
JP6858073B2 (en) | Image processing device, image processing method, and program | |
JP2006279812A (en) | Luminance signal processor | |
JP4176023B2 (en) | Signal processing circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060414 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4400160 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091019 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |