JP4399995B2 - Proximity sensor - Google Patents

Proximity sensor Download PDF

Info

Publication number
JP4399995B2
JP4399995B2 JP2001072676A JP2001072676A JP4399995B2 JP 4399995 B2 JP4399995 B2 JP 4399995B2 JP 2001072676 A JP2001072676 A JP 2001072676A JP 2001072676 A JP2001072676 A JP 2001072676A JP 4399995 B2 JP4399995 B2 JP 4399995B2
Authority
JP
Japan
Prior art keywords
circuit
detection
input protection
input
static electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001072676A
Other languages
Japanese (ja)
Other versions
JP2002272915A (en
Inventor
義信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2001072676A priority Critical patent/JP4399995B2/en
Publication of JP2002272915A publication Critical patent/JP2002272915A/en
Application granted granted Critical
Publication of JP4399995B2 publication Critical patent/JP4399995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pinball Game Machines (AREA)
  • Keying Circuit Devices (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、近接センサに関するものである。
【0002】
【従来の技術】
従来より、検出対象物を検出する近接センサが提供されており、例えば遊戯盤(いわゆるパチンコ台)の入賞口に入った検出対象物たる遊戯球(いわゆるパチンコ玉)を検出するために用いられている。そして、遊戯球を検出する近接センサとしては、コイルとコンデンサの共振回路からなる検出回路を備えてこの検出回路を高周波数で発振させる所謂高周波発振方式のものが多く用いられている。
【0003】
上記従来の高周波発振方式の近接センサは、例えば図3に示すように、外部回路にある外部電源E及び負荷抵抗RLの直列回路に接続されて用いられ、コイルLにコンデンサCを並列接続して成る上述の検出回路1と、検出回路1を発振させて検出回路1の出力を電気的に処理し、検出結果として負荷抵抗RLにかかる電圧値を変化させる処理回路2と、処理回路2の外部回路側に並列接続され、外部電源Eからの入力の急な変動から処理回路2を保護する保護回路3’とを備えている。
【0004】
処理回路2は、例えばICなどで構成され、外部電源Eに保護回路3’及び負荷抵抗RLを介して直列接続されるツェナーダイオードZDic及び例えばトランジスタなどのスイッチング素子Qoutの直列回路と、検出回路1を共振させ、検出回路1の振幅変化を検知して前記スイッチング素子Qoutを制御してオン/オフさせる制御処理部2aとを備えている。
【0005】
保護回路3’は、処理回路2に並列接続される入力保護用ツェナーダイオードZDin及び入力保護用コンデンサCinと、前記入力保護用ツェナーダイオードZDin及び入力保護用コンデンサCinの接続点に一端が接続された入力保護用抵抗Rinとから成る。そして、入力保護用抵抗Rinの入力保護用ツェナーダイオードZDinと反対側の一端は、近接センサの正極端子として外部電源Eの正極に接続され、入力保護用ツェナーダイオードZDinのアノードが、近接センサの負極端子として外部電源Eの負極に負荷抵抗RLを介して接続される。前記入力保護用コンデンサCin及び入力保護用抵抗Rinは入力フィルターとして機能し、入力保護用ツェナーダイオードZDinのツェナー電圧を処理回路2の耐圧以下にしておくことで、外部電源Eから回り込んでくるサージなどから処理回路2を保護する。
【0006】
ここで、上述のような近接センサの遊戯球を検出する動作について簡単に説明する。
【0007】
近接センサの検出回路1のコイルLは、遊戯球の通過経路の近傍つまり入賞口周辺に配置される。
【0008】
遊戯球が検知範囲となるコイルLの近傍を通過すると、遊戯球は金属製であるから、電磁誘導作用によって遊戯球表面に渦電流が流れてエネルギーが消費されるとともに、コイルLのインピーダンスが変化する。これにより、検出回路1の発振条件は検出範囲内における遊戯球の有無に応じて変動して、振幅が低下したり、発振が停止することとなる。この発振の振幅変化を処理回路2が検知してスイッチング素子Qoutをオンからオフ又はオフからオンに切り換える。
【0009】
スイッチング素子Qoutがオンしているときには、外部電源Eにより処理回路2に印加される電圧の値は、ツェナーダイオードZDicのツェナー電圧の値(例えば約5.5[V])と略等しくなって、負荷抵抗RLでの電圧降下は、外部電源Eの電源電圧値から前記ツェナー電圧の値と入力保護用抵抗Rinの電圧降下を差し引いた値と略等しくなる。
【0010】
またスイッチング素子Qoutがオフしているときには、外部電源Eにより処理回路2に印加される電圧の値は、制御処理回路2aの消費電流に応じた値となって、負荷抵抗RLでの電圧降下は、外部電源Eの電源電圧値から処理回路2にかかる前記電圧値と入力保護用抵抗Rinの電圧降下を差し引いた値と略等しくなる。
【0011】
その結果、上記従来の近接センサは、遊戯球の検出に応じて負荷抵抗RLに印加される電圧値を変化させるのである。
【0012】
ところで、遊戯球には摩擦などによって生じる電荷が帯電することで静電気が発生し、非常に高い電位に帯電した遊戯球が検出回路1の近くの検知範囲を通過したときには、遊戯球に帯電していた電荷が遊戯球から検出回路1を介して処理回路2に流れ込み、処理回路2を破損させてしまうことがある。また、遊戯球をコイルLの中に通す場合には、遊戯球に帯電した電荷つまり静電気によって静電誘導又は電磁誘導が生じてコイルLに高い起電圧が発生し、これによっても処理回路2を破損させてしまうことがある。
【0013】
そこで上記従来の近接センサでは、少なくとも検出回路1付近に、静電気から処理回路2を保護する金属性のシールド部材4が配置されているのである。このシールド部材4は、遊戯球に帯電した静電気を自己に積極的に放電させてこれを集電し、静電気を検出回路1の電気的に安定な部位に流している(特開平6−295648号公報、特開平9−115400号公報、実開昭62−103145号公報参照)。
【0014】
一般に、近接センサの負極端子は、負荷抵抗RLを介して外部電源Eの負極に接続されて安定電位に保たれており、上述の静電気は検出回路1と前記負極端子との接続点に流されるのである。また、負荷抵抗RLの抵抗値は例えば約680[Ω]であって、入力保護用抵抗Rinの抵抗値(例えば約50〜100[Ω])よりも十分大きく設定されている。
【0015】
これにより、遊戯球の静電気を検出回路1の安定電位側の部位に流したときには、静電気は、図3中の矢印で示すように、負荷抵抗RLには流れずに入力保護用ツェナーダイオードZDin及び入力保護用抵抗Rinを介して外部電源Eへ流れてそこで吸収されることとなる。
【0016】
【発明が解決しようとする課題】
ところが上述のように静電気が流れることによって、入力保護用抵抗Rinには瞬間的に高電圧がかかる。ここで、入力保護用抵抗Rinには、例えば図4に示すように、安価で広く電子機器に使用されている角形のチップ抵抗が用いられている。この角形チップ抵抗は、アルミナ基板r1と、アルミナ基板r1上に形成された例えば炭素皮膜や金属皮膜などの抵抗体r2と、抵抗体r2の両端に接続された電極r3とから構成され、抵抗体r2をレーザートリミングによってトリミングすることにより、トリミングした部分r21に応じた所望の抵抗値に設定されている。
【0017】
そこで入力保護用抵抗Rinに高電圧が印加されたときには、図4中の点線で囲んだ部位に電流が集中して流れ、入力保護用抵抗Rinの前記部位が劣化し易くなってしまうといった問題があった。また、角形チップ抵抗のサイズを多少大きくしても上記劣化を防ぐことはできない。
【0018】
このような問題を解決するために、入力保護用抵抗Rinに角形チップ抵抗ではなく、耐高電圧性及び耐パルス性に優れた例えば円筒形のチップ抵抗などを用いたものもあるが、この場合にはコストアップの要因となっしまう。
【0019】
また上記問題を解決するため、図5に示すように、保護回路3’に放電ギャップ5を設けた近接センサが提供されている(特開平9−45194号公報参照)。この近接センサは、プリント配線基板上に保護回路3’及び処理回路2の構成部品を実装したものであって、前記放電ギャップ5は、外部回路接続用の両端子にそれぞれ接続する配線パターンの隙間を狭くすることで形成されている。これにより、遊戯球に帯電した静電気がシールド部材4により検出回路1の安定電位側に流れた結果、放電ギャップ5で放電が生じると、静電気は入力保護用ツェナーダイオードZDin及び入力保護用抵抗Rinを介することなく外部電源E側に流れて、入力保護用抵抗Rinにかかる負荷を軽減することができるのである。
【0020】
しかしながら、放電ギャップ5での放電の発生は、プリント配線基板の表面状態や温湿度、プリント配線基板の銅箔からなる配線パターンの微妙な寸法バラツキによって影響され、所望の条件のときに安定して放電させることが困難であった。さらに、放電ギャップ5の放電は相当な高圧がかかったときでしか起こらないため、角形チップ抵抗を劣化させずに使えるほどには入力保護用抵抗Rinにかかる負荷を軽減しきれない。また、放電ギャップ5を設けることにより、プリント配線基板上に余分なスペースを必要とするという欠点があった。
【0021】
本発明は上記問題点の解決を目的とするものであり、構成部品の劣化を防止した近接センサを提供する。
【0022】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、外部回路に接続されて検出対象物を検出する近接センサであって、検出範囲内における検出対象物の有無に応じて電気出力が変化する検出手段と、検出手段の出力を電気的に処理し、外部回路に検出結果を出力する処理回路と、検出対象物の静電気を集電し、集電された静電気を検出手段の安定電位となる部位に流す集電手段と、外部回路からの入力の急な変動から処理回路を保護する保護回路とを備え、保護回路は、処理回路の外部回路側に並列接続される入力保護用コンデンサと、入力保護用コンデンサに並列接続される入力保護用抵抗及び入力保護用ツェナーダイオードの直列回路とからなって、入力保護用ツェナーダイオードの両端に外部回路が接続されることを特徴とし、保護回路の各構成部品を上述のように接続したことによって、検出手段の安定電位となる部位から入力保護用ツェナーダイオードを介して流れる静電気を、入力保護用抵抗を通さずに外部回路に流して、入力保護用抵抗の劣化を防止することができ、その結果、入力保護用抵抗に例えば角形チップ抵抗のような安価な抵抗を用いることができ、また、従来例と比べて保護回路の各構成部品の接続を変えるだけなので、センサ全体が従来例よりも大きくなるのを防ぐことができる。
【0023】
請求項2の発明は、請求項1の発明において、処理回路は集積回路からなることを特徴とし、集電手段で集電された静電気は入力保護用抵抗に流れないので、積極的に集電手段に検出対象物に帯電した静電気を集電させて、入力保護用抵抗の劣化を防ぐとともに静電気に弱い処理回路を保護することができる。
【0024】
請求項3の発明は、請求項2の発明において、検出手段は、検出対象物が内部を通過するコイルを備え、高周波発振方式にて検出対象物の有無に応じて電気出力を変化させることを特徴とし、コイル内部に略均一な高周波磁界を形成させて、検出対象物のコイル内部の通過する位置に関わらず検出対象物の検出特性を安定させることができ、また、静電気により帯電した検出対象物をコイル内部に通過させるとコイルに高電圧が生じるが、集電手段で集電された静電気は入力保護用抵抗に流れないので、積極的に集電手段に検出対象物に帯電した静電気を集電させて、入力保護用抵抗の劣化を防ぐとともにコイルに高電圧がかかるのを防止して処理回路を保護することができる。
【0025】
【発明の実施の形態】
(実施形態1)
本実施形態における基本構成は従来例と共通するために共通する部分については同一の符号を付して説明を省略し、本実施形態の特徴となる部分についてのみ詳細に説明する。
【0026】
本実施形態は、図1に示すように従来例と同様、検出回路1と、検出回路1を発振させて検出回路1の出力を電気的に処理し、検出結果として負荷抵抗RLにかかる電圧値を変化させる処理回路2と、集電手段たるシールド部材4と、外部電源Eからの入力の急な変動から処理回路2を保護する保護回路3とを備えている。
【0027】
ここで本実施形態の保護回路3は、従来例と異なって、処理回路2の外部回路側に並列接続される入力保護用コンデンサCinに、入力保護用抵抗Rin及び入力保護用ツェナーダイオードZDinの直列回路が並列接続されて構成されている。そして、入力保護用ツェナーダイオードZDinの入力保護用抵抗Rinに接続するカソードが正極端子として外部電源Eの正極に接続され、入力保護用ツェナーダイオードZDinのアノードが負極端子として外部電源Eの負極に負荷抵抗RLを介して接続される。
【0028】
本実施形態では上述のように保護回路3を構成したことにより、シールド部材4に放電させた遊戯球の静電気を、検出回路1の安定電位側の部位に流しても、前記静電気は、図1中の矢印に示すように、入力保護用抵抗Rinを介することなく入力保護用ツェナーダイオードZDinから外部電源E側に流れるので、入力保護用抵抗Rinにかかる負荷を軽減して入力保護用抵抗Rinの劣化を防ぐことができる。その結果、入力保護用抵抗Rinに例えば角形チップ抵抗のような安価な抵抗を用いることができ、また、従来例と比べて保護回路3の各構成部品の接続を変えるだけなので、センサ全体が従来例よりも大きくなるのを防ぐことができる。
【0029】
また、静電気は入力保護用抵抗Rinに流れないので、積極的に遊戯球に帯電した静電気をシールド部材4に集電させて、入力保護用抵抗Rinの劣化を防ぐことができるとともに、ICで構成された静電気に弱い処理回路2を保護することができる。
【0030】
ところで、本実施形態では検出回路1のコイルLを、遊戯台の入賞口となる遊戯球の通過孔周辺に巻線が巻回するように配置し、遊戯球をコイルL内部に通過させる。コイルL内部には略均一な高周波磁界が形成されるので、遊戯球の通過孔での通過する位置に関わらず遊戯球の検出特性を安定させることができる。また、コイルLを上述のように配置したことにより、帯電した遊戯球がコイルL内部を通過するとコイルLに高電圧が生じるが、シールド部材4で集電された静電気は入力保護用抵抗Rinに流れないので、遊戯球に帯電した静電気を積極的にシールド部材4に放電させて、入力保護用抵抗Rinの劣化を防ぐことができるとともにコイルLに高電圧がかかるのを防止して処理回路Lを保護することができる。
【0031】
なお、本実施形態が接続される外部電源E及び負荷抵抗RLの直列回路を含む外部回路は、例えば遊戯台の制御基板に構成されており、この制御基板は静電気やサージに対して十分強く設計されている。例えば、外部電源Eをスイッチングレギュレータや3端子レギュレータで構成して、これに容量の大きなコンデンサを接続して、外部電源Eのインピーダンスを十分に小さくしていることにより、近接センサから静電気による電荷が印加されたところでほとんど電源電圧に変動が生じない。さらに、上述の制御基板には、外部電源Eの負極側の近接センサとのインターフェース部分に、図示しない保護用ダイオードおよび保護用コンデンサならびに抵抗が接続れているので、制御基板は静電気に対しては十分に強いのである。また、制御基板は処理回路2及び保護回路3の構成部品を実装した基板よりもサイズが大きく回路規模も大きいので、制御基板に対して静電気やサージなどの対策を容易に行うことが可能であり、近接センサ側の前記基板に対して前記対策を図るよりも、相対的にコストを小さく抑えることができるのである。
(実施形態2)
本実施形態における基本構成は実施形態1と共通するために共通する部分については同一の符号を付して説明を省略し、本実施形態の特徴となる部分についてのみ詳細に説明する。
【0032】
本実施形態の検出回路1は、図2に示すように、2つのコイルL1,L2からなる。この検出回路1は、実施形態1のように高周波数で発振する高周波発振方式とは異なり、一方の送信用のコイルL1を所定の周波数及び振幅で発振させて、他方の受信用のコイルL2に電圧を誘起させる所謂電磁誘導方式に構成されている。そして、本実施形態の処理回路2の制御処理部2aは、送信用のコイルL1を上述のように発振させて、受信用のコイルL2に誘起される周波数成分を監視し、受信用のコイルL2の誘起電圧の変化から検出対象物が近くを通過したことを検知するのである。
【0033】
本実施形態を遊戯球の検出に用いるときには、送信用及び受信用のコイルL1,L2を、遊戯台の入賞口にあたる通過孔周辺に沿ってそれぞれの巻線が巻回するように配置し、遊戯球が入賞口に入ると、処理回路2の制御処理部2aが受信用コイルL2の出力変化から遊戯球の入賞口への通過を判別して、スイッチング素子Qoutをオンからオフ又はオフからオンに切り換えて、負荷抵抗RLにかかる電圧値を変化させるのである。
【0034】
ところで上述の本実施形態の検出回路1であっても、静電気を帯びた遊戯球が受信用及び送信用のコイルL1,L2の内部を通ることによってコイルL1,L2のそれぞれに高い誘導電圧をもたらすことは明らかであり、コイルL1,L2に誘起された高電圧によって、処理回路2が破壊される虞がある。
【0035】
しかし、本実施形態においても保護回路3を実施形態1と同様に構成していることによって、シールド部材4で集電した遊戯球の静電気を入力保護用抵抗Rinに通さずに外部電源E側に流し、入力保護用抵抗Rinの劣化を防止することができる。そこで、遊戯球の静電気を積極的にシールド部材4に放電させて、入力保護用抵抗Rinの劣化を防止するとともにコイルL1,L2に高電圧がかかるのを防止して処理回路2を保護することができるのである。
【0036】
ところで本実施形態では検出回路1を所謂電磁誘導方式として上述のように構成したが、検出回路1が電磁誘導方式や実施形態1の高周波発振方式以外の他の方式であっても、検出範囲における検出対象物の有無に応じて電気出力が変化するように構成されていれば良い。
【0037】
【発明の効果】
請求項1の発明は、外部回路に接続されて検出対象物を検出する近接センサであって、検出範囲内における検出対象物の有無に応じて電気出力が変化する検出手段と、検出手段の出力を電気的に処理し、外部回路に検出結果を出力する処理回路と、検出対象物の静電気を集電し、集電された静電気を検出手段の安定電位となる部位に流す集電手段と、外部回路からの入力の急な変動から処理回路を保護する保護回路とを備え、保護回路は、処理回路の外部回路側に並列接続される入力保護用コンデンサと、入力保護用コンデンサに並列接続される入力保護用抵抗及び入力保護用ツェナーダイオードの直列回路とからなって、入力保護用ツェナーダイオードの両端に外部回路が接続されるので、保護回路の各構成部品を上述のように接続したことによって、検出手段の安定電位となる部位から入力保護用ツェナーダイオードを介して流れる静電気を、入力保護用抵抗を通さずに外部回路に流して、入力保護用抵抗の劣化を防止することができ、その結果、入力保護用抵抗に例えば角形チップ抵抗のような安価な抵抗を用いることができ、また、従来例と比べて保護回路の各構成部品の接続を変えるだけなので、センサ全体が従来例よりも大きくなるのを防ぐことができるという効果がある。
【0038】
請求項2の発明は、処理回路は集積回路からなるので、集電手段で集電された静電気は入力保護用抵抗に流れないので、積極的に集電手段に検出対象物に帯電した静電気を集電させて、入力保護用抵抗の劣化を防ぐとともに静電気に弱い処理回路を保護することができるという効果がある。
【0039】
請求項3の発明は、検出手段は、検出対象物が内部を通過するコイルを備え、高周波発振方式にて検出対象物の有無に応じて電気出力を変化させるので、コイル内部に略均一な高周波磁界を形成させて、検出対象物のコイル内部の通過する位置に関わらず検出対象物の検出特性を安定させることができ、また、静電気により帯電した検出対象物をコイル内部に通過させるとコイルに高電圧が生じるが、集電手段で集電された静電気は入力保護用抵抗に流れないので、積極的に集電手段に検出対象物に帯電した静電気を集電させて、入力保護用抵抗の劣化を防ぐとともにコイルに高電圧がかかるのを防止して処理回路を保護することができるという効果がある。
【図面の簡単な説明】
【図1】実施形態1を示す概略回路図である。
【図2】実施形態2を示す概略回路図である。
【図3】従来例を示す概略回路図である。
【図4】角形チップ抵抗の正面図である。
【図5】他の従来例を示す概略回路図である。
【符号の説明】
1 検出回路
2 処理回路
3 保護回路
4 シールド部材
C コンデンサ
Cin 入力保護用コンデンサ
E 外部電源
L コイル
Rin 入力保護用抵抗
RL 負荷抵抗
ZDin 入力保護用ツェナーダイオード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a proximity sensor.
[0002]
[Prior art]
Conventionally, a proximity sensor for detecting a detection object has been provided, and is used for detecting a play ball (so-called pachinko ball) as a detection object that has entered a winning opening of a game board (so-called pachinko machine), for example. Yes. As a proximity sensor for detecting a game ball, a so-called high-frequency oscillation type that includes a detection circuit composed of a resonance circuit of a coil and a capacitor and oscillates the detection circuit at a high frequency is often used.
[0003]
For example, as shown in FIG. 3, the conventional high-frequency oscillation type proximity sensor is used by being connected to a series circuit of an external power source E and a load resistor RL in an external circuit, and a capacitor C is connected to the coil L in parallel. The above-described detection circuit 1, the processing circuit 2 that oscillates the detection circuit 1 to electrically process the output of the detection circuit 1, and changes the voltage value applied to the load resistor RL as a detection result, and the outside of the processing circuit 2 A protection circuit 3 ′ that is connected in parallel to the circuit side and protects the processing circuit 2 from sudden fluctuations in the input from the external power supply E is provided.
[0004]
The processing circuit 2 is composed of, for example, an IC or the like. The processing circuit 2 includes a Zener diode ZDic connected in series to the external power source E via the protection circuit 3 ′ and the load resistor RL, and a switching circuit Qout such as a transistor, and a detection circuit 1 And a control processing unit 2a that detects a change in amplitude of the detection circuit 1 and controls the switching element Qout to turn it on / off.
[0005]
One end of the protection circuit 3 ′ is connected to a connection point between the input protection Zener diode ZDin and the input protection capacitor Cin connected in parallel to the processing circuit 2, and the input protection Zener diode ZDin and the input protection capacitor Cin. It comprises an input protection resistor Rin. One end of the input protection resistor Rin opposite to the input protection Zener diode ZDin is connected to the positive electrode of the external power supply E as a positive electrode terminal of the proximity sensor, and the anode of the input protection Zener diode ZDin is connected to the negative electrode of the proximity sensor. A terminal is connected to the negative electrode of the external power supply E via a load resistor RL. The input protection capacitor Cin and the input protection resistor Rin function as an input filter, and the surge that wraps around from the external power supply E by keeping the Zener voltage of the input protection Zener diode ZDin below the breakdown voltage of the processing circuit 2. The processing circuit 2 is protected from the above.
[0006]
Here, the operation | movement which detects the play ball of the above proximity sensors is demonstrated easily.
[0007]
The coil L of the detection circuit 1 of the proximity sensor is disposed in the vicinity of the play ball passing path, that is, in the vicinity of the winning hole.
[0008]
When the game ball passes through the vicinity of the coil L, which is the detection range, the game ball is made of metal, so eddy currents flow on the surface of the game ball due to electromagnetic induction and energy is consumed, and the impedance of the coil L changes. To do. As a result, the oscillation condition of the detection circuit 1 varies depending on the presence or absence of a play ball within the detection range, and the amplitude decreases or oscillation stops. The processing circuit 2 detects this oscillation amplitude change and switches the switching element Qout from on to off or from off to on.
[0009]
When the switching element Qout is turned on, the value of the voltage applied to the processing circuit 2 by the external power supply E becomes substantially equal to the value of the Zener voltage of the Zener diode ZDic (for example, about 5.5 [V]), The voltage drop at the load resistor RL is substantially equal to the value obtained by subtracting the value of the Zener voltage and the voltage drop of the input protection resistor Rin from the power supply voltage value of the external power supply E.
[0010]
When the switching element Qout is off, the value of the voltage applied to the processing circuit 2 by the external power source E becomes a value corresponding to the current consumption of the control processing circuit 2a, and the voltage drop at the load resistor RL is The voltage value applied to the processing circuit 2 is subtracted from the power supply voltage value of the external power supply E and the voltage drop of the input protection resistor Rin.
[0011]
As a result, the conventional proximity sensor changes the voltage value applied to the load resistor RL according to the detection of the game ball.
[0012]
By the way, the game ball is charged with an electric charge generated by friction or the like, and static electricity is generated. When the game ball charged to a very high potential passes through the detection range near the detection circuit 1, the game ball is charged. The charged electric charge may flow from the game ball to the processing circuit 2 through the detection circuit 1 and damage the processing circuit 2 in some cases. Further, when the game ball is passed through the coil L, electrostatic induction or electromagnetic induction is generated by the electric charge charged to the game ball, that is, static electricity, and a high electromotive voltage is generated in the coil L. It may be damaged.
[0013]
Therefore, in the conventional proximity sensor, a metallic shield member 4 that protects the processing circuit 2 from static electricity is disposed at least in the vicinity of the detection circuit 1. The shield member 4 positively discharges the static electricity charged in the game ball, collects the static electricity, and flows the static electricity to an electrically stable portion of the detection circuit 1 (Japanese Patent Laid-Open No. 6-295648). Gazette, JP-A-9-115400, Japanese Utility Model Laid-Open No. 62-103145).
[0014]
In general, the negative electrode terminal of the proximity sensor is connected to the negative electrode of the external power supply E via the load resistor RL and is kept at a stable potential, and the above-described static electricity flows to the connection point between the detection circuit 1 and the negative electrode terminal. It is. The resistance value of the load resistor RL is about 680 [Ω], for example, and is set sufficiently larger than the resistance value of the input protection resistor Rin (for example, about 50 to 100 [Ω]).
[0015]
As a result, when the static electricity of the game ball is caused to flow to the site on the stable potential side of the detection circuit 1, the static electricity does not flow through the load resistor RL as indicated by the arrow in FIG. It flows to the external power source E through the input protection resistor Rin and is absorbed there.
[0016]
[Problems to be solved by the invention]
However, when static electricity flows as described above, a high voltage is instantaneously applied to the input protection resistor Rin. Here, as the input protection resistor Rin, for example, as shown in FIG. 4, a rectangular chip resistor that is inexpensive and widely used in electronic devices is used. This square chip resistor is composed of an alumina substrate r1, a resistor r2 such as a carbon film or a metal film formed on the alumina substrate r1, and electrodes r3 connected to both ends of the resistor r2. The desired resistance value corresponding to the trimmed portion r21 is set by trimming r2 by laser trimming.
[0017]
Therefore, when a high voltage is applied to the input protection resistor Rin, the current concentrates on the portion surrounded by the dotted line in FIG. 4 and the portion of the input protection resistor Rin tends to deteriorate. there were. Further, even if the size of the square chip resistor is slightly increased, the above-described deterioration cannot be prevented.
[0018]
In order to solve such a problem, there is an input protection resistor Rin that uses not a square chip resistor but a high-voltage resistance and pulse resistance, for example, a cylindrical chip resistor. It becomes a factor of cost increase.
[0019]
In order to solve the above problem, as shown in FIG. 5, a proximity sensor in which a discharge gap 5 is provided in a protection circuit 3 ′ is provided (see Japanese Patent Laid-Open No. 9-45194). In this proximity sensor, components of the protection circuit 3 ′ and the processing circuit 2 are mounted on a printed wiring board, and the discharge gap 5 is a gap between wiring patterns connected to both terminals for external circuit connection. It is formed by narrowing. As a result, when static electricity charged in the game ball flows to the stable potential side of the detection circuit 1 by the shield member 4 and discharge occurs in the discharge gap 5, the static electricity causes the input protection Zener diode ZDin and the input protection resistance Rin to flow. It is possible to reduce the load applied to the input protection resistor Rin by flowing to the external power supply E side without going through.
[0020]
However, the occurrence of discharge in the discharge gap 5 is affected by the surface state and temperature / humidity of the printed wiring board, and subtle dimensional variations of the wiring pattern made of the copper foil of the printed wiring board, and is stable under desired conditions. It was difficult to discharge. Furthermore, since the discharge gap 5 is discharged only when a considerably high voltage is applied, the load applied to the input protection resistor Rin cannot be reduced to such an extent that it can be used without degrading the square chip resistor. Further, the provision of the discharge gap 5 has a drawback that an extra space is required on the printed wiring board.
[0021]
The present invention is intended to solve the above-described problems, and provides a proximity sensor that prevents deterioration of components.
[0022]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is a proximity sensor that is connected to an external circuit and detects a detection target, and the electrical output changes depending on the presence or absence of the detection target within the detection range. The detection means, the processing circuit for electrically processing the output of the detection means and outputting the detection result to an external circuit, and collecting the static electricity of the detection target, and the collected static electricity becomes the stable potential of the detection means Current collecting means that flows to the site, and a protection circuit that protects the processing circuit from sudden fluctuations in the input from the external circuit, the protection circuit includes an input protection capacitor connected in parallel to the external circuit side of the processing circuit; It consists of a series circuit of an input protection resistor and an input protection Zener diode connected in parallel to an input protection capacitor, and an external circuit is connected to both ends of the input protection Zener diode. By connecting each component as described above, the static electricity that flows from the part that becomes the stable potential of the detection means through the input protection Zener diode is passed through the external circuit without passing through the input protection resistor, thereby protecting the input. As a result, it is possible to use an inexpensive resistor such as a square chip resistor as the input protection resistor, and to connect each component of the protection circuit as compared with the conventional example. Therefore, it is possible to prevent the entire sensor from becoming larger than the conventional example.
[0023]
The invention of claim 2 is characterized in that, in the invention of claim 1, the processing circuit is formed of an integrated circuit, and the static electricity collected by the current collecting means does not flow to the input protection resistor. It is possible to collect static electricity charged on the detection target in the means, thereby preventing the input protection resistance from being deteriorated and protecting the processing circuit which is sensitive to static electricity.
[0024]
According to a third aspect of the present invention, in the second aspect of the present invention, the detection means includes a coil through which the detection target passes, and changes the electrical output in accordance with the presence or absence of the detection target by a high frequency oscillation method. It is characterized by the fact that a substantially uniform high-frequency magnetic field is formed inside the coil to stabilize the detection characteristics of the detection target regardless of the position of the detection target passing through the coil, and the detection target charged by static electricity When an object is passed through the coil, a high voltage is generated in the coil, but the static electricity collected by the current collecting means does not flow to the input protection resistor. By collecting current, it is possible to protect the processing circuit by preventing deterioration of the input protection resistor and preventing high voltage from being applied to the coil.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Since the basic configuration in the present embodiment is the same as that of the conventional example, common portions are denoted by the same reference numerals, description thereof is omitted, and only the portions that characterize the present embodiment will be described in detail.
[0026]
As shown in FIG. 1, in the present embodiment, the detection circuit 1 and the output of the detection circuit 1 are electrically processed by oscillating the detection circuit 1 and the voltage value applied to the load resistor RL as a detection result, as in the conventional example. Is provided, a shield member 4 serving as a current collecting means, and a protection circuit 3 that protects the processing circuit 2 from sudden fluctuations in the input from the external power source E.
[0027]
Here, unlike the conventional example, the protection circuit 3 of the present embodiment includes an input protection capacitor Cin connected in parallel to the external circuit side of the processing circuit 2 and an input protection resistor Rin and an input protection Zener diode ZDin in series. Circuits are connected in parallel. The cathode connected to the input protection resistor Rin of the input protection Zener diode ZDin is connected to the positive electrode of the external power supply E as a positive terminal, and the anode of the input protection Zener diode ZDin is loaded to the negative electrode of the external power supply E as a negative terminal. It is connected via a resistor RL.
[0028]
In the present embodiment, since the protection circuit 3 is configured as described above, even if the static electricity of the game ball discharged to the shield member 4 is caused to flow to the stable potential side portion of the detection circuit 1, the static electricity is As indicated by the arrow in the middle, the current flows from the input protection Zener diode ZDin to the external power supply E side without going through the input protection resistor Rin. Therefore, the load applied to the input protection resistor Rin is reduced and the input protection resistor Rin Deterioration can be prevented. As a result, an inexpensive resistor such as a square chip resistor can be used as the input protection resistor Rin, and only the connection of each component of the protection circuit 3 is changed as compared with the conventional example. It can be prevented from becoming larger than the example.
[0029]
In addition, since static electricity does not flow to the input protection resistor Rin, it is possible to prevent the input protection resistor Rin from being deteriorated by actively collecting the static electricity charged in the play ball to the shield member 4 and is configured by an IC. It is possible to protect the processing circuit 2 that is weak against static electricity.
[0030]
By the way, in this embodiment, the coil L of the detection circuit 1 is arranged so that the winding is wound around the passage hole of the game ball that becomes the winning opening of the play stand, and the game ball is passed through the coil L. Since a substantially uniform high-frequency magnetic field is formed inside the coil L, the detection characteristics of the game ball can be stabilized regardless of the position through which the game ball passes. Further, by arranging the coil L as described above, a high voltage is generated in the coil L when the charged game ball passes through the inside of the coil L, but the static electricity collected by the shield member 4 is applied to the input protection resistor Rin. Since it does not flow, the static electricity charged in the play ball can be positively discharged to the shield member 4 to prevent the input protection resistor Rin from being deteriorated, and the high voltage is not applied to the coil L, and the processing circuit L Can be protected.
[0031]
Note that the external circuit including the series circuit of the external power source E and the load resistor RL to which the present embodiment is connected is configured, for example, on a control board of an amusement stand, and this control board is designed to be sufficiently strong against static electricity and surge. Has been. For example, the external power source E is configured by a switching regulator or a three-terminal regulator, and a capacitor having a large capacity is connected to the external power source E so that the impedance of the external power source E is sufficiently small. When applied, the power supply voltage hardly fluctuates. In addition, since the control board is connected to a proximity diode on the negative electrode side of the external power source E and a protective diode, a protective capacitor and a resistor (not shown), the control board is resistant to static electricity. It is strong enough. Moreover, since the control board is larger in size and circuit scale than the board on which the components of the processing circuit 2 and the protection circuit 3 are mounted, it is possible to easily take countermeasures such as static electricity and surge on the control board. Thus, the cost can be relatively reduced as compared with the above-described countermeasures for the substrate on the proximity sensor side.
(Embodiment 2)
Since the basic configuration in the present embodiment is the same as that in the first embodiment, common portions are denoted by the same reference numerals and description thereof is omitted, and only the portions that are characteristic of the present embodiment will be described in detail.
[0032]
As shown in FIG. 2, the detection circuit 1 of the present embodiment includes two coils L1 and L2. Unlike the high-frequency oscillation system that oscillates at a high frequency as in the first embodiment, the detection circuit 1 oscillates one transmission coil L1 with a predetermined frequency and amplitude and causes the other reception coil L2 to oscillate. A so-called electromagnetic induction system for inducing a voltage is employed. Then, the control processing unit 2a of the processing circuit 2 of the present embodiment oscillates the transmission coil L1 as described above, monitors the frequency component induced in the reception coil L2, and receives the reception coil L2. It is detected from the change in the induced voltage that the detection object has passed nearby.
[0033]
When this embodiment is used for detection of a game ball, the coils L1 and L2 for transmission and reception are arranged so that the respective windings are wound around the passage hole corresponding to the winning opening of the game stand. When the ball enters the winning opening, the control processing unit 2a of the processing circuit 2 determines the passage of the play ball from the receiving coil L2 to the winning opening and turns the switching element Qout from on to off or from off to on. By switching, the voltage value applied to the load resistance RL is changed.
[0034]
By the way, even in the detection circuit 1 of the above-described embodiment, a high induced voltage is generated in each of the coils L1 and L2 by passing the play balls charged with static electricity through the inside of the receiving and transmitting coils L1 and L2. Obviously, there is a possibility that the processing circuit 2 is destroyed by the high voltage induced in the coils L1 and L2.
[0035]
However, in the present embodiment as well, the protection circuit 3 is configured in the same manner as in the first embodiment, so that the static electricity of the game sphere collected by the shield member 4 does not pass through the input protection resistor Rin and goes to the external power source E side. Therefore, it is possible to prevent deterioration of the input protection resistor Rin. Accordingly, the static electricity of the game ball is positively discharged to the shield member 4 to prevent the input protection resistor Rin from being deteriorated and to prevent the high voltage from being applied to the coils L1 and L2, thereby protecting the processing circuit 2. Can do it.
[0036]
By the way, in the present embodiment, the detection circuit 1 is configured as a so-called electromagnetic induction method as described above. However, even if the detection circuit 1 is other than the electromagnetic induction method and the high-frequency oscillation method of the first embodiment, What is necessary is just to be comprised so that an electrical output may change according to the presence or absence of a detection target.
[0037]
【The invention's effect】
The invention according to claim 1 is a proximity sensor that is connected to an external circuit and detects a detection target, wherein the electrical output changes depending on the presence or absence of the detection target within the detection range, and the output of the detection means A processing circuit that electrically processes and outputs a detection result to an external circuit, current collecting means for collecting the static electricity of the detection target, and flowing the collected static electricity to a site that becomes a stable potential of the detection means, The protection circuit protects the processing circuit from sudden fluctuations in the input from the external circuit.The protection circuit is connected in parallel to the input protection capacitor and the input protection capacitor connected in parallel to the external circuit side of the processing circuit. Since the external circuit is connected to both ends of the input protection zener diode, the components of the protection circuit are connected as described above. By flowing static electricity flowing through the input protection Zener diode from the stable potential of the detection means to the external circuit without passing through the input protection resistor, deterioration of the input protection resistance can be prevented. As a result, an inexpensive resistor such as a square chip resistor can be used as the input protection resistor, and only the connection of each component of the protection circuit is changed compared to the conventional example. Can be prevented from becoming large.
[0038]
According to the second aspect of the present invention, since the processing circuit is an integrated circuit, the static electricity collected by the current collecting means does not flow to the input protection resistor. Current collection is effective in preventing deterioration of the input protection resistor and protecting a processing circuit that is sensitive to static electricity.
[0039]
In the invention of claim 3, the detection means includes a coil through which the detection object passes, and changes the electric output in accordance with the presence or absence of the detection object by a high-frequency oscillation method. A magnetic field can be formed to stabilize the detection characteristics of the detection object regardless of the position of the detection object passing through the coil. Although a high voltage is generated, the static electricity collected by the current collecting means does not flow to the input protection resistor. There is an effect that it is possible to protect the processing circuit by preventing deterioration and applying a high voltage to the coil.
[Brief description of the drawings]
FIG. 1 is a schematic circuit diagram showing a first embodiment.
FIG. 2 is a schematic circuit diagram showing a second embodiment.
FIG. 3 is a schematic circuit diagram showing a conventional example.
FIG. 4 is a front view of a square chip resistor.
FIG. 5 is a schematic circuit diagram showing another conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Detection circuit 2 Processing circuit 3 Protection circuit 4 Shield member C Capacitor Cin Input protection capacitor E External power supply L Coil Rin Input protection resistance RL Load resistance ZDin Input protection Zener diode

Claims (3)

外部回路に接続されて検出対象物を検出する近接センサであって、検出範囲内における検出対象物の有無に応じて電気出力が変化する検出手段と、検出手段の出力を電気的に処理し、外部回路に検出結果を出力する処理回路と、検出対象物の静電気を集電し、集電された静電気を検出手段の安定電位となる部位に流す集電手段と、外部回路からの入力の急な変動から処理回路を保護する保護回路とを備え、保護回路は、処理回路の外部回路側に並列接続される入力保護用コンデンサと、入力保護用コンデンサに並列接続される入力保護用抵抗及び入力保護用ツェナーダイオードの直列回路とからなって、入力保護用ツェナーダイオードの両端に外部回路が接続されることを特徴とする近接センサ。A proximity sensor that is connected to an external circuit and detects a detection object, wherein the electrical output changes depending on the presence or absence of the detection object within the detection range, and the output of the detection means is electrically processed, A processing circuit that outputs the detection result to an external circuit, a current collecting means for collecting static electricity of the detection target, and flowing the collected static electricity to a portion that becomes a stable potential of the detecting means, and an abrupt input from the external circuit A protection circuit that protects the processing circuit from various fluctuations. The protection circuit includes an input protection capacitor connected in parallel to the external circuit side of the processing circuit, and an input protection resistor and input connected in parallel to the input protection capacitor. A proximity sensor comprising a series circuit of protective Zener diodes, wherein an external circuit is connected to both ends of the input protective Zener diode. 処理回路は集積回路からなることを特徴とする請求項1記載の近接センサ。The proximity sensor according to claim 1, wherein the processing circuit is an integrated circuit. 検出手段は、検出対象物が内部を通過するコイルを備え、高周波発振方式にて検出対象物の有無に応じて電気出力を変化させることを特徴とする請求項2記載の近接センサ。The proximity sensor according to claim 2, wherein the detection means includes a coil through which the detection object passes, and changes an electrical output in accordance with the presence or absence of the detection object by a high-frequency oscillation method.
JP2001072676A 2001-03-14 2001-03-14 Proximity sensor Expired - Fee Related JP4399995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001072676A JP4399995B2 (en) 2001-03-14 2001-03-14 Proximity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001072676A JP4399995B2 (en) 2001-03-14 2001-03-14 Proximity sensor

Publications (2)

Publication Number Publication Date
JP2002272915A JP2002272915A (en) 2002-09-24
JP4399995B2 true JP4399995B2 (en) 2010-01-20

Family

ID=18930225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001072676A Expired - Fee Related JP4399995B2 (en) 2001-03-14 2001-03-14 Proximity sensor

Country Status (1)

Country Link
JP (1) JP4399995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988580A (en) * 2011-12-12 2014-08-13 皇家飞利浦有限公司 Circuit arrangement for selective powering of distributed loads

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951021B2 (en) * 2009-04-28 2012-06-13 株式会社サンセイアールアンドディ Game machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988580A (en) * 2011-12-12 2014-08-13 皇家飞利浦有限公司 Circuit arrangement for selective powering of distributed loads
CN103988580B (en) * 2011-12-12 2016-09-21 皇家飞利浦有限公司 Circuit arrangement for the selectively power of distributed terminator

Also Published As

Publication number Publication date
JP2002272915A (en) 2002-09-24

Similar Documents

Publication Publication Date Title
TWI632381B (en) Electric leakage detector
EP1965217B1 (en) High bandwidth open-loop current sensor
JP2013231720A (en) Apparatus and method for arc fault detection
JP4482782B2 (en) Control device for vehicle alternator
JP2005020448A (en) Noise filter and electronic device having the same
CA2328623C (en) Arc detection sensor utilizing discrete inductors
US7739024B2 (en) Controller for operating at least one fuel injector of an internal combustion engine
JP4399995B2 (en) Proximity sensor
WO2001005010A1 (en) Method and apparatus for detecting arcs and controlling supply of electrical power
JP2001308586A (en) Electronic apparatus
JP2006288687A (en) Touch sensor
JP6373912B2 (en) Noise filter and circuit board on which the noise filter is formed
JP4179598B2 (en) Static eliminator
JP3399087B2 (en) Detector
JP4407266B2 (en) 2-wire proximity switch and gaming machine
JPH0945194A (en) Lead-through proximity sensor
JP3474687B2 (en) Earth pattern for lightning and static electricity protection
JPH10136697A (en) Control equipment of generator for vehicle
JP2004077135A (en) Displacement sensor
JP3714171B2 (en) Electronic circuit
US11451045B2 (en) Automotive auxiliary unit with an electronic protection unit
JP3554028B2 (en) Electric circuit board and printed wiring board
JPH11248754A (en) Dc current sensor and solar inverter using it
JP3664635B2 (en) Grounding characteristic converter
JP2022134273A (en) Choke coil device and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees