JP4399960B2 - Workpiece cutting method - Google Patents
Workpiece cutting method Download PDFInfo
- Publication number
- JP4399960B2 JP4399960B2 JP2000162700A JP2000162700A JP4399960B2 JP 4399960 B2 JP4399960 B2 JP 4399960B2 JP 2000162700 A JP2000162700 A JP 2000162700A JP 2000162700 A JP2000162700 A JP 2000162700A JP 4399960 B2 JP4399960 B2 JP 4399960B2
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- cutting
- cut
- region
- crushing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Laser Beam Processing (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ガラス、水晶、サファイア、炭化珪素等の脆性材料からなる工作物を、分離切断する方法に関するものである。
【0002】
【従来の技術】
従来、工作物を分離切断する場合、一般的に用いられている方法は、砥石を用いて機械的に切断する方法である。この方法は、砥石の種類、大きさ、加工条件を任意に変えることで幅広い適応性がある。しかし、砥石幅分の切断代が必要であるため、切断代分の工作物が無駄になるという欠点がある。また、硬度の高い工作物は加工性が著しく悪く、砥石の寿命が短くなる等の問題がある。
【0003】
これらの問題を解決する切断法として、工作物は脆性材に限られるが、側圧による切断方法が知られている。この切断方法では、まず、例えば棒形状にした脆性材である工作物の被切断部位に、ダイヤモンド等の工具を用いて工作物の表面を微少に砕く、或は引っ掻く等して微細な切欠(切欠)を形成する。そして、工作物のうちの切欠を形成した部位を含む部分に、樹脂等でできた側圧伝達筒を被せる。その後、工作物がその軸方向に変形自在な状態で、側圧伝達筒の外周から加圧圧縮することにより切欠部位において切断する。この切断方法の利点としては、切断代が全く無いこと、割断のため加工時間が著しく短いこと等があげられる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した側圧による切断方法では、切欠を形成する際に工具等の固体が工作物と接触するため、接触条件によっては接触時に工作物に過大な応力が加わるという問題がある。また、切断の起点となる切欠のみを形成した状態で側圧を加えて切断するため、切断面における最も突出した部分と最も窪んだ部分の差であるうねりが大きくなってしまう。また、切断するにはかなり大きな側圧を加える必要があるため、工作物を薄い部材に切断しようとすると切断されたウェハ状の薄い部材が挫屈する恐れがある。
【0005】
更に、工作物に切欠を形成するだけでは、側圧の印加方向と切断面の法線とが直角の位置関係に無い平面で工作物を切断(以下、斜めの切断という)したり、切断面が3次元形状になるように切断したりすることは非常に難しい。
【0006】
本発明は、上記問題点に鑑み、工作物の切断面におけるうねりの発生と工作物の切断時における挫屈の発生とを抑制することができる工作物の切断方法を提供することを目的とする。また、任意の切断面を形成することができる工作物の切断方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、オリエンテーションフラット加工された半導体インゴットをウェハ状に切断する工作物の切断方法として、該半導体インゴットの切断面となる領域における外縁部が位置するオリエンテーションフラット平面(6a)から内部に高密度エネルギービーム(8a)を照射することにより、半導体インゴットのうちの切断面の全面に切断する部位を指定する破砕領域(9)を形成する工程と、破砕領域において半導体インゴットを切断する工程とを含むことを特徴としている。
【0011】
本発明によれば、破砕領域を形成して工作物における切断する部位を指定しているため、工作物の切断面におけるうねりの発生を抑制することができる。また、予め破砕領域を形成しているため工作物を切断する際に大きな応力を必要としない。その結果、工作物の挫屈の発生を抑制することができる。また、工作物の内部において切断する部位を指定しているため、工作物を斜めに切断するなど、任意の切断面を形成することができる。
【0016】
また、破砕領域が平面であり高密度エネルギービームを工作物に照射する際は、請求項2に記載の発明のように、破砕領域の法線に平行な方向を中心軸として半導体インゴットを回動させ高密度エネルギービームの入射角が0度以上45度以下で照射することにより破砕領域を形成することができる。
【0021】
このように、半導体インゴットに対する高密度エネルギービームの入射角が0度以上45度以下であれば、好適に破砕領域を形成することができる。
【0025】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0026】
【発明の実施の形態】
(第1実施形態)
以下、図に示す実施形態について説明する。図1に本実施形態に係る側圧切断装置を概略断面図にて示す。まず、本実施形態の側圧切断方法で用いる側圧切断装置の構成を図1を参照して説明する。圧力容器1は高圧に耐え得る材質で構成された中空形状の部材からなり、圧力容器1の中空部によって円柱形状の圧力室1aが形成されている。また、圧力容器1には、圧力室1aの内部と外部とを連通する圧力媒体進入孔1bが形成されている。また、圧力媒体進入孔1bには、配管2を介して圧力装置3が接続されている。この圧力装置3は、後述のように圧力容器1に対して圧力媒体を導入するためのものである。
【0027】
圧力室1aには、側圧伝達筒4が配置されている。この側圧伝達筒4は、アクリル樹脂等からなり、後述のように工作物を切断する際に、工作物の側面に圧力を加えるためのものである。側圧伝達筒4の軸方向の両端部と圧力容器1との間には、Oリング5が配置されている。このOリング5は、後述のように圧力媒体を圧力容器1内に充填する際に、圧力媒体が漏れて工作物の両端部にまでおよび、圧力媒体によって工作物に対して軸方向に縮むような圧力が加えられることを防止するためのものである。
【0028】
そして、このような構成の側圧切断装置における側圧伝達筒4内に、脆性材からなる工作物6を配置してこの工作物6の切断を行う。この工作物6としては、例えば棒状のものを適用することができ、本実施形態では、直径が25mm、長さが30mmの円柱形状のソーダガラスを切断する。
【0029】
この工作物6の側面(外表面)には、切断する部分を指定する切欠(ノッチ)7が形成されている。切欠7は、工作物6の切断面となる領域における外縁部のうちの一部分に形成されており、本実施形態では2mm間隔で10本形成されている。以下に、工作物6に切欠7を形成する方法について説明する。図2は、この切欠7の形成に係る高密度エネルギービーム装置8及び工作物6の模式的な斜視図である。
【0030】
図2に示すように、高密度エネルギービーム装置8から高密度エネルギービーム(以下、単にビームという)8aを照射する。ビーム8aとしては、高調波YAGレーザを用いている。このレーザの波長は、1.064μm以下であることが好ましい。これは、波長が1.064μmより大きいと工作物6が割れる可能性があるためである。また、好ましくは、0.532μm、0.266μmなどの短波長レーザを用いると良く、本実施形態では、0.532μmの波長を採用している。
【0031】
そして、工作物6の側面にビーム8aの焦点が合うようにして、出力1W、送り速度を300mm/minの条件で、図2中の矢印の方向に工作物6を移動させながらビーム8aを照射する。このようにして、工作物6の側面に工作物6の軸と直交するように、長さが約5mmの切欠7を形成する。
【0032】
次に、工作物6の切断方法について説明する。図1に示すように、上述のようにして全ての切欠7が形成された工作物6を切断装置の側圧伝達筒4内に配置して、切欠7を含む部位を側圧伝達筒4で覆う。そして圧力容器1に対して、圧力装置3を用いて圧力媒体進入孔1bから圧力媒体を導入して圧力容器1と側圧伝達筒4との間に圧力媒体を充填する。この圧力媒体によって側圧伝達筒4の外周部が加圧圧縮され、工作物6に応力が加えられて切欠7を起点として工作物6が切断される。
【0033】
本実施形態では、圧力媒体による液圧を約700kg/cm2にした結果、ガラスを2mm間隔で9枚に切断することができた。この切断面の法線は、工作物6の軸と平行になっており、工作物6の側面における母線に対して直交する面で工作物6が切断された。切断後に切断面を観察したところ、切欠7が形成されていた部位には欠け等は見受けられず、良好な切断が行われていた。
【0034】
このように、切欠7の形成をビーム8aを用いて行っているため、ダイヤモンドカッター等の工具によって砕いたり、引っ掻いたりして切欠を形成する場合のように固体が工作物6と接触する必要が無く、工作物6に過大な応力が加わることを防止することができる。その結果、切欠7を形成する際に、切欠7部位の周囲が欠けることを防止できる。また、割れやひび等の無い良好な切欠7を形成することができるため、特に、工作物6を薄い部材に切断しようとして切欠7の間隔が狭い場合にも、工作物6を切断する際に切欠7部位において挫屈が発生することを防止できる。ただし、工作物6の側面に切欠7を形成して大きな側圧を加えることにより切断しているため、切断面におけるうねりは0.1mm以上であった。
【0035】
また、仮に、工作物6の切断面となる領域における外縁部の全て(全周囲)に切欠を形成した状態で切断を行うと、切断が複数の起点から起こることがある。その場合、切断面には段差が現れる。従って、本実施形態のように工作物6の切断面となる領域における外縁部のうちの一部分に切欠7を形成することが好ましい。また、このように一部分に切欠7を形成すると切欠7を形成する際に工作物6を回転させる必要が無く、効率良く切断部位を指定することができる。
【0036】
また、更に微細な切欠7を形成するためには、ビーム8aとして電子ビーム8aを用いると好適である。
【0037】
(第2実施形態)
第1実施形態の工作物6の切断方法では、切欠7の周辺における工作物6の欠けを防ぐことはできるが、切断面におけるうねりを低減することはできない。また、側圧の印加方向と切断面の法線とが直交し、切断面が平面である切断はできても、側圧の印加方向と切断面の法線とが任意の角度をなす切断を行うことは難しい。本実施形態は、このような不具合を改善するものである。
【0038】
以下、図に示す実施形態について説明する。図3に本実施形態に係る側圧切断装置を概略断面図にて示す。本実施形態における側圧切断装置は第1実施形態と同様であり、側圧切断装置に配置される工作物6のみ異なるため、側圧切断装置の構成については、図中図1と同一符号を付して説明を省略する。
【0039】
工作物6としては、第1実施形態と同様のサイズ、材質のものを切断する例について説明する。また、本実施形態は、斜めの切断(工作物6における切断面の法線と工作物6の軸とが平行になっていない切断)を行う例である。また、切断面は平面である。図3に示すように、工作物6には切断する部位を指定する破砕領域9が形成されている。破砕領域9は工作物6内に平面で形成され、破砕領域9の面における法線と工作物6の軸とのなす角αが10度になっている。
【0040】
次に、破砕領域9の形成方法について図4を用いて説明する。図4は、破砕領域9の形成に係る高密度エネルギービーム装置8及び工作物6の模式的な斜視図である。図4に示すように、工作物6の外表面のうち工作物6の切断面となる領域における外縁部が位置する面である側面の一部には平面6aが形成されている。
【0041】
この平面6aには鏡面仕上げが施されていることが望ましい。これは、表面が荒れている面にビーム8aを照射した場合、ビーム8aが散乱して工作物6の内部への透過を妨げるため、後述のようにビーム8aをこの平面6aに照射したときにビーム8aの透過が好適に行われるようにするためである。本実施形態では、平面6aの表面粗さはRz0.01μm以下に仕上げてある。また、ビーム8aの散乱を防ぐため、側面における平面6aの端部と側面における曲面との接続部分において、面取りを行わないか微少にすることが望ましい。更に、工作物6の表面に汚れが付着していないように、ビーム8aを照射する前に工作物6の洗浄を行う。
【0042】
そして、この工作物6を側面における平面6aが高密度エネルギービーム装置8側に向くような状態でXYZテーブル上に配置する。そして、ビーム8aが工作物6の側面における平面6a側から照射され、ビーム8aの焦点が工作物6の内部に位置するように、工作物6及び高密度エネルギービーム装置8を位置決めする。その後、高密度エネルギービーム装置8からビーム8aを照射することにより、ビーム8aが焦点を結んだ点で微細破壊が起こる。
【0043】
この際、工作物6における切断面となる領域の全面に破砕領域9を形成するために、工作物6の母線が常に平行な状態で工作物6とビーム8aとを相対移動する。具体的には、工作物6の軸と平行な方向を中心軸として工作物6を回転したり揺動したり(回動)する。または、工作物6における切断面となる領域を含む平面に対して平行となるようにして工作物6とビーム8aとを相対移動させても良い。具体的には、切断面となる領域の法線に平行な方向を中心軸として工作物6を回転したり揺動したりする。なお、安定した微細破砕を形成するためには、ビーム8aの入射角度が0度であることが好ましいが、入射角度が0度以上45度以下であれば微細破砕を形成することができる。
【0044】
そして、このような工作物6の回転と、XYZテーブルを利用した工作物6のXYZ方向への移動とを調節して微細破壊を連続的に形成する。この際、所望の位置において微細破壊が起こるように工作物6の屈折率を考慮すると良い。このようにして、工作物6の切断面となる領域において破砕領域9を形成する。この破砕領域9は、例えば、工作物6の内部で工作物6が割れているような状態になっており、後述の工作物6の切断の際に、この破砕領域9で切断される。
【0045】
なお、ビーム8aの波長や出力の条件は第1実施形態と同様であり、レーザの波長は1.064μm以下であることが望ましい。これは、波長が1.064μmより大きいと、レーザを工作物に照射することにより形成される破砕領域が大きくなって切断面における表面粗さが大きくなったり、工作物が割れたりする不具合が生じるためである。
【0046】
この破砕領域9の形成においては、破砕領域9のうち、ビーム8aを照射する側、つまり、工作物6の側面における平面6a側から距離が遠い部位から順に形成するようにする。これは、工作物6において工作物6が破砕された点(以下、単に破砕点という)はビーム8aの透過性が悪いため、ビーム8aの照射軸上に破砕点が存在し、この破砕点よりも遠い部位に他の破砕点を形成することは困難であるためである。
【0047】
このようにして切断面となる領域の全てにおいて破砕領域9を形成した後、第1実施形態と同様にして、工作物6を切断装置における側圧伝達筒4内に配置して切断を行う。本実施形態では、圧力媒体による液圧を約300kg/cm2にした結果、工作物6を破砕領域9において切断することができた。そして、切断面を観察したところ、うねりが0.1mm以下であった。
【0048】
ところで、本実施形態のように工作物6の内部に破砕領域9を形成することにより斜めの切断を行うことができる。また、破砕領域9を形成して切断面を指定しているため、工作物6の外表面に切欠を設け、この切欠を起点として切断する場合と比較してうねりの発生を抑制することができる。ただし、切断面におけるうねりよりもミクロな凹凸である表面粗さを観察したところ、破砕領域9を形成した分悪くなっている。しかし、この凹凸は研削で除去することができる。
【0049】
また、一般に後工程において例えば研削加工を施す等して切断面を平面にするが、切断面のうねりが大きいと、この加工によるウェハ(切断された工作物6)の除去量が多くなる。このため、ウェハの内部にクラックや破砕層が入りやすくなる。その結果、特に工作物6として半導体を用いる場合は、そのクラック等が生じた領域に素子等を形成すると、その素子に不具合が生じる。しかし、本実施形態の切断方法では切断面におけるうねりを小さくすることができるため、研磨等による負荷の小さな加工で後工程を行うことが可能となり、ウェハ内部へのダメージを抑制することができ、信頼性の高いウェハを提供することができる。
【0050】
また、予め破砕領域9を形成しているため、小さい側圧力で工作物6を切断することができる。その結果、工作物6の切断間隔が小さい場合も工作物6の挫屈の発生を抑制することができる。また、工作物6に対するビーム8aの入射角が大きいと工作物6の内部にビーム8aの焦点を結ぶことが困難であるが、工作物6に平面6aを形成しているためビーム8aを好適に工作物6の内部に導くことができる。
【0051】
なお、工作物6の平面6aからビーム8aを照射することが望ましいが、曲面にビーム8aを照射しても工作物6の内部にビーム8aを導くことはできる。その場合は、ビーム8aの乱反射を防ぐために工作物6の側面の頂点にビーム8aを照射するようにすると良い。また、切断面となる領域の全面に破砕領域9を設けるためには、工作物6を回転させながらビーム8aを照射すれば良い。ただし、この場合は工作物6の回転軸を決定するなどの段取りが必要になるため、一般には、上述のように工作物6の側面に平面6aを形成してビーム8aを照射する方が容易である。
【0052】
また、工作物6として半導体インゴットを用いるときは、インゴットにおけるオリエンテーションフラット加工された部位を上記側面における平面6aとして利用すると好適である。
【0053】
(第3実施形態)
第2実施形態では工作物6の側面側から内部にビーム8aを照射する例について示したが、本実施形態では、工作物6の外表面のうち工作物6の切断面となる領域における外縁部を含む面以外の面である端面側からビーム8aを照射する例について示す。本実施形態における側圧切断装置は第2実施形態と同様であるため説明を省略する。以下、主として工作物6に対する破砕領域9の形成方法について、第2実施形態と異なる点について述べる。
【0054】
図5は、破砕領域9の形成に係る高密度エネルギービーム装置8及び工作物6の模式的な斜視図である。本実施形態は、工作物6に対して斜めの切断を行う例であり、切断面は平面である。具体的には、第2実施形態と同様に、工作物6の軸と切断面となる領域の法線とのなす角αが10度になった平面で切断する。
【0055】
図5に示すように、円柱形状の工作物6を端面6bが高密度エネルギービーム装置8側に向くような状態でXYZテーブル上に配置する。そして、この端面6b側からビーム8aを照射する。このビーム8aが照射される端面6bは、ビーム8aの散乱を防止するために鏡面であることが望ましく、本実施形態では表面粗さがRz0.01μm以下になっている。
【0056】
ビーム8aを照射する際は、工作物6の内部にビーム8aの焦点が結ばれて微細破砕が形成されるように位置決めして行う。そして、XYZテーブル上に工作物6を載せて操作を行うことにより連続的に微細破砕を形成し破砕領域9とする。この場合、第2実施形態と同様に、破砕領域9のうちビーム8aを照射する側から遠い部位から順に破砕領域9を形成する。
【0057】
図6は、この工作物6の切断の前後における工作物6の斜視図であって、(a)は切断する前の破砕領域9を形成した状態であり、(b)は切断後の状態を示す。上述のようにして全ての破砕領域9を形成した結果、図6(a)のように、複数(図示例では7部位)の破砕領域9が形成された状態になる。
【0058】
その後、第1及び第2実施形態と同様に、工作物6を切断装置の側圧伝達筒4内に配置して切断を行うことにより破砕領域9における工作物6の切断を行う。その結果、本実施形態では、図6(b)に示すように、斜めの切断を良好に行うことができた。切断面は、第2実施形態と同様に、うねりは0.1mm以下であって良好であり、表面粗さは破砕されている分悪くなっている。
【0059】
ところで、本実施形態のように、工作物6の端面6b側からビーム8aを照射する場合も、第2実施形態と同様の効果を発揮することができる。また、切断面となる領域の全面に破砕領域9を形成する際に、工作物6を回転したり揺動したりする必要が無く、容易に破砕領域9を形成することができる。また、特に、予め端面が平面である工作物6を用いれば、側面に平面を形成しなくてもビーム8aの乱反射を防止して良好に破砕領域9を形成することができる。
【0060】
(第4実施形態)
上記第2及び第3実施形態では、切断面となる領域の全面に破砕領域9を設ける例について示したが、切断面となる領域の一部に対して破砕領域9を形成し(以下、このような破砕領域を部分的破砕領域という)ても良い。以下、工作物6の側面側からビーム8aを照射する場合について図7を用いて説明する。図7は、部分的破砕領域9を形成する際の工作物6の模式図であり、(a)は斜視図、(b)は(a)における白抜き矢印方向から見た透視図である。
【0061】
図7に示すように、この工作物6にも側面に平面6aを形成している。そして、図7(b)に示すように、工作物6の側面における平面6aをこの平面6aの法線方向に延長した領域内に部分的破砕領域9を形成している。そして、切断する際には、この部分的破砕領域9を起点として切断が始まり、切断面となる領域に切断が広がっていく。これにより、部分的破砕領域9を形成する際に工作物6を回転したり揺動したりする必要が無いため、効率良く部分的破砕領域9を形成することができる。
【0062】
この部分的破砕領域9を形成して工作物6を切断する方法は、特に、結晶が規則的に層状に形成された工作物6、例えば、単結晶の炭化珪素を層状の面に沿って切断する場合に適している。
【0063】
なお、部分的破砕領域9を形成する際も、その形成位置によっては第2実施形態の様に工作物6を回転又は揺動させても良い。
【0064】
(他の実施形態)
上記各実施形態は、切断面が平面である例について示したが、工作物を載せたXYZテーブルを適宜移動させて3次元の破砕領域を形成することもできる。これにより、切断面が3次元形状の切断を行うこともできる。特に、従来、ガラスレンズを製作する場合ガラスの切断面は平面であったため、切断した後に研削でレンズ形状にしていた。しかし、レンズ形状の3次元の破砕領域を形成することにより、研削でレンズ形状にする工程を省くことができる。このように、ビームを用いて工作物の内部に破砕領域を形成することにより、任意の切断面を形成することができる。
【0065】
また、上記各実施形態に示す工作物の切断方法では、ガラス以外にも、SiやSiC等の半導体インゴットや、セラミック、水晶、サファイア等の脆性材料を切断することができる。ただし、第2〜第4実施形態の様に、工作物6の内部に破砕領域9を形成する場合は、ビーム8aが内部に焦点を結ぶことができるように、工作物6が透過性の物質からなることが必要である。
【0066】
また、工作物の形状としては、一般的には円柱が望ましいが、円筒形状や六角柱など、様々な形状のものを用いることができる。また、必ずしも棒状の工作物を用いる必要は無く、側圧伝達筒の軸方向、つまり切断面となる領域における外縁部が位置する面である側面の母線方向に短く、ウェハに近い形状の工作物を用いても良い。また、複数の工作物を同時に側圧伝達筒内に嵌入しても良い。
【0067】
また、第2及び第3実施形態の様に、工作物6の内部に破砕領域9を形成する場合は、側圧切断装置を用いずに他の方法で工作物6に応力を加えても、工作物6を切断することができる。具体的には、工作物6の側面に金属物等を用いて衝撃を与えたり、超音波等の振動を与えたり、加熱による熱膨張に起因する応力を利用したりすることができる。この方法は、場合によっては、第4実施形態のように部分的破砕領域9を形成する場合も可能である。
【0068】
また、上記第2及び第3実施形態は、斜めの切断を行う例について示したが、工作物の軸と切断面の法線とが平行になるように切断しても良い。また、第2〜第4実施形態においては、破砕領域を形成する際にXYZの方向に移動可能なNCコントローラを利用して行うことにより、自動で破砕領域を形成することができる。このとき、予め工作物の屈折率を入力しておけば、自動で屈折率を考慮した補正を行って所望の位置においてビームの焦点を好適に結ぶことができる。
【図面の簡単な説明】
【図1】第1実施形態に係る側圧切断装置の概略断面図である。
【図2】第1実施形態における切欠の形成に係る高密度エネルギービーム装置及び工作物の模式的な斜視図である。
【図3】第2実施形態に係る側圧切断装置の概略断面図である。
【図4】第2実施形態における破砕領域の形成に係る高密度エネルギービーム装置及び工作物の模式的な斜視図である。
【図5】第3実施形態における破砕領域の形成に係る高密度エネルギービーム装置及び工作物の模式的な斜視図である。
【図6】第3実施形態に係る切断前後の工作物の斜視図である。
【図7】部分的破砕領域を形成する際の工作物の模式図である。
【符号の説明】
4…側圧伝達筒、6…工作物、6a…平面、6b…端面、7…切欠、
8a…ビーム、9…破砕領域。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for separating and cutting a workpiece made of a brittle material such as glass, quartz, sapphire, and silicon carbide.
[0002]
[Prior art]
Conventionally, when separating and cutting a workpiece, a generally used method is a method of mechanically cutting using a grindstone. This method has wide applicability by arbitrarily changing the type, size, and processing conditions of the grindstone. However, since a cutting allowance for the width of the grindstone is required, there is a disadvantage that a workpiece for the cutting allowance is wasted. In addition, a workpiece having high hardness has problems such as remarkably poor workability and shortening the life of the grindstone.
[0003]
As a cutting method for solving these problems, a workpiece is limited to a brittle material, but a cutting method using a lateral pressure is known. In this cutting method, first, the surface of the workpiece is finely crushed or scratched by using a tool such as diamond at a portion to be cut of the workpiece, which is a brittle material having a rod shape, for example. Notch). Then, a side pressure transmission cylinder made of resin or the like is placed on the part of the workpiece including the part where the notch is formed. Thereafter, the workpiece is cut at the notch portion by being compressed from the outer periphery of the side pressure transmission cylinder in a state in which the workpiece is deformable in the axial direction. Advantages of this cutting method include that there is no cutting allowance, and that the processing time is extremely short due to cleaving.
[0004]
[Problems to be solved by the invention]
However, the above-described cutting method using the side pressure has a problem that a solid such as a tool comes into contact with the workpiece when forming the notch, and therefore, depending on the contact conditions, an excessive stress is applied to the workpiece at the time of contact. Further, since cutting is performed by applying a side pressure in a state where only the notch serving as a starting point of cutting is formed, the undulation that is the difference between the most protruding portion and the most recessed portion on the cutting surface is increased. Moreover, since it is necessary to apply a considerably large lateral pressure to cut, there is a possibility that the cut wafer-like thin member may be bent when the workpiece is cut into a thin member.
[0005]
Furthermore, by simply forming a notch in the work piece, the work piece can be cut (hereinafter referred to as oblique cutting) in a plane where the direction in which the lateral pressure is applied and the normal of the cut surface are not perpendicular to each other. It is very difficult to cut into a three-dimensional shape.
[0006]
The present invention aims at providing a cutting method of the view of the problem, the workpiece can be suppressed and the occurrence of buckling at the time of cutting occurred and the workpiece waviness in the cut surface of the Engineering Crops . Moreover, it aims at providing the cutting method of the workpiece which can form arbitrary cut surfaces.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, as a method for cutting a workpiece that cuts an orientation flat processed semiconductor ingot into a wafer shape, an outer edge portion in a region to be a cutting surface of the semiconductor ingot is positioned. Irradiating a high-density energy beam (8a ) from the orientation flat plane (6a) to form a crushing region (9) designating a portion to be cut across the entire cut surface of the semiconductor ingot ; And a step of cutting the semiconductor ingot in the crushing region.
[0011]
According to the present invention, since the portion to be cut in the workpiece is specified by forming the crushing region, it is possible to suppress the occurrence of waviness on the cut surface of the workpiece. Moreover, since the crushing region is formed in advance, a large stress is not required when cutting the workpiece. As a result, the occurrence of buckling of the workpiece can be suppressed. Moreover, since the site | part to cut | disconnect in the inside of a workpiece is designated, arbitrary cut surfaces, such as cutting a workpiece diagonally, can be formed.
[0016]
In addition, when the crushing region is flat and the workpiece is irradiated with the high-density energy beam, the semiconductor ingot is rotated about the direction parallel to the normal line of the crushing region as the center axis as in the invention described in
[0021]
As this, if 45 degrees or less is greater than zero degrees angle of incidence of the high density energy beam to the semiconductor ingot can be formed suitably crushed area.
[0025]
In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Hereinafter, embodiments shown in the drawings will be described. FIG. 1 is a schematic sectional view of a lateral pressure cutting device according to this embodiment. First, the configuration of a side pressure cutting device used in the side pressure cutting method of the present embodiment will be described with reference to FIG. The
[0027]
A side
[0028]
And the
[0029]
On the side surface (outer surface) of the
[0030]
As shown in FIG. 2, a high-density
[0031]
Then, the
[0032]
Next, a method for cutting the
[0033]
In the present embodiment, as a result of setting the hydraulic pressure by the pressure medium to about 700 kg / cm 2 , the glass could be cut into nine pieces at intervals of 2 mm. The normal line of the cut surface is parallel to the axis of the
[0034]
Thus, since the notch 7 is formed using the
[0035]
Further, if the cutting is performed in a state where notches are formed in all of the outer edge portions (entire circumference) in the region serving as the cutting surface of the
[0036]
In order to form a finer cutout 7, it is preferable to use an
[0037]
(Second Embodiment)
In the cutting method of the
[0038]
Hereinafter, embodiments shown in the drawings will be described. FIG. 3 is a schematic sectional view of the lateral pressure cutting device according to the present embodiment. Since the side pressure cutting device in this embodiment is the same as that of the first embodiment, and only the
[0039]
As the
[0040]
Next, the formation method of the crushing area |
[0041]
The
[0042]
And this
[0043]
At this time, in order to form the crushing
[0044]
And fine rotation is continuously formed by adjusting the rotation of the
[0045]
The wavelength of the
[0046]
In the formation of the crushing
[0047]
After the
[0048]
By the way, the oblique cutting can be performed by forming the crushing
[0049]
In general, the cut surface is flattened by, for example, grinding in a subsequent process. However, if the waviness of the cut surface is large, the removal amount of the wafer (cut workpiece 6) by this processing increases. For this reason, cracks and crushed layers easily enter the wafer. As a result, particularly when a semiconductor is used as the
[0050]
Further, since the crushing
[0051]
Although it is desirable to irradiate the
[0052]
Further, when a semiconductor ingot is used as the
[0053]
(Third embodiment)
In the second embodiment, an example in which the
[0054]
FIG. 5 is a schematic perspective view of the high-density
[0055]
As shown in FIG. 5, a
[0056]
When irradiating the
[0057]
FIGS. 6A and 6B are perspective views of the
[0058]
Thereafter, similarly to the first and second embodiments, the
[0059]
By the way, also when irradiating the
[0060]
(Fourth embodiment)
In the second and third embodiments, the example in which the crushing
[0061]
As shown in FIG. 7, the
[0062]
The method of cutting the
[0063]
When forming the partial
[0064]
(Other embodiments)
Although each said embodiment showed about the example whose cut surface is a plane, it can also move a XYZ table which mounted the workpiece suitably, and can also form a three-dimensional crushing area | region. Thereby, the cut surface can also cut | disconnect three-dimensional shape. In particular, conventionally, when a glass lens is manufactured, the cut surface of the glass is a flat surface. However, by forming a three-dimensional crushing region having a lens shape, it is possible to omit the process of forming a lens shape by grinding. In this way, an arbitrary cut surface can be formed by forming the crushing region inside the workpiece using the beam.
[0065]
In addition, in the method for cutting a workpiece shown in each of the above embodiments, a semiconductor ingot such as Si or SiC, or a brittle material such as ceramic, crystal, or sapphire can be cut in addition to glass. However, when the crushing
[0066]
In general, the shape of the workpiece is preferably a column, but various shapes such as a cylindrical shape and a hexagonal column can be used. Also, it is not always necessary to use a bar-shaped workpiece, and a workpiece having a shape close to the wafer is short in the axial direction of the side pressure transmission cylinder, that is, in the generatrix direction of the side surface where the outer edge portion is located in the region to be the cut surface. It may be used. A plurality of workpieces may be simultaneously inserted into the side pressure transmission cylinder.
[0067]
Further, when the crushing
[0068]
Moreover, although the said 2nd and 3rd embodiment showed about the example which performs diagonal cutting | disconnection, you may cut | disconnect so that the axis | shaft of a workpiece and the normal line of a cut surface may become parallel. Moreover, in 2nd-4th embodiment, when forming a crush area | region, a crush area | region can be formed automatically by performing using the NC controller which can move to the direction of XYZ. At this time, if the refractive index of the workpiece is input in advance, the correction of the refractive index is automatically performed and the beam can be focused at a desired position.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a lateral pressure cutting device according to a first embodiment.
FIG. 2 is a schematic perspective view of a high-density energy beam device and a workpiece related to formation of notches in the first embodiment.
FIG. 3 is a schematic cross-sectional view of a lateral pressure cutting device according to a second embodiment.
FIG. 4 is a schematic perspective view of a high-density energy beam device and a workpiece related to formation of a crushing region in a second embodiment.
FIG. 5 is a schematic perspective view of a high-density energy beam device and a workpiece related to formation of a crushing region in a third embodiment.
FIG. 6 is a perspective view of a workpiece before and after cutting according to a third embodiment.
FIG. 7 is a schematic view of a workpiece when forming a partially fractured region.
[Explanation of symbols]
4 ... side pressure transmission cylinder, 6 ... workpiece, 6a ... flat surface, 6b ... end face, 7 ... notch
8a ... beam, 9 ... crushing region.
Claims (2)
前記破砕領域において前記半導体インゴットを切断する工程とを含むことを特徴とする工作物の切断方法。 As a method of cutting a workpiece for cutting a semiconductor ingot subjected to orientation flat processing into a wafer shape, a high-density energy beam (8a ) To form a crushing region (9) for designating a portion to be cut on the entire cutting surface of the semiconductor ingot ;
And a step of cutting the semiconductor ingot in the crushing region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000162700A JP4399960B2 (en) | 2000-05-31 | 2000-05-31 | Workpiece cutting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000162700A JP4399960B2 (en) | 2000-05-31 | 2000-05-31 | Workpiece cutting method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008144757A Division JP2008201143A (en) | 2008-06-02 | 2008-06-02 | Cutting process of work |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001341122A JP2001341122A (en) | 2001-12-11 |
JP4399960B2 true JP4399960B2 (en) | 2010-01-20 |
Family
ID=18666568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000162700A Expired - Lifetime JP4399960B2 (en) | 2000-05-31 | 2000-05-31 | Workpiece cutting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4399960B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005277136A (en) * | 2004-03-25 | 2005-10-06 | Sharp Corp | Method and apparatus of manufacturing substrate |
JP4604594B2 (en) * | 2004-07-30 | 2011-01-05 | 株式会社デンソー | Manufacturing method of semiconductor substrate |
DE102009005303A1 (en) * | 2009-01-16 | 2010-07-22 | BIAS - Bremer Institut für angewandte Strahltechnik GmbH | A method for separating a semiconductor wafer from a semiconductor crystal |
JP5367450B2 (en) * | 2009-05-12 | 2013-12-11 | 株式会社ディスコ | Processing method of semiconductor wafer |
EP2768012B1 (en) * | 2013-01-30 | 2017-06-28 | Fraunhofer-ges. zur Förderung der Angewandten Forschung E.V. | Method of detaching a disc-shaped single crystal from a base body using an electron beam |
ITAN20130232A1 (en) * | 2013-12-05 | 2015-06-06 | Munoz David Callejo | METHOD TO OBTAIN A PLURALITY OF LAMINS FROM A MATERIAL LINE WITH A MONOCHRISTALLINE STRUCTURE |
CN107009032A (en) * | 2017-04-24 | 2017-08-04 | 北京航空航天大学 | A kind of atomic air chamber tail pipe device for fusing and atomic air chamber tail pipe blowout method |
US10388526B1 (en) | 2018-04-20 | 2019-08-20 | Semiconductor Components Industries, Llc | Semiconductor wafer thinning systems and related methods |
US10896815B2 (en) | 2018-05-22 | 2021-01-19 | Semiconductor Components Industries, Llc | Semiconductor substrate singulation systems and related methods |
US11121035B2 (en) | 2018-05-22 | 2021-09-14 | Semiconductor Components Industries, Llc | Semiconductor substrate processing methods |
US20190363018A1 (en) | 2018-05-24 | 2019-11-28 | Semiconductor Components Industries, Llc | Die cleaning systems and related methods |
US11830771B2 (en) | 2018-05-31 | 2023-11-28 | Semiconductor Components Industries, Llc | Semiconductor substrate production systems and related methods |
US10468304B1 (en) | 2018-05-31 | 2019-11-05 | Semiconductor Components Industries, Llc | Semiconductor substrate production systems and related methods |
DE102019122827A1 (en) * | 2019-08-26 | 2021-03-04 | Photonic Sense GmbH | Device and method for cutting out a partial geometry from a block of material |
-
2000
- 2000-05-31 JP JP2000162700A patent/JP4399960B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001341122A (en) | 2001-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008201143A (en) | Cutting process of work | |
JP4399960B2 (en) | Workpiece cutting method | |
CN107438581B (en) | Method for producing multicomponent wafers with low loss | |
JP4932956B2 (en) | Method for forming cutting start region | |
KR101252884B1 (en) | Laser processing method | |
JP5525601B2 (en) | Substrate processing method using laser | |
KR102282858B1 (en) | Method of processing a substrate | |
CN107000125B (en) | Laser-based separation method | |
US20100311313A1 (en) | Working object grinding method | |
JP2004111606A (en) | Method of processing wafer | |
KR20170021731A (en) | Processing method of wafer | |
CN104691058A (en) | Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object | |
TW201417928A (en) | Cutting of brittle materials with tailored edge shape and roughness | |
JP2006525874A (en) | Focusing light beam to two focal points | |
WO2004082006A1 (en) | Laser beam machining method | |
US20150158117A1 (en) | System and method for obtaining laminae made of a material having known optical transparency characteristics | |
JP2007076953A (en) | Method and device for cutting glass plate | |
JP2003025118A (en) | Diamond tool for cutting | |
JP6065518B2 (en) | Cutting tool manufacturing method and manufacturing apparatus | |
KR20100015895A (en) | Method and apparatus for the production of thin disks or films from semiconductor bodies | |
JP5894754B2 (en) | Laser processing method | |
JP2000117471A (en) | Glass working method, and its device | |
JP2007021527A (en) | Laser beam machining method | |
JP2006297458A (en) | Method for machining cutting tool and working apparatus using the same | |
JP2010005723A (en) | Single-crystal diamond cutware |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060629 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4399960 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091019 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |