JP4398923B2 - Defective crimping terminal detection method and terminal crimping apparatus - Google Patents

Defective crimping terminal detection method and terminal crimping apparatus Download PDF

Info

Publication number
JP4398923B2
JP4398923B2 JP2005260003A JP2005260003A JP4398923B2 JP 4398923 B2 JP4398923 B2 JP 4398923B2 JP 2005260003 A JP2005260003 A JP 2005260003A JP 2005260003 A JP2005260003 A JP 2005260003A JP 4398923 B2 JP4398923 B2 JP 4398923B2
Authority
JP
Japan
Prior art keywords
crimping
terminal
conductor
insulation
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005260003A
Other languages
Japanese (ja)
Other versions
JP2007073379A (en
Inventor
光 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Automotive Systems Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005260003A priority Critical patent/JP4398923B2/en
Publication of JP2007073379A publication Critical patent/JP2007073379A/en
Application granted granted Critical
Publication of JP4398923B2 publication Critical patent/JP4398923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、絶縁被覆電線の端末に端子圧着装置により圧着端子を装着する際、圧着端子の装着不良を検出するための圧着不良端子検出方法、及び端子圧着装置に関するものである。   The present invention relates to a crimping failure terminal detection method and a terminal crimping device for detecting a crimping terminal mounting failure when a crimping terminal is mounted on a terminal of an insulated coated electric wire by a terminal crimping device.

従来から、導体と該導体上に施した絶縁被覆とを有する絶縁被覆電線の端末に圧着端子を装着する場合、端子圧着装置を用いて自動的に圧着端子を装着している。
端子圧着装置で自動的に圧着端子を絶縁被覆電線の端末に装着する場合、いくつかのパターンの圧着端子装着不良が発生する。そこでこの種の端子圧着装置においては、前記圧着端子の圧着不良を検出し、良品中に不良品が混入しないようにすることが大きな課題となっている。
そこで従来にあっては、特許文献1や特許文献2にあるような圧着端子の圧着不良の検出が行われていた。
Conventionally, when a crimp terminal is attached to the end of an insulated wire having a conductor and an insulation coating applied on the conductor, the crimp terminal is automatically attached using a terminal crimping device.
When a crimping terminal is automatically attached to the end of an insulation-coated electric wire by a terminal crimping device, there are several patterns of defective crimp terminal attachment. Therefore, in this type of terminal crimping apparatus, it is a major problem to detect a crimping failure of the crimping terminal and prevent a defective product from being mixed into a non-defective product.
Therefore, conventionally, detection of a crimp failure of a crimp terminal as in Patent Document 1 or Patent Document 2 has been performed.

特許文献1の場合は、絶縁被覆電線に圧着端子を圧着する際に発生する全荷重が加わる部分(例えばラム)に荷重センサーを取り付け、該加重センサーが出力する波形データを、正常な圧着が行われた場合の波形データと比較することで、圧着不良の検出を行っていた。
一方、特許文献2の場合は、絶縁被覆電線の導体に圧着端子の導体圧着部を圧着する導体圧着用型押部と、絶縁被覆電線の絶縁被覆に前記圧着端子の絶縁被覆圧着部を圧着する絶縁被覆圧着用型押部とにそれぞれ荷重センサーを取り付け、該加重センサーが出力する波形データを正常な場合の波形データと比較することで、圧着不良の検出を行っていた。
In the case of Patent Document 1, a load sensor is attached to a portion (for example, a ram) to which a total load generated when a crimp terminal is crimped to an insulation-coated electric wire, and waveform data output from the load sensor is subjected to normal crimping. By comparing with the waveform data in the case of breakage, the crimping failure was detected.
On the other hand, in the case of Patent Document 2, a crimping portion for crimping a conductor crimping portion of a crimping terminal to a conductor of an insulation-coated electric wire, and an insulating coating crimping portion of the crimping terminal to the insulation coating of the insulating-coated wire. A load sensor is attached to each of the insulating coating pressure-bonding die pressing portions, and the crimp data is detected by comparing the waveform data output from the load sensor with the waveform data in the normal case.

特開昭63−281071号公報JP-A 63-281071 特公平7−11549号公報Japanese Examined Patent Publication No. 7-11549

しかしながら、特許文献1に開示されている圧着不良検出の場合、一箇所の荷重センサーで全体の反力(歪)を拾っているため、軽微な圧着不良の場合や複数の圧着不良が混在しトータルの歪にはその差異がわずかしか現れない場合には、正常かどうかの判別が困難な場合があった。   However, in the case of detection of a crimp failure disclosed in Patent Document 1, since the entire reaction force (strain) is picked up by a single load sensor, there are cases where minor crimp failures or a plurality of crimp failures are mixed. In the case where only a slight difference is present in the distortion, it may be difficult to determine whether the distortion is normal.

一方、特許文献2に開示されている圧着不良検出の場合、導体圧着用型押部と絶縁被覆圧着用型押部とに個々に荷重センサーを設けた分、特許文献1に記載の発明の圧着不良端子検出方法よりも高い精度の不良検出が期待できる。
しかしながら、その精度はまだまだ十分なものとは言えなかった。
例えば図9(b)のように圧着端子90の導体圧着部95から数本の導体94がこぼれてしまった場合、こぼれた本数が極わずかだと検出が困難であった。
また図9(d)のように、絶縁被覆圧着部93の片側のみ圧着不良を起こしているような場合には、一応、絶縁被覆圧着用型押部は絶縁被覆圧着部93を圧着しているため、絶縁被覆圧着用型押部に装着した荷重センサーからの波形データにははっきりした異常が認められない場合があった。
On the other hand, in the case of detection of a crimping failure disclosed in Patent Document 2, the pressure bonding of the invention described in Patent Document 1 is performed by providing a load sensor for each of the conductor crimping stamping part and the insulating coating crimping stamping part. It can be expected to detect defects with higher accuracy than the defective terminal detection method.
However, the accuracy was still not sufficient.
For example, as shown in FIG. 9B, when several conductors 94 are spilled from the conductor crimping portion 95 of the crimp terminal 90, it is difficult to detect if the spilled number is very small.
In addition, as shown in FIG. 9D, in the case where the crimping failure occurs only on one side of the insulation coating crimping portion 93, the insulation coating crimping pressing portion temporarily crimps the insulation coating crimping portion 93. For this reason, there was a case where no clear abnormality was observed in the waveform data from the load sensor attached to the pressing portion for insulation coating pressure bonding.

これらの問題に鑑み本発明の目的は、より精度良く圧着不良を検出できる圧着不良端子検出方法及びこの検出方法を用いた端子圧着装置を提供することにある。   In view of these problems, an object of the present invention is to provide a crimping failure terminal detection method capable of detecting a crimping failure with higher accuracy and a terminal crimping device using this detection method.

前記目的を達成すべく本発明の請求項1記載の圧着不良端子検出方法は、絶縁被覆電線の導体に圧着端子の導体圧着部を圧着する導体圧着用型押部と、前記絶縁被覆電線の絶縁被覆に前記圧着端子の絶縁被覆圧着部を圧着する絶縁被覆圧着用型押部とを有する端子圧着装置によって絶縁被覆電線に圧着端子を圧着する際に、前記絶縁被覆電線への前記圧着端子の圧着不良を検出する圧着不良端子検出方法であって、前記導体圧着用型押部、前記絶縁被覆圧着用型押部、及び前記絶縁被覆電線に前記圧着端子を圧着する際に発生する全荷重が加わる部分に各々別個に荷重センサーを取り付け、前記導体圧着用型押部に取り付けた荷重センサーの波形データの出力値をD1、前記絶縁被覆圧着用型押部に取り付けた荷重センサーの波形データの出力値をD2、前記絶縁被覆電線に前記圧着端子を圧着する際に発生する全荷重が加わる部分に取り付けた荷重センサーの波形データの出力値をD3としたときに、△D=D3−(D1+D2)の演算結果を前記絶縁被覆電線に対する前記圧着端子の正常な圧着の際得られる波形データを演算加工した演算結果と比較し、絶縁被覆電線への圧着端子の圧着不良を検出することを特徴とする。
In order to achieve the above object, the crimping failure terminal detection method according to claim 1 of the present invention includes a conductor crimping pressing portion for crimping a conductor crimping portion of a crimping terminal to a conductor of an insulation-coated wire, and insulation of the insulation-coated wire. When the crimping terminal is crimped to the insulation-coated electric wire by a terminal crimping device having an insulation-coated crimping pressing portion for crimping the insulation-coated crimping part of the crimping terminal to the coating, the crimping terminal is crimped to the insulation-coated electric wire. A method of detecting a defective crimp terminal for detecting a defect, wherein a total load generated when crimping the crimp terminal on the conductor crimping pressing portion, the insulating coating crimping pressing portion, and the insulating coated electric wire is applied. each separately attaching a load sensor to a portion, the output value of the waveform data of the load sensor attached to the conductor crimping dies pressing portion D1, output of the waveform data of the load sensor attached to the insulating coating crimping dies pressing portion ΔD = D3− (D1 + D2) where D2 is the value of D2 and the output value of the waveform data of the load sensor attached to the portion where the total load generated when the crimping terminal is crimped to the insulated wire is D3 The calculation result is compared with the calculation result obtained by calculating and processing the waveform data obtained when the crimp terminal is normally crimped to the insulation-coated electric wire, and the crimp failure of the crimp terminal to the insulation-coated wire is detected. .

また本発明の請求項記載の端子圧着装置は、導体と該導体上に施した絶縁被覆とを有する絶縁被覆電線の導体に圧着端子の導体圧着部を圧着する導体圧着用型押部と、前記絶縁被覆電線の絶縁被覆に前記圧着端子の絶縁被覆圧着部を圧着する絶縁被覆圧着用型押部と、を有する端子圧着装置であって、該端子圧着装置は前記導体圧着用型押部、前記絶縁被覆圧着用型押部、及び前記絶縁被覆電線に前記圧着端子を圧着する際に発生する全荷重が加わる部分に各々別個に加重センサーが取り付けられ、これら3箇所の荷重センサーによって得られる荷重の波形データを演算加工した演算結果を、前記絶縁被覆電線に対する前記圧着端子の正常な圧着の際得られる波形データを互いに演算加工した演算結果と比較し、絶縁被覆電線への圧着端子の圧着不良を検出する検出部をさらに有し、前記検出部は、前記導体圧着用型押部に取り付けた荷重センサーの波形データをD1、前記絶縁被覆圧着用型押部に取り付けた荷重センサーの波形データをD2、前記絶縁被覆電線に前記圧着端子を圧着する際に発生する全荷重が加わる部分に取り付けた荷重センサーの波形データをD3としたときに、演算結果△D=D3−(D1+D2)を前記絶縁被覆電線に対する前記圧着端子の正常な圧着の際得られるものと比較して圧着不良を検出することを特徴とする。
Moreover, the terminal crimping device according to claim 2 of the present invention is a conductor crimping pressing part for crimping a conductor crimping portion of a crimping terminal to a conductor of an insulation coated electric wire having a conductor and an insulation coating applied on the conductor; A terminal crimping device for crimping an insulation coating crimping portion of the crimp terminal to the insulation coating of the insulation coated wire, the terminal crimping device comprising the conductor crimping stamping portion, A load sensor is separately attached to each portion to which the total load generated when the crimp terminal is crimped to the insulation-coated crimping pressing portion and the insulation-coated electric wire, and the load obtained by these three load sensors. Compare the calculation result obtained by processing the waveform data with the calculation result obtained by performing the calculation processing on the waveform data obtained when the crimp terminal is normally crimped to the insulated wire, and crimp the terminal to the insulated wire. Further have a detecting section for detecting a crimping failure, the detection unit, the conductor crimping dies pressing portion waveform data of the load sensor attached to D1, the waveform of the load sensor attached to the insulating coating crimping dies pressing portion When the data is D2, and the waveform data of the load sensor attached to the portion to which the total load generated when the crimp terminal is crimped to the insulation-coated wire is D3, the calculation result ΔD = D3− (D1 + D2 ) Is detected in comparison with that obtained during normal crimping of the crimping terminal with respect to the insulated coated electric wire .

上記のようにしてなる本発明の圧着不良端子検出方法または端子圧着装置によれば、端子圧着装置において、絶縁被覆電線の導体に圧着端子の導体圧着部を圧着する導体圧着用型押部、絶縁被覆に前記圧着端子の絶縁被覆圧着部を圧着する絶縁被覆圧着用型押部、及び絶縁被覆電線に圧着端子を圧着する際に発生する全荷重が加わる部分、具体的には例えばラムの部分の、都合3箇所に各々別個に荷重センサーを取り付けたことにより、これら3箇所の荷重センサーから得られる波形データそのものだけでなく、これらの波形データを相互に加算したり、その差分を取る等の演算加工して得た演算結果を、正常な圧着が行われた際のものと比較することができるようになる。そのため、導体圧着部や絶縁被覆圧着部における圧着不良を、従来検出できなかったような軽微な圧着不良も含めて、より精度良く検出することが可能になる。   According to the crimping failure detection method or terminal crimping apparatus of the present invention as described above, in the terminal crimping apparatus, the conductor crimping pressing part for crimping the conductor crimping part of the crimping terminal to the conductor of the insulation coated electric wire, insulation The insulation coating crimping pressing part for crimping the insulation coating crimp part of the crimp terminal to the coating, and the part to which the total load generated when crimping the crimp terminal to the insulation coated wire is applied, specifically, for example, the ram part By attaching load sensors separately at three convenient locations, not only the waveform data itself obtained from these three load sensors, but also operations such as adding these waveform data to each other or taking the difference between them. The calculation result obtained by processing can be compared with that obtained when normal crimping is performed. For this reason, it is possible to detect the crimping failure in the conductor crimping portion and the insulation coating crimping portion with a higher accuracy including the minor crimping failure that could not be detected in the past.

以上のように本発明によれば、より精度良く圧着不良を検出できる圧着不良端子検出方法及びこの検出方法を用いた端子圧着装置を提供することができる。   As described above, according to the present invention, it is possible to provide a crimping failure terminal detection method capable of detecting a crimping failure more accurately and a terminal crimping device using this detection method.

以下に図を用いて、本発明の圧着不良端子検出方法およびこの検出方法を用いた端子圧着装置の一実施例を詳細に説明する。   In the following, an embodiment of the present invention will be described in detail with reference to the drawings.

本実施例の端子圧着装置1の特徴的な部分は、図1、図3、図4及び図5に示すように、導体圧着用型押部5a、絶縁被覆圧着用型押部5b、及び圧着時に発生する全荷重を捕捉できるラム6の、都合3箇所にそれぞれ荷重センサー10b、10c、10aを設置し、本発明の検出部の一例となる波形判定回路20(検出部)において、前記3箇所の荷重センサー10a〜10c全てから荷重の波形データを集め、必要に応じてそれらの波形データを演算加工して演算結果を得、これを圧着不良のない正常な場合の波形データの演算結果と比較して、圧着不良を検出する点にある。   As shown in FIGS. 1, 3, 4 and 5, the characteristic parts of the terminal crimping apparatus 1 of this embodiment are a conductor crimping pressing part 5a, an insulation coating crimping pressing part 5b, and a crimping. Load sensors 10b, 10c, and 10a are installed at three convenient locations of the ram 6 that can capture all the loads that are generated at times. In the waveform determination circuit 20 (detection unit) as an example of the detection unit of the present invention, the three locations Load waveform data is collected from all the load sensors 10a to 10c, and if necessary, the waveform data is processed and processed to obtain a calculation result, which is compared with the calculation result of the waveform data in the normal case without crimping failure. Thus, it is in the point of detecting a crimp failure.

以下に本実施例の端子圧着装置1及び圧着不良端子検出方法について図1〜図10を用いて説明する。
図1は、端子圧着装置1を示すもので、この端子圧着装置1は、プレスフレーム2、このプレスフレーム2上に固定された端子圧着台3、この端子圧着台3の上方に上下動可能に設けられているアプリケータ4、このアプリケータ4の下端に装着され、圧着端子90を圧着する端子圧着用型押部5、アプリケータ4の上端にその下端が固定され、かつプレスフレーム2に穿たれた孔2b内を摺動自在に嵌挿されているラム6、そしてこのラム6を上下動させるトグル装置7及び端子配給レバー8等々により構成されている。
Below, the terminal crimping apparatus 1 and the crimping defective terminal detection method of a present Example are demonstrated using FIGS.
FIG. 1 shows a terminal crimping device 1, which is capable of moving up and down above a press frame 2, a terminal crimping table 3 fixed on the press frame 2, and the terminal crimping table 3. The provided applicator 4, the terminal pressing die 5 that is attached to the lower end of the applicator 4 and presses the crimp terminal 90, the lower end is fixed to the upper end of the applicator 4, and the press frame 2 is punched. The ram 6 is slidably inserted in the slanted hole 2b, a toggle device 7 for moving the ram 6 up and down, a terminal distribution lever 8, and the like.

トグル装置7は主として上方リンク71、下方リンク72、トグル73及びフライホイール74とを有していて、これら上方リンク71と下方リンク72とトグル73との各一端は軸75により回動自在に軸支されている。
一方、上方リンク71の他端は固定部76に、下方リンク72の他端はラム6の上端に、そしてトグル73の他端はフライホイール74の周部に、いずれも回動自在に軸支されている。
フライホイール74は、図示しない駆動モータにより回転され、その回転はトグル73や上方リンク71、下方リンク72を介してラム6に伝達され、ラム6は上下に往復動する。
The toggle device 7 mainly has an upper link 71, a lower link 72, a toggle 73 and a flywheel 74. One end of each of the upper link 71, the lower link 72 and the toggle 73 is pivoted by a shaft 75. It is supported.
On the other hand, the other end of the upper link 71 is pivotally supported on the fixed portion 76, the other end of the lower link 72 is on the upper end of the ram 6 and the other end of the toggle 73 is pivotally supported on the peripheral portion of the flywheel 74. Has been.
The flywheel 74 is rotated by a drive motor (not shown), and the rotation is transmitted to the ram 6 via the toggle 73, the upper link 71, and the lower link 72, and the ram 6 reciprocates up and down.

端子配給レバー8は、その上端を軸81に回動自在に軸支され、かつ中央部に形成されている駆動溝82内に、一端をアプリケータ4の上端に固定されたアーム83の他端がピン等を介して係合され、下端には杵84が装着されている。
その結果、この端子配給レバー8は、アプリケータ4の上下動により左右に揺動して杵84を左右に駆動し、図2に示すようにキャリア80により連結されている多数の圧着端子90から圧着端子90を一個ずつ端子圧着台3へと搬送するようになっている。
The terminal distributing lever 8 is pivotally supported at its upper end on a shaft 81 and is rotatably supported at the other end of an arm 83 with one end fixed to the upper end of the applicator 4 in a drive groove 82 formed at the center. Are engaged via a pin or the like, and a collar 84 is attached to the lower end.
As a result, the terminal distribution lever 8 swings left and right by the vertical movement of the applicator 4 to drive the collar 84 left and right, and from a number of crimp terminals 90 connected by the carrier 80 as shown in FIG. The crimp terminals 90 are conveyed one by one to the terminal crimp base 3.

ラム6と共に上下動するアプリケータ4の下端には、図1、図4、図5が示すように導体圧着用型押部5a、絶縁被覆圧着用型押部5bが装着されている。一方、端子圧着台3内には、搬送されてきたキャリア80から圧着端子90を順番に切り離すパンチ96が装着されている。その結果、アプリケータ4の一回の下降で、圧着端子90の切り離し、絶縁被覆圧着用型押部5bによる前述した図9に示すような絶縁被覆圧着部93による圧着、同じく導体圧着用型押部5aによる導体圧着部95の圧着が同時に行われる。   As shown in FIGS. 1, 4, and 5, a conductor crimping pressing portion 5 a and an insulation coating crimping pressing portion 5 b are attached to the lower end of the applicator 4 that moves up and down together with the ram 6. On the other hand, a punch 96 for separating the crimp terminals 90 in order from the conveyed carrier 80 is mounted in the terminal crimp base 3. As a result, with a single descent of the applicator 4, the crimping terminal 90 is separated, the insulation coating crimping pressing portion 5b is used to crimp the insulation coating crimping portion 93 as shown in FIG. The conductor crimping portion 95 is simultaneously crimped by the portion 5a.

ここでトグル装置7において、トグル73で軸75を押すと、上方リンク71、下方リンク72が垂直方向に略一直線になって垂直方向に押す力Pが大きくなる。
いま両リンク71と72の長さが等しいと仮定し、垂直方向と下方リンク72が成す角度をθ、そしてトグル73の押圧力をFとすると、下方リンク72がラム6を押す力は、P=F/(2tanθ)で示される。
この力Pが、端子圧着台3上で端子圧着用型押部5が絶縁被覆電線の端末に圧着端子90を圧着する力(以下圧着力という)となる。したがって、ラム6は端子圧着時に、この力Pの反力−Pを受ける。そこでラム6に荷重センサー10aを装着してこの反力−Pの変化を検出して、圧着端子90への圧着力が正常であったかどうかを判断することができる。
Here, in the toggle device 7, when the shaft 75 is pushed with the toggle 73, the upper link 71 and the lower link 72 are substantially aligned in the vertical direction, and the pushing force P in the vertical direction increases.
Assuming that the lengths of the links 71 and 72 are equal, θ is the angle formed by the vertical direction and the lower link 72, and F is the pressing force of the toggle 73, the force by which the lower link 72 pushes the ram 6 is P = F / (2 tan θ).
This force P becomes a force (hereinafter referred to as a crimping force) for crimping the crimp terminal 90 to the terminal of the insulation-coated electric wire on the terminal crimping table 3. Therefore, the ram 6 receives the reaction force -P of this force P when the terminal is crimped. Therefore, the load sensor 10a is attached to the ram 6 and the change of the reaction force -P is detected to determine whether or not the crimping force to the crimping terminal 90 is normal.

ここでラム6には所定位置で、図3に示すように全周にわたって軸方向と直角方向にその一部を切欠いてラム6より細径の柱6aが形成されていて、この柱6aに荷重センサー10aが配置される。この荷重センサー10aは2つのセンサー11a、11bを有するブリッジ回路からなっており、センサー11aは柱6aの前面に、センサー11bはセンサー11aと180度反対側、すなわち裏面(図示されていない)に装着される。
センサー11aは、図3に示すように、例えば2枚の互いに直交して装着されるロードセル12a、13aにより構成されている。具体的には一方のロードセル12aは柱6aの軸方向に貼られ、他方のロードセル13aは柱6aの軸に直角に貼り付けられる。そしてロードセル12aは柱6aの軸方向の歪に対応して、ロードセル13aは軸に直角方向の歪に対応して抵抗値が変化する。センサー11bも同様にロードセル12b、13bにより構成されている。
Here, the ram 6 is formed at a predetermined position with a column 6a having a diameter smaller than that of the ram 6 by cutting a part of the ram 6 in a direction perpendicular to the axial direction over the entire circumference as shown in FIG. A sensor 10a is arranged. The load sensor 10a is composed of a bridge circuit having two sensors 11a and 11b. The sensor 11a is mounted on the front surface of the pillar 6a, and the sensor 11b is mounted 180 degrees opposite to the sensor 11a, that is, on the back surface (not shown). Is done.
As shown in FIG. 3, the sensor 11a includes, for example, two load cells 12a and 13a that are mounted orthogonally to each other. Specifically, one load cell 12a is stuck in the axial direction of the pillar 6a, and the other load cell 13a is stuck at right angles to the axis of the pillar 6a. The load cell 12a has a resistance value corresponding to the strain in the axial direction of the column 6a, and the load cell 13a has a resistance value corresponding to the strain in the direction perpendicular to the axis. Similarly, the sensor 11b includes load cells 12b and 13b.

荷重センサー10aにおいて、各ロードセルは図6に示すようにブリッジ回路に接続される。尚、図6で、ロードセル12b、13bは前述したように柱6aの裏面に貼り付けられたロードセルを示している。ブリッジ回路を構成する各ロードセル12aと12b、13aと13bの各接点a、bは電源15に接続される。またロードセル12aと13a、12bと13bの各接点c、dは荷重センサー10aの端子10ax、10ayに接続される。   In the load sensor 10a, each load cell is connected to a bridge circuit as shown in FIG. In FIG. 6, the load cells 12b and 13b indicate the load cells attached to the back surface of the pillar 6a as described above. The contacts a and b of the load cells 12a and 12b and 13a and 13b constituting the bridge circuit are connected to a power source 15. The contact points c and d of the load cells 12a and 13a, 12b and 13b are connected to terminals 10ax and 10ay of the load sensor 10a.

このようにしてなる荷重センサー10aにより、端子圧着時に個々の圧着端子90毎に、ラム6の柱6aに生ずる歪を検出して、前述した反力−Pを検出する。
因みに、ラム6の一部を切り欠いて細径の柱6aとし、この部分に荷重センサー10aを装着した理由は、圧着力の反力−Pによる歪を出易くして、検出感度を上げるためであり、感度の点で問題なければ、あえてラム6の一部を切り欠いて細径の柱6aを形成する必要はない。
The load sensor 10a thus configured detects the distortion generated in the column 6a of the ram 6 for each individual crimp terminal 90 during terminal crimping, and detects the reaction force −P described above.
Incidentally, a part of the ram 6 is cut out to form a thin column 6a, and the load sensor 10a is attached to this part in order to easily generate distortion due to the reaction force -P of the crimping force and to increase detection sensitivity. If there is no problem in terms of sensitivity, it is not necessary to cut out a part of the ram 6 to form the small-diameter column 6a.

また端子圧着用型押部5の導体圧着用型押部5a、絶縁被覆圧着用型押部5bの両方には、さらに精度良く圧着不良を検出できるように、図4、図5に示すように、各々別個に荷重センサー10b、10cが装着されている。これら荷重センサー10b、10cにおいては、荷重センサー10aと同様に、ロードセル31a、32a(裏側にも同様に2つのロードセルを貼り付けてある)、ロードセル36a、37a(裏側にも同様に2つのロードセルを貼り付けてある)が互いに直交するように設置されている。
これら荷重センサー10b、10cについてもそれぞれ図6同様のブリッジ回路が構成される。
In addition, as shown in FIGS. 4 and 5, both the conductor crimping die 5a and the insulation coating crimping die 5b of the terminal crimping die 5 can be detected with higher accuracy. The load sensors 10b and 10c are mounted separately. In these load sensors 10b and 10c, similarly to the load sensor 10a, the load cells 31a and 32a (two load cells are similarly attached to the back side) and the load cells 36a and 37a (two load cells are similarly provided to the back side) Are attached so as to be orthogonal to each other.
Each of the load sensors 10b and 10c also has a bridge circuit similar to that shown in FIG.

本実施例の検出部の一例となる波形判定回路20は、詳しくは図7に示すように、アンプ21a、21b、21c、アナログ−デジタル変換器(以下A/D変換器という)22a、22b、22c、比較器23a、23b、23c、及びメモリ24a、24b、24c、さらには中央演算処理装置(以下CPUという)25や、後述する加重センサー10aと加重センサー10b、10cとの差分等のデータを保存するメモリ26とを有して構成される。
前述した荷重センサー10aの端子10ax、10ayは、図7に示すように、波型判定回路20のアンプ21aの入力端子に結線される。アンプ21aの出力端子はA/D変換器22a及び比較器23aの各入力端子に接続される。比較器23aの出力端子はA/D変換器22aのトリガ入力端子に接続され、A/D変換器22aの出力端子はメモリ24aの入力端子に接続される。
荷重センサー10b、10cについても同様にアンプ21b、21cに接続され、これらアンプ21b、21cはさらにA/D変換器22b、22c、比較器23b、23cとそれぞれ結線され、A/D変換器22b、22cはそれぞれメモリ24b、24cに接続される。これらのメモリ24a、24b、24cはさらにCPU25に接続される。
As shown in FIG. 7 in detail, the waveform determination circuit 20 as an example of the detection unit of the present embodiment includes amplifiers 21a, 21b, 21c, analog-digital converters (hereinafter referred to as A / D converters) 22a, 22b, 22c, comparators 23a, 23b, and 23c, memories 24a, 24b, and 24c, and a central processing unit (hereinafter referred to as CPU) 25, and data such as a difference between a weight sensor 10a and weight sensors 10b and 10c described later. And a memory 26 for storage.
The terminals 10ax and 10ay of the load sensor 10a described above are connected to the input terminal of the amplifier 21a of the wave type determination circuit 20, as shown in FIG. The output terminal of the amplifier 21a is connected to each input terminal of the A / D converter 22a and the comparator 23a. The output terminal of the comparator 23a is connected to the trigger input terminal of the A / D converter 22a, and the output terminal of the A / D converter 22a is connected to the input terminal of the memory 24a.
Similarly, the load sensors 10b and 10c are connected to the amplifiers 21b and 21c. The amplifiers 21b and 21c are further connected to the A / D converters 22b and 22c and the comparators 23b and 23c, respectively, and the A / D converter 22b, 22c is connected to memories 24b and 24c, respectively. These memories 24a, 24b, and 24c are further connected to the CPU 25.

以下にこの端子圧着装置1の動作を説明する。
トグル装置7はフライホイール74の回転をトグル73及び上方リンク71、下方リンク72を介してラム6とアプリケータ4に伝えて、これらを往復動させる。
一方、アプリケータ4の往復動に応じて端子配給レバー8が左右に揺動して杵84を動作させ、キャリア80に所定間隔で保持されている複数の圧着端子90から、圧着端子90を一個ずつ端子圧着台3上に搬送し、圧着端子90の絶縁被覆圧着部及び導体圧着部をそれぞれ予め決められている位置に位置決めする。
The operation of this terminal crimping apparatus 1 will be described below.
The toggle device 7 transmits the rotation of the flywheel 74 to the ram 6 and the applicator 4 via the toggle 73, the upper link 71, and the lower link 72, and reciprocates them.
On the other hand, according to the reciprocating motion of the applicator 4, the terminal distribution lever 8 swings left and right to operate the collar 84, and one crimp terminal 90 is formed from the plurality of crimp terminals 90 held on the carrier 80 at a predetermined interval. Each of them is conveyed onto the terminal crimping table 3 and the insulation coating crimping part and the conductor crimping part of the crimping terminal 90 are respectively positioned at predetermined positions.

絶縁被覆電線の先端の絶縁被覆を除去した、いわゆる端末処理が完了している絶縁被覆電線を、端子圧着台3上に位置決めされている圧着端子90上に位置決めしたら、アプリケータ4の下端に装着されている端子圧着用型押部5が下降して圧着端子90の絶縁被覆圧着部及び導体圧着部とを圧着し、各々で絶縁被覆電線の絶縁被覆及び導体をそれぞれ圧着し、圧着端子90に接続する。
絶縁被覆電線に圧着端子90を圧着して装着した際、その反力がラム6に加わり、柱6aに歪が生ずる。荷重センサー10aでこの歪を検出して対応する電気信号Vを発生する。
When the insulation-coated electric wire, which has undergone so-called terminal treatment, with the insulation coating at the end of the insulation-coated electric wire removed, is positioned on the crimping terminal 90 positioned on the terminal crimping table 3, it is mounted on the lower end of the applicator 4 The terminal pressing die pressing portion 5 is lowered to crimp the insulation coating crimping portion and the conductor crimping portion of the crimping terminal 90, and the insulation coating and conductor of the insulation coated wire are respectively crimped to the crimping terminal 90. Connecting.
When the crimp terminal 90 is crimped and attached to the insulated sheathed electric wire, the reaction force is applied to the ram 6 and the column 6a is distorted. The load sensor 10a detects this distortion and generates a corresponding electric signal V.

荷重センサー10aが発生させた電気信号Vをアンプ21aで増幅した後、A/D変換器22aと比較器23aに送る。比較器23aではこの増幅した電気信号Vと基準信号Vsとを比較して、電気信号Vと基準信号Vsの差が許容範囲より大きい場合には、A/D変換器22aにレベルトリガをかける。A/D変換器22aはこのトリガ信号Ptが印加されると、サンプリングを開始して、入力する電気信号Vの波形データをサンプリングし、A/D変換を行い、この波形データを時系列的にメモリ24aに格納する。
これと同様の処理が、荷重センサー10b、10cについてもそれぞれアンプ21b、21c、A/D変換器22b、22c、比較器23b、23cを介して行われ、出力された波形データを時系列的にメモリ24b、24cに格納する。
After the electric signal V generated by the load sensor 10a is amplified by the amplifier 21a, it is sent to the A / D converter 22a and the comparator 23a. The comparator 23a compares the amplified electric signal V with the reference signal Vs, and if the difference between the electric signal V and the reference signal Vs is larger than the allowable range, a level trigger is applied to the A / D converter 22a. When the trigger signal Pt is applied, the A / D converter 22a starts sampling, samples the waveform data of the input electric signal V, performs A / D conversion, and converts the waveform data in time series. Store in the memory 24a.
Similar processing is performed for the load sensors 10b and 10c via the amplifiers 21b and 21c, the A / D converters 22b and 22c, and the comparators 23b and 23c, respectively, and the output waveform data is time-sequentially. Store in the memories 24b and 24c.

メモリ24a、24b、24cは、正常な圧着状態の信号波形、すなわち正常な圧着が行われた際得られた波形データを記憶しており、CPU25はこの正常な波形データと圧着端子90の圧着時、逐次送られてくる波形データとを比較して、圧着端子90の圧着が正常に行われているかどうかを判定する。もし比較の結果に所定の差あるいはそれ以上の差がある場合には、異常と判定して、異常判定信号Voを出力する。   The memories 24a, 24b, and 24c store signal waveforms in a normal crimp state, that is, waveform data obtained when normal crimping is performed, and the CPU 25 performs crimping of the normal waveform data and the crimp terminal 90. Then, it is determined whether or not the crimping terminal 90 is normally crimped by comparing the waveform data sent sequentially. If there is a predetermined difference or more in the comparison result, it is determined that there is an abnormality, and an abnormality determination signal Vo is output.

ところで、前述したように荷重センサー10aや荷重センサー10b、10cを単体で用いた場合、軽微な圧着不良、具体的には前述した図9(b)、(d)に示す圧着不良を検出することは困難であった。
そこで本実施例では、従来は同じ端子圧着装置1に同時に設けられることのなかった荷重センサー10aと荷重センサー10b、10cを図1に示すように同じ端子圧着装置1に設ける構成とし、波形判定回路20のCPU25において波形データを互いに演算加工することにより、従来のように各荷重センサー10a、10b、10cからのそれぞれの波形データによる判定だけでは困難であった、軽微な圧着不良をより確実に検出できるようにしたのである。
以下にこの点をより具体的に説明する。
By the way, as described above, when the load sensor 10a and the load sensors 10b and 10c are used alone, a slight crimp failure, specifically, the aforementioned crimp failure shown in FIGS. 9B and 9D is detected. Was difficult.
Therefore, in the present embodiment, the load sensor 10a and the load sensors 10b and 10c that have not been provided at the same time in the same terminal crimping device 1 are provided in the same terminal crimping device 1 as shown in FIG. By processing the waveform data with each other in 20 CPUs 25, it is possible to more reliably detect minor crimping defects, which were difficult only by the determination based on the waveform data from the load sensors 10a, 10b, and 10c as in the past. I made it possible.
This point will be described more specifically below.

図8に3箇所の各荷重センサー10a〜10cの出力波形をそれぞれ示す。図8(a)は図4に示す導体圧着用型押部5aに装着した荷重センサー10bが出力した波形データ、図8(b)は絶縁被覆圧着用型押部5bに装着した荷重センサー10cの波形データを、図8(c)は、図3に示すラム6の柱6aに装着した荷重センサー10aの波形データ(以下単に波形という)を示す。
これらの波形は、図7に示される波形判定回路20に入力され、そこで演算処理される。
FIG. 8 shows output waveforms of the three load sensors 10a to 10c, respectively. FIG. 8A shows waveform data output from the load sensor 10b attached to the conductor crimping pressing part 5a shown in FIG. 4, and FIG. 8B shows the load sensor 10c attached to the insulating cover crimping pressing part 5b. FIG. 8C shows the waveform data of the load sensor 10a attached to the column 6a of the ram 6 shown in FIG.
These waveforms are input to the waveform determination circuit 20 shown in FIG.

例えば図8(a)において、G1は導体圧着部95の圧着が、図9(a)に示すように、正常に行われた場合の波形である。一方、一点鎖線で示されているN1は図9(b)に示すように、導体94のうち2本程度の少ない本数が導体圧着部95から外れてしまった場合の波形で、前述したG1よりも下側に現れる。
尚、一般的には、導体圧着部95から外れる導体94の本数が増える程、N1はG1よりも、より下方に現れる。
他方、N2のように正常の波形G1よりも上方に波形が現れる、ということは導体圧着部95が導体94のみならず他のもの、例えばキャリア80から圧着端子90を切り離す際発生した切り屑をも導体94と一緒に圧着したような場合が考えられる。
いずれにせよ、導体圧着用型押部5aに装着した荷重センサー10bの波形から、導体圧着部95における圧着不良を検出できる。
For example, in FIG. 8A, G1 is a waveform when the crimping of the conductor crimping portion 95 is normally performed as shown in FIG. 9A. On the other hand, as shown in FIG. 9B, N1 indicated by a one-dot chain line is a waveform when a small number of about two conductors 94 are detached from the conductor crimping portion 95, and is based on G1 described above. Also appears on the lower side.
In general, as the number of conductors 94 that are removed from the conductor crimping portion 95 increases, N1 appears below G1.
On the other hand, the waveform appears above the normal waveform G1 as in N2, which means that the conductor crimping portion 95 is not only the conductor 94, but also other things, for example, chips generated when the crimping terminal 90 is separated from the carrier 80. In some cases, the conductor 94 may be crimped together with the conductor 94.
In any case, the crimping failure in the conductor crimping portion 95 can be detected from the waveform of the load sensor 10b attached to the conductor crimping pressing portion 5a.

図8(b)において、G2は絶縁被覆圧着部93の圧着が、図9(a)に示すように、正常に行われた場合の波形である。一方、N3は図9(c)が示すように、導体圧着部95のみならず絶縁被覆圧着部93でも導体94のみ圧着し、絶縁被覆92を圧着できなかった状態を示す波形を示している。すなわち外径が絶縁被覆外径よりも細い導体94の外径部分を圧着したため、N3は正常値の波形であるG2の下方に出現する。
このように、絶縁被覆圧着用型押部5bに装着した荷重センサー10cからの波形をチェックすれば、通常の絶縁被覆圧着部93における圧着不良は精度良く検出可能である。
In FIG. 8B, G2 is a waveform when the insulation coating crimping portion 93 is normally crimped as shown in FIG. 9A. On the other hand, as shown in FIG. 9C, N3 shows a waveform indicating a state in which only the conductor 94 is crimped not only in the conductor crimping portion 95 but also in the insulating coating crimping portion 93 and the insulating coating 92 cannot be crimped. That is, since the outer diameter portion of the conductor 94 whose outer diameter is smaller than the outer diameter of the insulation coating is crimped, N3 appears below G2, which is a normal waveform.
As described above, if the waveform from the load sensor 10c attached to the insulating coating crimping pressing portion 5b is checked, the crimping failure in the normal insulating coating crimping portion 93 can be accurately detected.

図8(c)において、G3は絶縁被覆圧着部93及び導体圧着部94の各圧着が、図9(a)に示すように、正常に行われた場合の波形である。一方、N4は図9(d)に示すように、絶縁被覆圧着部93の一方の圧着部が圧着不良を起こした場合である。
前述したように、この場合、導体圧着部95では導体94を正常に圧着しているが、絶縁被覆圧着部93の一方の圧着端子が正常に圧着されていない。
このような場合には、導体圧着部95では導体94を正常に把握しているため、導体圧着用型押部5aに装着した荷重センサー10bにはなんら異常は現れない。すなわち導体圧着用型押部5aに装着した荷重センサー10bでは検出できない。
In FIG. 8C, G3 is a waveform when each crimping of the insulation coating crimping portion 93 and the conductor crimping portion 94 is normally performed as shown in FIG. 9A. On the other hand, N4 is a case where one of the crimping portions of the insulation coating crimping portion 93 causes a crimping failure, as shown in FIG. 9 (d).
As described above, in this case, the conductor 94 is normally crimped by the conductor crimping portion 95, but one crimping terminal of the insulation coating crimping portion 93 is not normally crimped.
In such a case, since the conductor crimping part 95 normally grasps the conductor 94, no abnormality appears in the load sensor 10b attached to the conductor crimping pressing part 5a. That is, it cannot be detected by the load sensor 10b attached to the conductor pressing die pressing portion 5a.

また絶縁被覆圧着部93の荷重センサー10cにおいても、一応の圧着は行っているため絶縁被覆圧着用型押部5bに設置した荷重センサー10cの波形からその異常を読み取ることは容易ではない。
これに対し、ラム6の柱6aに設けた荷重センサー10aによれば、図9(d)のような圧着不良の場合、その波形N4は、図9(a)のような正常な圧着の際現れる波形G3よりも大きな値となって現れることを本発明者らは見出した。
In addition, since the load sensor 10c of the insulating coating crimping portion 93 is temporarily crimped, it is not easy to read the abnormality from the waveform of the load sensor 10c installed on the insulating coating crimping pressing portion 5b.
On the other hand, according to the load sensor 10a provided on the column 6a of the ram 6, in the case of the crimping failure as shown in FIG. 9D, the waveform N4 is obtained during normal crimping as shown in FIG. The present inventors have found that the value appears larger than the appearing waveform G3.

このようにラム6の柱6aに設置した荷重センサー10aに、図9(d)に対応した波形が出現する理由は、例えば図9(d)のような場合、左右の絶縁被覆圧着部93のバランスが崩れたことにより絶縁被覆圧着用型押部5bがわずかではあるが軸方向に傾きが生じて、その結果アプリケータ4とラム6において、これらを案内する部分との間に摺動抵抗が発生し、これがラム6の柱6aに装着した荷重センサー10aにG3<N4として現れるからである、と推測される。   The reason why the waveform corresponding to FIG. 9D appears in the load sensor 10a installed on the column 6a of the ram 6 as described above is that, for example, in the case of FIG. Due to the balance being lost, the insulating coating pressure-bonding pressing portion 5b is slightly tilted in the axial direction. As a result, in the applicator 4 and the ram 6, there is a sliding resistance between the guiding portions. It is estimated that this occurs because G3 <N4 appears in the load sensor 10a attached to the column 6a of the ram 6.

ただし、ラム6の柱6aに装着した荷重センサー10aにおける波形には導体圧着用型押部5a、絶縁被覆圧着用型押部5bにおける荷重分も含まれているので、該荷重センサー10aにおける波形単独では正確に圧着不良を検出することは困難である。
そこでさらに確実に図9(d)のような不良を検出するために、本実施例では、導体圧着用型押部5aの荷重センサー10bの波形の出力値をD1、絶縁被覆圧着用型押部5bの荷重センサー10cの波形の出力値をD2、ラム6の柱6aの荷重センサー10aの波形の出力値をD3としたときに、波形判定回路20のCPU25において差分値△D=D3−(D1+D2)の演算結果を算出し、これを常時監視する。
このように△Dの演算結果を監視することで摺動抵抗の変化をより精度良く検出でき、従来検出できなかった圧着不良をも検出することが可能になる。
However, since the waveform in the load sensor 10a attached to the column 6a of the ram 6 includes the load in the conductor crimping pressing part 5a and the insulation coating crimping pressing part 5b, the waveform alone in the load sensor 10a is included. Thus, it is difficult to accurately detect a crimping failure.
Therefore, in order to detect the defect as shown in FIG. 9D more reliably, in this embodiment, the output value of the waveform of the load sensor 10b of the conductor crimping pressing part 5a is set to D1, and the insulation coating pressing stamping part. When the output value of the waveform of the load sensor 10c of 5b is D2, and the output value of the waveform of the load sensor 10a of the column 6a of the ram 6 is D3, the CPU 25 of the waveform determination circuit 20 uses the difference value ΔD = D3- (D1 The calculation result of + D2) is calculated, and this is constantly monitored.
Thus, by monitoring the calculation result of ΔD, it is possible to detect a change in sliding resistance with higher accuracy, and it is possible to detect a crimping failure that could not be detected in the past.

より詳細に説明すると、上記のように△Dを見ていれば、導体圧着用型押部5a、絶縁被覆圧着用型押部5bの正常値自身が持っている許容範囲内のばらつきが相殺され、△Dにはいわゆるキャリア80から圧着端子90を切り離す荷重分と摺動抵抗の差のみしか現れない。
それ故、摺動抵抗のばらつきをより細かく捉えることができる。具体的には、摺動抵抗の値がばらつくのは、例えば図9(d)のような圧着不良で絶縁被覆圧着用型押部5bのバランスが崩れたり、あるいは図9(b)に示すような心線こぼれであって、導体圧着用型押部5aのバランスが崩れたような場合で、このようなケースでは、摺動抵抗に変化が現れるため圧着不良を検出することが可能になる。
また絶縁被覆における圧着不良については、キャリア80から圧着端子90を切り離す荷重分に変化が現れることもあるため、△Dを監視することで絶縁被覆における圧着不良をより精度良く検出することもできる。
More specifically, if ΔD is seen as described above, the variation within the allowable range of the normal value itself of the conductor crimping pressing part 5a and the insulating coating crimping pressing part 5b is offset. .DELTA.D only shows the difference between the load for separating the crimp terminal 90 from the so-called carrier 80 and the sliding resistance.
Therefore, the variation in sliding resistance can be grasped more finely. Specifically, the value of the sliding resistance varies because, for example, as shown in FIG. 9D, the balance of the insulating coating crimping pressing portion 5b is lost due to poor crimping or as shown in FIG. 9B. This is a case where the core wire is spilled and the balance of the conductor crimping pressing portion 5a is lost. In such a case, a change in the sliding resistance appears, so that it is possible to detect a crimp failure.
Further, with respect to the crimping failure in the insulating coating, a change may appear in the load for separating the crimping terminal 90 from the carrier 80. Therefore, by monitoring ΔD, the crimping failure in the insulating coating can be detected more accurately.

このように、本実施例によれば、ラム6、導体圧着用型押部5a、絶縁被覆圧着用型押部5bに各々別個に荷重センサー10a〜10cを取り付け、これら3箇所の荷重センサー10a〜10cから得られる荷重の波形のデータを演算加工した演算結果△Dを絶縁被覆電線に対する圧着端子90の正常な圧着の際得られる波形のデータを演算加工した演算結果と比較し、前記絶縁被覆電線への圧着端子90の圧着不良を検出することで、これまで検出できなかった軽微な圧着不良をも検出することができるようになる。
また上述の実施例から分かるように、複数の荷重センサー10a〜10cそれぞれの波形と、それらを互いに演算加工した演算結果のパターンの組み合わせから、どのタイプの圧着不良なのか、不良モードが判別できるようになる。したがって不良モード別の圧着不良発生頻度を分析することができるようになり、その後の圧着不良対策を行い易くなる利点もある。
As described above, according to the present embodiment, the load sensors 10a to 10c are separately attached to the ram 6, the conductor pressing die pressing portion 5a, and the insulating coating pressing die pressing portion 5b, respectively. The calculation result ΔD obtained by calculating and processing the waveform data of the load obtained from 10c is compared with the calculation result obtained by calculating and processing the waveform data obtained when the crimping terminal 90 is normally crimped to the insulation-coated electric wire. By detecting the crimping failure of the crimping terminal 90, it is possible to detect a minor crimping failure that could not be detected so far.
Further, as can be seen from the above-described embodiment, the failure mode can be determined from the combination of the waveforms of the plurality of load sensors 10a to 10c and the pattern of the calculation results obtained by processing them mutually. become. Therefore, it becomes possible to analyze the frequency of occurrence of the crimping failure for each failure mode, and there is an advantage that it becomes easier to take countermeasures for the subsequent crimping failure.

尚、本実施例では、荷重センサー10a〜10cをラム6と導体圧着用型押部5a、絶縁被覆圧着用型押部5bに装着したが、他の実施例として導体圧着用型押部5a、絶縁被覆圧着用型押部5bに加重センサーを装着する代わりに、導体圧着用型押部5a、絶縁被覆圧着用型押部5bとそれぞれ対になっている型押部側、すなわち端子圧着台3側に設けられている導体圧着用型押部50a、絶縁被覆圧着用型押部50bに荷重センサーを装着してもよい。
具体的には図10(a)に示すように導体圧着用型押部50aにロードセル31a、32a(裏面に31b、32b)からなる加重センサー10bを装着してもよいし、この導体圧着用型押部50aの下端に圧電素子のような荷重センサー51を装着してもよい。同様に、絶縁被覆圧着用型押部50bについても、図10(b)のように荷重センサー10cを装着する。
In this embodiment, the load sensors 10a to 10c are mounted on the ram 6, the conductor pressing die pressing portion 5a, and the insulation coating pressing die pressing portion 5b. However, as another embodiment, the conductor pressing die pressing portion 5a, Instead of attaching a weight sensor to the insulating coating crimping pressing part 5b, the conductor pressing mold part 5a and the insulating coating crimping pressing part 5b are respectively paired with the pressing part side, that is, the terminal crimping table 3 A load sensor may be attached to the conductor pressing die pressing portion 50a and the insulating coating pressing die pressing portion 50b provided on the side.
Specifically, as shown in FIG. 10 (a), a load sensor 10b comprising load cells 31a and 32a (31b and 32b on the back surface) may be attached to the conductor pressing die pressing portion 50a. A load sensor 51 such as a piezoelectric element may be attached to the lower end of the pressing portion 50a. Similarly, the load sensor 10c is also mounted on the insulation coating crimping pressing part 50b as shown in FIG.

また本実施例では荷重センサー10として歪センサーの一つであるロードセルを用いた例を示しているが、これ以外にも圧電変換素子、磁気抵抗素子あるいは静電容量素子等の荷重−電気変換素子を使用することもできる。
また本実施例では、ラム6に荷重センサー10aを取り付けたが、絶縁被覆電線に圧着端子を圧着する際に発生する全荷重が加わる部分であれば他の箇所にこの荷重センサー10aを取り付けてもよい。
さらにまた本実施例では、荷重センサー10a〜10cで得られた波形を△D=D3−(D1+D2)で演算加工したが、端子圧着装置1の構成や端子圧着方法の態様などに応じて適宜演算加工方法を変えてもよい。
In this embodiment, an example using a load cell which is one of strain sensors as the load sensor 10 is shown. However, other than this, a load-electric conversion element such as a piezoelectric conversion element, a magnetoresistive element or a capacitance element is used. Can also be used.
In this embodiment, the load sensor 10a is attached to the ram 6. However, even if the load sensor 10a is attached to other locations as long as the entire load generated when the crimp terminal is crimped to the insulation-coated electric wire is applied. Good.
Furthermore, in this embodiment, the waveforms obtained by the load sensors 10a to 10c were processed by ΔD = D3− (D1 + D2). However, depending on the configuration of the terminal crimping apparatus 1 and the mode of the terminal crimping method, etc. The arithmetic processing method may be changed as appropriate.

以上のように本発明の圧着不良端子検出方法および端子圧着装置によれば、より精度良く圧着不良を検出することができる。   As described above, according to the crimping failure terminal detection method and the terminal crimping device of the present invention, it is possible to detect the crimping failure with higher accuracy.

本発明の端子圧着装置の一実施例を示す正面図である。It is a front view which shows one Example of the terminal crimping apparatus of this invention. 図1に示す端子圧着装置に供給されるキャリア付き圧着端子の一部平面図である。It is a partial top view of the crimp terminal with a carrier supplied to the terminal crimping apparatus shown in FIG. 図1に示す端子圧着装置のラム部の拡大正面図である。It is an enlarged front view of the ram part of the terminal crimping apparatus shown in FIG. 図1に示す端子圧着装置における導体圧着用型押部及び絶縁被覆圧着用型押部の側面図である。It is a side view of the press part for conductor crimping and the press part for insulation coating crimping in the terminal crimping apparatus shown in FIG. 図4に示す導体圧着用型押部及び絶縁被覆圧着用型押部の一部拡大正面図である。FIG. 5 is a partially enlarged front view of the conductor crimping pressing portion and the insulating coating crimping pressing portion shown in FIG. 4. 図1の端子圧着装置に装着した荷重センサーのブリッジ回路である。It is a bridge circuit of the load sensor with which the terminal crimping apparatus of FIG. 1 was mounted | worn. 図1の端子圧着装置における検出部を模式的に示すブロック図である。It is a block diagram which shows typically the detection part in the terminal crimping apparatus of FIG. 図1に示す端子圧着装置の各荷重センサーで得られる波形であって、(a)は導体圧着用型押部に装着した荷重センサーから得られる波形、(b)は絶縁被覆圧着用型押部に装着した荷重センサーから得られる波形、そして(c)は全荷重が加わる部分に装着した荷重センサーから得られる波形をそれぞれ示すグラフである。1 is a waveform obtained by each load sensor of the terminal crimping apparatus shown in FIG. 1, wherein (a) is a waveform obtained from a load sensor attached to a conductor crimping stamping portion, and (b) is an insulating coating crimping stamping portion. (C) is a graph showing a waveform obtained from a load sensor attached to a portion to which a total load is applied, respectively. 端子圧着装置において絶縁被覆電線の端末に装着した圧着端子の種々の状態を示す平面図である。It is a top view which shows the various states of the crimp terminal with which the terminal crimping apparatus was mounted | worn with the terminal of the insulation coating electric wire. 本発明の他の実施例を示すもので、(a)は端子圧着台側に設置されている導体圧着用型押部の正面図、(b)は絶縁被覆圧着用型押部の正面図である。The other Example of this invention is shown, (a) is a front view of the press part for conductor crimping installed in the terminal crimping stand side, (b) is a front view of the press part for insulation coating crimping is there.

符号の説明Explanation of symbols

1 端子圧着装置
3 端子圧着台
4 アプリケータ
5a 導体圧着用型押部
5b 絶縁被覆圧着用型押部
6 ラム
7 トグル装置
10 荷重センサー
11 センサー
31、32、36、37 ロードセル
50a 導体圧着用型押部
50b 絶縁被覆圧着用型押部
90 圧着端子
92 絶縁被覆
93 絶縁被覆圧着部
94 導体
95 導体圧着部
DESCRIPTION OF SYMBOLS 1 Terminal crimping apparatus 3 Terminal crimping stand 4 Applicator 5a Conductor crimping stamping part 5b Insulation coating crimping stamping part 6 Ram 7 Toggle device 10 Load sensor 11 Sensor 31, 32, 36, 37 Load cell 50a Conductor crimping stamping 50b Insulation coating crimping pressing part 90 Crimp terminal 92 Insulation coating 93 Insulation coating crimping part 94 Conductor 95 Conductor crimping part

Claims (2)

絶縁被覆電線の導体に圧着端子の導体圧着部を圧着する導体圧着用型押部と、前記絶縁被覆電線の絶縁被覆に前記圧着端子の絶縁被覆圧着部を圧着する絶縁被覆圧着用型押部とを有する端子圧着装置によって絶縁被覆電線に圧着端子を圧着する際に、前記絶縁被覆電線への前記圧着端子の圧着不良を検出する圧着不良端子検出方法であって、前記導体圧着用型押部、前記絶縁被覆圧着用型押部、及び前記絶縁被覆電線に前記圧着端子を圧着する際に発生する全荷重が加わる部分に各々別個に荷重センサーを取り付け、前記導体圧着用型押部に取り付けた荷重センサーの波形データの出力値をD1、前記絶縁被覆圧着用型押部に取り付けた荷重センサーの波形データの出力値をD2、前記絶縁被覆電線に前記圧着端子を圧着する際に発生する全荷重が加わる部分に取り付けた荷重センサーの波形データの出力値をD3としたときに、△D=D3−(D1+D2)の演算結果を前記絶縁被覆電線に対する前記圧着端子の正常な圧着の際得られる波形データを演算加工した演算結果と比較し、絶縁被覆電線への圧着端子の圧着不良を検出することを特徴とする圧着不良端子検出方法。 A conductor crimping pressing part for crimping the conductor crimping portion of the crimping terminal to the conductor of the insulation coated electric wire; and an insulation coating crimping pressing part for crimping the insulating coating crimping part of the crimping terminal to the insulation coating of the insulating coating electric wire; A crimping failure terminal detection method for detecting a crimping failure of the crimping terminal to the insulation-coated wire when the crimping terminal is crimped to the insulation-coated wire by a terminal crimping device having a conductor crimping part, A load sensor is separately attached to each of the insulation-coated crimping pressing portion and a portion to which a total load generated when the crimping terminal is crimped to the insulating-coated electric wire is applied, and the load is attached to the conductor crimping pressing portion. The output value of the waveform data of the sensor is D1, the output value of the waveform data of the load sensor attached to the insulation coating crimping pressing part is D2, and all the values generated when the crimp terminal is crimped to the insulation coated electric wire. The output value of the waveform data of the load sensor attached to the portion where the heavy is applied is D3, obtained △ D = D3-a (D1 + D2) operation result during the normal crimping of the crimp terminal to said insulated wire A method of detecting a crimping failure terminal, comprising: comparing a calculation result obtained by processing the waveform data and detecting a crimping failure of the crimping terminal to the insulated coated electric wire. 導体と該導体上に施した絶縁被覆とを有する絶縁被覆電線の導体に圧着端子の導体圧着部を圧着する導体圧着用型押部と、前記絶縁被覆電線の絶縁被覆に前記圧着端子の絶縁被覆圧着部を圧着する絶縁被覆圧着用型押部と、を有する端子圧着装置であって、該端子圧着装置は前記導体圧着用型押部、前記絶縁被覆圧着用型押部、及び前記絶縁被覆電線に前記圧着端子を圧着する際に発生する全荷重が加わる部分に各々別個に加重センサーが取り付けられ、これら3箇所の荷重センサーによって得られる荷重の波形データを演算加工した演算結果を、前記絶縁被覆電線に対する前記圧着端子の正常な圧着の際得られる波形データを互いに演算加工した演算結果と比較し、絶縁被覆電線への圧着端子の圧着不良を検出する検出部をさらに有し、前記検出部は、前記導体圧着用型押部に取り付けた荷重センサーの波形データをD1、前記絶縁被覆圧着用型押部に取り付けた荷重センサーの波形データをD2、前記絶縁被覆電線に前記圧着端子を圧着する際に発生する全荷重が加わる部分に取り付けた荷重センサーの波形データをD3としたときに、演算結果△D=D3−(D1+D2)を前記絶縁被覆電線に対する前記圧着端子の正常な圧着の際得られるものと比較して圧着不良を検出することを特徴とする端子圧着装置。 A crimping portion for crimping a conductor crimping portion of a crimping terminal to a conductor of an insulation-coated electric wire having a conductor and an insulating coating applied on the conductor; and an insulation coating of the crimping terminal on the insulation coating of the insulating-coated wire A terminal crimping device having an insulation coating crimping pressing portion for crimping the crimping portion, wherein the terminal crimping device includes the conductor crimping pressing portion, the insulation coating crimping pressing portion, and the insulation coated electric wire. A weight sensor is separately attached to each portion where the total load generated when crimping the crimp terminal is crimped on, and the calculation result obtained by computing the waveform data of the load obtained by these three load sensors compared to the calculation result of calculation processing with each other waveform data obtained during the normal crimping of the crimp terminal for electric wire, further have a detecting section for detecting a crimp failure of the crimp terminal to insulated wire, before The detection unit has D1 as the waveform data of the load sensor attached to the conductor pressing die pressing portion, D2 as the waveform data of the load sensor attached to the insulating coating pressing die pressing portion, and the crimp terminal to the insulation coated electric wire. When the waveform data of the load sensor attached to the portion to which the total load generated during crimping is applied is D3, the calculation result ΔD = D3− (D1 + D2) is the normality of the crimp terminal with respect to the insulated wire. A terminal crimping device which detects a crimp failure compared with that obtained at the time of crimping.
JP2005260003A 2005-09-08 2005-09-08 Defective crimping terminal detection method and terminal crimping apparatus Active JP4398923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005260003A JP4398923B2 (en) 2005-09-08 2005-09-08 Defective crimping terminal detection method and terminal crimping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005260003A JP4398923B2 (en) 2005-09-08 2005-09-08 Defective crimping terminal detection method and terminal crimping apparatus

Publications (2)

Publication Number Publication Date
JP2007073379A JP2007073379A (en) 2007-03-22
JP4398923B2 true JP4398923B2 (en) 2010-01-13

Family

ID=37934663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260003A Active JP4398923B2 (en) 2005-09-08 2005-09-08 Defective crimping terminal detection method and terminal crimping apparatus

Country Status (1)

Country Link
JP (1) JP4398923B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8819925B2 (en) * 2009-07-10 2014-09-02 Yuzuki Corporation Terminal crimping apparatus
JP5437775B2 (en) * 2009-11-12 2014-03-12 矢崎総業株式会社 Terminal crimping device
JP5390968B2 (en) * 2009-07-10 2014-01-15 矢崎総業株式会社 Terminal crimping device
US8224623B2 (en) * 2010-04-09 2012-07-17 Delphi Technologies, Inc. Method to determine a quality acceptance criterion using force signatures
JP2015174289A (en) * 2014-03-14 2015-10-05 株式会社フロンティア Braille engraving device

Also Published As

Publication number Publication date
JP2007073379A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4398923B2 (en) Defective crimping terminal detection method and terminal crimping apparatus
US8819925B2 (en) Terminal crimping apparatus
JP4031214B2 (en) Terminal crimping state identification method
JP3627212B2 (en) Terminal crimping state discriminating method and apparatus, and caulking die wear state detecting method
JP6013847B2 (en) Terminal crimping inspection method and apparatus
US20150145510A1 (en) Durability Enhanced And Redundant Embedded Sensors
JP6450817B1 (en) Terminal crimp failure detection device
JP4360640B2 (en) Terminal crimping device
US7603909B2 (en) Piezoelectric polymer sensor device
CN115508210A (en) Testing equipment and method for flexible FPC (flexible printed circuit) flat cable and storage medium
JP2001035628A (en) Method and device for judging terminal crimping condition
JP7105724B2 (en) Inspection system and inspection method
JP4234654B2 (en) How to detect poor connection terminals
JPH041479B2 (en)
JP4469157B2 (en) Terminal crimp failure detection device
JP3800779B2 (en) Inspection method for variable capacity vacuum capacitors
JPH0565111B2 (en)
JP3986953B2 (en) Method and apparatus for determining pass / fail of press contact terminal
WO2017138115A1 (en) Terminal crimping defect detection device
JP7444524B2 (en) Inspection equipment and wire harness manufacturing equipment
Ling et al. Real-time quality evaluation of wire bonding using input impedance
JPH09312190A (en) Press machine for pressure-contact of wire to be used for manufacture of wire harness for automobile
CN108521778B (en) Method for judging stress condition of substrate and transportation system
US8997337B2 (en) Manufacturing apparatus and manufacturing method for an electronic component
JP5437775B2 (en) Terminal crimping device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4398923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350