JP4398610B2 - Boiling water nuclear power plant - Google Patents

Boiling water nuclear power plant Download PDF

Info

Publication number
JP4398610B2
JP4398610B2 JP2001282561A JP2001282561A JP4398610B2 JP 4398610 B2 JP4398610 B2 JP 4398610B2 JP 2001282561 A JP2001282561 A JP 2001282561A JP 2001282561 A JP2001282561 A JP 2001282561A JP 4398610 B2 JP4398610 B2 JP 4398610B2
Authority
JP
Japan
Prior art keywords
compressed air
nitrogen gas
supply device
containment vessel
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001282561A
Other languages
Japanese (ja)
Other versions
JP2003090896A (en
Inventor
力 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2001282561A priority Critical patent/JP4398610B2/en
Publication of JP2003090896A publication Critical patent/JP2003090896A/en
Application granted granted Critical
Publication of JP4398610B2 publication Critical patent/JP4398610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、不活性ガス供給装置と、圧縮空気供給設備を備えた沸騰水型原子力発電プラントに関する。
【0002】
【従来の技術】
一般に沸騰水型原子力発電プラントにおいては、プラント機器に設けられた空気作動弁や各種計装制御機器等を円滑に作動させるためや、タンク,フィルタ,脱塩器の逆洗,攪拌、さらには空気作動工具等を使用するためにそれに必要な容量と圧力をもった圧縮空気を供給する圧縮空気供給設備が設けられている。
【0003】
圧縮空気供給設備としては大きく分けて、主に空気作動弁や各種計装制御機器等に除湿,除塵された圧縮空気を供給する計装用圧縮空気供給装置と、空気作動工具等に除塵された圧縮空気を供給する所内用圧縮空気供給装置とがある。
【0004】
一方、前記発電プラントには不活性ガス供給装置も設けられている。この不活性ガス供給装置は、例えば液体窒素を加温して得られる窒素ガスをプラント運転の際に原子炉格納容器内に供給し、原子炉格納容器内を空気雰囲気から不活性ガス雰囲気に置換するとともに、プラント運転中に原子炉格納容器から漏洩する窒素ガスを補給し、所定の圧力に維持することによって空気の漏入を防止し不活性雰囲気を維持するようにしている。
【0005】
また前記計装用圧縮空気供給装置に接続される計装制御機器の内、原子炉格納容器内に設けられる空気作動弁へは原子炉格納容器内の不活性ガス雰囲気を維持するためにプラント通常運転時には前記不活性ガス供給装置からの窒素ガスを供給し、プラント通常運転時に不活性ガス供給装置に異常が発生し、供給ガス圧力が低下したような場合のみ計装用圧縮空気供給装置からの圧縮空気に切り替えるようにしている。
【0006】
またこの不活性ガス供給装置はプラント通常運転期間中等に乾燥保管するプラント内の各建屋内外の機器,配管等へ機内腐食防止の観点から窒素ガスを供給している。
【0007】
一方、近年膜分離技術が急速に発展しており、高分子の薄い膜で空気中の酸素や水蒸気を分離抽出する技術が開発されている。この膜分離技術では圧縮空気を中空糸膜の内側に供給するだけで空気中の酸素ガスを中空糸膜外側へ透過排出し、空気中の窒素ガスのみを容易に得ることができる窒素ガス発生装置や、圧縮空気を中空糸膜の内側に供給するだけで空気中の水蒸気を中空糸膜外側へ透過排出し乾燥空気を容易に得ることができる除湿装置等が実用化されている。
【0008】
これらの装置は近年一般産業で除々に使用実績がでてきており、何れの装置もその発生原理において電源の必要がなく非常に簡素でコンパクトな特徴を有している。
【0009】
従来の沸騰水型原子力発電プラントにおける圧縮空気供給設備、および不活性ガス供給装置の系統構成の一例を図5を参照して説明する。図5において、計装用圧縮空気供給装置10は空気圧縮機11にて圧縮された空気を後部冷却器12、気水分離器13にて冷却,水分除去した後、空気貯槽14を経て活性アルミナ等の吸着剤を使用した吸着方式の除湿装置15にて除湿し、乾燥空気を取り出す。この乾燥空気を供給母管16を介して発電プラント内で計装用圧縮空気を使用する空気作動弁などの各計装制御機器の負荷17に供給する。
【0010】
所内用圧縮空気供給装置20は空気圧縮機21にて圧縮された空気を後部冷却器22、気水分離器23にて冷却,水分除去した後、空気貯槽24を経て供給母管25を介して発電プラント内で所内用圧縮空気を使用する空気作動工具などの各負荷26に供給する。
【0011】
一方、不活性ガス供給装置30は、プラント通常運転時に原子炉格納容器100内を不活性ガス雰囲気に維持するため、減圧弁31、弁32、逆止弁33を有する配管34を介して原子炉格納容器100内に窒素ガスを供給する。またこの不活性ガス供給装置30は配管35、減圧弁36、弁37、38、逆止弁39を介して原子炉格納容器100内に設けられている空気作動弁17Aに圧縮空気を供給するとともに、減圧弁36の下流側から分岐した配管39を介してプラント通常運転期間中等に乾燥保管するプラント内各建屋内外の機器、配管等の負荷18へも機内腐食防止の観点から窒素ガスを供給する。
【0012】
計装用圧縮空気供給装置10と所内圧縮空気供給装置20は弁54を設けた配管55で接続されており、計装用圧縮空気供給装置10の空気貯槽15内の圧力が何らかの故障により規定の圧力以下に低下した場合、自動的に弁54が開き、所内用圧縮空気供給装置20から計装用圧縮空気供給装置10側に圧縮空気を供給しバックアップできるようになっている。
【0013】
更に計装用圧縮空気供給装置10と不活性ガス供給装置30の配管35とが弁40、逆止弁41を介して配管42によって接続されている。
また、所内用圧縮空気供給装置20の配管25と原子炉格納容器100内の負荷26Aとが弁43と逆止弁44を介して配管45で接続されている。
【0014】
このような構成の沸騰水型原子力発電プラントではプラント通常運転時は弁40が閉、弁32、37、38が開となって原子炉格納容器100内および空気作動弁17A、負荷18に不活性ガス供給装置30から窒素ガスを供給する。また計装用圧縮空気供給装置10と所内圧縮空気供給装置20もそれぞれ各負荷17、26、26Aに空気圧縮機11、21から圧縮空気を供給する。
【0015】
発電プラント停止中は弁37と弁40の開閉を逆に切換え、計装用圧縮空気供給装置10からの圧縮空気を空気作動弁17Aに供給する。
プラント通常運転中に不活性ガス供給装置30に何らかの異常が発生し、ガス供給圧力が万一低下した場合は自動的に弁37と弁40の開閉が切換わり計装用圧縮空気供給装置10からの圧縮空気を空気作動弁17Aに供給する。
【0016】
【発明が解決しようとする課題】
このように従来の沸騰水型原子力発電プラントにおいては、プラント通常運転時に不活性ガス供給装置30の異常により万一供給圧力が低下した場合には自動的に計装用圧縮空気供給装置10側から圧縮空気が原子炉格納容器100内の空気作動弁17A等の負荷に供給され、またプラント運転中に原子炉格納容器100から漏洩する窒素ガス量を補給することができず、原子炉格納容器100内を不活性ガス雰囲気に維持することができなくなり運転信頼性に欠ける課題がある。
【0017】
更にプラント通常運転期間中等に乾燥保管を行う機器はプラント内各建屋内外に点在しており、不活性ガス供給装置30からそれらの機器に窒素ガスを供給するには機器への窒素ガス供給配管長が長くなりコスト高となる。
【0018】
本発明はかかる点に鑑みなされたもので、プラント通常運転時に不活性ガス供給装置の異常により万一供給圧力が低下した場合にも合理的に窒素ガスを原子炉格納容器内計装機器及び原子炉格納容器内に連続供給し、原子炉格納容器内を不活性ガス雰囲気に維持することでプラント運転の信頼性を向上し、更にプラント通常運転期間中等に乾燥保管を行う機器への窒素ガス供給配管長を短縮することで配管系物量低減を図ることを目的とする。
【0019】
【課題を解決するための手段】
上記目的を達成するために本発明の請求項1記載の発明は、原子炉格納容器内に窒素ガスを供給する不活性ガス供給装置と、プラント内負荷に圧縮空気を供給する圧縮空気供給設備とを備えた沸騰水型原子力発電プラントにおいて、中空糸膜分離式窒素ガス発生装置を設け、不活性ガス供給装置の異常時に前記圧縮空気供給設備の圧縮空気から前記中空糸膜分離式窒素ガス発生装置を通して得られる窒素ガスを原子炉格納容器内に供給するようにしたことを特徴とする。
この発明によればプラント運転中に不活性ガス供給装置に異常が生じた場合でも圧縮空気供給設備から原子炉格納容器内に連続して窒素ガスが供給される。
【0020】
本発明の請求項2記載の発明は、原子炉格納容器内に窒素ガスを供給する不活性ガス供給装置と、プラント内負荷に圧縮空気を供給する圧縮空気供給設備とを備えた沸騰水型原子力発電プラントにおいて、中空糸膜分離式除湿装置と中空糸膜分離式窒素ガス発生装置とを設け、不活性ガス供給装置の異常時に前記圧縮空気供給設備の圧縮空気から前記中空糸膜分離式除湿装置と中空糸膜分離式窒素ガス発生装置とを通して得られる窒素ガスを原子炉格納容器内に供給するようにしたことを特徴とする。
【0021】
この発明によればプラント運転中に不活性ガス供給装置に異常が生じた場合でも圧縮空気供給設備から原子炉格納容器内に連続して除湿した窒素ガスが供給される。
【0022】
本発明の請求項3記載の発明は、請求項1記載の沸騰水型原子力発電プラントにおいて、圧縮空気供給設備から原子炉格納容器内に設けた計装制御機器に窒素ガスを供給することを特徴とする。
【0023】
この発明によればプラント運転中に不活性ガス供給装置に異常が生じた場合でも圧縮空気供給設備から原子炉格納容器内に設けた計装制御機器に連続して窒素ガスが供給される。
【0024】
本発明の請求項4記載の発明は、請求項1記載の沸騰水型原子力発電プラントにおいて、プラント運転期間中に乾燥保管するプラント内機器に窒素ガスを供給することを特徴とする。
【0025】
この発明によればプラント運転中に不活性ガス供給装置に異常が生じた場合でも圧縮空気供給設備からプラント運転期間中に乾燥保管するプラント内機器に連続して窒素ガスが供給される。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態を示す系統構成図である。図1において図5に示す従来の発電プラントと同一部分には同一の符号を付し、説明は省略する。計装用圧縮空気供給装置10において、原子炉格納容器100内の空気作動弁17Aへ圧縮空気を供給する配管42から配管46を分岐させ、この配管46に中空糸膜分離式窒素ガス発生装置47、弁48、逆止弁49を設けて配管50を介して再び前記配管42に接続している。また逆止弁49の下流側は配管51を介して不活性ガス供給装置30から原子炉格納容器100内へ窒素ガスを供給する配管34に接続しており、接続点下流には弁52が設置されている。
【0027】
乾燥保管用窒素ガスを必要とする負荷18へはその近傍に配置される計装用圧縮空気供給装置10の配管16から分岐した配管19を通して各々に中空糸膜分離式窒素ガス発生装置53を介して窒素ガスを供給する。
【0028】
ここで窒素ガス発生装置として用いられる中空糸膜分離式窒素ガス発生装置の構成の一例について図2(a)、(b)を参照しながら説明する。空気圧縮機で圧縮された圧縮空気60を中空糸膜61の内側に供給し中空糸膜61を隔ててその内外を高圧と低圧に保持すると圧縮空気60中の酸素ガス62成分は中空糸膜61の内側から選択的に透過し非透過側の中空糸膜61の出口で窒素ガス63が得られる。中空糸膜式の窒素ガス発生装置はこの酸素ガス62の透過性に優れた中空糸膜61を束ねて一つ筒状の容器64に収納しており、透過した酸素ガス62は容器64から大気65に放出される。
【0029】
このように構成された本発明の第1の実施の形態による沸騰水型原子力発電プラントによれば、プラント通常運転時は弁40、48が閉、弁32、52、37、38が開となって原子炉格納容器100内および空気作動弁17Aに不活性ガス供給装置30より窒素ガスを供給する。また計装用圧縮空気供給装置10と所内用圧縮空気系供給装置20もそれぞれ各負荷17、26、26Aに空気圧縮機11、21から圧縮空気を供給する。
発電プラント停止中は弁37と弁40の開閉を逆に切換え、計装用圧縮空気供給装置10から圧縮空気を空気作動弁17Aに供給する。
【0030】
次に、プラント通常運転時に不活性ガス供給装置30の異常により万一供給圧力が低下した場合にはそれを検出し、自動的に弁32、37と弁40、48の開閉が逆転し、配管46、中空糸膜分離式窒素ガス発生装置47、弁48、逆止弁49、配管50、弁38を介して原子炉格納容器100内の空気作動弁17Aに計装用圧縮空気供給装置10の圧縮空気から得られる窒素ガスを供給する。それとともに、配管46、中空糸膜分離式窒素ガス発生装置47、弁48、逆止弁49、配管51、弁52を介して原子炉格納容器100内に計装用圧縮空気供給装置10の圧縮空気から得られる窒素ガスを供給する。これによりプラント運転中に不活性ガス供給装置30に異常が生じた場合でも圧縮空気供給設備から原子炉格納容器100内に連続して窒素ガスが供給される。また、乾燥保管用窒素ガスを必要とする負荷18へはその近傍に配置される計装用圧縮空気供給装置10の配管16から分岐した配管19を通して各々に中空糸膜分離式窒素ガス発生装置53を介して窒素ガスを供給するので窒素ガス供給用の配管を必要以上に引き回す必要がなく配管系物量を低減できる。
【0031】
次に本発明の第2の実施の形態について図3を参照して説明する。本実施の形態においては、所内用圧縮空気供給装置20の原子炉格納容器100内へ供給する配管45から分岐した配管70に中空糸膜分離式除湿装置71、中空糸膜分離式窒素ガス発生装置72、弁73、逆止弁74が設けられており、不活性ガス供給装置30の原子炉格納容器100内へ窒素ガスを供給する配管34に接続されており、接続点下流には75が設けられている。また中空糸膜分離式窒素ガス発生装置72と弁73の間から分岐した配管76には弁77、逆止弁78が設けられており、計装用圧縮空気供給装置10の原子炉格納容器100内空気作動弁17Aへ圧縮空気を供給する配管35に接続されている。
【0032】
乾燥保管用窒素ガスを必要とする負荷18へはその近傍に配置される所内用圧縮空気系供給装置20の配管25から分岐した配管19各々に中空糸膜分離式除湿装置71、中空糸膜分離式窒素ガス発生装置72を設けている。
【0033】
尚、中空糸膜分離式窒素ガス発生装置72の上流に中空糸膜分離式除湿装置71を設けているのは、所内圧縮空気系の圧縮空気は湿潤空気のため、中空糸膜分離式窒素ガス発生装置72に供給する圧縮空気を乾燥空気にするためである。
【0034】
中空糸膜分離式除湿装置71の構成の一例について図4(a)、(b)を参照しながら説明する。空気圧縮機で圧縮された湿潤空気80を中空糸膜81の内側に供給し中空糸膜81を隔ててその内外を水蒸気分圧を高圧と低圧に保持すると湿潤空気80中の水蒸気82成分は中空糸膜80の内側から選択的に透過し非透過側の中空糸膜80の出口で乾燥空気83が得られる。中空糸膜式の除湿装置はこの水蒸気82の透過性に優れた中空糸膜81を束ねて一つ筒状の容器84に収納しており、乾燥空気83の一部をパージ配管85を介して中空糸膜81の外側にパージすることによって膜を隔てた内側と外側での水蒸気分圧が大きくし、また透過した水蒸気82は容器84から大気86に連続放出する。
【0035】
このように構成された本発明の第2の実施の形態による沸騰水型原子力発電システムによれば、プラント通常運転時に不活性ガス供給装置30の異常により万一供給圧力が低下した場合にはそれを検出し、自動的に弁37と77、弁32と73の開閉が逆転し、配管70、中空糸膜分離式除湿装置71、中空糸膜分離式窒素ガス発生装置72、弁77、逆止弁78、配管76、弁38を介して原子炉格納容器100内の空気作動弁17Aに圧縮空気から得られる窒素ガスを供給する。それとともに、弁73、逆止弁74、弁75を介して原子炉格納容器100内に所内用圧縮空気供給装置の圧縮空気から得られる窒素ガスを供給する。
【0036】
また、プラント停止中の原子炉格納容器100内点検時等は従来どおり弁37と弁40との開閉を逆転させ計装用圧縮空気供給装置10の圧縮空気を原子炉格納容器100内の空気作動弁17Aに供給する。
【0037】
【発明の効果】
以上説明したように、本発明によれば、プラント通常運転時に不活性ガス供給装置の異常により万一供給圧力が低下した場合にも合理的に窒素ガスを原子炉格納容器内および格納容器内計装機器に連続して供給し、格納容器内を不活性ガス雰囲気に維持することでプラント運転の信頼性を向上し、更にプラント通常運転期間中等に乾燥保管を行う機器への窒素ガス供給配管長を短縮することができ、配管系物量低減が図れる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す沸騰水型原子力発電システムの系統構成図。
【図2】本発明における中空糸膜分離式窒素ガス発生装置を示す図で、(a)は正面図、(b)は断面図。
【図3】本発明の第2の実施の形態を示す沸騰水型原子力発電システムの系統構成図。
【図4】本発明における中空糸膜分離式除湿装置を示す図で、(a)は正面図、(b)は断面図。
【図5】従来の沸騰水型原子力発電システムの系統構成図。
【符号の説明】
10…計装用圧縮空気供給装置、17A…空気作動弁、20…所内用圧縮空気供給装置、30…不活性ガス供給装置、47…中空糸膜分離式窒素ガス発生装置、71…中空糸膜分離式除湿装置、72…中空糸膜分離式窒素ガス発生装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boiling water nuclear power plant including an inert gas supply device and a compressed air supply facility.
[0002]
[Prior art]
In general, in boiling water nuclear power plants, air-operated valves and various instrumentation control devices installed in plant equipment are operated smoothly, tanks, filters, demineralizers are backwashed, stirred, and air-operated. There is provided a compressed air supply facility for supplying compressed air having a capacity and pressure necessary for using an operation tool or the like.
[0003]
Compressed air supply equipment can be broadly divided into: compressed air supply equipment for instrumentation that supplies compressed air that has been dehumidified and dedusted mainly to air-operated valves and various instrumentation control devices, and compressed air that has been dedusted by air-operated tools, etc. There is an in-house compressed air supply device for supplying air.
[0004]
On the other hand, the power plant is also provided with an inert gas supply device. This inert gas supply device supplies, for example, nitrogen gas obtained by heating liquid nitrogen into the reactor containment vessel during plant operation, and replaces the inside of the reactor containment vessel from an air atmosphere to an inert gas atmosphere. At the same time, nitrogen gas leaking from the reactor containment vessel is replenished during plant operation and maintained at a predetermined pressure to prevent air leakage and maintain an inert atmosphere.
[0005]
In addition, among the instrumentation control devices connected to the compressed air supply device for instrumentation, the air operation valve provided in the reactor containment vessel is operated in a normal plant operation in order to maintain the inert gas atmosphere in the reactor containment vessel. Occasionally nitrogen gas is supplied from the inert gas supply device, and the compressed air from the instrumentation compressed air supply device is used only when the inert gas supply device malfunctions during normal plant operation and the supply gas pressure decreases. To switch to.
[0006]
In addition, this inert gas supply device supplies nitrogen gas to equipment and piping inside and outside each building in the plant which is stored dry during normal plant operation, etc., from the viewpoint of preventing in-machine corrosion.
[0007]
On the other hand, membrane separation technology has been rapidly developed in recent years, and technology for separating and extracting oxygen and water vapor in the air with a polymer thin membrane has been developed. In this membrane separation technology, a nitrogen gas generator can easily obtain only nitrogen gas in the air by permeating and discharging oxygen gas in the air to the outside of the hollow fiber membrane simply by supplying compressed air to the inside of the hollow fiber membrane. In addition, a dehumidifying device or the like that can easily obtain dry air by permeating and discharging water vapor in the air to the outside of the hollow fiber membrane only by supplying compressed air to the inside of the hollow fiber membrane has been put into practical use.
[0008]
These devices have been used gradually in general industries in recent years, and each device has a very simple and compact feature without the need for a power source in the generation principle.
[0009]
An example of the system configuration of the compressed air supply equipment and the inert gas supply device in the conventional boiling water nuclear power plant will be described with reference to FIG. In FIG. 5, the instrumented compressed air supply device 10 cools the air compressed by the air compressor 11 by the rear cooler 12 and the steam separator 13, removes moisture, and then passes through the air storage tank 14 to activate alumina or the like. Dehumidification is performed by an adsorption-type dehumidifier 15 using the above adsorbent, and dry air is taken out. This dry air is supplied to a load 17 of each instrumentation control device such as an air operated valve that uses the compressed air for instrumentation in the power plant through the supply mother pipe 16.
[0010]
The in-house compressed air supply device 20 cools the air compressed by the air compressor 21 and removes moisture by the rear cooler 22 and the steam separator 23, and then passes through the air storage tank 24 and the supply mother pipe 25. It is supplied to each load 26 such as an air working tool that uses in-house compressed air in the power plant.
[0011]
On the other hand, in order to maintain the inside of the reactor containment vessel 100 in an inert gas atmosphere during normal plant operation, the inert gas supply device 30 is connected to the reactor via a pipe 34 having a pressure reducing valve 31, a valve 32, and a check valve 33. Nitrogen gas is supplied into the storage container 100. The inert gas supply device 30 supplies compressed air to the air operating valve 17A provided in the reactor containment vessel 100 through the pipe 35, the pressure reducing valve 36, the valves 37 and 38, and the check valve 39. In addition, nitrogen gas is supplied from the viewpoint of preventing corrosion in the machine to a load 18 such as equipment inside and outside of each plant in the plant and piping that is stored dry during the normal operation period of the plant, etc., via a pipe 39 branched from the downstream side of the pressure reducing valve 36. .
[0012]
The instrumented compressed air supply device 10 and the in-house compressed air supply device 20 are connected by a pipe 55 provided with a valve 54, and the pressure in the air storage tank 15 of the instrumented compressed air supply device 10 is below a specified pressure due to some failure. When the pressure drops, the valve 54 automatically opens, and the compressed air can be supplied from the in-house compressed air supply device 20 to the instrumentation compressed air supply device 10 to be backed up.
[0013]
Further, the instrumented compressed air supply device 10 and the pipe 35 of the inert gas supply device 30 are connected by a pipe 42 via a valve 40 and a check valve 41.
The piping 25 of the in-house compressed air supply device 20 and the load 26 </ b> A in the reactor containment vessel 100 are connected by a piping 45 through a valve 43 and a check valve 44.
[0014]
In the boiling water nuclear power plant having such a configuration, the valve 40 is closed and the valves 32, 37, and 38 are opened during normal operation of the plant so that the inside of the reactor containment vessel 100, the air actuated valve 17A, and the load 18 are inactive. Nitrogen gas is supplied from the gas supply device 30. The instrumented compressed air supply device 10 and the in-house compressed air supply device 20 also supply compressed air from the air compressors 11 and 21 to the loads 17, 26 and 26A, respectively.
[0015]
While the power plant is stopped, the valve 37 and the valve 40 are switched between open and closed, and the compressed air from the instrumentation compressed air supply device 10 is supplied to the air operating valve 17A.
If any abnormality occurs in the inert gas supply device 30 during normal plant operation and the gas supply pressure drops, the valve 37 and the valve 40 are automatically switched on and off, and the compressed air supply device 10 for instrumentation Compressed air is supplied to the air operated valve 17A.
[0016]
[Problems to be solved by the invention]
As described above, in the conventional boiling water nuclear power plant, if the supply pressure drops due to an abnormality in the inert gas supply device 30 during normal operation of the plant, the compressed air supply device 10 is automatically compressed. Air is supplied to a load such as an air operated valve 17A in the reactor containment vessel 100, and the amount of nitrogen gas leaking from the reactor containment vessel 100 during operation of the plant cannot be replenished. Cannot be maintained in an inert gas atmosphere, and there is a problem of lack of operational reliability.
[0017]
Furthermore, the equipment that performs dry storage during the normal operation period of the plant is scattered inside and outside each building in the plant, and in order to supply nitrogen gas from the inert gas supply device 30 to these equipment, nitrogen gas supply piping to the equipment Longer length and higher cost.
[0018]
The present invention has been made in view of such points, and even if the supply pressure is reduced due to an abnormality of the inert gas supply device during normal plant operation, nitrogen gas can be rationally supplied to the instrumentation equipment in the reactor containment vessel and the atomic reactor. Supplying nitrogen gas continuously to the reactor containment vessel and improving the reliability of plant operation by maintaining the inside of the reactor containment vessel in an inert gas atmosphere, and also supplying nitrogen gas to equipment that performs dry storage during normal plant operation The purpose is to reduce the amount of piping system by shortening the piping length.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 of the present invention includes an inert gas supply device for supplying nitrogen gas into a nuclear reactor containment vessel, and a compressed air supply facility for supplying compressed air to a plant load. In a boiling water nuclear power plant having a hollow fiber membrane separation type nitrogen gas generator, and when the inert gas supply device is abnormal, the hollow fiber membrane separation type nitrogen gas generator from compressed air of the compressed air supply equipment The nitrogen gas obtained through the reactor is supplied into the reactor containment vessel.
According to the present invention, even when an abnormality occurs in the inert gas supply device during plant operation, nitrogen gas is continuously supplied from the compressed air supply facility into the reactor containment vessel.
[0020]
The invention according to claim 2 of the present invention is a boiling water nuclear power plant provided with an inert gas supply device for supplying nitrogen gas into a reactor containment vessel, and a compressed air supply facility for supplying compressed air to a load in a plant. In a power plant, a hollow fiber membrane separation type dehumidification device and a hollow fiber membrane separation type nitrogen gas generator are provided, and the hollow fiber membrane separation type dehumidification device from the compressed air of the compressed air supply facility when an inert gas supply device is abnormal And nitrogen gas obtained through the hollow fiber membrane separation type nitrogen gas generator is supplied into the reactor containment vessel.
[0021]
According to this invention, even when an abnormality occurs in the inert gas supply device during plant operation, nitrogen gas that has been dehumidified continuously is supplied from the compressed air supply facility into the reactor containment vessel.
[0022]
The invention described in claim 3 of the present invention is characterized in that, in the boiling water nuclear power plant according to claim 1, nitrogen gas is supplied from a compressed air supply facility to an instrumentation control device provided in the reactor containment vessel. And
[0023]
According to the present invention, nitrogen gas is continuously supplied from the compressed air supply equipment to the instrumentation control device provided in the reactor containment vessel even when an abnormality occurs in the inert gas supply device during plant operation.
[0024]
According to a fourth aspect of the present invention, the boiling water nuclear power plant according to the first aspect is characterized in that nitrogen gas is supplied to in-plant equipment that is stored dry during the plant operation period.
[0025]
According to the present invention, even when an abnormality occurs in the inert gas supply device during plant operation, nitrogen gas is continuously supplied from the compressed air supply facility to the in-plant equipment that is stored dry during the plant operation period.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram showing a first embodiment of the present invention. In FIG. 1, the same parts as those of the conventional power plant shown in FIG. In the instrumented compressed air supply device 10, a pipe 46 is branched from a pipe 42 that supplies compressed air to the air operating valve 17 </ b> A in the reactor containment vessel 100, and the hollow fiber membrane separation type nitrogen gas generator 47, A valve 48 and a check valve 49 are provided and connected to the pipe 42 via the pipe 50 again. The downstream side of the check valve 49 is connected to a pipe 34 for supplying nitrogen gas from the inert gas supply device 30 into the reactor containment vessel 100 via a pipe 51, and a valve 52 is installed downstream of the connection point. Has been.
[0027]
The load 18 that requires dry storage nitrogen gas passes through a pipe 19 branched from the pipe 16 of the instrumented compressed air supply apparatus 10 arranged in the vicinity thereof, and then passes through a hollow fiber membrane separation type nitrogen gas generator 53. Supply nitrogen gas.
[0028]
Here, an example of the configuration of a hollow fiber membrane separation type nitrogen gas generator used as a nitrogen gas generator will be described with reference to FIGS. 2 (a) and 2 (b). When compressed air 60 compressed by an air compressor is supplied to the inside of the hollow fiber membrane 61 and the inside and outside of the hollow fiber membrane 61 are kept at high and low pressures, the oxygen gas 62 component in the compressed air 60 is contained in the hollow fiber membrane 61. The nitrogen gas 63 is obtained at the outlet of the hollow fiber membrane 61 selectively permeating from the inside of the non-permeating side. The hollow fiber membrane type nitrogen gas generator bundles the hollow fiber membranes 61 excellent in permeability of the oxygen gas 62 and stores them in one cylindrical container 64. The permeated oxygen gas 62 is discharged from the container 64 to the atmosphere. To 65.
[0029]
According to the boiling water nuclear power plant according to the first embodiment of the present invention configured as described above, the valves 40 and 48 are closed and the valves 32, 52, 37 and 38 are opened during normal plant operation. Then, nitrogen gas is supplied from the inert gas supply device 30 into the reactor containment vessel 100 and the air operating valve 17A. The instrumented compressed air supply device 10 and the in-house compressed air supply device 20 also supply compressed air from the air compressors 11 and 21 to the loads 17, 26 and 26A, respectively.
While the power plant is stopped, the valve 37 and the valve 40 are switched open and closed, and the compressed air is supplied from the instrumented compressed air supply device 10 to the air operating valve 17A.
[0030]
Next, if the supply pressure drops due to an abnormality in the inert gas supply device 30 during normal plant operation, it is detected, and the opening and closing of the valves 32 and 37 and the valves 40 and 48 are automatically reversed, and piping is performed. 46, compression of the instrumented compressed air supply device 10 to the air actuated valve 17A in the reactor containment vessel 100 through the hollow fiber membrane separation type nitrogen gas generator 47, the valve 48, the check valve 49, the pipe 50, and the valve 38. Supply nitrogen gas obtained from air. At the same time, the compressed air of the instrumentation compressed air supply apparatus 10 is supplied into the reactor containment vessel 100 through the pipe 46, the hollow fiber membrane separation type nitrogen gas generator 47, the valve 48, the check valve 49, the pipe 51, and the valve 52. The nitrogen gas obtained from is supplied. Thereby, even when an abnormality occurs in the inert gas supply device 30 during plant operation, nitrogen gas is continuously supplied from the compressed air supply facility into the reactor containment vessel 100. Moreover, the hollow fiber membrane separation type | mold nitrogen gas generator 53 is each passed through the piping 19 branched from the piping 16 of the instrumentation compressed air supply apparatus 10 arrange | positioned to the load 18 which requires the nitrogen gas for dry storage. Therefore, it is not necessary to route the piping for supplying nitrogen gas more than necessary, and the amount of piping system can be reduced.
[0031]
Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, a hollow fiber membrane separation type dehumidifier 71 and a hollow fiber membrane separation type nitrogen gas generator are connected to a pipe 70 branched from a pipe 45 that is supplied into the reactor containment vessel 100 of the in-house compressed air supply apparatus 20. 72, a valve 73, and a check valve 74 are connected to the piping 34 for supplying nitrogen gas into the reactor containment vessel 100 of the inert gas supply device 30, and 75 is provided downstream of the connection point. It has been. A pipe 76 branched from the hollow fiber membrane separation type nitrogen gas generator 72 and the valve 73 is provided with a valve 77 and a check valve 78, and is provided in the reactor containment vessel 100 of the instrumented compressed air supply device 10. It is connected to a pipe 35 that supplies compressed air to the air operating valve 17A.
[0032]
A hollow fiber membrane separation type dehumidifier 71 and a hollow fiber membrane separator are respectively connected to the pipes 19 branched from the pipe 25 of the in-house compressed air system supply device 20 to the load 18 that requires nitrogen gas for dry storage. A nitrogen gas generator 72 is provided.
[0033]
The hollow fiber membrane separation type dehumidifier 71 is provided upstream of the hollow fiber membrane separation type nitrogen gas generator 72 because the compressed air of the in-house compressed air system is wet air, so that the hollow fiber membrane separation type nitrogen gas is provided. This is because the compressed air supplied to the generator 72 is dry air.
[0034]
An example of the configuration of the hollow fiber membrane separation type dehumidifier 71 will be described with reference to FIGS. 4 (a) and 4 (b). When the wet air 80 compressed by the air compressor is supplied to the inside of the hollow fiber membrane 81 and the water vapor partial pressure is maintained at a high pressure and a low pressure inside and outside the hollow fiber membrane 81, the water vapor 82 component in the wet air 80 is hollow. Dry air 83 is obtained at the exit of the hollow fiber membrane 80 selectively permeated from the inside of the yarn membrane 80 and on the non-permeate side. The hollow fiber membrane type dehumidifying device bundles the hollow fiber membranes 81 excellent in water vapor 82 permeability and stores them in one cylindrical container 84, and a part of the dry air 83 is passed through the purge pipe 85. By purging to the outside of the hollow fiber membrane 81, the water vapor partial pressure at the inner side and the outer side separating the membrane is increased, and the permeated water vapor 82 is continuously released from the container 84 to the atmosphere 86.
[0035]
According to the boiling water nuclear power generation system according to the second embodiment of the present invention configured as described above, if the supply pressure is reduced due to an abnormality in the inert gas supply device 30 during normal plant operation, And automatically open and close the valves 37 and 77 and the valves 32 and 73, and the piping 70, the hollow fiber membrane separation type dehumidifier 71, the hollow fiber membrane separation type nitrogen gas generator 72, the valve 77, the check Nitrogen gas obtained from compressed air is supplied to the air operated valve 17A in the reactor containment vessel 100 through the valve 78, the pipe 76, and the valve 38. At the same time, nitrogen gas obtained from the compressed air of the in-house compressed air supply device is supplied into the reactor containment vessel 100 through the valve 73, the check valve 74, and the valve 75.
[0036]
Further, when the inside of the reactor containment vessel 100 is inspected while the plant is stopped, the opening and closing of the valve 37 and the valve 40 are reversed as before, and the compressed air of the instrumentation compressed air supply device 10 is supplied to the air operated valve in the reactor containment vessel 100. 17A.
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to rationally supply nitrogen gas in the reactor containment vessel and the containment vessel internal meter even when the supply pressure is reduced due to an abnormality in the inert gas supply device during normal plant operation. Nitrogen gas supply pipe length to equipment that keeps the inside of the containment vessel in an inert gas atmosphere and improves the reliability of plant operation, and also performs dry storage during normal plant operation The amount of piping system can be reduced.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a boiling water nuclear power generation system showing a first embodiment of the present invention.
2A and 2B are diagrams showing a hollow fiber membrane separation type nitrogen gas generator according to the present invention, in which FIG. 2A is a front view, and FIG. 2B is a cross-sectional view.
FIG. 3 is a system configuration diagram of a boiling water nuclear power generation system showing a second embodiment of the present invention.
4A and 4B are diagrams showing a hollow fiber membrane separation type dehumidifier according to the present invention, in which FIG. 4A is a front view, and FIG. 4B is a cross-sectional view.
FIG. 5 is a system configuration diagram of a conventional boiling water nuclear power generation system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Compressed air supply apparatus for instrumentation, 17A ... Air operation valve, 20 ... In-house compressed air supply apparatus, 30 ... Inert gas supply apparatus, 47 ... Hollow fiber membrane separation type nitrogen gas generator, 71 ... Hollow fiber membrane separation Type dehumidifier, 72 ... hollow fiber membrane separation type nitrogen gas generator.

Claims (4)

原子炉格納容器内に窒素ガスを供給する不活性ガス供給装置と、プラント内負荷に圧縮空気を供給する圧縮空気供給設備と、不活性ガス供給装置の異常時に前記圧縮空気供給設備の圧縮空気から窒素ガスを分離し、原子炉格納容器内に窒素ガスを供給する中空糸膜分離式窒素ガス発生装置とを備えた沸騰水型原子力発電プラント。From an inert gas supply device that supplies nitrogen gas into the reactor containment vessel, a compressed air supply facility that supplies compressed air to a load in the plant, and compressed air from the compressed air supply facility when the inert gas supply device is abnormal A boiling water nuclear power plant equipped with a hollow fiber membrane separation type nitrogen gas generator that separates nitrogen gas and supplies nitrogen gas into the reactor containment vessel. 原子炉格納容器内に窒素ガスを供給する不活性ガス供給装置と、プラント内負荷に圧縮空気を供給する圧縮空気供給設備と、不活性ガス供給装置の異常時に前記圧縮空気供給設備の圧縮空気を除湿する中空糸膜分離式除湿装置と、除湿された圧縮空気から窒素ガスを分離し、原子炉格納容器内に窒素ガスを供給する中空糸膜分離式窒素ガス発生装置とを備えた沸騰水型原子力発電プラント。An inert gas supply device that supplies nitrogen gas into the reactor containment vessel, a compressed air supply facility that supplies compressed air to a load in the plant, and a compressed air of the compressed air supply facility when the inert gas supply device is abnormal Boiling water type equipped with a hollow fiber membrane separation type dehumidifier for dehumidification and a hollow fiber membrane separation type nitrogen gas generator for separating nitrogen gas from the dehumidified compressed air and supplying nitrogen gas into the reactor containment vessel Nuclear power plant. 原子炉格納容器内に設けた計装制御機器に窒素ガスを供給する請求項1記載の沸騰水型原子力発電プラント。The boiling water nuclear power plant according to claim 1, wherein nitrogen gas is supplied to an instrumentation control device provided in the reactor containment vessel. プラント運転期間中に乾燥保管するプラント内機器に窒素ガスを供給する請求項2記載の沸騰水型原子力発電プラント。The boiling water nuclear power plant according to claim 2, wherein nitrogen gas is supplied to plant equipment that is stored dry during the plant operation period.
JP2001282561A 2001-09-18 2001-09-18 Boiling water nuclear power plant Expired - Fee Related JP4398610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001282561A JP4398610B2 (en) 2001-09-18 2001-09-18 Boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001282561A JP4398610B2 (en) 2001-09-18 2001-09-18 Boiling water nuclear power plant

Publications (2)

Publication Number Publication Date
JP2003090896A JP2003090896A (en) 2003-03-28
JP4398610B2 true JP4398610B2 (en) 2010-01-13

Family

ID=19106194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001282561A Expired - Fee Related JP4398610B2 (en) 2001-09-18 2001-09-18 Boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JP4398610B2 (en)

Also Published As

Publication number Publication date
JP2003090896A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
JP3362017B2 (en) Membrane air dryer with mechanism to reduce air lost as sweep air and control system for the membrane air dryer
US6128825A (en) Combination main reservoir and gas drying apparatus
JP2009523063A (en) Method and apparatus for drying gas
JP4398610B2 (en) Boiling water nuclear power plant
JP4398608B2 (en) Compressed air supply system for nuclear power plants
EP0666097B1 (en) Pressure swing adsorption apparatus - valve actuation
JP2008030001A (en) Dehumidification method of wet gas and dehumidification system therefor
JPH10196900A (en) Compressed air generating device
JP4542987B2 (en) Compressed air equipment at nuclear power plants
JP3723083B2 (en) Compressed air supply device
JP2018169250A (en) Storage container maintenance facility
US20110259198A1 (en) Air-supply system for breathing
JP3547503B2 (en) Medical compressed air supply device
JP4127580B2 (en) Treatment method of radioactive gas waste
JP4300495B2 (en) Gas dehumidifier
JP3726593B2 (en) Compressed air system equipment for instrumentation
JP3721279B2 (en) Air system
JPH01161199A (en) Compressed air supplying device for instrumentation
JP2000334253A (en) Compressed air supply device for station service
JP2003212516A (en) Ozone generator
JP2004267845A (en) Gas separator
JP3369729B2 (en) Treatment of radioactive gas waste
JPH1114788A (en) Compressed air system dehumidifying device for instrumentation
JP4048245B2 (en) Method and apparatus for producing nitrogen gas
JP2003159509A (en) Dehumidifier

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees