JP4396504B2 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
JP4396504B2
JP4396504B2 JP2004359446A JP2004359446A JP4396504B2 JP 4396504 B2 JP4396504 B2 JP 4396504B2 JP 2004359446 A JP2004359446 A JP 2004359446A JP 2004359446 A JP2004359446 A JP 2004359446A JP 4396504 B2 JP4396504 B2 JP 4396504B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerator
evaporator
refrigerant
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004359446A
Other languages
English (en)
Other versions
JP2006003061A (ja
Inventor
義人 木村
哲哉 斎藤
竜也 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004359446A priority Critical patent/JP4396504B2/ja
Priority to TW094115605A priority patent/TW200540382A/zh
Priority to PCT/JP2005/008867 priority patent/WO2005111519A1/ja
Priority to CN2008101865696A priority patent/CN101441015B/zh
Publication of JP2006003061A publication Critical patent/JP2006003061A/ja
Application granted granted Critical
Publication of JP4396504B2 publication Critical patent/JP4396504B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

冷凍サイクル内の冷凍機油の圧縮機への戻り性を向上した冷蔵庫に関するものである。
近年、冷蔵庫は地球環境保護の観点から更なる省エネルギー化が進むとともに、その使用性や収納性の向上が求められている。
従来のこの種の冷蔵庫は、機械室を形成する圧縮機等を冷蔵庫の庫内収納性からみて使い勝手の悪い冷蔵庫本体の天面や、もしくは冷蔵庫本体の背面上部に設置するという方法がとられていた(例えば、特許文献1参照)。
図12は、特許文献1に記載された従来の冷蔵庫の構成を示すものである。
冷蔵庫本体1は、上から冷蔵室2、野菜室3、冷凍室4という構成からなり、冷蔵室2は回転扉5を有し、野菜室3は野菜室引出扉6、冷凍室4は冷凍室引出扉7を有している。この構成において、庫内ファン8と蒸発器9等からなる冷却ユニット10を、最下段の貯蔵室として収納部を形成する冷凍室4の開口部の高さ寸法と概ね同じ高さとして冷凍室4の背面後部に設置し、機械室11を形成する圧縮機12などを、冷蔵庫の庫内収納性からみて使い勝手の良くない冷蔵室2の天面、もしくは、冷蔵庫本体1の背面上部に設置している。
この構成によって、機械室11の体積分が冷蔵室2と野菜室3を区画する区画壁の下側から上側に移動したことにより、各貯蔵室の内容積を一定とすると必然的に冷蔵室2と野菜室3の区画壁の位置を下方に下げることができ、野菜室3内の収納物の取り出しが容易となる。
特開平11−183014号公報
しかしながら、上記従来の構成では、圧縮機を冷蔵庫本体の天面に、蒸発器を冷蔵庫本体の底面近傍に配設することにより、蒸発器出口と圧縮機を接続するジョイント配管の立ち上がり高さが長くなり、例えば冷蔵庫本体を構成するウレタンの熱伝導率低減や、真空断熱材の適用等により冷蔵庫本体の断熱性能が向上し、圧縮機もそれに合わせて低能力化できる為、冷媒循環量が大きく低下する。これに伴って、配管内の冷媒の流速が低下し、冷凍機油の圧縮機への戻り量が減少するといった課題があった。
また、蒸発器内に滞留する冷凍機油は、圧縮機運転中以外にも蒸発器の除霜中に冷媒のサーモサイフォン効果により冷媒とともに圧縮機へと戻されるが、冷凍機油への冷媒の溶解度が小さい場合は、冷媒とともに圧縮機へと運ばれにくくなり、圧縮機への戻り量が減少するといった課題もあった。
本発明は、上記従来の課題を解決するもので、冷凍サイクル内の冷凍機油の圧縮機への戻り性を向上し、圧縮機を蒸発器より上方に配設した冷凍サイクルの信頼性を向上し冷蔵庫を提供することを目的とする。
上記従来の課題を解決するために、本発明の冷蔵庫は、圧縮機と凝縮器と減圧器と蒸発器とを順に備えた冷凍サイクルを有し、前記圧縮機は前記蒸発器より上方に配置され、前記冷凍サイクルには冷媒としての炭化水素と冷凍機油としての鉱油が封入されたものである。
冷媒として炭化水素を使用することにより、例えば従来の冷媒が代替フロン冷媒であるR134aである場合と比べて、炭化水素の単位体積当たりの冷凍能力は従来と比較して約1/2程度まで小さくなるので、同等の冷凍能力を確保するために圧縮機の気筒容積を約2倍程度にまで大きくすることができ、これにより冷媒の体積流量が増大し、圧縮機運転時の配管内の流速が増加する。
また、冷凍機油として鉱油を使用することにより、従来のR134aとエステル油との組み合わせと比較して冷媒の冷凍機油に対する溶解度が大きくなる。
本発明の冷蔵庫は、圧縮機運転時の配管内の流速を増加させることにより、冷凍機油が立ち上がり配管を上昇するのに十分な流速を確保でき、蒸発器から圧縮機への冷凍機油の戻り量を大きくすることで冷蔵庫の信頼性を向上することができる。
また、冷媒の冷凍機油に対する溶解度が大きくなる冷凍機油を用いることにより、除霜時においてもサーモサイフォン効果を利用して冷媒とともに蒸発器から圧縮機への冷凍機油の戻り量大きくすることで冷蔵庫の信頼性を向上することができる。
請求項1に記載の発明は、圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルを有し、前記圧縮機は前記蒸発器より上方に配置され、前記冷凍サイクルには冷媒としての炭化水素であるイソブタンと冷凍機油としての鉱油が封入されとともに内部低圧型とし、前記凝縮器は前記圧縮機よりも上方に配置されるとともに冷蔵庫本体の天面の一部に配置されたもので、圧縮機の単位時間当たりの排気量がR134a等と比べて増大し、冷媒の単位時間当たりの体積流量が増大するので、圧縮機から吐出された冷凍機油が圧縮機へ戻るのに十分な配管内の流速を確保することができるとともに冷媒の冷凍機油に対する溶解度を大きくすることで、冷凍機油内に冷媒が溶け込むことで冷凍機油の粘度を低下させることができ、蒸発器から圧縮機への冷凍機油の戻り量をより増加できる。
請求項2に記載の発明は、請求項1に記載の発明において、前記圧縮機は冷蔵庫本体の天面の一部に配置されたものであり、蒸発器から圧縮機への冷媒の帰還経路の立ち上がり距離が大となる場合にも圧縮機から吐出された冷凍機油が圧縮機へ戻るのに十分な配管内の流速を確保することができるとともに冷媒の冷凍機油に対する溶解度を大きくすることで蒸発器から圧縮機への冷凍機油の戻り性を改善して冷蔵庫の信頼性を確保することが可能となる。
請求項3に記載の発明は、請求項1または2に記載の発明に加えて圧縮機は密閉容器と密閉容器内に備えられた電動要素および圧縮要素を有し、密閉容器の内部空間は冷凍サイクルにおける低圧側であるもので、請求項1に記載の発明に加えて、密閉容器の内部空間が冷凍サイクルにおける高圧側である場合と比較して、圧縮機から冷凍サイクル内へ吐出される冷凍機油の量を押さえることができ、冷凍機油の戻り性に関わる冷媒配管中の冷凍機油の滞留絶対量を低減でき、圧縮機内の冷凍機油不足による、圧縮機の損傷等の危険性をさらに低減できる。
請求項4に記載の発明は、請求項1から3のいずれか一項に記載の圧縮機に加えて、前記蒸発器と前記圧縮機の接続配管であるサクションラインに、前記蒸発器から前記圧縮機への前記冷媒の流れ方向に対向する前記冷凍機油の重力成分の影響を緩和するような曲げ角度を有する曲げ部を設けたものであり、サクションラインに上記曲げ部を設けることで、冷凍機油と冷媒の流れ方向に対して逆方向に働く重力成分を小さくできるので、より速やかに蒸発器から圧縮機へ冷凍機油を戻すことができる。また、サクションラインが直管であるものと比べて、サクションラインを長くすることができるので、キャピラリーとの熱交換距離を増やし、熱交換能力を向上させることで冷凍能力が増大し消費電力量を低減できる。
請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明に加えて、蒸発器と圧縮機の接続配管であるサクションラインにトラップ部を設けたものであり、サクションライン内を立ち上がった冷凍機油はトラップ部直前に鉛直下方向に落下するので、重力加速度の影響により冷凍機油の流速は増大し、流速が増大した状態で圧縮機まで再びサクションライン内を立ち上がるので、より確実に蒸発器から圧縮機へ冷凍機油を戻すことができる。
請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明に加えて、前記冷蔵庫本体に温度帯の異なる複数の貯蔵室を設け、前記蒸発器を前記複数の貯蔵室のうち、最上部以外の貯蔵室に配設したものであり、圧縮機運転時に高温となる圧縮機や凝縮器等から蒸発器を遠ざけることにより、高温部からの排熱影響による蒸発器の冷却ロスを低減でき、蒸発器の冷凍能力を最大限に利用できるので消費電力量を低減できる。
請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明に加えて、冷凍サイクル内で直列に接続した複数の蒸発器を設け、冷凍サイクル内で上流側となる蒸発器から順に、冷蔵庫本体の上方から下方に配設することにより、冷凍機油を重力方向に逆らわずに上流側の蒸発器から下流側の蒸発器へ送ることができるので、より速やかに圧縮機へ冷凍機油を戻すことができる。
請求項8に記載の発明は、請求項1から7のいずれか一項に記載の発明に加えて、前記複数の蒸発器を接続するジョイント配管は略直管または曲げ角度が90度以上180℃以下の曲げ部を有したことにより、上流側の蒸発器の出口部に滞留する冷凍機油を速やかに下流側の蒸発器へ送ることができるので、圧縮機内の冷凍機油不足による、圧縮機の損傷等の危険性をさらに低減できる。
請求項に記載の発明は、前記圧縮機の排気容量を変化させる排気容量制御手段を備えた制御手段を有し、前記排気容量制御手段によって前記圧縮機の排気量が可変となることにより、低排気量制御時には圧縮機からの冷媒吐出に伴う冷凍機油持ち出し量を低減し、かつ冷凍サイクル中に持ち出された一部冷凍機油に対しては冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用で圧縮機への戻り性を向上させることができる。
請求項10に記載の発明は、排気容量制御手段を備えた制御手段と庫内温度検知手段とを設け、前記庫内温度検知手段の検知情報による所定のタイミングで前記圧縮機の排気容量制御を行い冷凍サイクルの冷媒循環流速を増加させたことにより、必要時に同時に冷凍機油の循環性を確保することができる。
請求項11に記載の発明は、前記排気容量制御手段によって、圧縮機起動時に所定時間、強制的に通常制御時よりも大きい排気容量で運転させることにより、圧縮機の起動時に高い回転数で起動するので、停止中の冷媒への冷凍機油溶け込みにより吐出油量が最も多くなり、かつ給油条件が最も悪い摺動開始時に確実な配管内冷媒流速を確保することで冷凍機油の循環性を確保することができる。
以下、本発明の実施の形態について、図面を参照しながら説明するが、背景技術の従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の概略図を示すものであり、図2は同実施の形態における冷媒と冷凍機油の溶解度曲線図である。
冷蔵庫本体1には、比較的高温の区画である冷蔵室2が上方部に、比較的低温の区画である冷凍室4が下方部に配設されており、所謂ボトムフリーザーの形態を有している。冷蔵室2および冷凍室4は例えばウレタンのような断熱材で周囲と断熱して構成されている。また、食品等の収納物の出し入れは図示しない断熱ドアを介して行われる。
冷蔵室2は冷蔵保存のために通常1〜5℃で設定されているが、保鮮性向上のため若干低めの温度、例えば−3〜0℃で設定されることもあり、収納物によって、使用者が自由に上記のような温度設定を切り替えることを可能としている場合もある。また、ワインや根野菜等の保鮮のために、例えば10℃前後の若干高めの温度設定とする場合もある。
冷凍室4は冷凍保存のために通常−22〜−18℃で設定されているが、保鮮性向上のためより低温の温度、例えば−30〜−25℃で設定されることもある。
冷蔵庫本体1の上面に機械室11が構成されており、機械室11の底面は第一の天面部13と、冷蔵庫外箱の背面14側の第一の天面部13より低い位置に設けた第二の天面部15とで段差状に構成されている。凝縮器16は第一の天面部13の上方空間部に、圧縮機12は第二の天面部15の上方空間部に配設されており、凝縮器16と圧縮機12とを覆う樹脂製のカバーである機械室カバー17がビス等で冷蔵庫本体1に固定されている。
ここで、蒸発器9は冷凍室4の後方に配置されているので、圧縮機12と蒸発器9の高さ方向の関係は、冷蔵庫本体1の天面の一部に圧縮機12が配置され下部近傍の一部に蒸発器9が配置される関係となり、蒸発器9から圧縮機12への冷凍サイクル内での冷媒の帰還経路は高さ方向に相当な立ち上がり距離を有する関係となっている。
冷凍サイクル18は、圧縮機12と凝縮器16と減圧器であるキャピラリー19と蒸発器9とを順に備えた一連の冷媒流路から形成されている。
この圧縮機12はピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機である。
また、機械室11の区画は第一の天面部13と第二の天面部15と機械室カバー17とで構成されている。
なお、冷蔵庫本体1には、三方弁や切替弁を用いる冷凍サイクル18の場合は、それらの機能部品が機械室11内に配設されている場合もある。
また、本実施の形態では冷凍サイクル18を構成する減圧器をキャピラリー19としたが、パルスモーターで駆動する冷媒の流量を自由に制御できる電子膨張弁としてある場合もある。
以上のように構成された冷蔵庫において、以下その動作、作用を説明する。
圧縮機12の動作により吐出された高温高圧の冷媒は、凝縮器16にて冷蔵庫本体1の上方の空気と熱交換して放熱するとともに凝縮液化し、キャピラリー19に至る。その後、キャピラリー19でサクションライン20と熱交換しながら減圧されて蒸発器9に至る。
冷却用ファン(図示せず)の作用により、蒸発器9内の冷媒の蒸発作用により比較的低温となった冷気は冷蔵室2と冷凍室4に流入し、それぞれの部屋の冷却が行われる。蒸発器9内で、庫内の空気と熱交換した冷媒はその後サクションライン20を通り、冷凍機油とともに圧縮機12へと吸い込まれる。
このように冷凍サイクル18を、圧縮機12を蒸発器9より上方に配設する構成とする時、特に、本実施の形態のように圧縮機12が冷蔵庫本体1の天面の一部に配置され、蒸発器が冷蔵庫本体1の下部近傍に配置されて、蒸発器9から圧縮機12への冷媒の帰還経路の立ち上がり距離が大となる場合には、圧縮機12から冷媒とともに冷凍サイクル18内に吐出され蒸発器9内の特に図示しないアキュームレーターに滞留する冷凍機油を、いかにサクションライン20を通じて圧縮機12へ戻すかが圧縮機12の信頼性にかかわる重要なポイントとなる。
また、立ち上げ配管内の冷凍機油の戻り特性に関しては、冷凍機油の粘度の影響も考えられるが、配管内の冷媒の流速がより大きく依存するということが広く知られている。
しかしながら、冷媒の流速を確保するために圧縮機12の気筒容積を大きくしたり、圧縮機12の回転数を上げたりして、冷凍能力を増大することによって冷媒の流速を確保しようとすると蒸発器9の蒸発温度低下を招き、圧縮機12の圧縮比が大きくなり消費電力量が増大するので、これらの手段で解決することは困難であった。
そこで、本実施の形態では冷凍サイクル18の冷媒として炭化水素系冷媒である例えばイソブタンを使用している。
(表1)にイソブタンと、従来の代替フロン冷媒である例えばR134aとの−30℃の飽和液における物性値を示す。
Figure 0004396504
(表1)に示すように、イソブタンの単位体積当たりの冷凍能力が520.8kJであるのに対して、従来の代替フロン冷媒であるR134aの単位体積当たりの冷凍能力は971.6kJとなり、イソブタンはR134aと比較すると単位体積当たりの冷凍能力が約1/2である。よって、圧縮機12の冷凍能力を従来のR134aと同等とするために、圧縮機12の気筒容積は約2倍程度にまで大きくなり、圧縮機12の単位時間当たりのピストン押しのけ量も同様に約2倍程度まで増大する。すなわち、冷媒の単位時間当たりの体積流量が増大するので、圧縮機12運転時の配管内の流速が2倍程度まで増加する。
また、自然冷媒であるCO2の単位体積当たりの冷凍能力は11258.5kJとなり、イソブタンはCO2と比較すると単位体積当たりの冷凍能力が約1/20である。よって、圧縮機12の冷凍能力をCO2と同等とするために、圧縮機12の気筒容積は約20倍程度にまで大きくなり、圧縮機12の単位時間当たりのピストン押しのけ量も同様に約20倍程度まで増大する。すなわち、冷媒の単位時間当たりの体積流量が増大するので、圧縮機12運転時の配管内の流速が20倍程度まで増加する。
これにより、圧縮機12を蒸発器9の上方に配設した場合においても、蒸発器9内に滞留した冷凍機油を速やかに圧縮機12へ戻すことが可能となり、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性を低減できる。
また、蒸発器9内に滞留した冷媒は、除霜用ヒーター(図示せず)の作用により蒸発器9の除霜を行う際にも、冷媒のサーモサイフォン効果により冷媒とともに圧縮機12へと戻される。しかしながら、圧縮機12を蒸発器9の上方に配設し、立ち上げ配管であるサクションライン20の全長が長くなる場合は特に、冷凍機油への冷媒の溶解度が小さいと冷媒とともに圧縮機12へと運ばれる冷凍機油の戻り量が減少するといった課題もあった。
そこで、冷凍サイクル18の冷凍機油としてはイソブタンと相溶性がいい鉱油を使用している。
図2は、従来の例えばR134aとエステル油を組み合わせた場合と、本実施の形態のイソブタンと鉱油を組み合わせた場合との溶解度曲線を比較したものである。横軸は蒸発器9内の冷媒の温度(蒸発温度)であり、縦軸は冷凍機油に溶け込む冷媒の溶解度(質量%)である。これによれば蒸発器9内の蒸発温度の上昇に伴っていずれの場合も溶解度は大きくなるが、その差は蒸発温度が高くなるほど広がることがわかる。通常蒸発器9の除霜は、蒸発器9に付着した霜の融解後、安全を見越して蒸発器9が約10℃となるまで行われる。そこで、蒸発器9の温度が10℃であるポイントで比較すると、イソブタンと鉱油を組み合わせた場合の溶解度はR134aとエステル油を組み合わせた従来の場合と比較して約50%程度まで大きくなる。
これにより、圧縮機12を蒸発器9の上方に配設し、立ち上げ配管であるサクションライン20の全長が長くなる場合でも、除霜時に冷媒のサーモサイフォン効果を利用して冷媒とともに蒸発器9から圧縮機12へ戻る冷凍機油の戻り量を増加できる。
なお、圧縮機が内部高圧型場合は密閉容器の内部空間に散霧している冷凍機油が吐出冷媒と共に圧縮機外へ吐出される為、本実施の形態の圧縮機12は内部低圧型とし、これによって、圧縮機12から冷凍サイクル18内へ吐出される冷凍機油の量を押さえることができるので、冷凍機油の戻り性に関わる冷媒配管中の冷凍機油の滞留絶対量を低減でき、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性をさらに低減でき、さらに冷媒配管中の滞留冷凍機油による蒸発器9や凝縮器16などの熱交換器の効率低下を抑制することもできる。
また、冷蔵庫本体1を構成する例えばウレタンの熱伝導率低減や、真空断熱材の適用等により冷蔵庫本体1の断熱性能が向上し、圧縮機12を低能力化する必要性が生じた場合でも、上述のように、イソブタンと鉱油と内部低圧型圧縮機12の組み合わせにより、圧縮機12内に必要な冷凍機油を確保することが容易となる。
また、本実施の形態においては、圧縮機としてピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機を用いている為、回転式圧縮機と比較してピストンとシリンダ間のクリアランスを比較的高い精度で管理することが可能である。よって、ピストンとシリンダ間をシールする為に冷凍機油を多量に用いなくても充分なシール性を確保することができ、シリンダを経由して吐出される冷媒と共に吐出される冷凍機油の量も低減することができるので、圧縮機から吐出される冷凍機油の量を低減でき、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性をさらに低減できる。
なお、イソブタンと鉱油と内部低圧型圧縮機の組み合わせによる上述の効果により、圧縮機12を蒸発器9の上方に配設した場合の、圧縮機12と蒸発器9の距離を遠ざけても、例えば本実施の形態のように圧縮機12が冷蔵庫本体1の天面の一部に配置され、蒸発器が冷蔵庫本体1の下部近傍に配置されて、蒸発器9から圧縮機12への冷媒の帰還経路の立ち上がり距離が大となる場合にも冷蔵庫の信頼性を充分に確保することが可能となる。
これにより、冷蔵庫本体1に温度体の異なる複数の貯蔵室を設けた場合に、蒸発器9を最上段の貯蔵室以外の貯蔵室に設けることが可能となり、圧縮機12の運転時に高温となる圧縮機12や凝縮器16等から蒸発器9を遠ざけることにより、高温部からの排熱影響による蒸発器9の冷却ロスを低減でき、蒸発器9の冷凍能力を最大限に利用できるので消費電力量を低減できる。
(実施の形態2)
図3、図4、図5は、本発明の実施の形態2における冷蔵庫の概略図を示すものである。なお、実施の形態1と同一構成については同一符号を付す。
なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。
図3において、圧縮機12と蒸発器9を接続するサクションライン20に曲げ部21を設けている。曲げ部21の曲げ角度を鉛直上方向に対してθ度とすると、サクションライン20内の蒸発器9から圧縮機12に帰還する冷媒の流れ方向に対向する冷凍機油の重力成分の影響はCOSθを乗じた分だけ小さくなるので、より速やかに蒸発器9から圧縮機12へ冷凍機油を戻すことができる。
また、冷凍サイクル18において蒸発器9内の冷媒のエンタルピーを増大する目的で、サクションライン20とキャピラリー19は例えば半田等により所定の距離を接触させ、熱交換させた構成としているが、曲げ部21を設けることによりサクションライン20の距離を長くすることができるので、キャピラリー19との熱交換距離を長くすることが容易となり、蒸発器9の冷凍能力が増大し消費電力量を低減できる。
なお、図4に示すように、サクションライン20に複数の曲げ部21を設け、サクションライン20を圧縮機12に向かって蛇行させた構成とすると、さらに曲げ角度θを小さくできるので、より速やかに蒸発器9から圧縮機12へ冷凍機油を戻すことができる。
また、サクションライン20の距離をさらに長くすることができるので、キャピラリー19との熱交換距離もさらに長くすることができ、蒸発器9の冷凍能力が増大し消費電力量を低減できる。
なお、図5に示すように、サクションライン20に鉛直下方向に管の一部をU字やS字などに曲げたトラップ部22を設けると、サクションライン20内を流れた冷凍機油は曲げ部21にて鉛直下方向に落下するので、重力加速度の影響により冷凍機油の流速は増大する。その後、トラップ部22を経て、流速が増大した状態で圧縮機12まで再びサクションライン20内を立ち上げるので、より確実に蒸発器9から圧縮機12へ冷凍機油を戻すことができる。
(実施の形態3)
図6は、本発明の実施の形態3における冷蔵庫の概略図を示すものである。なお、実施の形態1と同一構成については同一符号を付す。
なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。
冷蔵庫本体1には、比較的高温の区画である冷蔵室2が上方部に、比較的低温の区画である冷凍室4が下方部に配設されており、冷蔵室2内の例えば背面側に冷蔵室2の冷却を行う冷蔵室冷却用蒸発器23が、冷凍室4内の例えば背面側に冷凍室4の冷却を行う冷凍室冷却用蒸発器24が配設されている。また、冷凍サイクル18内において、冷蔵室冷却用蒸発器23は冷凍室冷却用蒸発器24より上流側に配設されており、冷蔵室冷却用蒸発器23の出口部と冷凍室冷却用蒸発器24の入口部はジョイント配管25で接続されている。
それぞれの貯蔵室の冷却を専用の蒸発器で行うことにより、貯蔵室間の臭い移りの防止、冷蔵室冷却用蒸発器23の高蒸発温度化に伴う圧縮機12の効率向上による消費電力量の低減、さらには冷蔵室2内の高湿度化などが可能となるが、蒸発器の配管ボリュームが増えるために、蒸発器内に滞留する冷凍機油も増加し、特に圧縮機12内をそれぞれの蒸発器より上方に配設する場合には圧縮機12内の冷凍機油が不足するといった危険性もある。
冷凍サイクル18内で上流側となる冷蔵室冷却用蒸発器23を、冷凍サイクル18内で下流側となるに冷凍室用蒸発器24より冷蔵庫本体1内で上方に配設することにより、冷凍機油を重力方向に逆らわずに冷蔵室冷却用蒸発器23から冷凍室冷却用蒸発器24へ送ることができるので、速やかに圧縮機12へ冷凍機油を戻すことができる。
また、上記構成に加えてジョイント配管25にトラップ部を設けず、直管と曲がり角度θ2を90度以上180度以下にすることにより、圧縮機12内から冷凍サイクル18内に吐出され冷蔵室冷却用蒸発器23の特に出口部に滞留する冷凍機油を速やかに冷凍室冷却用蒸発器24へ送ることができる。
これにより、冷蔵室冷却用蒸発器23内に滞留する冷凍機油の量を最小限に押さえることが可能となり、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性をさらに低減できる。
なお、本実施の形態では最上段の貯蔵室を冷蔵室2としたが、冷凍室4を最上段とするトップフリーザータイプの冷蔵庫においても、冷凍サイクル18内で冷凍室冷却用蒸発器24を冷蔵室冷却用蒸発器23より上流側に配設し、冷凍室冷却用蒸発器24と冷蔵室冷却用蒸発器23の接続配管にトラップ部を設けない構成とすることにより同様の効果が得られる。
また、冷蔵室冷却用蒸発器23および冷凍室冷却用蒸発器24を、入口部から出口部までの経路で立ち上がり部のない上方から下方に向かって冷媒が流れる配管構成とすると、蒸発器内の冷媒の流れに対向する冷凍機油の重力影響はなくなるので、冷凍機油の流速が上がり、さらに速やかにそれぞれの蒸発器内に滞留する冷凍機油を圧縮機12へ戻すことができる。
(実施の形態4)
図7は、本発明の実施の形態4における冷蔵庫の概略図を示すものであり、図8は同実施の形態における配管構成概略図である。なお、背景技術と同一構成については同一符号を付す。
図7と図8において冷蔵庫本体100はABSなどの樹脂体を真空成型した内箱101とプリコート鋼板などの金属材料を用いた外箱102とで構成された空間に発泡充填する断熱体103を注入してなる断熱壁を備えている。断熱体103は、例えば硬質ウレタンフォームやフェノールフォームやスチレンフォームなどが用いられる。発泡材としてはハイドロカーボン系のシクロペンタンを用いると、温暖化防止の観点でさらによい。
冷蔵庫本体100は複数の断熱区画に区分されており上部を回転扉式、下部を引出し式とする構成をとってある。上から冷蔵室104、引出し式の野菜室105と引出し式の冷凍室106となっている。各断熱区画にはそれぞれ断熱扉がガスケット109を介して設けられている。上から冷蔵室回転扉110、野菜室引出し扉111、冷凍室引出し扉112である。また、冷蔵室回転扉110には扉ポケット111が収納スペースとして設けられており、庫内には複数の収納棚113が設けられてある。また冷蔵室104の最下部には貯蔵ケース114が設けてある。
また、冷蔵庫本体100は、第一の天面部115と奥部を低く凹ませた第二の天面部116を設けてあり機械室117を構成してある。
冷凍サイクルは第二の天面部116に弾性支持して配設した圧縮機118と、圧縮機118と近傍に設けた機械室ファン119と、冷蔵庫本体100下部に設けた凝縮器120と、凝縮機120近傍に設けた凝縮器ファン121と減圧器であるキャピラリー122と、水分除去を行うドライヤ(図示せず)と、野菜室105と冷凍室106の背面で、冷却ファン123を近傍に配置して設けた蒸発器124と、吸入配管125とを環状に接続して構成されている。
また、冷媒は炭化水素系の冷媒、例えばイソブタンを用い、圧縮機118内にはイソブタンと相溶性のある鉱油が封入されている。
機械室117はビスなどで固定された機械室カバー126が第一の天面部116より高い位置に設けられており、圧縮機118や機械室ファン119などを収納している。カバー部との天面高さの差を利用して、第一の天面部116上部と連通させる開口部(図示せず)を機械室カバー126に備え放熱風路を構成している。
配管構成は圧縮機118より吐出した後、側面パネルにアルミテープなどで熱交換可能に配設して、底部の凝縮器120へと接続される。さらに凝縮器120を出た後、冷蔵庫本体100の開口前面周囲を経て、反対側面に配設して機械室117に戻り、ドライヤ(図示せず)を経て、キャピラリー122と接続される。
キャピラリー122と吸入配管125は、概ね同等の長さの銅管であり、端部を残して中央部を熱交換可能にはんだ付けされている。キャピラリー122は減圧のため内部流動抵抗が大きい細径の銅管が用いられており、その内径は0.6ミリから1.0ミリ程度で長さと組み合わせて、調節して減圧量を設計する。吸入配管125は圧力損失を低減するために大径の銅管が用いられており、その外径は標準的管寸法である6.35ミリから7.94ミリ程度で低コストに設計されている。
また熱交換部の長さを確保するために、蛇行させてコンパクトにまとめて、冷蔵室104の背面に蛇行部がくるようにして、内箱101と外箱102との中間に接触しないように配置され断熱体103に埋設される。キャピラリー122と吸入配管125は、一方の端部を内箱101の野菜室105後方位置から突き出して蒸発器124と接続されており、また他方の端部を機械室117に突き出して圧縮機118などと接続されている。
また、庫内は蒸発器124で冷却された冷気を分配するダンパ127を備えた風路128により冷気が分配されて温度調節が行われる。
さらに、蒸発器124の下方には除霜ヒータ129が設けられており、その下方には除霜水を受けて外部排出するドレン130が設けてある。冷蔵庫本体100の外部でドレン130の下方には蒸発皿131が設けてあり、除霜時の排水が集められる。
蒸発皿131は凝縮器120の後方に配置されており、凝縮器ファン121により凝縮器120を通過した高温空気が蒸発皿131表面を通風するので、除霜水を乾燥させることができる。
各室の温度設定は、冷蔵室104が冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されており、貯蔵ケース114は肉魚などの保鮮性向上のため比較的低めの温度、例えば−3〜0℃で設定される。貯蔵ケースは冷蔵室104の室内下方に配置されているので、冷却風路の開口面積で冷却量の調節を行うことで冷蔵室104より低温とすることが容易であり、専用のダンパを用いないこともある。
野菜室105は冷蔵室104と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。凍らない程度で低温にするほど葉野菜の鮮度を長期間維持することが可能である。また、野菜室105は、冷却風路の開口面積で冷却量の調節を行い、専用のダンパを設けないこともある。
冷凍室106は冷凍保存のために通常−22〜−18℃で設定されているが、冷凍保存状態の向上のために、例えば−30や−25℃の低温で設定されることもある。
以上のように構成された冷蔵庫において、その動作、作用を説明する。
庫内の温度は設定された所定の温度に応じて冷却運転がなされる。
まず圧縮機118の動作により吐出された高温高圧の冷媒は、凝縮器ファン121により冷蔵庫本体100の下方の比較的低温の空気で空冷される凝縮器120と冷蔵庫本体100の周囲に配設された配管とにより放熱されるとともに凝縮液化し、キャピラリー122に至る。その後、キャピラリー122で吸入配管125と熱交換しながら減圧されて低温低圧の冷媒が蒸発器124に至る。
冷却用ファン123の動作により、低温となった蒸発器124と熱交換した低温冷気は庫内と断熱された冷却ダクト128とダンパ127によって吐出口(図示せず)から、各室に分配されて温度調節が行われる。庫内に吐出された冷気は戻り風路(図示せず)で再度、蒸発器124へと導かれ循環する構成となっている。
蒸発器124で、庫内の空気と熱交換した冷媒は、その後吸入配管125を通り、圧縮機118へと吸い込まれる。このとき、圧縮機118内に封入された圧縮機摺動部潤滑性確保のための冷凍機油は冷媒と相溶性を持ち、共に配管内を循環しているので、圧縮機118を冷蔵庫本体の上方に配設する場合、冷凍機油の循環性を確保することが信頼性に係る重要なポイントとなるが、冷媒としてイソブタンを用いることにより、運転時の配管内ガス流速を増加させて冷凍機油の循環性を向上させることができる。さらに相溶性のある鉱油を用いることで、相変化により液冷媒や二相冷媒においても冷凍機油の循環性が向上する。
さらに、圧縮機118と離れた場所に凝縮器120を配置することで、高温となる圧縮機118の熱影響を受けることがないので、配管長を短くしての小型化が可能である。またさらに圧縮機118と離れて、底面に凝縮器120を配置することで、比較的低温の空気と熱交換でき、さらに小型化が可能となる。これは通常、冷蔵庫の設置空間にも温度ばらつきがあり、天井に近いほど高温となっているからである。また、近年の気密性の高い住宅においては、この温度差がより顕著となっている。また、通常冷蔵庫が設置されるキッチン環境においては調理機器の影響により、さらに顕著な温度差が生じている。
また、本実施の形態のように冷凍室106が冷蔵庫本体100の下部に配置された所謂ボトムフリーザータイプの冷蔵庫においては、冷凍室106と凝縮器120とを隣接させるために熱伝導による底面の温度低下からも凝縮器120の小型化が可能となる。
凝縮器120の配管長小型化により、高圧配管での液冷媒滞留量を低減できるので、高圧配管中の液冷媒と混ざり合った冷凍機油の量を低減でき、冷凍機油の循環性を向上させることができる。
なお、上述の内容は凝縮器120の小型化によって滞留冷凍機油の絶対量低減による冷凍機油の循環性向上の観点で述べたが、主たる凝縮器120を特に、冷蔵庫本体100の底面に設置して蒸発器124より低い配置とし、他の凝縮配管(例えば、冷蔵庫本体外郭の結露防止用配管など)の経路を長く、かつ立ち上がり配管を多用する場合などには、外気温度の低い冬季や夜間などの条件下で液冷媒量が増え混ざり合った冷凍機油の粘度増大も相まって循環性が低下するケースが考えられるが、このような条件が重なった場合においても、冷媒として炭化水素系のイソブタン等を用いることにより、運転時の配管内流速を大きく増強させることができるので、この流速の増強に併せて冷媒と混ざり合う鉱油である冷凍機油の循環性を確保することができるものである。
なお、今回は3ドアタイプのレイアウトについて述べたが、4ドアや5ドアなどの多ドアタイプであっても、同様の効果が得られるものである。
またなお、凝縮器120はフィンコイルやスパイラルフィンコイルやプレートコイルなどいずれでもよい。
(実施の形態5)
図9は、本発明の実施の形態5における冷蔵庫の概略図を示すものであり、図10は同実施の形態におけるタイムチャートである。なお、背景技術と同一構成については同一符号を付す。
圧縮機132は内部が低圧に保持された排気容量可変方式であるレシプロインバーターが用いられている。排気容量可変方式はインバーターで回転数を制御するレシプロの他にロータリ、スクロールなどの圧縮方式や、ストローク制御を行うリニア圧縮方式などが使われており、排気容量制御手段133によって、排気容量(冷却能力)を変化させるように制御されている。
なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。
特に低圧容器型のインバータレシプロ方式では、圧縮機132内部の圧力が低いので封入された冷凍機油に冷媒が解けにくく冷媒量を削減できることや、摺動部が回転数に依存したオイルシールではないので低回転数での効率がよく、静音化と省エネに最もメリットがある。また低回転時は冷媒循環量の低減に併せて冷凍機油の吐出量が低減できるので、圧縮機132内の冷凍機油の減少を防止できる。
各室にはサーミスタなどの温度検知手段134が設けられており、制御手段135によって温度調節が行われる。
図10のタイムチャートにおいて、冷却運転安定時に、サーミスタや赤外線センサーなどの庫内温度検知手段134は庫内の温度を所定間隔で検知して、制御手段135へと情報を伝達している。
制御手段135は庫内温度に対して、冷却運転を開始させる庫内上限温度設定(high)と冷却を停止させる庫内下限温度設定(low)を持ち、庫内上限温度設定を超えて温度上昇した場合にさせる。また庫内下限温度設定を超えて温度低下した場合に制御手段135に圧縮機132を停止させるよう制御する。
圧縮機132が停止している間、庫内温度は上昇し、(T1)において庫内温度検知手段134は庫内上限温度設定を超えることを検知する。この信号により制御手段135は、圧縮機132を動作させる。排気容量制御手段133はインバーターによる周波数可変での排気量制御、すなわち冷凍能力の可変制御であり、省エネルギー化のために、できるだけ低い回転数で圧縮機132を運転させるものである。
排気容量制御手段133はまず低回転数で圧縮機132の運転を開始し、所定のタイミングで回転数を変化させていく。回転数の変化タイミングは例えば庫内上限温度設定と下限温度設定の範囲で所定の温度範囲を持ち、それぞれの温度範囲に応じた動作回転数で運転させたり、温度の変化量に応じて運転回転数を設定するなどの方法がある。いずれも負荷が大きく、冷凍能力が過不足している状態を推定して冷凍能力をマッチングさせるべく回転数の増減を行うものである。
(T1)において制御手段135に設けられた第一のタイマ136aのカウントが開始される。第一のタイマ136aは圧縮機132の動作中にカウントを行い、圧縮機132が停止したらカウントを中断する。(T2)において、第一のタイマ136aは所定の時間が積算経過したことをカウントアップ信号で制御手段135に情報伝達する。制御手段135は、この信号を元に排気容量制御手段133に強制的に回転数を増加させる。また第二のタイマ136bのカウントが開始され、別途定められた所定時間を積算経過した時に制御手段135にカウントアップ信号を発信する(T3)。(T3)において、排気容量制御手段133は強制的に増加させていた圧縮機132の回転数を元の状態に戻し、通常制御に戻る。圧縮機132の運転に伴い庫内温度が低下し、庫内温度検知手段134は庫内下限温度設定を超えて庫内温度が低下することを検知し(T4)、制御手段135は圧縮機132を停止させる。
圧縮機132の停止に伴い、庫内温度は徐々に上昇し、再度庫内上限温度設定を超えることを庫内温度検知手段134が検知する(T5)。
以上の動作を繰り返すことにより、庫内温度を所定の温度に調節する。また、各室の温度調節は温度検知手段に応じて、ダンパ127の動作により冷気量を調節して行う場合もある。
以上のように、排気量可変型圧縮機132を用いることで、圧縮機132の低回転化や、ランクダウンによる省エネと圧縮機の冷凍機油循環量の確保を両立することができる。
また、第一のタイマ136aと第二のタイマ136bは兼用すれば合理化できる。
なお、上述の観点は圧縮機132の排気量低減制御により冷媒吐出量の低減による圧縮機132からの冷凍機油の持ち出し量低減を図るものであるが、冷凍サイクルの冷媒配管長が長い場合や配管の立ち上がりを多用する場合、冬季など外気温度が低下して液冷媒の増加や冷凍機油の粘度増大の影響がある場合などの条件下においては、圧縮機132の排気量低減制御による運転を行うと、冷媒流速に配慮を施していないと、冷媒循環量の低減に伴って圧縮機132から一部持ち出された冷凍機油の戻り性が低下するケースも考えられる。
これに対して、本実施の形態においては、上述のように冷媒として炭化水素系の冷媒であるイソブタンを用いることで、低排気量条件であっても、従来に比して圧縮機132から吐出された冷凍機油が圧縮機132へ戻るのに十分な配管内の流速を確保することができるとともに冷媒の冷凍機油に対する溶解度を大きくすることで、冷凍機油内に冷媒が溶け込むことで冷凍機油の粘度を低下させることができ、蒸発器124から圧縮機132への冷凍機油の戻り量をより増加できる。
つまり、条件によって低排気量制御による冷凍サイクル中に冷媒と共に吐出された冷凍機油の戻り性を改善する必要のあるケースに対しては、冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用が効力を発揮するものである。
以上のように、圧縮機132の低排気量制御を行う場合は、冷媒吐出に伴う冷凍機油の持ち出し低減効果と、一部の条件においては持ち出し後の冷凍機油の戻り性低下の影響とが共存する背反課題があるが、この両課題を同時に解決する手段として、冷媒の炭化水素化と相溶性のある鉱油の組み合わせ使用に加えて密閉容器内低圧型の圧縮機132の適用が有効な手段となり得る。
すなわち、まず圧縮機132の密閉容器内を低圧型とした上で低排気量制御を行い圧縮機132からの冷媒吐出に伴う冷凍機油持ち出し量を低減し、かつ冷凍サイクル中に持ち出された一部冷凍機油に対しては冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用で圧縮機132への戻り性を向上させるものである。これにより、圧縮機132から吐出される冷凍機油の量を低減でき、圧縮機132内の冷凍機油不足による、圧縮機132の損傷等の危険性をさらに低減できるものである。
(実施の形態6)
図11は、本発明の実施の形態6におけるタイムチャートを示すものである。なお、背景技術と同一構成については同一符号を付す。
なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。
庫内温度検知手段134が庫内温度上限設定を検知する(T1)において制御手段135に設けられた第一のタイマ136aのカウントが開始される。排気容量制御手段133はインバーター圧縮機132の動作回転数を最大回転数として運転を開始する。第一のタイマ136aはあらかじめ設定された所定時間カウントを行い(T2)において、第一のタイマ136aはカウントアップ信号を制御手段135に情報伝達する。制御手段135は、この信号を元に排気容量制御手段133に通常運転制御に回転数を減速させる。庫内温度検知手段があらかじめ設定された温度を検知するなどして(T3、T4)圧縮機132の回転数を制御して省エネと冷却能力の両立が図られる。庫内温度検知手段134が庫内温度設定下限を検知すると(T5)、圧縮機132は制御手段135により停止される。庫内温度が上昇し再度庫内上限温度設定を超えることを庫内温度検知手段134が検知する(T6)。
以上の動作を繰り返すことで、庫内の温度調節が行われる。これにより圧縮機132の起動時に高い回転数で起動するので、停止中の冷媒への冷凍機油溶け込みにより吐出油量が最も多くなり、かつ給油条件が最も悪い摺動開始時に確実な配管内冷媒流速を確保することで冷凍機油の循環性を確保することができる。さらに停止中に冷媒に溶け込んだ状態で冷凍機油が蒸発器124に滞留するために、起動時に配管内冷媒流速を確保することで、より多くの冷凍機油を圧縮機132へと戻すことができる。
なお、最大排気容量を用いることで確実な冷凍機油の循環が行われるが、電源周波数である50rps以上の回転数であれば同様の効果が得られる。
以上のように、本発明に係る冷蔵庫は、圧縮機を蒸発器より上方に配設した冷凍サイクルを有する場合の圧縮機への冷凍機油の戻り性を向上できるため、圧縮機内の冷凍機油が不足するといった危険性を低減でき、家庭用冷蔵庫のみならず業務用冷蔵庫、自動販売機、その他の冷却機器を備えた貯蔵庫の冷凍サイクル構成として有用である。
本発明の実施の形態1における冷蔵庫の断面図 本発明の実施の形態1における冷蔵庫の冷媒と冷凍機油の溶解度曲線図 本発明の実施の形態2における冷蔵庫の背面から見た正面図 本発明の実施の形態2における冷蔵庫の背面から見た正面図 本発明の実施の形態2における冷蔵庫の背面から見た正面図 本発明の実施の形態3における冷蔵庫の背面から見た断面図 本発明の実施の形態4における冷蔵庫の断面図 本発明の実施の形態4における冷蔵庫の配管構成図 本発明の実施の形態5における冷蔵庫の断面図 本発明の実施の形態5におけるタイムチャート 本発明の実施の形態6におけるタイムチャート 従来の冷蔵庫の断面図
符号の説明
1,100 冷蔵庫本体
2,104 冷蔵室
4,106 冷凍室
9,124 蒸発器
11,117 機械室
12,118 圧縮機
13,115 第一の天面部
14 冷蔵庫外箱背面
15,116 第二の天面部
16,120 凝縮器
17 機械室カバー
18 冷凍サイクル
19,122 キャピラリー
20 サクションライン
21 曲げ部
22 トラップ部
23 冷蔵室冷却用蒸発器
24 冷凍室冷却用蒸発器
25 ジョイント配管
105 野菜室
119 機械室ファン
121 凝縮器ファン
123 冷却ファン
126 機械室カバー
132 排気容量可変型圧縮機(圧縮機)
133 排気容量制御手段
134 庫内温度検知手段
135 制御手段
136a 第一のタイマ
136b 第二のタイマ

Claims (11)

  1. 圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルを有し、前記圧縮機は前記蒸発器より上方に配置され、前記冷凍サイクルには冷媒としての炭化水素であるイソブタンと冷凍機油としての鉱油が封入されとともに内部低圧型とし、前記凝縮器は前記圧縮機よりも上方に配置されるとともに冷蔵庫本体の天面の一部に配置された冷蔵庫。
  2. 前記圧縮機は冷蔵庫本体の天面の一部に配置された請求項1に記載の冷蔵庫。
  3. 前記圧縮機は密閉容器と前記密閉容器内に備えられた電動要素および圧縮要素を有し、前記密閉容器の内部空間は前記冷凍サイクルにおける低圧側である請求項1または2に記載の冷蔵庫。
  4. 前記蒸発器と前記圧縮機の接続配管であるサクションラインに、前記蒸発器から前記圧縮機への前記冷媒の流れ方向に対向する前記冷凍機油の重力成分の影響を緩和するような曲げ角度を有する曲げ部を設けた請求項1から3のいずれか一項に記載の冷蔵庫。
  5. 前記蒸発器と前記圧縮機の接続配管であるサクションラインにトラップ部を設けた請求項1から4のいずれか一項に記載の冷蔵庫。
  6. 前記冷蔵庫本体に温度帯の異なる複数の貯蔵室を設け、前記蒸発器を前記複数の貯蔵室のうち、最上部以外の貯蔵室に配設した請求項1から5のいずれか一項に記載の冷蔵庫。
  7. 前記冷凍サイクル内に直列に接続した複数の蒸発器を設け、前記冷凍サイクル内で上流側となる蒸発器から順に、前記冷蔵庫本体上方から下方に配設した請求項1から6のいずれか一項に記載の冷蔵庫。
  8. 前記複数の蒸発器を接続するジョイント配管は略直管または曲げ角度が90度以上180℃以下の曲げ部を有したものである請求項1から7のいずれか一項に記載の冷蔵庫。
  9. 前記圧縮機の排気容量を変化させる排気容量制御手段を備えた制御手段を有し、前記排気容量制御手段によって前記圧縮機の排気量が可変となることを特徴とする請求項1から8のいずれか一項に記載の冷蔵庫。
  10. 排気容量制御手段を備えた制御手段と庫内温度検知手段とを設け、前記庫内温度検知手段の検知情報による所定のタイミングで前記圧縮機の排気容量制御を行い冷凍サイクルの冷媒循環流速を増加させたことを特徴とする請求項に記載の冷蔵庫。
  11. 前記排気容量制御手段によって、圧縮機起動時に所定時間、強制的に通常制御時よりも大きい排気容量で運転させることを特徴とする請求項9または10に記載の冷蔵庫。
JP2004359446A 2004-05-18 2004-12-13 冷蔵庫 Active JP4396504B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004359446A JP4396504B2 (ja) 2004-05-18 2004-12-13 冷蔵庫
TW094115605A TW200540382A (en) 2004-05-18 2005-05-13 Refrigerator
PCT/JP2005/008867 WO2005111519A1 (ja) 2004-05-18 2005-05-16 冷蔵庫
CN2008101865696A CN101441015B (zh) 2004-05-18 2005-05-16 冷藏库

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004147458 2004-05-18
JP2004359446A JP4396504B2 (ja) 2004-05-18 2004-12-13 冷蔵庫

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2004376064A Division JP3724503B1 (ja) 2004-05-18 2004-12-27 冷蔵庫
JP2005332382A Division JP3824016B2 (ja) 2004-05-18 2005-11-17 冷蔵庫
JP2005332381A Division JP3824015B2 (ja) 2004-05-18 2005-11-17 冷蔵庫

Publications (2)

Publication Number Publication Date
JP2006003061A JP2006003061A (ja) 2006-01-05
JP4396504B2 true JP4396504B2 (ja) 2010-01-13

Family

ID=35394252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359446A Active JP4396504B2 (ja) 2004-05-18 2004-12-13 冷蔵庫

Country Status (3)

Country Link
JP (1) JP4396504B2 (ja)
TW (1) TW200540382A (ja)
WO (1) WO2005111519A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6886959B2 (ja) * 2018-12-11 2021-06-16 東芝ライフスタイル株式会社 冷蔵庫
CN113654255B (zh) * 2021-08-02 2022-08-30 北京京仪自动化装备技术股份有限公司 制冷系统、压缩机频率控制方法、电子设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161476U (ja) * 1980-04-30 1981-12-01
JPH09113096A (ja) * 1995-10-20 1997-05-02 Fujitsu General Ltd 電気冷蔵庫
KR100301502B1 (ko) * 1998-12-10 2001-09-22 구자홍 인버터냉장고의운전제어방법
JP2001317854A (ja) * 2000-05-08 2001-11-16 Matsushita Refrig Co Ltd 冷凍冷蔵庫
JP2003207250A (ja) * 2002-12-20 2003-07-25 Matsushita Refrig Co Ltd 冷蔵庫

Also Published As

Publication number Publication date
WO2005111519A1 (ja) 2005-11-24
TW200540382A (en) 2005-12-16
JP2006003061A (ja) 2006-01-05
TWI334919B (ja) 2010-12-21

Similar Documents

Publication Publication Date Title
US8596084B2 (en) Icemaker with reversible thermosiphon
US20120047917A1 (en) MODULAR REFRIGERATOR and ICEMAKER
JP2006250378A (ja) 冷却貯蔵庫
WO2001079772A1 (en) Refrigerator with thermal storage
JP2012127514A (ja) 冷凍冷蔵庫
JP3824015B2 (ja) 冷蔵庫
CN102997558B (zh) 冰箱
WO2006030736A1 (ja) 冷蔵庫
JP6559335B2 (ja) 冷蔵庫
JP2007309585A (ja) 冷凍装置
JP4396504B2 (ja) 冷蔵庫
JP3824016B2 (ja) 冷蔵庫
JP3724503B1 (ja) 冷蔵庫
WO2009017283A1 (en) Refrigerator with evaporator installed in door
JP2004324902A (ja) 冷凍冷蔵庫
CN100462654C (zh) 冷藏库
RU2330222C1 (ru) Электрохолодильник с термосом для горячей пищи н.р.янсуфина
JP2005098605A (ja) 冷蔵庫
JP2012026645A (ja) 冷凍装置及びそれを用いたオーガ式製氷機及びショーケース
JP2017026210A (ja) 冷蔵庫
JP5475033B2 (ja) 冷凍装置
JP4286106B2 (ja) 冷凍冷蔵庫
JPWO2020121404A1 (ja) 冷蔵庫
CN218096771U (zh) 冰箱
JP3722148B1 (ja) 冷蔵庫

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4396504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4