JP4395606B2 - Spider membrane substitute - Google Patents

Spider membrane substitute Download PDF

Info

Publication number
JP4395606B2
JP4395606B2 JP2004096166A JP2004096166A JP4395606B2 JP 4395606 B2 JP4395606 B2 JP 4395606B2 JP 2004096166 A JP2004096166 A JP 2004096166A JP 2004096166 A JP2004096166 A JP 2004096166A JP 4395606 B2 JP4395606 B2 JP 4395606B2
Authority
JP
Japan
Prior art keywords
film
arachnoid
membrane
tissue
blood vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004096166A
Other languages
Japanese (ja)
Other versions
JP2005278837A (en
Inventor
康治 山内
泰彦 田畑
享 宮本
圭介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2004096166A priority Critical patent/JP4395606B2/en
Publication of JP2005278837A publication Critical patent/JP2005278837A/en
Application granted granted Critical
Publication of JP4395606B2 publication Critical patent/JP4395606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、くも膜代用品や血管用保護膜として好適に用いることができる組織補填膜、該組織補填膜からなるくも膜代用品及び血管用保護膜に関する。 The present invention relates to a tissue filling membrane that can be suitably used as a arachnoid substitute or a protective film for blood vessels, a arachnoid substitute made of the tissue filling membrane, and a protective film for blood vessels.

頭蓋骨と脳との間や脊髄を覆うように介在する膜は、頭蓋骨側から硬膜、くも膜、軟膜からなり、主として脳、脊髄の保護とくも膜下を流れる脳脊髄液の漏出を防止する機能を果たす。脳神経外科領域に伴う手術においては、硬膜、くも膜を切開し、脳実質に到達するが、その手術により硬膜及びくも膜が欠損したり、拘縮したりした場合には、何らかの手段によりその修復を行うことが必要となる。また、硬膜、くも膜自体の疾患によりこれらを切除した場合にも、その修復が必要となる。
特に、くも膜が修復されないままであると、くも膜切開部より、脳脊髄液が漏出し、くも膜と硬膜の間に異常貯留をきたすことがある。このような脳脊髄液の異常貯留が発生した場合、脳表や周辺組織への圧迫、感染の危険性があり、臨床的不具合が発現することもある。
The intervening membrane that covers the spinal cord between the skull and the brain consists of the dura mater, the arachnoid, and the pia mater from the skull side, and mainly functions to protect the brain and spinal cord and prevent leakage of cerebrospinal fluid that flows under the arachnoid. Fulfill. In surgery associated with neurosurgery, the dura mater and the arachnoid are incised to reach the brain parenchyma. It is necessary to do. Moreover, when these are excised due to diseases of the dura mater and the arachnoid itself, the repair is required.
In particular, if the arachnoid membrane remains unrepaired, cerebrospinal fluid may leak from the arachnoid incision and cause abnormal accumulation between the arachnoid membrane and the dura mater. When such abnormal cerebrospinal fluid accumulation occurs, there is a risk of pressure on the brain surface and surrounding tissues, infection, and clinical failure may occur.

硬膜の修復に関しては、これまでにも種々の人工硬膜が開発されており、これらの人工硬膜を用いて補填することにより脳脊髄液の硬膜外への漏出を防止している(例えば、特許文献1)。
一方、くも膜の修復に関しては、綿状の酸化セルロースでくも膜欠損部を覆う等の処置をする程度しかないのが現状であった。
Regarding the dural repair, various artificial dura maters have been developed so far, and the leakage of cerebrospinal fluid from the dura mater is prevented by supplementing with these artificial dura maters ( For example, Patent Document 1).
On the other hand, the current state of repair of the arachnoid film is only to treat the arachnoid defect with a cotton-like oxidized cellulose.

くも膜は、脳表の凹凸に充分に追従することが要求され、更に、周辺組織にストレスを与えないように充分な軟らかさと薄さが要求される。これまで、人工硬膜として用いられる種々のフィルム類を人工くも膜として用いることが試みられていたが、いずれもこれらの性能を充分には満たすことはできず、満足な臨床成績をあげることはできなかった。 The arachnoid membrane is required to sufficiently follow the irregularities on the surface of the brain, and is also required to be sufficiently soft and thin so as not to apply stress to the surrounding tissue. Up to now, various films used as artificial dura mater have been tried to use as artificial arachnoid membranes, but none of them can fully satisfy these performances, and satisfactory clinical results can not be achieved. There wasn't.

血管のバイパス作製等で血管の切除手術を行う場合、通常は血管の再縫合を行うが、この縫合部は治癒課程で周辺組織と癒着を引き起こしやすい性質がある。癒着を引き起こした場合には、再手術を行って剥離を行う必要があるが、剥離の際に健全な組織まで傷つけてしまうことがある。また、剥離手術は、一般に長時間を要することから、患者にかける負担も大きくなる。 When a blood vessel excision operation is performed for creating a blood vessel bypass or the like, the blood vessel is usually re-stitched. However, this suture part has a property of easily causing adhesion with surrounding tissues in the healing process. In the case of causing adhesion, it is necessary to perform re-operation and perform exfoliation. However, the exfoliation may damage healthy tissue. In addition, since the peeling operation generally requires a long time, the burden on the patient is also increased.

このような血管の再縫合部の癒着を防止する方法として、血管用保護膜を用いて再縫合部を覆うことが試みられており、これまでにシリコーン、フッ素樹脂等の合成高分子からなるものや、酸化セルロール、ゼラチン、コラーゲン、フィブリン等の天然高分子からなるものが提案されている。 As a method for preventing such adhesion of the re-suturing portion of the blood vessel, it has been attempted to cover the re-suturing portion using a protective film for blood vessels, and it has so far been made of a synthetic polymer such as silicone or fluororesin. In addition, those composed of natural polymers such as oxidized cellulose, gelatin, collagen, and fibrin have been proposed.

しかしながら、市販されているシリコーンやフッ素樹脂等フィルムを血管用保護膜として用いる試みは、フィルムの厚みが最も薄いものでも0.3mm程度を有することから、細い血管に隙間なく巻きつけるのは困難であった。更に、血管に巻き付けたとしても、組織との親和性が低いため、縫合時に緩んでしまい、血管との間に隙間が生じてしまうことがあるという問題もあった。また、非分解性であることから、慢性的な異物反応によるカプセル化が生じて、そのカプセルと生体の間に癒着を引き起こすことがある。また、永久に体内に存在するため慢性的な異物反応による肉芽組織の肥厚化により周辺組織が出血を起こしやすいといった報告もある。
酸化セルロール不織布を用いた血管用保護膜は、生体内で膨潤し、ゲルとなって組織を被覆する。しかしながら、ゲル状のため位置固定性が低く、分解に伴い環境下が強く酸化されることから強い炎症反応を誘発するという問題があった。
ゼラチンフィルムやコラーゲン膜からなる血管用保護膜は、架橋しない場合には酸化セルロース不織布と同様にゲル化してしまい位置固定性が悪化する、一方、架橋を行った場合には、硬くなり、血管に巻き付けることが困難となる。
フィブリン膜からなる血管用保護膜は、ヒト血管等由来のものを用いた場合には組織との適合性も高い。しかしながら、血液由来のものは感染のリスクが否定できず、ヒトには使いづらいという問題点が指摘されている。
However, an attempt to use commercially available films such as silicone and fluororesin as a protective film for blood vessels has a thickness of about 0.3 mm even with the thinnest film. there were. Furthermore, even when wrapped around a blood vessel, there is a problem in that the affinity with the tissue is low, so that it loosens during suturing and a gap may be formed between the blood vessel. In addition, since it is non-degradable, encapsulation due to a chronic foreign body reaction may occur, causing adhesion between the capsule and the living body. In addition, there are reports that the surrounding tissues tend to bleed due to thickening of granulation tissue due to chronic foreign body reaction because it is permanently present in the body.
A protective film for blood vessels using an oxidized cellulose nonwoven fabric swells in vivo and becomes a gel to cover the tissue. However, there is a problem that the position fixability is low due to the gel state and a strong inflammatory reaction is induced because the environment is strongly oxidized with decomposition.
When the protective film for blood vessels made of gelatin film or collagen film is not cross-linked, it will gel like the oxidized cellulose non-woven fabric, resulting in poor position fixability. It becomes difficult to wind.
A protective film for blood vessels made of a fibrin film is highly compatible with a tissue when a film derived from a human blood vessel or the like is used. However, the risk of infection cannot be denied for those derived from blood, and it has been pointed out that it is difficult for humans to use.

特開2003−199817号公報JP 2003-199817 A

本発明は、上記現状に鑑み、くも膜代用品や血管用保護膜として好適に用いることができる組織補填膜、該組織補填膜からなるくも膜代用品及び血管用保護膜を提供することを目的とする。 An object of the present invention is to provide a tissue filling membrane that can be suitably used as a arachnoid substitute or vascular protective membrane, a arachnoid substitute comprising the tissue filling membrane, and a vascular protective membrane. .

本発明は、L−ラクチド/ε−カプロラクトン共重合体、ポリ乳酸、乳酸/グリコール酸共重合体、架橋コラーゲン又は架橋ゼラチンからなり、厚さ50μm以下の単層のフィルム状体であるくも膜代用品である
以下に本発明を詳述する。
The present invention relates to a spider membrane substitute which is a single-layer film-like body having a thickness of 50 μm or less, comprising L-lactide / ε-caprolactone copolymer, polylactic acid, lactic acid / glycolic acid copolymer, crosslinked collagen or crosslinked gelatin. It is .
The present invention is described in detail below.

本発明の組織補填材は、凹凸のある組織面に沿って補填が可能である。このような性質を有することにより、本発明の組織補填材は膜代用品や血管用保護膜として好適に用いることができる。
なお、本明細書において凹凸のある組織面に沿って補填が可能であるとは、少なくとも、脳表面の凹凸や血管の再縫合による縫合部の凹凸に追従できることを意味する。
The tissue filling material of the present invention can be filled along an uneven textured surface. By having such properties, the tissue filling material of the present invention can be suitably used as a membrane substitute or a protective membrane for blood vessels.
In the present specification, the phrase “can be compensated along an uneven tissue surface” means that it can follow at least the unevenness of the brain surface and the unevenness of the sutured part by re-sewing of the blood vessel.

本発明の組織補填材は、血管用保護膜として用いた場合に、自己接着性を有することが好ましい。自己接着性を有する場合には、血管に巻き付けたときに縫合する必要がなく、縫合糸を生体内に埋入する必要がないため、生体内への異物埋入量が減る。更に、縫合による組織と血管用保護膜とのデッドスペースがなくなり、より高い密着性が得られる。
なお、本明細書において自己接着性を有するとは、組織補填材同士を接着剤や縫合等を行うことなく、軽く圧着しただけで接着できることを意味する。
The tissue filling material of the present invention preferably has self-adhesiveness when used as a protective film for blood vessels. In the case of having self-adhesive properties, it is not necessary to sew when wrapped around a blood vessel, and it is not necessary to embed a suture in the living body, so the amount of foreign matter embedded in the living body is reduced. Furthermore, there is no dead space between the tissue and the protective film for blood vessels by suturing, and higher adhesion can be obtained.
In the present specification, having self-adhesion means that the tissue filling materials can be bonded together by lightly crimping them without using an adhesive or stitching.

本発明の組織補填材は、生体内吸収性材料からなることが好ましい。生体内吸収性材料を用いることにより、慢性的な異物反応を軽減することができる。
上記生体内吸収性材料としては、例えば、脂肪族ポリエステル(ポリグリコール酸、ポリ乳酸、ポリカプロラクトン、ポリバレロラクトン及びそれらの共重合体)や、ポリエステルエーテル(ポリ−1,4−ジオキサノン−2−オン、ポリ1,5−ジオキセパン−2−オン、エチレングリコール−前記脂肪族ポリエステルとの共重合体)、上記脂肪族ポリエステルとポリエステルエーテルとの共重合体、アミノ酸、ヒアルロン酸、アルギン酸、酸化セルロース等の合成高分子;シルクフィブロイン、コラーゲン、ゼラチン、キチン、キトサン、フィブリン等の生体由来高分子が挙げられる。なかでも、脂肪族ポリエステルの共重合体やコラーゲン、ゼラチン等が好適である。
The tissue filling material of the present invention is preferably made of a bioabsorbable material. By using a bioabsorbable material, chronic foreign body reaction can be reduced.
Examples of the bioabsorbable material include aliphatic polyesters (polyglycolic acid, polylactic acid, polycaprolactone, polyvalerolactone and copolymers thereof) and polyester ethers (poly-1,4-dioxanone-2- ON, poly 1,5-dioxepane-2-one, ethylene glycol-copolymer of aliphatic polyester), copolymer of aliphatic polyester and polyester ether, amino acid, hyaluronic acid, alginic acid, cellulose oxide, etc. And synthetic polymers such as silk fibroin, collagen, gelatin, chitin, chitosan, and fibrin. Of these, aliphatic polyester copolymers, collagen, gelatin and the like are preferable.

本発明の組織補填膜はフィルム状であり、その厚さの好ましい上限は100μmである。100μmを超えると、くも膜代用品として用いた場合に、脳表面の凹凸に充分に追従できないことがあり、また、機械的性能が高くなりすぎて周辺のくも膜との機械的適合性が低くなることがある。また、血管用保護膜として用いた場合にも、血管に巻き付けにくく、膜の重なる部分近辺に隙間が生じやすくなる。より好ましい上限は50μmである。 The tissue filling membrane of the present invention is in the form of a film, and the preferred upper limit of the thickness is 100 μm. If it exceeds 100 μm, it may not be able to sufficiently follow the irregularities on the surface of the brain when used as a arachnoid substitute, and the mechanical performance will be too high, resulting in poor mechanical compatibility with the surrounding arachnoid membrane. There is. Also, when used as a protective film for blood vessels, it is difficult to wrap around a blood vessel, and a gap is likely to occur in the vicinity of the overlapping portion of the films. A more preferred upper limit is 50 μm.

本発明の組織補填材は、液バリア性を有することが好ましい。液バリア性を有することにより、くも膜代用品として用いた場合に、脳室内からくも膜と硬膜の間や硬膜と頭蓋骨の間に脳脊髄液が漏れることがない。 The tissue filling material of the present invention preferably has liquid barrier properties. Due to its liquid barrier properties, when used as a arachnoid substitute, cerebrospinal fluid does not leak from the ventricle between the arachnoid and dura mater and between the dura mater and the skull.

本発明の組織補填膜は、血管用保護膜として用いた場合は川端評価システム(Kawabata Evaluation System:KES)に準ずる方法により測定した曲げ固さの好ましい上限が0.2g・cm/cmである。0.2g・cm/cmを超えると、血管に巻き付けにくく剥離しやすくなり、また、血管や周辺組織を傷つけたりしてしまうことがある。より好ましい上限は0.1g・cm/cmである。 When the tissue filling membrane of the present invention is used as a protective membrane for blood vessels, the preferable upper limit of bending hardness measured by a method according to Kawabata Evaluation System (KES) is 0.2 g · cm 2 / cm. . If it exceeds 0.2 g · cm 2 / cm, it is difficult to wrap around the blood vessel and it is easy to peel off, and the blood vessel and surrounding tissue may be damaged. A more preferable upper limit is 0.1 g · cm 2 / cm.

本発明の組織補填材は、JIS K 7113に準ずる方法により測定した引張弾性率の好ましい上限が30MPaである。30MPaを超えると、周辺組織にストレスを与えることがある。また、血管用保護膜として用いた場合にも、血管に隙間なく巻き付けることが困難となり、血管との間に隙間を生じてしまうことがある。更に、血管の収縮動作に対応できず血管の動きを抑制し、場合によっては血栓生成の原因になることもある。より好ましい上限は10MPaである。 In the tissue filling material of the present invention, the preferable upper limit of the tensile elastic modulus measured by a method according to JIS K 7113 is 30 MPa. If it exceeds 30 MPa, stress may be applied to surrounding tissues. In addition, even when used as a blood vessel protective film, it may be difficult to wind the blood vessel without a gap, and a gap may be formed between the blood vessel. Furthermore, it cannot respond to the vasoconstriction operation, suppresses the movement of the blood vessel, and in some cases may cause thrombus formation. A more preferable upper limit is 10 MPa.

本発明の組織補填材は、血管用保護膜として用いた場合に、水の接触角の好ましい上限が120°である。120°以上であると、親水性が低く、血管との親和性に欠け、巻きが緩みやすいことがある。
このような水の接触角を実現する方法としては、例えば、親水性材料を用いるか、疎水性材料を用いた場合には、プラズマ処理等や表面に親水基を結合させる等の従来公知の方法により親水化させることが挙げられる。
When the tissue filling material of the present invention is used as a protective film for blood vessels, the preferable upper limit of the contact angle of water is 120 °. If it is 120 ° or more, the hydrophilicity is low, the affinity with the blood vessel is lacking, and the winding may be loosened.
As a method for realizing such a contact angle of water, for example, when a hydrophilic material is used or a hydrophobic material is used, a conventionally known method such as plasma treatment or bonding a hydrophilic group to the surface is used. It is mentioned to make it hydrophilic.

本発明の組織補填材の製造方法としては特に限定されず、溶融押出、熱プレス、真空乾燥等の従来公知の方法により製造することができる。 It does not specifically limit as a manufacturing method of the structure | tissue filling material of this invention, It can manufacture by conventionally well-known methods, such as melt extrusion, a hot press, and vacuum drying.

本発明によれば、くも膜代用品や血管用保護膜として好適に用いることができる組織補填膜、該組織補填膜からなるくも膜代用品及び血管用保護膜を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the tissue filling film | membrane which can be used suitably as a arachnoid substitute or a blood vessel protective film, the arachnoid substitute and the blood vessel protective film which consist of this tissue filling film can be provided.

(実施例1)
L−ラクチド144g、ε−カプロラクトン114g及び触媒100ppmをガラスアンプルに入れ、140℃、2日間重合後、モル比50/50であるL−ラクチド/ε−カプロラクトン共重合体(以下、P(L−LA/CL)ともいう)を得た。得られたP(L−LA/CL)についてGPCにより重量平均分子量を求めたところ4万であった。
得られたP(L−LA/CL)を押出成形機を用いて溶融成形して、厚さ32μmのフィルムを得た。
Example 1
L-lactide 144 g, ε-caprolactone 114 g, and catalyst 100 ppm were placed in a glass ampoule, polymerized at 140 ° C. for 2 days, and then a L-lactide / ε-caprolactone copolymer (hereinafter referred to as P (L− (Also referred to as LA / CL)). It was 40,000 when the weight average molecular weight was calculated | required by GPC about obtained P (L-LA / CL).
The obtained P (L-LA / CL) was melt-molded using an extruder to obtain a film having a thickness of 32 μm.

(実施例2)
実施例1で調製したフィルムについて、プラズマ発生装置により、50W、30秒間処理して表面に親水性の官能基を生成させた。
(Example 2)
The film prepared in Example 1 was treated with a plasma generator at 50 W for 30 seconds to generate hydrophilic functional groups on the surface.

(実施例3)
実施例1で得られたP(L−LA/CL)を押出成形機を用いて溶融成形して、厚さ48μmのフィルムを得た。
(Example 3)
P (L-LA / CL) obtained in Example 1 was melt-molded using an extruder to obtain a film having a thickness of 48 μm.

(実施例4)
実施例3で調製したフィルムについて、プラズマ発生装置により、50W、30秒間処理して表面に親水性の官能基を生成させた。
Example 4
The film prepared in Example 3 was treated with a plasma generator at 50 W for 30 seconds to generate hydrophilic functional groups on the surface.

比較例7
実施例1で得られたP(L−LA/CL)を押出成形機を用いて溶融成形して、厚さ71μmのフィルムを得た。
( Comparative Example 7 )
P (L-LA / CL) obtained in Example 1 was melt-molded using an extruder to obtain a film having a thickness of 71 μm.

比較例8
比較例7で調製したフィルムについて、プラズマ発生装置により、50W、30秒間処理して表面に親水性の官能基を生成させた。
( Comparative Example 8 )
The film prepared in Comparative Example 7 was treated with a plasma generator at 50 W for 30 seconds to generate hydrophilic functional groups on the surface.

(実施例7)
L−乳酸200g及び触媒100ppmをガラスアンプルに入れ、160℃、5日間重合後、ポリ乳酸(以下、PLLAともいう)を得た。得られたPLLAについてGPCにより重量平均分子量をもとめたとこる、51万であった。
得られたPLLAをクロロホルムに溶解させ、平板にキャストして風乾する。その後105℃、12時間真空乾燥して完全に溶媒を除去することで厚さ50μmのフィルムを得た。
(Example 7)
200 g of L-lactic acid and 100 ppm of catalyst were placed in a glass ampule, and after polymerization at 160 ° C. for 5 days, polylactic acid (hereinafter also referred to as PLLA) was obtained. It was 510,000 when the weight average molecular weight was calculated | required by GPC about the obtained PLLA.
The obtained PLLA is dissolved in chloroform, cast on a flat plate and air-dried. Thereafter, the film was vacuum dried at 105 ° C. for 12 hours to completely remove the solvent, thereby obtaining a film having a thickness of 50 μm.

(実施例8)
実施例7で調製したフィルムについて、プラズマ発生装置により、50W、30秒間処理して表面に親水性の官能基を生成させた。
(Example 8)
The film prepared in Example 7 was treated with a plasma generator at 50 W for 30 seconds to generate hydrophilic functional groups on the surface.

(実施例9)
L−ラクチド144g、グリコール酸116g及び触媒100ppmをガラスアンプルに入れ、180℃、2日間重合後、モル比50/50の乳酸/グリコール酸共重合体(以下、P(L−LA/GA)ともいう)を得た。得られたP(L−LA/GA)についてGPCにより重量平均分子量を求めたところ28万であった。
得られたP(L−LA/GA)を220℃で溶融プレスすることで厚さ48μmのフィルムを得た。
Example 9
L-lactide 144g, glycolic acid 116g and catalyst 100ppm are put into a glass ampule, and after polymerization at 180 ° C for 2 days, a lactic acid / glycolic acid copolymer (hereinafter referred to as P (L-LA / GA)) having a molar ratio of 50/50. Say). It was 280,000 when the weight average molecular weight was calculated | required by GPC about obtained P (L-LA / GA).
The obtained P (L-LA / GA) was melt-pressed at 220 ° C. to obtain a film having a thickness of 48 μm.

(実施例10)
実施例9で調製したフィルムについて、プラズマ発生装置により、50W、30秒間処理して表面に親水性の官能基を生成させた。
(Example 10)
The film prepared in Example 9 was treated with a plasma generator at 50 W for 30 seconds to generate hydrophilic functional groups on the surface.

(実施例11)
豚腱由来のコラーゲンを酸性溶液に2重量%濃度になるように溶解させた。得られた溶液を−40℃の冷凍庫にて凍結後、真空乾燥して厚さ0.2mmのコラーゲンスポンジを得た。
得られたコラーゲンスポンジを0.2%グルタルアルデヒド溶液に浸漬して架橋を施した後、残留するグルタルアルデヒド溶液を洗浄除去して架橋コラーゲンスポンジを得た。
得られた架橋コラーゲンスポンジを50kg/cmの圧力でプレスすることにより、厚さ24μmのフィルムを得た。
(Example 11)
Collagen derived from porcine tendon was dissolved in an acidic solution to a concentration of 2% by weight. The obtained solution was frozen in a freezer at −40 ° C. and then vacuum-dried to obtain a collagen sponge having a thickness of 0.2 mm.
The obtained collagen sponge was immersed in a 0.2% glutaraldehyde solution for crosslinking, and then the remaining glutaraldehyde solution was washed away to obtain a crosslinked collagen sponge.
The obtained crosslinked collagen sponge was pressed at a pressure of 50 kg / cm 2 to obtain a film having a thickness of 24 μm.

(実施例12)
ゼラチン1.6gとソルビトール0.064gとを精製水54gに溶解させ、その溶液を−40℃の冷凍庫にて凍結後、真空乾燥して厚さ2.5mmのゼラチンスポンジを得た。得られたゼラチンスポンジを130℃、3hr熱処理して架橋を施した後、50kg/cmの圧力でプレスすることにより、厚さ48μmのフィルムを得た。
Example 12
1.6 g of gelatin and 0.064 g of sorbitol were dissolved in 54 g of purified water, and the solution was frozen in a freezer at −40 ° C. and vacuum-dried to obtain a 2.5 mm thick gelatin sponge. The obtained gelatin sponge was heat-treated at 130 ° C. for 3 hours to be crosslinked, and then pressed at a pressure of 50 kg / cm 2 to obtain a film having a thickness of 48 μm.

(比較例1)
実施例1で得たP(L−LA/CL)を押出成形機を用いて溶融成形して、厚さ110μmのフィルムを得た。
(Comparative Example 1)
P (L-LA / CL) obtained in Example 1 was melt-molded using an extruder to obtain a film having a thickness of 110 μm.

(比較例2)
比較例1で調製したフィルムについて、プラズマ発生装置により、50W、30秒間処理して表面に親水性の官能基を生成させた。
(Comparative Example 2)
The film prepared in Comparative Example 1 was treated with a plasma generator at 50 W for 30 seconds to generate hydrophilic functional groups on the surface.

(比較例3)
実施例7で得たPLLAをクロロホルムに溶解させ、平板にキャストして風乾する。その後105℃、12時間真空乾燥して完全に溶媒を除去することで厚さ104μmのフィルムを得た。
(Comparative Example 3)
PLLA obtained in Example 7 is dissolved in chloroform, cast on a flat plate and air-dried. Thereafter, the film was vacuum dried at 105 ° C. for 12 hours to completely remove the solvent, thereby obtaining a film having a thickness of 104 μm.

(比較例4)
比較例3で調製したフィルムについて、プラズマ発生装置により、50W、30秒間処理して表面に親水性の官能基を生成させた。
(Comparative Example 4)
The film prepared in Comparative Example 3 was treated with a plasma generator at 50 W for 30 seconds to generate hydrophilic functional groups on the surface.

(比較例5)
実施例9で得たP(L−LA/GA)を220℃で溶融プレスすることで厚さ105μmのフィルムを得た。
(Comparative Example 5)
P (L-LA / GA) obtained in Example 9 was melt-pressed at 220 ° C. to obtain a film having a thickness of 105 μm.

(比較例6)
比較例5で調製したフィルムについて、プラズマ発生装置により、50W、30秒間処理して表面に親水性の官能基を生成させた。
(Comparative Example 6)
The film prepared in Comparative Example 5 was treated with a plasma generator at 50 W for 30 seconds to generate hydrophilic functional groups on the surface.

(評価)
実施例1〜4、7〜12及び比較例1〜8で作製したフィルムについて以下の方法により評価を行った。
結果を表1に示した。
(Evaluation)
The films prepared in Examples 1 to 4 , 7 to 12 and Comparative Examples 1 to 8 were evaluated by the following methods.
The results are shown in Table 1.

(1)生体親和性試験
麻酔下でウサギの前頭葉を硬膜まで切開し、フィルムをくも膜の上に静置して、目視により組織の凹凸面との追従状態を観察し、以下の基準により評価した。
◎:組織の凹凸面に非常に追従している
〇:組織の凹凸面に追従している
△:やや追従していない部分が認められるが、実用上は問題なかった
×:組織の凹凸面への追従に劣った
(1) Biocompatibility test Under the anesthesia, the rabbit's frontal lobe is incised to the dura mater, the film is left on the arachnoid membrane, and the follow-up state with the textured surface of the tissue is visually observed and evaluated according to the following criteria: did.
◎: Extremely following the textured surface of the structure ○: Following the textured surface of the tissue △: A part that did not follow slightly was observed, but there was no problem in practical use ×: To the textured surface of the tissue Inferior to following

(2)ウサギくも膜埋入試験
麻酔下でウサギの前頭葉を硬膜まで切開し、くも膜ごと脳表に傷をつけ、その上にフィルム載せて、損傷くも膜部位を覆った。次いでその上の硬膜を縫合して、4週、6週後の状態を目視により観察し、以下の基準により評価した。
〇:脳表とフィルムの間に癒着が見られず、フィルムの周りには生体の膜が再生していた
×:脳表とフィルムが一部癒着しており、フィルムの周りには全く生体の膜が再生していなかった
(2) Rabbit arachnoid insertion test Under anesthesia, the rabbit's frontal lobe was incised to the dura mater, the brain surface was injured with the arachnoid membrane, and a film was placed thereon to cover the damaged arachnoid site. Subsequently, the dura mater on it was sutured, and the state after 4 weeks and 6 weeks was visually observed and evaluated according to the following criteria.
〇: No adhesion was observed between the brain surface and the film, and a living body membrane was regenerated around the film. ×: The brain surface and the film were partially adhered, and there was no living body around the film. The membrane was not regenerated

Figure 0004395606
表1より、得られたフィルムをくも膜補填膜として用いる場合には、材料や表面性状よりも、厚みが大きな要因として寄与していることが判った。
Figure 0004395606
From Table 1, when using the obtained film as a arachnoid filling film, it was found that the thickness contributed more than the material and surface properties.

実施例1〜4、比較例7、8、実施例11、12で作製したフィルムについて以下の方法により評価を行った。
結果を表2に示した。
The films produced in Examples 1 to 4, Comparative Examples 7 and 8, and Examples 11 and 12 were evaluated by the following methods.
The results are shown in Table 2.

(1)曲げ固さの測定
純曲げ試験機(カトーテック社製、KES)を用い、フィルムを両端保持して、フィルム全体を一定曲率、一定速度で円弧状に曲げることで、曲げ硬さを測定した。
(1) Measurement of bending hardness Using a pure bending tester (Kato Tech Co., Ltd., KES), hold the film at both ends and bend the whole film into an arc with a constant curvature and a constant speed. It was measured.

(2)引張強度及び引張弾性率の測定
JIS K 7113に準ずる方法により引張強度及び引張弾性率を測定した。
(2) Measurement of tensile strength and tensile elastic modulus Tensile strength and tensile elastic modulus were measured by a method according to JIS K7113.

(3)水の接触角の測定
試験区を平らな静置面にのせ、その表面に水を滴下し、実体顕微鏡にてフィルムと水の接触角を測定した。
(3) Measurement of water contact angle The test area was placed on a flat stationary surface, water was dropped on the surface, and the contact angle of the film and water was measured with a stereomicroscope.

(4)円筒物巻き付け試験
フィルムを生理食塩水に湿潤させた後、2号絹糸にフィルムを隙間なく巻き付け、2分後に目視にて状態を観察して、以下の基準により評価した。
◎:密着した
○:密着しているが、ほんの僅かに隙間が認められる
△:密着しているが隙間が認められる
×:密着性に劣った
(4) Cylindrical winding test film was moistened with physiological saline, the film was wound around No. 2 silk thread without any gap, and after 2 minutes, the state was visually observed and evaluated according to the following criteria.
◎: Adhering ○: Adhering, but a slight gap is observed Δ: Adhering but a gap is observed ×: Poor adhesion

(5)血管巻き付け試験
麻酔下でラット頸動脈を露出し、ラット頸動脈フィルムを巻き付け、目視により密着状態を観察して、以下の基準により評価した。
◎:全く隙間なく密着した
〇:密着性は良好であった
△:やや密着性に劣るが、実用上は問題なかった
×:密着性に劣った
(5) Blood vessel winding test The rat carotid artery was exposed under anesthesia, the rat carotid artery film was wound, the adhesion state was visually observed, and the following criteria were evaluated.
◎: Adhered without any gaps ○: Adhesion was good △: Adhesiveness was slightly inferior, but there was no problem in practical use ×: Adhesiveness was inferior

Figure 0004395606
Figure 0004395606

本発明によれば、くも膜代用品や血管用保護膜として好適に用いることができる組織補填膜、該組織補填膜からなるくも膜代用品及び血管用保護膜を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the tissue filling film | membrane which can be used suitably as a arachnoid substitute or a blood vessel protective film, the arachnoid substitute and the blood vessel protective film which consist of this tissue filling film can be provided.

Claims (1)

L−ラクチド/ε−カプロラクトン共重合体、ポリ乳酸、乳酸/グリコール酸共重合体、架橋コラーゲン又は架橋ゼラチンからなり、厚さ50μm以下の単層のフィルム状体であることを特徴とするくも膜代用品。 It is made of L-lactide / ε-caprolactone copolymer, polylactic acid, lactic acid / glycolic acid copolymer, cross-linked collagen or cross-linked gelatin, and is a single layer film having a thickness of 50 μm or less. Supplies.
JP2004096166A 2004-03-29 2004-03-29 Spider membrane substitute Expired - Fee Related JP4395606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096166A JP4395606B2 (en) 2004-03-29 2004-03-29 Spider membrane substitute

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096166A JP4395606B2 (en) 2004-03-29 2004-03-29 Spider membrane substitute

Publications (2)

Publication Number Publication Date
JP2005278837A JP2005278837A (en) 2005-10-13
JP4395606B2 true JP4395606B2 (en) 2010-01-13

Family

ID=35177872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096166A Expired - Fee Related JP4395606B2 (en) 2004-03-29 2004-03-29 Spider membrane substitute

Country Status (1)

Country Link
JP (1) JP4395606B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297904A (en) * 2020-03-19 2022-11-04 郡是株式会社 Tissue augmentation material

Also Published As

Publication number Publication date
JP2005278837A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR100795613B1 (en) Resorbable Micro-Membrane for Attenuation of Scar Tissue
US9198668B2 (en) Cerebral aneurysm closure device
JP4934036B2 (en) Anti-adhesion barrier
JP5702515B2 (en) Nerve regeneration induction tube
JP3412039B2 (en) Surgical adhesive composition
US10835639B1 (en) Biopolymer compositions, scaffolds and devices
JPH0880344A (en) Artificial dura mater
WO2001012240A1 (en) Biological materials
WO2009022231A2 (en) Reinforced composite implant
WO1996023533A1 (en) Medical material and process for producing the same
JP2018521696A (en) Biocompatible implant for nerve regeneration and method of use thereof
EP2218466A1 (en) Lactide/ -caprolactone copolymer for medical implant, method for producing lactide/ -caprolactone copolymer for medical implant, medical implant and artificial dura mater
JP4772669B2 (en) Artificial dura mater and method for producing the same
Ikada Bioabsorbable fibers for medical use
JP2010540003A (en) Resorbable barrier micromembrane for reducing healing scar tissue
JP4395606B2 (en) Spider membrane substitute
JP2001309969A (en) Artificial dura mater
JP2009067732A (en) Gelatin hydrogel membrane for periodontal surgical treatment
CN106474548B (en) Biological induction type artificial dura mater and preparation method thereof
US10751036B1 (en) Device for the application of surgical materials to tissue
JP4596335B2 (en) Method for manufacturing nerve regeneration induction tube
JP4640533B2 (en) Nerve regeneration induction tube
JP4864348B2 (en) Nerve regeneration tube
JP3743566B2 (en) Artificial dura mater
KR101367978B1 (en) Block-polymer membranes for attenuation of scar tissue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4395606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees