JP4394707B2 - Sample surface defect inspection system - Google Patents

Sample surface defect inspection system Download PDF

Info

Publication number
JP4394707B2
JP4394707B2 JP2007156385A JP2007156385A JP4394707B2 JP 4394707 B2 JP4394707 B2 JP 4394707B2 JP 2007156385 A JP2007156385 A JP 2007156385A JP 2007156385 A JP2007156385 A JP 2007156385A JP 4394707 B2 JP4394707 B2 JP 4394707B2
Authority
JP
Japan
Prior art keywords
defect
photoelectric conversion
inspection apparatus
defect inspection
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007156385A
Other languages
Japanese (ja)
Other versions
JP2008309568A (en
Inventor
良正 大島
敏之 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007156385A priority Critical patent/JP4394707B2/en
Priority to US12/109,548 priority patent/US7710557B2/en
Publication of JP2008309568A publication Critical patent/JP2008309568A/en
Application granted granted Critical
Publication of JP4394707B2 publication Critical patent/JP4394707B2/en
Priority to US12/727,752 priority patent/US8035808B2/en
Priority to US13/221,314 priority patent/US8400629B2/en
Priority to US13/838,460 priority patent/US8934092B2/en
Priority to US14/189,921 priority patent/US20140176943A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は,半導体基板等の表面に存在する微小な異物・欠陥を高感度かつ高速に検査する欠陥検査装置に関する。   The present invention relates to a defect inspection apparatus for inspecting minute foreign matters / defects existing on the surface of a semiconductor substrate or the like with high sensitivity and high speed.

半導体基板や薄膜基板等の製造ラインにおいて,製品の歩留まりを維持・向上するために,半導体基板や薄膜基板等の表面に存在する欠陥や異物の検査が行われている。例えば,回路パターン形成前の半導体基板等の試料では,表面の0.05μm以下の微小な欠陥や異物の検出が必要である。各工程における製造設備においてこのような微小欠陥や異物が発生していないか否かを定期的に検査することは製造歩留りを向上させるためには重要である。   In a production line for semiconductor substrates, thin film substrates, and the like, in order to maintain and improve product yield, defects and foreign substances existing on the surface of semiconductor substrates, thin film substrates, etc. are inspected. For example, in a sample such as a semiconductor substrate before forming a circuit pattern, it is necessary to detect minute defects or foreign matters having a surface area of 0.05 μm or less. In order to improve the manufacturing yield, it is important to periodically inspect whether or not such minute defects or foreign matters are generated in the manufacturing equipment in each process.

従来の検査装置では,このような微小な欠陥や異物を検出するために,例えば「特許文献1」または「特許文献2」のように,試料表面上に数十μmに集光したレーザビームを照射して,欠陥や異物からの散乱光を集光・検出している。また,欠陥の種類を弁別するための技術として,「特許文献3」または「特許文献4」のように,欠陥からの散乱光を多方向で検出して散乱光の方向性を判別しているものがある。   In the conventional inspection apparatus, in order to detect such minute defects and foreign matters, a laser beam focused on a sample surface of several tens of μm is used as in, for example, “Patent Document 1” or “Patent Document 2”. Irradiated to collect and detect scattered light from defects and foreign objects. Further, as a technique for discriminating the type of defect, as in "Patent Document 3" or "Patent Document 4," scattered light from the defect is detected in multiple directions to determine the directionality of the scattered light. There is something.

特開平9-304289号公報JP-A-9-304289 米国特許第5903342号US Pat. No. 5,903,342 特開2001-255278号公報JP 2001-255278 A 米国特許第6894302号US Pat. No. 6,894,302

照明波長の1/10程度の大きさの欠陥で発生する散乱光の分布は等方的となる。このため,多方向で検出した信号を加算することによりSN比が向上して微小欠陥検出が可能となる。一方で散乱光分布が異方性となる欠陥では,多方向で検出した信号を加算することでSN比が低下し,検出感度を低下させることとなる。半導体基板の欠陥検査においては,欠陥の種類に関係なく,高感度検査が必要である。   The distribution of scattered light generated by a defect having a size about 1/10 of the illumination wavelength is isotropic. For this reason, by adding signals detected in multiple directions, the SN ratio is improved and minute defects can be detected. On the other hand, in a defect in which the scattered light distribution is anisotropic, the SN ratio is lowered by adding signals detected in multiple directions, and the detection sensitivity is lowered. In defect inspection of semiconductor substrates, high-sensitivity inspection is required regardless of the type of defect.

多方向で検出した散乱光の検出信号を加算して微小欠陥の検出を行うとともに,各検出信号を個別に処理することによって,異方性欠陥の見逃しを回避することが可能となる。具体的な手段の主なものは次のとおりである。   By adding the detection signals of scattered light detected in multiple directions to detect minute defects and processing each detection signal individually, it is possible to avoid overlooking anisotropic defects. The main specific means are as follows.

第1の手段の構成は、被検査試料表面に集束したレーザビームを照射し,該被検査試料表面で発生する散乱光を多方向で集光し,集光された該散乱光を光電変換して該被検査試料表面に存在する欠陥を検査する装置において,多方向で検出した検出信号を加算処理して微小欠陥を検出するとともに,多方向で検出した検出信号を個別処理して異方性欠陥を検出することを特徴とする欠陥検査装置である。   The configuration of the first means irradiates a focused laser beam on the surface of the sample to be inspected, condenses the scattered light generated on the surface of the sample to be inspected in multiple directions, and photoelectrically converts the collected scattered light. In the apparatus for inspecting the defects existing on the surface of the specimen to be inspected, the detection signals detected in multiple directions are added to detect minute defects, and the detection signals detected in multiple directions are individually processed to perform anisotropy. A defect inspection apparatus characterized by detecting a defect.

第2の手段の構成は、被検査試料表面に集束したレーザビームを照射し,該被検査試料表面で発生する散乱光を多方向で集光し,集光された該散乱光を光電変換して該被検査試料表面に存在する欠陥を検査する装置において,前記検査装置は多方向で検出する第1の複数の光電変換素子と多方向で検出する第2の複数の光電変換素子とを有し、前記第1の複数の光電変換素子は被検査試料表面に対して第1の仰角をもって配列し、前記第2の複数の光電変換素子は前記第1の仰角よりも大きい第2の仰角をもって配列していることを特徴とする欠陥検査装置。   The configuration of the second means irradiates a focused laser beam on the surface of the sample to be inspected, condenses the scattered light generated on the surface of the sample to be inspected in multiple directions, and photoelectrically converts the scattered light thus collected. In this case, the inspection apparatus has a first plurality of photoelectric conversion elements that are detected in multiple directions and a second plurality of photoelectric conversion elements that are detected in multiple directions. The first plurality of photoelectric conversion elements are arranged with a first elevation angle with respect to the surface of the sample to be inspected, and the second plurality of photoelectric conversion elements have a second elevation angle larger than the first elevation angle. A defect inspection apparatus characterized by being arranged.

第3の手段の構成は、被検査試料表面に集束したレーザビームを照射し,該被検査試料表面で発生する散乱光を多方向で集光し,集光された該散乱光を光電変換して該被検査試料表面に存在する欠陥を検査する装置において,前記検査装置は多方向で検出する第1の複数の光電変換素子と多方向で検出する第2の複数の光電変換素子とを有し、前記第1の複数の光電変換素子は被検査試料表面に対して第1の仰角をもって配列し、前記第2の複数の光電変換素子は前記第1の仰角よりも大きい第2の仰角をもって配列しており、前記第1および第2の複数の光電変換素子の感度は個別に調整できることを特徴とする欠陥検査装置である。   The configuration of the third means irradiates a focused laser beam on the surface of the specimen to be inspected, condenses the scattered light generated on the surface of the specimen to be inspected in multiple directions, and photoelectrically converts the collected scattered light. In this case, the inspection apparatus has a first plurality of photoelectric conversion elements that are detected in multiple directions and a second plurality of photoelectric conversion elements that are detected in multiple directions. The first plurality of photoelectric conversion elements are arranged with a first elevation angle with respect to the surface of the sample to be inspected, and the second plurality of photoelectric conversion elements have a second elevation angle larger than the first elevation angle. The defect inspection apparatus is characterized in that the first and second plurality of photoelectric conversion elements can be individually adjusted in sensitivity.

第4の手段の構成は、被検査試料表面に集束したレーザビームを照射し,該被検査試料表面で発生する散乱光を多方向で集光し,集光された該散乱光を光電変換して該被検査試料表面に存在する欠陥を検査する装置において,前記検査装置は多方向で検出する第1の複数の光電変換素子と多方向で検出する第2の複数の光電変換素子とを有し、前記第1の複数の光電変換素子は被検査試料表面に対して第1の仰角をもって配列し、前記第2の複数の光電変換素子は前記第1の仰角よりも大きい第2の仰角をもって配列しており、前記第1および第2の複数の光電変換素子は前記光電変換素子が発生するショットノイズのレベルによって検出信号がノイズか欠陥信号かを区別するしきい値を設定することが出来ることを特徴とする欠陥検査装置である。   The configuration of the fourth means irradiates a focused laser beam on the surface of the sample to be inspected, condenses the scattered light generated on the surface of the sample to be inspected in multiple directions, and photoelectrically converts the collected scattered light. In this case, the inspection apparatus has a first plurality of photoelectric conversion elements that are detected in multiple directions and a second plurality of photoelectric conversion elements that are detected in multiple directions. The first plurality of photoelectric conversion elements are arranged with a first elevation angle with respect to the surface of the sample to be inspected, and the second plurality of photoelectric conversion elements have a second elevation angle larger than the first elevation angle. The first and second plurality of photoelectric conversion elements can set a threshold value for distinguishing whether a detection signal is a noise or a defect signal according to a level of shot noise generated by the photoelectric conversion element. With a defect inspection device characterized by is there.

多方向で検出した散乱光の検出信号を加算して微小欠陥の検出を行うとともに,各検出信号を個別に処理することによって,異方性欠陥の見逃しを回避することが可能となる。   By adding the detection signals of scattered light detected in multiple directions to detect minute defects and processing each detection signal individually, it is possible to avoid overlooking anisotropic defects.

また、得られた欠陥データを自動的に分析することにより、欠陥が装置の問題によって発生したものか、もともと基板に存在していたものかの判別を行なうことが出来る。   Further, by automatically analyzing the obtained defect data, it is possible to determine whether the defect is caused by a problem of the apparatus or originally exists on the substrate.

本発明の一実施例を以下に説明する。   One embodiment of the present invention will be described below.

図1,図2,図3に回路パターン形成前の半導体ウェハ上の欠陥・異物を検出する装置の一例を示す。図1は側面図,図2は低角度検出系の平面図,図3は高角度検出系の平面図である。図1は概略,照明光学系101,検出光学系102およびウェハステージ103よりなる。該照明光学系101はレーザ光源2,アッテネータ3,ビームエキスパンダ4,波長板5,6,集光レンズ8から構成される。   1, 2 and 3 show an example of an apparatus for detecting defects / foreign particles on a semiconductor wafer before forming a circuit pattern. 1 is a side view, FIG. 2 is a plan view of a low angle detection system, and FIG. 3 is a plan view of a high angle detection system. 1 schematically includes an illumination optical system 101, a detection optical system 102, and a wafer stage 103. The illumination optical system 101 includes a laser light source 2, an attenuator 3, a beam expander 4, wave plates 5 and 6, and a condenser lens 8.

レーザ光源2から射出したレーザビームは,アッテネータ3で必要な光量に調整し,ビームエキスパンダ4でビーム径を拡大し,波長板5,6で照明の偏光方向を設定して集光レンズ8でウェハ1上の検出エリアを集光照明する。7a,7bはミラーで,照明光路を変えるためのものであり,必要に応じて使用する。波長板5と6は照明の偏光をS偏光,P偏光,円偏光に設定するものである。照明仰角θiは5度から25度が望ましい。   The laser beam emitted from the laser light source 2 is adjusted to the required light quantity by the attenuator 3, the beam diameter is enlarged by the beam expander 4, the polarization direction of the illumination is set by the wave plates 5 and 6, and the condenser lens 8 is used. The detection area on the wafer 1 is condensed and illuminated. 7a and 7b are mirrors for changing the illumination light path, and are used as necessary. Wave plates 5 and 6 set the polarization of illumination to S-polarized light, P-polarized light, and circularly polarized light. The illumination elevation angle θi is preferably 5 to 25 degrees.

該アッテネータ3は1/2波長板と偏光ビームスプリッタにより構成する。レーザ光源の射出ビーム(直線偏光)を1/2波長板で偏光角度を傾け,PBS(Polarized Beam Splitter)を通過する光量を変更する。1/2波長板を回転することにより偏光軸が変化して光量を調整することができる。   The attenuator 3 is composed of a half-wave plate and a polarizing beam splitter. The light beam passing through the PBS (Polarized Beam Splitter) is changed by tilting the polarization angle of the emitted beam (linearly polarized light) of the laser light source with a half-wave plate. By rotating the half-wave plate, the polarization axis changes, and the amount of light can be adjusted.

該検出光学系102は,低角度検出系および高角度検出系からなり,おのおの散乱光検出レンズ9,12,検光子10,13および光電変換素子11,14から構成され,検出エリアに存在する異物・欠陥からの散乱光を散乱光検出レンズ9,12で光電変換素子11,14の受光面上にほぼ集光する。光電変換素子11,14は受光散乱光量に比例した大きさの電気信号を発生し信号処理回路(表示せず)で信号処理することにより異物・欠陥を検出し,その大きさや存在場所を検知する。   The detection optical system 102 includes a low-angle detection system and a high-angle detection system, and includes scattered light detection lenses 9 and 12, analyzers 10 and 13, and photoelectric conversion elements 11 and 14, and foreign matter existing in the detection area. The scattered light from the defect is almost condensed on the light receiving surfaces of the photoelectric conversion elements 11 and 14 by the scattered light detection lenses 9 and 12. The photoelectric conversion elements 11 and 14 generate electric signals having a magnitude proportional to the amount of light received and scattered, detect the foreign matter / defects by performing signal processing with a signal processing circuit (not displayed), and detect the size and location .

光電変換素子11,14は検出光学系102によって集光された該散乱光を受光し光電変換するために用いるものであり,例えば,TVカメラやCCDリニアセンサやTDIセンサや光電子増倍管である。検光子10,13は散乱光に含まれる特定方向の成分のみを検出するために使用する。低角度検出系の検出仰角(中心角)θ1は15度ないし35度,高角度検出系の検出仰角(中心角)θ2は45度ないし70度が望ましい。 The photoelectric conversion elements 11 and 14 are used to receive and photoelectrically convert the scattered light collected by the detection optical system 102, such as a TV camera, a CCD linear sensor, a TDI sensor, or a photomultiplier tube. . The analyzers 10 and 13 are used for detecting only components in a specific direction included in the scattered light. The detection elevation angle (center angle) θ 1 of the low angle detection system is preferably 15 ° to 35 °, and the detection elevation angle (center angle) θ 2 of the high angle detection system is preferably 45 ° to 70 °.

該ウェハステージ103はウェハ1を保持するチャック15,ウェハ1を回転させるための回転機構17およびウェハ1を半径方向に直進送りさせるための直進送り機構16からなる。該ウェハステージ103でウェハ1を水平方向に回転走査及び直進移動させることによって,ウェハ1の全領域における異物・欠陥の検出および欠陥の分類が可能となる。   The wafer stage 103 includes a chuck 15 for holding the wafer 1, a rotation mechanism 17 for rotating the wafer 1, and a linear feed mechanism 16 for linearly feeding the wafer 1 in the radial direction. By rotating and scanning the wafer 1 in the horizontal direction on the wafer stage 103 and moving it straight, it becomes possible to detect foreign matter / defects and classify the defects in the entire area of the wafer 1.

図2は低角度検出系の平面図であり,多方向検出とすることが可能であり,本実施例では6方向検出を示している。各々の光電変換素子11の出力は用途に応じて加算,減算,除算等が行われる。検出方位角(中心角)は照明方向に対してそれぞれ20〜50°(φ1),-20〜-50°(φ2),70〜110°(φ3),-70〜-110°(φ4),130〜160°(φ5),-130〜-160°(φ6)が望ましい。 FIG. 2 is a plan view of the low-angle detection system, and multi-directional detection is possible. In this embodiment, six-direction detection is shown. The output of each photoelectric conversion element 11 is subjected to addition, subtraction, division, etc. depending on the application. The detection azimuth angle (center angle) is 20 to 50 ° (φ 1 ), -20 to -50 ° (φ 2 ), 70 to 110 ° (φ 3 ), -70 to -110 ° ( φ 4), 130~160 ° (φ 5), - 130~160 ° (φ 6) it is preferable.

図3は図2と同様に高角度検出系の平面図であり,多方向検出とすることが可能であり,本実施例では4方向検出を示している。各々の光電変換素子14の出力は用途に応じて加算,減算,除算等が行われる。検出方位角(中心角)は照明方向に対してそれぞれ±10度(φ7),80〜110°(φ8),-80〜-110°(φ9),180±10°(φ10)が望ましい。 FIG. 3 is a plan view of the high angle detection system as in FIG. 2, and multi-directional detection is possible. In this embodiment, four-direction detection is shown. The output of each photoelectric conversion element 14 is subjected to addition, subtraction, division, etc. depending on the application. Detection azimuth angle (center angle) is ± 10 degrees (φ 7 ), 80 to 110 ° (φ 8 ), -80 to -110 ° (φ 9 ), 180 ± 10 ° (φ 10 ) Is desirable.

図4は低角度検出系の信号処理方式の一例である。光電変換素子11として光電子増倍管を用いた例である。光電子増倍管11は高圧の印加電圧が必要であり,高圧直流電源19から供給する。光電子増倍管11の出力は増幅回路18により電流―電圧変換および必要な電圧増幅を行って加算回路20で加算する。このとき光電子増倍管11の感度差を補正するため,増幅回路18では増幅率を調整する。   FIG. 4 shows an example of a signal processing method of the low angle detection system. In this example, a photomultiplier tube is used as the photoelectric conversion element 11. The photomultiplier tube 11 requires a high applied voltage and is supplied from a high voltage DC power source 19. The output of the photomultiplier tube 11 is subjected to current-voltage conversion and necessary voltage amplification by the amplifier circuit 18 and added by the adder circuit 20. At this time, in order to correct the sensitivity difference of the photomultiplier tube 11, the amplification circuit 18 adjusts the amplification factor.

加算回路20の出力はバンドパスフィルタ21によって直流成分および不要なノイズ成分を除去し,AD変換回路22によりデジタルに変換する。AD変換回路22の出力は比較回路23によってしきい値と比較し,しきい値を超えた場合,AD変換値とR・θ座標を欠陥メモリ26に取り込む。しきい値はラッチ24にインターフェース25を介してCPU(図示せず)から設定する。欠陥メモリ26の内容はCPU(図示せず)から読み出し,欠陥マップ表示や欠陥分類等に用いる。図5は高角度検出系の信号処理方式の一例であり,内容は図4と同一である。   The output of the adder circuit 20 is removed from the DC component and unnecessary noise component by the band-pass filter 21 and converted to digital by the AD converter circuit 22. The output of the AD conversion circuit 22 is compared with the threshold value by the comparison circuit 23. If the threshold value is exceeded, the AD conversion value and the R · θ coordinate are taken into the defect memory 26. The threshold value is set in the latch 24 from the CPU (not shown) via the interface 25. The contents of the defect memory 26 are read from a CPU (not shown) and used for defect map display, defect classification, and the like. FIG. 5 shows an example of the signal processing method of the high angle detection system, and the content is the same as FIG.

図6はP偏光で照明したときの微小な欠陥で発生する散乱光強度分布35の一例である。欠陥の寸法が照明波長の約1/5以下のとき,図6のように発生する散乱光強度分布は等方的となる。この場合,各検出信号はほぼ同等の値(S)となる。光電子増倍管11において光電変換するときにショットノイズ(N)が発生する。   FIG. 6 shows an example of the scattered light intensity distribution 35 generated by a minute defect when illuminated with P-polarized light. When the size of the defect is about 1/5 or less of the illumination wavelength, the scattered light intensity distribution generated as shown in FIG. 6 is isotropic. In this case, each detection signal has almost the same value (S). Shot noise (N) is generated when photoelectric conversion is performed in the photomultiplier tube 11.

各光電子増倍管11から出力されるショトノイズ(N)はランダムであり,各光電子増倍管11の出力信号のSN比はS/Nとなる。図4,5のように全検出信号を加算平均すると,ショットノイズは平均化されて1/√6となり,検出信号のSN比は√6倍向上し,各光電子増倍管11個別に処理するより微小欠陥検出が可能となる。スクラッチのように散乱光強度分布が偏って1個の光電子増倍管11でのみ検出された場合に加算平均すると,検出信号は1/6になりショットノイズは1/√6となるため,各光電子増倍管11個別に処理するよりSN比は1/√6に低下する。   The short noise (N) output from each photomultiplier tube 11 is random, and the SN ratio of the output signal of each photomultiplier tube 11 is S / N. When all detection signals are added and averaged as shown in FIGS. 4 and 5, the shot noise is averaged to 1 / √6, the SN ratio of the detection signal is improved by √6 times, and each photomultiplier tube 11 is processed individually. More minute defects can be detected. When the scattered light intensity distribution is biased and detected only with one photomultiplier tube 11 as in the case of scratch, the average of the detection is 1/6 and the shot noise is 1 / √6. The S / N ratio is reduced to 1 / √6 compared to the case of processing the photomultiplier tube 11 individually.

これを回避するための1実施例を図7に示す。図4に示した処理回路と同じ回路を各光電子増倍管11にも付加する。比較回路23の出力は論理和をとり,どれか1つでもしきい値を超えた場合に全AD変換回路22の出力とR・θ座標を欠陥メモリ26に取り込む。これにより散乱光強度分布に方向性を持つ異方性欠陥の見逃しを回避することが可能となる。   One embodiment for avoiding this is shown in FIG. The same circuit as the processing circuit shown in FIG. 4 is also added to each photomultiplier tube 11. The output of the comparison circuit 23 is logically summed, and when any one of the outputs exceeds the threshold value, the output of all the AD conversion circuits 22 and the R · θ coordinates are taken into the defect memory 26. As a result, it is possible to avoid overlooking an anisotropic defect having directionality in the scattered light intensity distribution.

図8は光電子増倍管11の感度差を補正するための1実施例である。39は入力電圧によって高圧印加電圧を調整可能な電源ユニットである。この電源ユニットの1例としては浜松ホトニクス(株)製C4900が使用可能である。インターフェース40を介してラッチ37に電圧値を書き込み,その値をDA変換回路38で電圧値に変換して電源ユニット39に与えることにより,光電子増倍管11に高圧印加電圧が供給できる。ラッチ37に書き込む電圧値を変えることにより,光電子増倍管11の感度をCPUから調整できる。増幅回路18による増幅率調整との併用によって感度差の補正が容易となる。   FIG. 8 shows an embodiment for correcting the sensitivity difference of the photomultiplier tube 11. Reference numeral 39 denotes a power supply unit capable of adjusting a high voltage applied voltage by an input voltage. As an example of this power supply unit, C4900 manufactured by Hamamatsu Photonics Co., Ltd. can be used. A voltage value is written into the latch 37 via the interface 40, and the voltage value is converted into a voltage value by the DA conversion circuit 38 and given to the power supply unit 39, whereby a high voltage applied voltage can be supplied to the photomultiplier tube 11. By changing the voltage value written into the latch 37, the sensitivity of the photomultiplier tube 11 can be adjusted from the CPU. The sensitivity difference can be easily corrected by the combined use with the amplification factor adjustment by the amplifier circuit 18.

ウェハ表面に存在するラフネスの空間周波数・粗さによってウェハ表面で発生する散乱光の強度と分布が異なる。光電子増倍管11で検出したウェハ表面での散乱光強度をSuとすると,光電子増倍管11で発生するショットノイズは√Suとなる。光電子増倍管11で検出したウェハ表面での散乱光強度が光電子増倍管11毎に異なる場合,発生するショットノイズも異なり,欠陥検出のためのしきい値を変える必要がある。これに対処するための1実施例を図9に,処理内容を図10に示す。   The intensity and distribution of scattered light generated on the wafer surface vary depending on the spatial frequency and roughness of the roughness present on the wafer surface. When the scattered light intensity detected on the wafer surface detected by the photomultiplier tube 11 is Su, the shot noise generated in the photomultiplier tube 11 is √Su. When the scattered light intensity on the wafer surface detected by the photomultiplier tube 11 is different for each photomultiplier tube 11, the generated shot noise is also different, and it is necessary to change the threshold for defect detection. FIG. 9 shows an embodiment for dealing with this, and FIG. 10 shows the processing contents.

増幅回路18の出力信号45をバンドパスフィルタ21とローパスフィルタ41でウェハ信号46とショットノイズを含む欠陥信号47に分離する。ローパスフィルタ41を通過したウェハ信号46からしきい値を作成する。ウェハ信号46からの信号はAD変換回路42でデジタルに変換し,演算回路43でしきい値Vthを作成しラッチ44に設定する。ショットノイズはウェハ信号Suの平方根に比例するので, しきい値Vthは式(1)で計算する。
Vth = k・√(Su・Δf) (1)
ここで,kは定数,Δfは回路の周波数帯域である。
The output signal 45 of the amplifier circuit 18 is separated into a wafer signal 46 and a defect signal 47 including shot noise by the band pass filter 21 and the low pass filter 41. A threshold value is created from the wafer signal 46 that has passed through the low-pass filter 41. The signal from the wafer signal 46 is converted to digital by the AD conversion circuit 42, and the threshold value Vth is created by the arithmetic circuit 43 and set in the latch 44. Since the shot noise is proportional to the square root of the wafer signal Su, the threshold value Vth is calculated by equation (1).
Vth = k · √ (Su · Δf) (1)
Here, k is a constant, and Δf is a frequency band of the circuit.

図11は検査フローの1例である。検査レシピを取り込み,必要なパラメータを装置に設定する。ウェハをロード・検査を行い,欠陥データを欠陥メモリから入力する。検査が終了するとウェハ走査(回転と1軸送り)を停止し,ウェハをアンロードする。その後,必要に応じて欠陥マップをGUI画面に表示する。   FIG. 11 shows an example of an inspection flow. Import the inspection recipe and set the necessary parameters in the device. The wafer is loaded and inspected, and defect data is input from the defect memory. When inspection is completed, wafer scanning (rotation and single-axis feed) is stopped and the wafer is unloaded. After that, the defect map is displayed on the GUI screen as necessary.

図12はGUIの一例である。GUI画面48は,検査終了後に表示する欠陥マップ49,欠陥マップ表示センサ選択画面50を少なくとも含んで構成される。   FIG. 12 is an example of a GUI. The GUI screen 48 includes at least a defect map 49 and a defect map display sensor selection screen 50 that are displayed after the inspection is completed.

図13は欠陥弁別の1例である。低角度検出系の検出信号VLと高角度検出系VHの比を処理回路51で演算し,結果を欠陥メモリに書き込む。処理内容を図14で説明する。横軸にVL,縦軸にVHをとり,演算結果をプロットすると,しきいち曲線52より上のエリア53には凹欠陥(COP,スクラッチ等),下のエリア54には凸欠陥がプロットされるため,しきいち曲線52の設定により適切な欠陥の凹凸(欠陥種類)が弁別できる。 FIG. 13 shows an example of defect discrimination. The ratio of the detection signal V L of the low angle detection system and the high angle detection system V H is calculated by the processing circuit 51, and the result is written in the defect memory. The processing contents will be described with reference to FIG. When V L is plotted on the horizontal axis and V H is plotted on the vertical axis, the calculation results are plotted. Concave defects (COP, scratch, etc.) are plotted in the area 53 above the threshold curve 52, and convex defects are plotted in the area 54 below. Therefore, appropriate irregularities (defect types) can be discriminated by setting the threshold curve 52.

図14において、点線52より下は凸欠陥、点線52より上は凹欠陥である。凹欠陥はもともとSiウェーハー等に存在していた欠陥であることが多い。凸欠陥は装置で発生した欠陥であることが多い。したがって、同じ欠陥密度でも凸欠陥が凹欠陥よりも多ければ製造装置に問題がある場合が多いと言える。   In FIG. 14, convex defects are below the dotted line 52, and concave defects are above the dotted line 52. The concave defect is often a defect that originally existed in a Si wafer or the like. The convex defect is often a defect generated in the apparatus. Therefore, it can be said that there are many problems in the manufacturing apparatus if there are more convex defects than concave defects even at the same defect density.

以上の説明は光電変換素子として光電子増倍管11を用いた場合として説明した。しかし、ショットノイズと欠陥検出信号との関係は光電変換素子としてCCD等を用いた場合も同様である。したがって、以上の説明は光電変換素子として光電子増倍管11以外の素子を用いた場合にも適用することが出来る。   The above description has been made assuming that the photomultiplier tube 11 is used as the photoelectric conversion element. However, the relationship between the shot noise and the defect detection signal is the same when a CCD or the like is used as the photoelectric conversion element. Therefore, the above description can be applied to the case where an element other than the photomultiplier tube 11 is used as the photoelectric conversion element.

本発明の一実施例(側面図)を示す図The figure which shows one Example (side view) of this invention 本発明の一実施例(平面図)を示す図The figure which shows one Example (plan view) of this invention 本発明の一実施例(平面図)を示す図The figure which shows one Example (plan view) of this invention 信号処理回路を説明する図The figure explaining a signal processing circuit 信号処理回路を説明する図The figure explaining a signal processing circuit 微小欠陥散乱光強度分布を説明する図Diagram explaining the intensity distribution of scattered light from minute defects 信号処理回路を説明する図The figure explaining a signal processing circuit 光電子増倍管感度調整方法を説明する図The figure explaining the photomultiplier tube sensitivity adjustment method しきい値設定方法を説明する図Diagram explaining the threshold setting method 図9の処理内容を説明する図The figure explaining the processing content of FIG. 検査フローを説明する図Diagram explaining inspection flow GUIの1例を説明する図Diagram explaining an example of GUI 欠陥分類処理回路を説明する図The figure explaining a defect classification processing circuit 欠陥分類内容を説明する図Diagram explaining the contents of defect classification

符号の説明Explanation of symbols

1:ウェハ,101:照明光学系,102:検出光学系,103:ウェハステージ,
2:レーザ光源,3:アッテネータ,4:ビームエキスパンダ,
5,6:波長板,7:ミラー,8:集光レンズ,9,12:散乱光検出レンズ,10,13:検光子,
11,14:光電変換素子。
1: wafer, 101: illumination optical system, 102: detection optical system, 103: wafer stage,
2: Laser light source, 3: Attenuator, 4: Beam expander,
5, 6: Wave plate, 7: Mirror, 8: Condensing lens, 9, 12: Scattered light detection lens, 10, 13: Analyzer,
11, 14: Photoelectric conversion elements.

Claims (14)

被検査試料表面に集束したレーザビームを照射し,該被検査試料表面で発生する散乱光を多方向で集光し,集光された該散乱光を光電変換して該被検査試料表面に存在する欠陥を検査する装置において,多方向で検出した検出信号を加算処理して第一のしきい値と比較し、前記加算された検出信号が前記第一のしきい値よりも大きいか否かにより、微小欠陥を有するか否かを検出するとともに、多方向で検出した検出信号の各々について第二のしきい値と比較し、前記検出信号のうちの少なくとも一の検出信号が前記第二のしきい値よりも大きいか否かにより、異方性欠陥を有するか否かを検出することを特徴とする欠陥検査装置。 A focused laser beam is irradiated on the surface of the sample to be inspected, and scattered light generated on the surface of the sample to be inspected is collected in multiple directions, and the collected scattered light is photoelectrically converted to exist on the surface of the sample to be inspected. In a device for inspecting a defect to be detected, a detection signal detected in multiple directions is added and compared with a first threshold value, and whether or not the added detection signal is larger than the first threshold value And detecting whether or not there is a micro defect , comparing each of the detection signals detected in multiple directions with a second threshold value, and at least one of the detection signals is the second detection signal A defect inspection apparatus for detecting whether or not an anisotropic defect is present depending on whether or not it is larger than a threshold value . 料表面で発生する散乱光に基づく検出信号のうち、ローパスフィルタを通過した前記被検査試料表面からの信号を用いて欠陥検出しきい値を作成することを特徴とする請求項1記載の欠陥検査装置。 Of the detected signal based on the scattered light generated by the specimen surface, according to claim 1, characterized in that to create a defect detection threshold using a signal from the inspection surface of the sample has passed through the low-pass filter Defect inspection equipment. 多方向で検出した複数の検出信号のうち、1つでも予め設定した前記第二のしきい値を超えるものがあれば、異方性欠陥であると判断することを特徴とする請求項1に記載の欠陥検査装置。 2. The method according to claim 1, wherein if any one of the plurality of detection signals detected in multiple directions exceeds the preset second threshold value, it is determined that the defect is an anisotropic defect. Defect inspection apparatus as described. 前記光電変換は光電子増倍管によってなされることを特徴とする請求項1に記載の欠陥検査装置。   The defect inspection apparatus according to claim 1, wherein the photoelectric conversion is performed by a photomultiplier tube. 前記光電子増倍管は個別に感度を設定できることを特徴とする請求項4に記載の欠陥検査装置。   The defect inspection apparatus according to claim 4, wherein the photomultiplier tube is capable of setting sensitivity individually. 被検査試料表面に集束したレーザビームを照射し,該被検査試料表面で発生する散乱光を多方向で集光し,集光された該散乱光を光電変換して該被検査試料表面に存在する欠陥を検査する欠陥検査装置において,
前記欠陥検査装置は多方向で検出する第1の複数の光電変換素子と多方向で検出する第2の複数の光電変換素子とを有し、前記第1の複数の光電変換素子は被検査試料表面に対して第1の仰角をもって配列し、前記第2の複数の光電変換素子は前記第1の仰角よりも大きい第2の仰角をもって配列しており、
前記第1の複数の光電変換素子によって、多方向で検出した検出信号を加算処理して第一のしきい値と比較し、前記加算された検出信号が前記第一のしきい値よりも大きいか否かにより、微小欠陥を有するか否かを検出するとともに、多方向で検出した検出信号の各々について第二のしきい値と比較し、前記検出信号のうちの少なくとも一の検出信号が前記第二のしきい値よりも大きいか否かにより、異方性欠陥を有するか否かを検出し、
前記第2の複数の光電変換素子によって、多方向で検出した検出信号を加算処理して第一のしきい値と比較し、前記加算された検出信号が前記第一のしきい値よりも大きいか否かにより、微小欠陥を有するか否かを検出するとともに、多方向で検出した検出信号の各々について第二のしきい値と比較し、前記検出信号のうちの少なくとも一の検出信号が前記第二のしきい値よりも大きいか否かにより、異方性欠陥を有するか否かを検出することを特徴とする欠陥検査装置。
A focused laser beam is irradiated on the surface of the sample to be inspected, and scattered light generated on the surface of the sample to be inspected is collected in multiple directions, and the collected scattered light is photoelectrically converted to exist on the surface of the sample to be inspected. In a defect inspection apparatus for inspecting defects
The defect inspection apparatus has a first plurality of photoelectric conversion elements that are detected in multiple directions and a second plurality of photoelectric conversion elements that are detected in multiple directions, and the first plurality of photoelectric conversion elements are samples to be inspected. Arranged with a first elevation angle with respect to the surface, and the second plurality of photoelectric conversion elements are arranged with a second elevation angle greater than the first elevation angle,
The detection signals detected in multiple directions are added by the first plurality of photoelectric conversion elements and compared with a first threshold value. The added detection signal is larger than the first threshold value. And detecting whether or not there is a micro defect, and comparing each of the detection signals detected in multiple directions with a second threshold value, and at least one of the detection signals is the detection signal Whether it has an anisotropic defect depending on whether it is greater than the second threshold,
The detection signals detected in multiple directions are added by the second plurality of photoelectric conversion elements and compared with a first threshold value, and the added detection signal is larger than the first threshold value. And detecting whether or not there is a micro defect, and comparing each of the detection signals detected in multiple directions with a second threshold value, and at least one of the detection signals is the detection signal A defect inspection apparatus for detecting whether or not an anisotropic defect is present depending on whether or not it is larger than a second threshold value .
前記レーザビームは被検査試料表面に対して第3の仰角をもって入射し、前記第3の仰角は前記第1の仰角よりも小さいことを特徴とする請求項6に記載の欠陥検査装置。   The defect inspection apparatus according to claim 6, wherein the laser beam is incident on the surface of the sample to be inspected at a third elevation angle, and the third elevation angle is smaller than the first elevation angle. 前記第1の仰角は15度乃至35度であり、前記第2の仰角は45度乃至70度であることを特徴とする請求項6に記載の欠陥検査装置。   The defect inspection apparatus according to claim 6, wherein the first elevation angle is 15 degrees to 35 degrees, and the second elevation angle is 45 degrees to 70 degrees. 前記欠陥検査装置は前記第1の複数の光電変化素子からの検出データと前記第2の光電変換素子からの検出データを比較演算し、欠陥の種類を判別することを特徴とする請求項6に記載の欠陥検査装置。   The defect inspection apparatus compares the detection data from the first plurality of photoelectric change elements and the detection data from the second photoelectric conversion element to determine the type of defect. Defect inspection apparatus as described. 複数の欠陥に対して、前記第1の複数の光電変換素子からの出力を縦軸に、前記第2の複数の光電変換素子からの出力を横軸にしたプロットを出力することを特徴とする請求項6に記載の欠陥検査装置。   For a plurality of defects, a plot is output in which the output from the first plurality of photoelectric conversion elements is on the vertical axis and the output from the second plurality of photoelectric conversion elements is on the horizontal axis. The defect inspection apparatus according to claim 6. 前記第1および第2の複数の光電変換素子の感度は個別に調整できることを特徴とする請求項6記載の欠陥検査装置。   The defect inspection apparatus according to claim 6, wherein sensitivities of the first and second plurality of photoelectric conversion elements can be individually adjusted. 前記光電変換素子は光電子増倍管であることを特徴とする請求項11に記載の欠陥検査装置。   The defect inspection apparatus according to claim 11, wherein the photoelectric conversion element is a photomultiplier tube. 前記第1および第2の複数の光電変換素子は前記光電変換素子が発生するショットノイズのレベルによって検出信号がノイズか欠陥信号かを区別するしきい値を設定することが出来ることを特徴とする請求項6に記載の欠陥検査装置。   The first and second plurality of photoelectric conversion elements can set a threshold value for distinguishing whether a detection signal is a noise or a defect signal according to a level of shot noise generated by the photoelectric conversion element. The defect inspection apparatus according to claim 6. 前記光電変換素子は光電子増倍管であることを特徴とする請求項13に記載の欠陥検査装置。   The defect inspection apparatus according to claim 13, wherein the photoelectric conversion element is a photomultiplier tube.
JP2007156385A 2007-04-25 2007-06-13 Sample surface defect inspection system Expired - Fee Related JP4394707B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007156385A JP4394707B2 (en) 2007-06-13 2007-06-13 Sample surface defect inspection system
US12/109,548 US7710557B2 (en) 2007-04-25 2008-04-25 Surface defect inspection method and apparatus
US12/727,752 US8035808B2 (en) 2007-04-25 2010-03-19 Surface defect inspection method and apparatus
US13/221,314 US8400629B2 (en) 2007-04-25 2011-08-30 Surface defect inspection method and apparatus
US13/838,460 US8934092B2 (en) 2007-04-25 2013-03-15 Surface defect inspection method and apparatus
US14/189,921 US20140176943A1 (en) 2007-04-25 2014-02-25 Surface defect inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156385A JP4394707B2 (en) 2007-06-13 2007-06-13 Sample surface defect inspection system

Publications (2)

Publication Number Publication Date
JP2008309568A JP2008309568A (en) 2008-12-25
JP4394707B2 true JP4394707B2 (en) 2010-01-06

Family

ID=40237310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156385A Expired - Fee Related JP4394707B2 (en) 2007-04-25 2007-06-13 Sample surface defect inspection system

Country Status (1)

Country Link
JP (1) JP4394707B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058984A (en) * 2009-09-11 2011-03-24 Hitachi High-Technologies Corp Device and method for inspecting foreign matter and program
JP5405956B2 (en) 2009-09-24 2014-02-05 株式会社日立ハイテクノロジーズ Defect inspection equipment
JP5525911B2 (en) * 2010-05-20 2014-06-18 株式会社日立ハイテクノロジーズ Inspection apparatus and inspection method
WO2012143165A1 (en) * 2011-04-18 2012-10-26 Ismeca Semiconductor Holding Sa An inspection device
JP2013238534A (en) * 2012-05-16 2013-11-28 Shin Etsu Handotai Co Ltd Wafer surface evaluation method
JP5638098B2 (en) * 2013-01-28 2014-12-10 株式会社日立ハイテクノロジーズ Inspection device and inspection condition acquisition method
CN112883601B (en) * 2021-01-13 2023-05-02 歌尔股份有限公司 Surface defect detection method, device, equipment and storage medium

Also Published As

Publication number Publication date
JP2008309568A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
US9506872B2 (en) Inspection apparatus
US10254235B2 (en) Defect inspecting method and defect inspecting apparatus
US8477302B2 (en) Defect inspection apparatus
JP4394707B2 (en) Sample surface defect inspection system
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
TWI713638B (en) Method for detecting defects and associated device
US20080013076A1 (en) Surface Inspection Method and Surface Inspection Apparatus
JP5320187B2 (en) Defect inspection method and defect inspection apparatus
JP5509581B2 (en) Semiconductor wafer evaluation method
JP5417205B2 (en) Defect inspection apparatus and defect inspection method
US7773212B1 (en) Contemporaneous surface and edge inspection
JP2008216054A (en) Device and method for inspecting test object
JP2008157638A (en) Surface flaw inspection device of sample, and flaw detection method using the same
JP2006162500A (en) Defect inspection device
WO2011105016A1 (en) Defect inspection device and method of inspecting defect
JP2002188999A (en) Detector and method for detecting foreign matter and defect
WO2022126677A1 (en) Semiconductor inspection device and inspection method
JP2002116155A (en) Apparatus and method for inspecting foreign matter and defect
JP2011209088A (en) Inspection apparatus and inspection method
JP5074058B2 (en) Foreign matter inspection method and foreign matter inspection device
KR20060060280A (en) Method for inspecting a defect and apparatus for performing the same
JP2014178215A (en) Inspection equipment
JP2012150024A (en) Surface defect inspection device and method
JP2011085602A (en) Inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees