JP4393128B2 - Optical fiber connection device - Google Patents

Optical fiber connection device Download PDF

Info

Publication number
JP4393128B2
JP4393128B2 JP2003207134A JP2003207134A JP4393128B2 JP 4393128 B2 JP4393128 B2 JP 4393128B2 JP 2003207134 A JP2003207134 A JP 2003207134A JP 2003207134 A JP2003207134 A JP 2003207134A JP 4393128 B2 JP4393128 B2 JP 4393128B2
Authority
JP
Japan
Prior art keywords
optical fiber
main body
elastic arm
strand
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003207134A
Other languages
Japanese (ja)
Other versions
JP2005062223A (en
Inventor
孝哉 山内
明彦 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to JP2003207134A priority Critical patent/JP4393128B2/en
Priority to US10/595,079 priority patent/US7234878B2/en
Priority to PCT/US2004/023262 priority patent/WO2005019890A1/en
Publication of JP2005062223A publication Critical patent/JP2005062223A/en
Application granted granted Critical
Publication of JP4393128B2 publication Critical patent/JP4393128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3806Semi-permanent connections, i.e. wherein the mechanical means keeping the fibres aligned allow for removal of the fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3803Adjustment or alignment devices for alignment prior to splicing

Description

【0001】
【発明の属する技術分野】
本発明は、一対の光ファイバの素線同士を先端突き合わせ状態で接続可能な光ファイバ接続装置に関する。
【0002】
【従来の技術】
光ファイバの接続技術において、被覆を除去した光ファイバの素線同士を、それぞれの先端面を互いに同軸に突き合わせた状態で、融着や接着を行なわずに恒久的に接続できる光ファイバ接続装置が、「メカニカルスプライス」の呼称で知られている。この種の光ファイバ接続装置は、一般に、光ファイバの素線を固定的に挟持する開閉可能な対向挟持面を有した素線固定部材を備え、その対向挟持面の少なくとも一方に、光ファイバの素線を予め定めた位置に収容する直線状のガイド溝(例えば断面V字状のV溝)が形成されている。接続作業に際しては、開位置にある素線固定部材の対向挟持面のガイド溝に一対の光ファイバの素線を挿入して先端突き合わせ状態に置き、その状態で、素線固定部材に外部から圧力を加えることにより、両光ファイバ素線を対向挟持面に所要圧力下で強固に固定的に挟持して、ガイド溝内で相互に恒久的に同軸接続することができる。
【0003】
この種の光ファイバ接続装置において、空洞部を有する本体と、本体の空洞部に開閉動作可能に収容される上記素線固定部材と、本体の空洞部に移動可能に取り付けられ、素線固定部材を開閉動作させる作動部材とを備えたものが知られている(例えば特許文献1参照)。本体には、その外面に開口するとともに空洞部に連通する一対の通路が、互いに同軸状に整列して形成され、一対の光ファイバの素線が対応の通路に導入されて素線固定部材に案内される。接続作業に際しては、一対の光ファイバの素線を先端突き合わせ状態に挿入した開位置にある素線固定部材に対し、作動部材を本体の空洞部に完全に押し込むことにより圧力を加えて、素線固定部材を閉位置に動作させる。それにより、素線固定部材が所要圧力下で、両光ファイバ素線を先端突き合わせ状態で強固に固定的に挟持し、以って一対の光ファイバが相互に恒久的に同軸接続される。
【特許文献1】
特許第2713309号公報
【0004】
特許文献1に開示される光ファイバ接続装置では、ファイバ接続作業に際し、接続対象の各光ファイバは、素線固定部材に挟持される長さを超える領域に渡って被覆が除去されて、端末処理されている。したがって、光ファイバ接続装置によって相互に接続固定された一対の光ファイバは、本体の対応の通路内に、それぞれの素線の一部分とそれに隣接する被覆を有する部分(以下、被覆部分と称する)とが、実質的非拘束状態で受容されることになる。この状態で、光ファイバに引張作用や捻回作用が加わると、特に本体の通路内に非拘束状態で配置される素線部分に、引張応力や捻り応力が集中し、素線の損傷や破断を生じるとともに、その結果として光学的損失等を生じることが危惧される。そこで従来、このような素線への応力集中を回避するために、素線固定部材の外部で光ファイバの被覆部分を本体に対し固定状態に保持可能な被覆保持機構を備えた光ファイバ接続装置が提案されている(例えば特許文献2参照)。
【特許文献2】
米国特許第5638477号明細書
【0005】
特許文献2に開示される光ファイバ接続装置では、本体の一対の通路に連通する一対のスロットが、空洞部とは別に本体に形成され、それらスロットに、断面U字状のクリップ部材がそれぞれ変位可能に取り付けられる。各クリップ部材は、所定間隔を空けて互いに対向する一対の腕を有し、それら腕の間に、通路に配置された光ファイバの被覆部分を圧力下で受容することができる。各クリップ部材は、本体の通路に光ファイバを挿入するときには、その両腕が光ファイバの被覆に干渉しない位置に置かれる。そして、素線固定部材に一対の光ファイバの素線を挟持した後、各クリップ部材を本体の対応のスロットに完全に押し込むことにより、通路内にある光ファイバの被覆部分がクリップ部材の両腕間に圧縮されつつ嵌入され、以って被覆部分が本体に対し固定状態に保持される。なお、光ファイバ接続装置における被覆保持機構は、本願出願人による先願である特願2002−240836号明細書にも記載されている。
【0006】
【発明が解決しようとする課題】
上記した特許文献2に開示される被覆保持機構付きの光ファイバ接続装置は、光ファイバの被覆部分を固定状態に保持するために、本体、素線固定部材及び作動部材のいずれからも独立した別部材としてのクリップ部材を用いている。したがって、構成部品点数が多く、光ファイバ接続装置の組立工程すなわちファイバ接続作業が煩雑になる傾向がある。特に、クリップ部材を本体のスロットの内奥まで深く押し込まなければ、光ファイバの被覆部分を保持できない構造となっているから、ファイバ接続作業に際して特に被覆保持のために特殊な工具が必要となる。さらに、各クリップ部材の一対の腕は、両者の間隔よりも僅かに大きな外径寸法を有する光ファイバの被覆部分を、両者間に圧力下で受容するように構成されるから、クリップ部材や光ファイバ被覆の成形寸法誤差に起因して、被覆保持力にばらつきを生じることが懸念される。
【0007】
本発明の目的は、一対の光ファイバの素線同士を先端突き合わせ状態で接続可能な光ファイバ接続装置において、構成部品点数を削減してファイバ接続作業を簡略化できるとともに、特殊な工具を要することなくファイバ接続作業を実施でき、しかも、構成部品の成形寸法誤差に左右されずに安定した被覆保持機能を発揮できる光ファイバ接続装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、本体と、本体に支持され、光ファイバの素線を固定的に挟持する閉位置と素線を解放する開位置との間で動作可能な素線固定部材と、本体に支持され、素線固定部材を開位置から閉位置へ動作させる作動部材と、素線固定部材に挟持される素線を有する光ファイバの被覆部分を本体に対し固定状態に保持可能な被覆保持機構とを具備し、一対の光ファイバの素線同士を先端突き合わせ状態で接続する光ファイバ接続装置において、被覆保持機構は、作動部材に設けられる弾性変形可能な保持要素を備え、保持要素は、光ファイバを案内する通路を本体と保持要素との間に形成するとともに、素線固定部材を閉位置に動作させる作動部材の本体上での移動に伴い弾性変形して、それ自体の弾性復元力により通路に光ファイバの被覆部分を押圧保持すること、を特徴とする光ファイバ接続装置を提供する。
【0009】
この光ファイバ接続装置では、素線固定部材を開位置から閉位置へ動作させる作動部材の移動に伴い、作動部材に設けた保持要素が弾性変形して、それ自体の弾性復元力により、光ファイバの被覆部分を保持する被覆保持力を発揮する。被覆保持機構として、さらに別体の部材を追加する必要はない。また、被覆保持力は、保持要素の弾性復元力に依存するから、保持要素の成形寸法精度による影響が軽減される。
【0010】
請求項2に記載の発明は、請求項1に記載の光ファイバ接続装置において、保持要素は、作動部材に形成される弾性腕を備え、弾性腕は、固定端部と、固定端部から離隔して配置され、弾性腕の弾性復元力により光ファイバの被覆部分を押圧する押圧部とを有する光ファイバ接続装置を提供する。
この構成では、弾性腕の材質、形状等を調整することにより、被覆保持力を適宜制御することができる。
【0011】
請求項3に記載の発明は、請求項2に記載の光ファイバ接続装置において、弾性腕は、固定端部と押圧部との間に位置する係止部をさらに有し、素線固定部材が開位置にあるときに、係止部は、通路に、光ファイバの素線の通過を許容する一方で光ファイバの被覆部分の通過を阻止する狭窄領域を形成する光ファイバ接続装置を提供する。
この構成では、弾性腕の係止部が、通路に導入された光ファイバの被覆部分が素線固定部材に進入することを、狭窄領域で阻止する。
【0012】
請求項4に記載の発明は、請求項3に記載の光ファイバ接続装置において、弾性腕の係止部は、作動部材の本体上での移動に伴い弾性腕が弾性変形するに従って、通路の狭窄領域を開放する光ファイバ接続装置を提供する。
この構成では、光ファイバの被覆部分と露出素線との境界領域に、弾性腕から弾性復元力を負荷することが回避される。
【0013】
請求項5に記載の発明は、請求項2〜4のいずれか1項に記載の光ファイバ接続装置において、本体は、本体の外面に開口するとともに通路に連通する導入口を備え、弾性腕の押圧部が導入口に近接して配置される光ファイバ接続装置を提供する。
この構成では、光ファイバの被覆部分と露出素線との境界領域に、弾性腕から弾性復元力を負荷することが回避される。
【0014】
請求項6に記載の発明は、請求項1〜5のいずれか1項に記載の光ファイバ接続装置において、保持要素が作動部材に一体成形される光ファイバ接続装置を提供する。
この構成では、任意形状の保持要素を容易に作製できる。
【0017】
【発明の実施の形態】
以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。
図1及び図2は、本発明の一実施形態による光ファイバ接続装置10を示す図、図3〜図11は、光ファイバ接続装置10の各構成要素を示す図、図12〜図14は、光ファイバ接続装置10の構成要素群を仮に組み合わせた半完成状態を示す図である。光ファイバ接続装置10は、被覆を除去した一対の光ファイバFの素線C同士を、それぞれの先端面を互いに同軸に突き合わせた状態で、融着や接着を行なわずに恒久的に接続できるものである。
【0018】
光ファイバ接続装置10は、本体12と、本体12に支持され、光ファイバFの素線Cを固定的に挟持する開閉可能な素線固定部材14と、本体12に支持され、素線固定部材14を開閉動作させる作動部材16とを備えて構成される。
図3〜図5に示すように、本体12は、例えば樹脂材料の一体成形品からなる角材状部材であり、その1つの対角線方向に深く抉れるように、素線固定部材14を収容する空洞部18が形成される。本体12は、空洞部18を縦方向及び横方向に二分する仮想中心面TP、LPのそれぞれに関して対称な形状を有する。
【0019】
本体12の空洞部18は、本体12の長手方向中央の比較的幅広の第1部分18aと、本体12の長手方向両端近傍の比較的狭隘な一対の第2部分18bとを有し、その全体が本体12の1つの稜線領域に開口する。空洞部18の第1部分18aには、第2部分18bよりも深く抉れた比較的狭隘な底部分18cが設けられ、底部分18cの底面に沿って直線状に延びる支持溝20が形成される。第1部分18aは、支持溝20に素線固定部材14の後述する蝶番縁14aを受容支持して、素線固定部材14を開閉動作可能に収容する。空洞部18の第2部分18bの各々には、その底面に沿って直線状に延びる通路溝22(例えば断面V字状のV溝)が、仮想中心面LPに沿って支持溝20と整列するように形成される。後述するように各第2部分18bは、作動部材16の一部分を弾性変位可能に収容する。
【0020】
本体12は、空洞部18を画定する各一対の長手方向端壁12a及び横断方向端壁12bを備える。各長手方向端壁12aには、その外面に向かって徐々に広がりつつ開口するとともに、空洞部18の第2部分18bにそれぞれ連通する導入口24が形成される。両長手方向端壁12aに形成した一対の導入口24は、対応の通路溝22に直線状に連通して、互いに同軸状に整列配置される。また、各長手方向端壁12aには、作動部材16を係止するための窪み26及び貫通孔28が、それぞれ所定位置に局所的に形成される。同様に、各横断方向端壁12bには、作動部材16を係止するための複数の窪み30が、それぞれ所定位置に局所的に形成される。
【0021】
図6〜図8に示すように、素線固定部材14は、アルミニウム等の展性材料から予め所定形状に成形した薄板状部材を、その中心線に沿って二つ折りに畳んだ形態を有する。二つ折りの素線固定部材14は、折り目に沿った蝶番縁14aを介して対向配置される一対の翼32を備え、それら翼32の相互対向面に、光ファイバFの素線Cを固定的に挟持する開閉可能な挟持面34がそれぞれ形成される。図示実施形態では、一方の翼32の挟持面34の所定位置に、光ファイバ素線Cを予め定めた位置に挟持するための直線状のガイド溝36(例えば断面V字状のV溝)が、蝶番縁14aに平行に形成される。なお、このようなガイド溝は、一対の挟持面34の双方に整合配置して設けることもできる。
【0022】
素線固定部材14の一対の翼32は、蝶番縁14aの領域における材料の弾性変形を伴いつつ、蝶番縁14aを中心として揺動すなわち開閉動作できるようになっている。通常は素線固定部材14は、両翼32がそれぞれの挟持面34同士を若干離隔させた開位置(図6(c))に置かれ、この開位置から、両翼32に相互接近方向への外力を加えることにより、蝶番縁14aの弾性復元力に抗して、それぞれの挟持面34が密接する閉位置へと変位する。素線固定部材14が開位置にあるときには、ガイド溝36に対する光ファイバ素線Cの円滑な出し入れが許容され、素線固定部材14が閉位置にあるときには、ガイド溝36に受容された光ファイバ素線Cが両挟持面34から圧力を受けて強固に固定的に挟持される。
【0023】
素線固定部材14は、蝶番縁14aを本体12の支持溝20に載置して、本体12の空洞部18の第1部分18aに上記開閉動作が可能な状態で収納される(図13及び図14参照)。このとき、素線固定部材14の両翼32は、本体12の両横断方向端壁12bに対し、それぞれ隙間を介して対向配置される。また、素線固定部材14を本体12の空洞部18の適正位置に収納すると、ガイド溝36は、閉位置で本体12の一対の通路溝22に対し同軸状に整列できるように配置される。
【0024】
図9〜図11に示すように、作動部材16は、例えば樹脂材料の一体成形品からなる棒状部材であり、略U字横断面形状を有する長手方向中央の第1機能部分16aと、第1機能部分16aから延設される長手方向両端の一対の第2機能部分16bとを備える。作動部材16の第1機能部分16aは、素線固定部材14の両翼32を受容可能な寸法の凹所38を画定する一対の抱持壁40を備える。作動部材16は、第1機能部分16aの凹所38を縦方向及び横方向に二分する仮想中心面TP、LPのそれぞれに関して対称な形状を有する。
【0025】
作動部材16の第1機能部分16aに設けた一対の抱持壁40は、互いに所定間隔を空けて略平行に対向し、それぞれの相互対向面が、凹所38の開口側の一次加圧面40aと、凹所38の内奥側の二次加圧面40bとを有する段付面として形成される。したがって第1機能部分16aの凹所38には、両一次加圧面40aによって画定される比較的幅広の開口側領域と、両二次加圧面40bによって画定される比較的狭隘な内奥側領域とが形成される。なお、各抱持壁40には、加圧面40a、40bの反対側の外面に、作動部材16を本体12に係止するための複数の突起42が、それぞれ所定位置に局所的に形成される。
【0026】
図12〜図14に示すように、作動部材16は、本体12の空洞部18の開口領域を相補的に塞ぐようにして、空洞部18に移動可能に取り付けられる。このとき作動部材16は、素線固定部材14を空洞部18に適正に収納した本体12に対し、第1機能部分16aの凹所38に素線固定部材14の両翼32を受容した状態に配置される。この状態で、作動部材16の両抱持壁40は、本体12の両横断方向端壁12bと素線固定部材14の両翼32との間に介在し、それぞれの加圧面40a、40bで段階的に、両翼32を外側から抱き込むように支持する。後述するように作動部材16は、本体12に対し図12〜図14の仮取付位置から図2の最終取付位置に移動する間に、両抱持壁40から素線固定部材14の両翼32にそれらの挟持面34を密接させる方向への圧力を加えて、素線固定部材14を開位置から閉位置へと変位動作させる。図2の最終取付位置では、作動部材16は本体12と協働して、光ファイバ接続装置10の四角柱状の外周面を相補的に構成する。
【0027】
光ファイバ接続装置10はさらに、素線固定部材14に挟持される素線Cを有する光ファイバFの、素線Cに隣接する被覆を有する部分S(以下、被覆部分Sと称する)を、本体12に対し固定状態に保持可能な被覆保持機構44を備える。本発明の特徴的構成として、被覆保持機構44は、作動部材16の一対の第2機能部分16bにそれぞれ設けられる弾性変形可能な一対の保持要素44から構成される(図9)。それら保持要素44は、作動部材16を上記したように本体12の空洞部18に適正に取り付けたときに、本体12の空洞部18の一対の第2部分18bにそれぞれ弾性変位可能に収容され、個々に光ファイバFを案内する一対の通路46を、対応の通路溝22との協働により第2部分18bに形成する(図13)。後述するように各保持要素44は、素線固定部材14を閉位置に動作させる作動部材16の本体12上での上記した移動に伴い弾性変形して、それ自体の弾性復元力により、対応の通路溝22すなわち通路46に光ファイバFの被覆部分Sを押圧保持する。
【0028】
図9に示すように、作動部材16の第2機能部分16bの各々は、第1機能部分16bの長手方向両側で長手方向へ固定的に延長される梁要素48をさらに備える。各保持要素44は、各梁要素48の末端から、第1機能部分16aの一対の抱持壁40と同一側に、「く」字状に屈曲して延長される弾性腕50を備える。弾性腕50は、梁要素48の末端に固定される固定端部52と、固定端部52から離隔した自由端に設けられる押圧部54と、固定端部52と押圧部54との間に位置する屈曲領域に設けられる係止部56とを有する。このような屈曲形状の弾性腕50を有する保持要素44は、作動部材16に一体成形されることが、製造工程を容易にする観点で有利である。なお、各第2機能部分16bには、弾性腕50の固定端部52に隣接して、作動部材16を本体12に係止するための突起58が、所定位置に局所的に形成される。
【0029】
弾性腕50は、弾性変形していない無負荷状態(図9)で、固定端部52と係止部56との間の基端側領域50aが、梁要素48の末端から第1機能部分16aの抱持壁40に向かって、梁要素48から徐々に離れるように延設され、係止部56と押圧部54との間の自由端側領域50bが、係止部56から梁要素48の末端に向かって、梁要素48に徐々に接近するように延設される。それにより弾性腕50は、無負荷状態で、基端側領域50aから離れた側の自由端側領域50bの端面(図で下端面)が、係止部56において押圧部54よりも梁要素48から遠隔して配置される(図9(b))。またこの状態で、弾性腕50の自由端側領域50bは、梁要素48を基準として、第1機能部分16aの抱持壁40の図で下端縁40cよりも遠い位置に延出して配置される。
【0030】
無負荷状態にある弾性腕50は、その自由端側領域50bに梁要素48へ接近する方向への外力が加わることにより、基端側領域50aで固定端部52を支点として弾性的に撓むと同時に、自由端側領域50bで係止部56(すなわち屈曲領域)を支点として弾性的に撓み、それにより全体として梁要素48に接近するように弾性変位する。ここで、固定端部52及び係止部56(屈曲領域)はいずれも、基端側領域50a及び自由端側領域50bに交差する方向へ適当な長さを有するので、弾性腕50は、基端側領域50a及び自由端側領域50bの双方が梁要素48に実質的平行に延びる位置まで弾性変位することができる。なお図示実施形態では、この最終変位位置で、弾性腕50の自由端側領域50bの下端面が、梁要素48を基準として、第1機能部分16aの抱持壁40の下端縁40cと実質的に同一距離の位置まで引き込んで配置されるように構成されている。
【0031】
図15〜図17を参照してさらに詳述すると、弾性腕50の自由端側領域50bは、基端側領域50aから離れた側の下端面に、その長手方向中心線に沿って延びる突条60を備える。突条60は、自由端側領域50bの下端面における突出高さが押圧部54及び係止部56において増加する形状を有し、それにより、押圧部54及び係止部56にそれぞれ隆起状の平坦な押圧面54a及び湾曲した係止面56aが形成される。また、押圧部54における突条60の横断方向両側には、押圧面54aの両側に位置する平坦な逃げ面54bがそれぞれ形成され、係止部56における突条60の横断方向両側には、係止面56aの両側に位置する平坦な衝合面56bがそれぞれ形成される。突条60の各側で、逃げ面54bと衝合面56bとは、突条60の長手方向に沿って延長され、所定部位62で互いに鈍角を成して接続される。図示のように、逃げ面54bと衝合面56bとの相互接続部位62は、押圧面54aと係止面56aとの間の中間領域に位置決めされる。さらに、自由端側領域50bの末端には、押圧面54aの反対側で固定端部52に近接する側に、テーパ状の当接端面63が形成される。当接端面63は、弾性腕50が上記した最終変位位置まで弾性変位したときに、固定端部52に設けた対応形状の受け面64に対向する位置に配置される。
【0032】
弾性腕50は、上記した最終変位位置まで弾性変位する間に、後述するように本体12と協働して、全体が固定端部52を中心として梁要素48に接近する方向へ回動するように動作する。その結果、弾性腕50の最終変位位置では、押圧部54の押圧面54aが、第1機能部分16aの抱持壁40の下端縁40cに対し実質的平行な水平姿勢に配置され、係止部56の係止面56は、押圧面54aを含む仮想平面Hよりも梁要素48に近い位置に引き込んで配置される。このような弾性腕50の自由端側領域50bの反転動作については、後に詳述する。
【0033】
図13に示す作動部材16の仮取付位置において、各保持要素44の弾性腕50は、その自由端側領域50bが本体12の空洞部第2部分18bの通路溝22に対向配置されて、通路46を画定する。このとき、各弾性腕50の押圧部54は、本体12の対応の導入口24に近接して配置される。また、各弾性腕50の係止部56は、空洞部第1部分18aに隣接する通路溝22の縮径部分22a(図4)に対向して配置され、その係止面56aが縮径部分22aと協働して、局所的な狭窄領域66を通路46に形成する。通路46の狭窄領域66は、通路46に対して同軸状に縮径して配置され、光ファイバFの素線Cの通過を許容する一方で光ファイバFの被覆部分Sの通過を阻止する寸法に形成される。したがって、導入口24から通路46に導入された接続対象の光ファイバFは、その素線Cが狭窄領域66を通過して、開位置にある素線固定部材14のガイド溝36に直線状に案内される一方、被覆部分Sが狭窄領域66で係止されて、それ以上は素線固定部材14に向けて挿入されないようになる。
【0034】
ここで、図18に拡大して示すように、作動部材16の仮取付位置において、弾性腕50の係止部56の係止面56aと本体12の通路溝22の縮径部分22aとの間の距離(すなわち狭窄領域66の径方向寸法)は、弾性腕50の係止部56に設けた一対の衝合面56bが、通路溝22の両外側に隣接して本体12に設けた一対の肩面68(図4及び図5にも示す)にそれぞれ衝合することによって確保される。なお図示のように、弾性腕50に設けた突条60の横断方向寸法は、本体12の通路溝22(図では縮径部分22a)の径方向寸法よりも大きく形成され、これに対応して、本体12の両肩面68の間に通路溝22に沿って画定される凹所の横断方向寸法が、通路溝22の両側に補足的に延設される拡幅面69によって通路溝22の径方向寸法よりも拡幅されている。このような構成によれば、通路溝22、両肩面68及び突条60がそれぞれに有する寸法公差によって両肩面68の間の凹所の横断方向寸法が突条60の横断方向寸法よりも必要以上に大きくなった場合にも、光ファイバFの素線Cは、通路溝22の縮径部分22aと係止部56の係止面56aとの間に確実に捕捉されるので、通路46の狭窄領域66を正確に通過することになる。
【0035】
なお、上記した作動部材16の仮取付位置において、各弾性腕50は、係止部56の両衝合面56bと本体12の通路溝22両側の肩面68との衝合により、僅かに弾性的に撓んだ状態に置かれる。この状態でもまだ、各弾性腕50の係止部56の係止面56aは、押圧部54の押圧面54aよりも梁要素48から遠隔して配置されており、それにより押圧部54は、対応の導入口24の近傍で、十分に拡張された導入領域を通路46に形成している(図13参照)。
【0036】
上記構成を有する光ファイバ接続装置10によるファイバ接続作業の一例を、図19〜図22を参照して以下に説明する。
まず準備作業として、接続対象の2本(第1及び第2)の光ファイバFに対し、それぞれの線端所望長さ領域の被覆を除去して素線Cを露出させ、露出した素線Cを専用の切断工具で所定長さに切断する端末処理を施す(図1)。他方、光ファイバ接続装置10は、前述したように、本体12の空洞部18の第1部分18aに素線固定部材14を適正に装着した後、作動部材16を素線固定部材14に被せながら本体12に取り付けて、仮取付位置に配置する(図13)。この仮取付位置では、素線固定部材14は、作動部材16の両抱持壁40の一次加圧面40aによって画定される凹所38の比較的幅広の開口側領域に受容されている(図14)。また作動部材16は、第1機能部分16aの下方の突起42が本体12の上方の窪み30に嵌入されるとともに、第2機能部分16bの突起58が本体12の窪み26に受容されて、本体12に仮留めされる。
【0037】
そこで、図19に示すように、上記仮取付位置において、本体12の一方の導入口24から、本体12の一方の通路溝22と作動部材16の一方の弾性腕50との間に画定された対応の通路46へ、第1の光ファイバFの素線Cを導入する。第1の光ファイバFは、通路46内で図示α方向へ円滑に案内され、素線Cが、通路46の狭窄領域66を通過して、開位置にある素線固定部材14のガイド溝36に挿し込まれるとともに、被覆部分Sが、通路46の狭窄領域66で弾性腕50の係止部56により係止される(図19(a))。この状態で、素線Cの先端は、素線固定部材14のガイド溝36の中央を幾分越えた位置に到達する。また、弾性腕50の押圧部54は、第1の光ファイバFの被覆部分Sに非接触に配置されている。
【0038】
次に、本体12の他方の導入口24から、本体12の他方の通路溝22と作動部材16の他方の弾性腕50との間に画定された対応の通路46へ、第2の光ファイバFの素線Cを導入する。第2の光ファイバFは、通路46内で図示β方向へ円滑に案内され、素線Cが、通路46の狭窄領域66を通過して、開位置にある素線固定部材14のガイド溝36に挿し込まれる。このとき第2の光ファイバFは、適当な長さが通路46に挿入されると、その素線Cがガイド溝36内で第1の光ファイバFの素線Cに突き当たる。そこで、第2の光ファイバFを、その被覆部分Sが狭窄領域66で係止されるまで更に通路46内に挿し込むと、第1の光ファイバFが、第2の光ファイバFに押されて、通路46から排出される方向(β方向)へ移動する(図19(b))。作業者は、このような第1の光ファイバFの排出動作を目視することにより、素線固定部材14のガイド溝36内で、一対の光ファイバFの素線C同士が先端突き合わせ状態に至ったことを知ることができる。なお、第2の光ファイバFの被覆部分Sも、弾性腕50の押圧部54に非接触に配置されている。
【0039】
続いて、両光ファイバFの突き合わせた先端位置を必要に応じて素線固定部材14に対し略中心に合わせた後、作動部材16を、本体12の空洞部18に押し込む。この作動部材16の押込移動に伴い、素線固定部材14は、作動部材16の両抱持壁40の二次加圧面40bによって画定される比較的狭隘な内奥側領域に進入し、両翼32がそれら二次加圧面40bから挟持面34を密接させる方向への圧力を受けて、開位置から閉位置へと変位動作する。それにより、一対の光ファイバFの素線Cが、素線固定部材14の両挟持面34間に圧力下で強固に固定的に挟持されて、ガイド溝44内で同軸に相互接続される(図20)。
【0040】
他方、図21に示すように、作動部材16の上記押込移動Mに伴い、各保持要素44の弾性腕50は、その係止部56の両衝合面56bで、本体12の対応の通路溝22両側に設けた肩面68から、梁要素48(図17)へ接近する方向への反力fを受ける(図21(a))。それにより各弾性腕50は、全体として梁要素48に接近する方向へ弾性的に撓む。この撓み動作の間に、弾性腕50の基端側領域50a及び自由端側領域50bに生じる応力や、自由端側領域50bに設けた逃げ面54bと衝合面56bとの相対角度及び相互接続部位62の位置等の、弾性腕50自体の構造的諸因子により、ある時点で自由端側領域50bが肩面68上で相互接続部位62を支点とした揺動を生じ、衝合面56bが肩面68から乖離する。そして、弾性腕50の撓み動作の進行に従い、肩面68上での自由端側領域50bの揺動角度が増加し、押圧部54の押圧面54aがその係止面56a寄りの縁部分54c(図17にも示す)で、通路46内に位置する光ファイバFの被覆部分Sに接触するようになる(図21(b))。
【0041】
作動部材16が本体12の空洞部18に完全に押し込まれる直前には、各弾性腕50は、その全体が固定端部52を中心として梁要素48に接近する方向へ回動し、押圧部54が、逃げ面54bを通路溝22の肩面68に接触させる前に、押圧面54aを光ファイバFの被覆部分Sに接触させ始める。それに伴い、弾性腕50の自由端側領域50bは、係止部56の係止面56aが押圧部54の押圧面54aよりも梁要素48に引き付けられる前述した反転動作を生じる。その結果、作動部材16を本体12の空洞部18に完全に押し込んだ最終取付位置では、各保持要素44の弾性腕50は、逃げ面54bと衝合面56bとの相互接続部位62も本体12の通路溝22の肩面68から乖離して、係止部56が通路46の狭窄領域66を十分に開放する一方で、押圧部54の押圧面54aがその略全体で、弾性腕50自体の弾性復元力により、通路46内にある光ファイバFの被覆部分Sに適当な押圧力fを加える(図21(c)及び図22)。
【0042】
なお、弾性腕50自体の構造的諸因子の誤差等により、自由端側領域50bの上記反転動作が予測通りには生じず、押圧部54から通路46内の光ファイバFの被覆部分Sに押圧力を負荷できない状況に陥る危惧がある。このような危惧を排除すべく、作動部材16が最終取付位置に到達する直前に、各弾性腕50に上記反転動作が生じていないときには、弾性腕50の自由端側領域50bの当接端面63(図17)と固定端部52の受け面64(図17)とが相互当接するように、各部寸法設定しておくことが有利である。この構成によれば、反転動作していない弾性腕50の押圧部54に、当接端面63と受け面64との相互当接による下向きの力が加わり、この力が、光ファイバFの被覆部分Sに接触している押圧面54aの縁部分54cを支点とした梃子作用を係止部56に生起する。その結果、作動部材16が最終取付位置に到達したときには、各弾性腕50の自由端側領域50bに所要の反転動作が強制的に生じて、係止部56が梁要素48側へ十分に引き込まれることになる。この構成でも、押圧部54の押圧面54aが光ファイバFの被覆部分Sに負荷する押圧力は、弾性腕50自体の弾性復元力に依存するものとなる。
【0043】
このようにして、作動部材16が本体12に対し最終取付位置に到達すると、一対の光ファイバFの素線Cが素線固定部材14のガイド溝36内で、先端突き合わせ状態で強固に固定的に挟持される一方、両光ファイバFの被覆部分Sが対応の通路46内で、両保持要素44の弾性腕50自体の弾性復元力による適当な押圧力下で、本体12に対し固定状態に押圧保持される。この状態で、両光ファイバFの先端突き合わせ接続が完了する。なお、最終取付位置で、作動部材16は、第1機能部分16aの全ての突起42が本体12の全ての窪み30に嵌入されるとともに、第2機能部分16bの突起58が本体12の貫通孔28に受容されて、本体12に固定される。
【0044】
上記したファイバ接続作業において、光ファイバFの素線Cは、作動部材16が押込移動を開始した直後に、素線固定部材14の両挟持面34の一次加圧面40aと二次加圧面40bとの遷移領域から圧力を受け、素線固定部材14に対し実質的に固定される。しかしこの段階では、各弾性腕50の押圧部54は、光ファイバFの被覆部分Sに所要の押圧力をまだ負荷していない。そして、作動部材16の押込移動を進めるに従い、光ファイバFの素線Cに加わる挟持力が増加して、最終的に素線Cが強固に固定される。この間、各弾性腕50の押圧部54は、弾性腕50の弾性変形量の増加に従って漸増する押圧力を、光ファイバFの被覆部分Sに負荷する。そして前述した最終取付位置で、各弾性腕50の弾性復元力による所要の押圧力が、光ファイバFの被覆部分Sに負荷される。このような動作タイミングによれば、通路46内で光ファイバFの被覆部分Sを押圧保持することに起因して素線固定部材14内で素線Cの位置ずれが生じる懸念は、確実に排除される。
【0045】
また、上記したファイバ接続作業において、作動部材16の各保持要素44の弾性腕50は、最終的に押圧部54が、露出した素線Cから離隔した位置で光ファイバFの被覆部分Sを、押圧面54aによる面接触形態で押圧保持するとともに、係止部56が通路46内の素線Cから十分に乖離するように構成されている。このような構成によれば、素線Cに応力を集中させ易い被覆部分Sの末端領域(すなわち露出素線Cに隣接する領域)に、押圧力を負荷する危険性が排除される。また、作動部材16の仮取付位置では、両光ファイバF同士の突き合わせた先端の位置が素線固定部材14の中心にあるとは限らないので、弾性腕50の押圧部54は、本体12の導入口24に可及的に近接する位置に形成することが、上記した素線Cへの応力集中を防止する観点で有利である。
【0046】
このように、上記構成を有する光ファイバ接続装置10によれば、接続対象の光ファイバFの被覆部分Sを固定状態に保持する被覆保持機構を、作動部材16に設けられる弾性変形可能な保持要素44から構成したので、別部材としてのクリップ部材を用いた従来技術に比べて、構成部品点数が削減され、光ファイバ接続装置10の組立工程すなわちファイバ接続作業が簡略化されることになる。ファイバ接続作業においては、光ファイバ素線Cを素線固定部材14に挟持するのに必要な作動部材16の押込移動によって、保持要素44から光ファイバFの被覆部分Sに所要の押圧力を負荷できるので、従来用いていた一般的な工具によって接続作業を実施できる。
【0047】
さらに、保持要素44による押圧力(被覆保持力)を、弾性腕50自体の弾性復元力によって生成するように構成したから、弾性腕50や光ファイバ被覆の成形寸法誤差が被覆保持力に及ぼす影響を可及的に軽減することができる。したがって光ファイバ接続装置10によれば、構成部品の成形寸法誤差に左右されずに、安定した被覆保持機能を発揮することが可能になる。
【0048】
本発明に係る光ファイバ接続装置の被覆保持機構の構成は、上記した二つ折り形態の素線固定部材14を有する構成に限定するものではなく、他の様々な形態の素線固定部材を有する光ファイバ接続装置に適用できる。この場合、本発明は、光ファイバの素線を固定する素線固定部材と、素線固定部材に固定される素線を有する光ファイバの被覆部分を固定状態に保持可能な被覆保持機構とを具備し、一対の光ファイバの素線同士を先端突き合わせ状態で接続する光ファイバ接続装置において、被覆保持機構は、素線固定部材から独立して弾性変形可能な保持要素を備え、保持要素は、光ファイバを案内する通路を素線固定部材の外部に形成するとともに、それ自体の弾性復元力により通路に光ファイバの被覆部分を押圧保持することを特徴とするものとして規定される。
【0049】
【発明の効果】
以上の説明から明らかなように、本発明によれば、一対の光ファイバの素線同士を先端突き合わせ状態で接続可能な光ファイバ接続装置において、構成部品点数を削減してファイバ接続作業を簡略化できるとともに、特殊な工具を要することなくファイバ接続作業を実施でき、しかも、構成部品の成形寸法誤差に左右されずに安定した被覆保持機能を発揮できるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態による光ファイバ接続装置の分解正面図である。
【図2】図1の光ファイバ接続装置の組立正面図である。
【図3】図1の光ファイバ接続装置の本体の図で、(a)平面図、(b)正面図、及び(c)端面図である。
【図4】図3の線IV−IVに沿った本体の断面図である。
【図5】図3の線V−Vに沿った本体の断面図である。
【図6】図1の光ファイバ接続装置の素線固定部材の図で、(a)平面図、(b)正面図、及び(c)端面図である。
【図7】図6の線VII−VIIに沿った素線固定部材の断面図である。
【図8】図6の線VIII−VIIIに沿った素線固定部材の断面図である。
【図9】図1の光ファイバ接続装置の作動部材の図で、(a)平面図、(b)正面図、及び(c)端面図である。
【図10】図9の線X−Xに沿った作動部材の断面図である。
【図11】図9の線XI−XIに沿った作動部材の断面図である。
【図12】図1の光ファイバ接続装置を仮取付位置で示す図で、(a)平面図、(b)正面図、及び(c)端面図である。
【図13】図12の線XIII−XIIIに沿った光ファイバ接続装置の断面図である。
【図14】図12の線XIV−XIVに沿った光ファイバ接続装置の断面図である。
【図15】図1の光ファイバ接像装置の保持要素を無負荷状態で示す部分拡大正面図である。
【図16】図15の矢印XVIから見た弾性腕の端面図である。
【図17】図15の保持要素を最終変位位置で示す部分拡大正面図である。
【図18】図13の線XVIII−XVIIIに沿った断面図である。
【図19】図1の光ファイバ接続装置によるファイバ接続作業を示す断面図で、(a)1本の光ファイバを挿入した状態、及び(b)2本の光ファイバを挿入した状態を示す。
【図20】図1の光ファイバ接続装置によるファイバ接続作業の完了状態を示す断面図である。
【図21】図19及び図20に対応する部分拡大図で、作動部材が(a)仮取付位置から(b)中間位置を経て(c)最終取付位置へ至る間の、弾性腕の反転動作を説明する図である。
【図22】図21の線XXII−XXIIに沿った断面図である。
【符号の説明】
10…光ファイバ接続装置
12…本体
14…素線固定部材
16…作動部材
18…空洞部
24…導入口
34…挟持面
36…ガイド溝
44…保持要素
46…通路
48…梁要素
50…弾性腕
52…固定端部
54…押圧部
56…係止部
66…狭窄領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber connection device that can connect strands of a pair of optical fibers in a state where the ends are butted.
[0002]
[Prior art]
In optical fiber connection technology, there is an optical fiber connection device that can permanently connect optical fiber strands from which coatings have been removed, with their respective end faces confronting each other coaxially, without being fused or bonded. , Known as “mechanical splice”. In general, this type of optical fiber connecting device includes a strand fixing member having an openable and closable opposing clamping surface that clamps and clamps an optical fiber strand, and at least one of the opposing clamping surfaces has an optical fiber fixing member. A linear guide groove (for example, a V groove having a V-shaped cross section) for accommodating the element wire at a predetermined position is formed. When connecting, insert a pair of optical fiber strands into the guide groove on the opposing clamping surface of the strand fixing member in the open position and place it in the end butted state. In that state, external pressure is applied to the strand fixing member. Thus, both the optical fiber strands can be firmly and securely clamped between the opposing clamping surfaces under a required pressure, and can be permanently coaxially connected to each other in the guide groove.
[0003]
In this type of optical fiber connecting device, a main body having a cavity portion, the above-described strand fixing member accommodated in the cavity portion of the main body so as to be capable of opening and closing, and a movable wire fixing member attached to the cavity portion of the main body. The thing provided with the operation member which opens and closes is known (for example, refer patent document 1). The body is formed with a pair of passages that open to the outer surface thereof and communicate with the cavity, and are coaxially aligned with each other, and the strands of the pair of optical fibers are introduced into the corresponding passages to form a strand fixing member. Guided. During the connection work, pressure is applied by completely pushing the operating member into the cavity of the main body against the wire fixing member in the open position in which the strands of the pair of optical fibers are inserted in the end-to-end state. The fixing member is moved to the closed position. As a result, the strand fixing member firmly clamps both the optical fiber strands in a state where the optical fiber strands are in abutment state under the required pressure, so that the pair of optical fibers are permanently coaxially connected to each other.
[Patent Document 1]
Japanese Patent No. 2713309
[0004]
In the optical fiber connection device disclosed in Patent Document 1, in the fiber connection work, each optical fiber to be connected is stripped over a region exceeding the length sandwiched between the strand fixing members, and the terminal processing is performed. Has been. Therefore, the pair of optical fibers connected and fixed to each other by the optical fiber connecting device includes a part of each strand and a part having a coating adjacent thereto (hereinafter referred to as a coating part) in a corresponding passage of the main body. Will be accepted in a substantially unconstrained state. In this state, if a tensile action or twisting action is applied to the optical fiber, the tensile stress or torsional stress is concentrated especially on the part of the strand that is placed in an unconstrained state in the passage of the main body, and the strand is damaged or broken. As a result, there is a concern that optical loss or the like may occur. Therefore, conventionally, in order to avoid such stress concentration on the strands, an optical fiber connection device provided with a coating holding mechanism that can hold the coated portion of the optical fiber fixed to the main body outside the strand fixing member. Has been proposed (see, for example, Patent Document 2).
[Patent Document 2]
US Pat. No. 5,638,477
[0005]
In the optical fiber connecting device disclosed in Patent Document 2, a pair of slots communicating with the pair of passages of the main body are formed in the main body separately from the cavity, and clip members having a U-shaped cross section are respectively displaced in the slots. Installed as possible. Each clip member has a pair of arms facing each other at a predetermined interval, and can receive the coated portion of the optical fiber disposed in the passage between the arms under pressure. Each clip member is placed at a position where both arms do not interfere with the coating of the optical fiber when the optical fiber is inserted into the passage of the main body. Then, after holding the pair of optical fiber strands in the strand fixing member, each clip member is completely pushed into the corresponding slot of the main body, so that the coated portion of the optical fiber in the passage becomes the both arms of the clip member It is inserted while being compressed, so that the covering portion is held fixed to the main body. The coating holding mechanism in the optical fiber connecting device is also described in Japanese Patent Application No. 2002-240836, which is a prior application by the present applicant.
[0006]
[Problems to be solved by the invention]
The above-described optical fiber connection device with a coating holding mechanism disclosed in Patent Document 2 is independent from any of the main body, the wire fixing member, and the operating member in order to hold the coating portion of the optical fiber in a fixed state. A clip member is used as the member. Therefore, the number of component parts is large, and the assembly process of the optical fiber connection device, that is, the fiber connection work tends to be complicated. In particular, since the coating portion of the optical fiber cannot be held unless the clip member is pushed deeply into the slot of the main body, a special tool is particularly required for holding the coating during fiber connection work. In addition, the pair of arms of each clip member is configured to receive a coated portion of an optical fiber having an outer diameter dimension slightly larger than the distance between the two under pressure. There is a concern that the coating holding force may vary due to an error in forming the fiber coating.
[0007]
An object of the present invention is to reduce the number of components and simplify a fiber connecting operation in an optical fiber connecting device capable of connecting a pair of optical fiber strands in a butted state, and requires a special tool. It is an object of the present invention to provide an optical fiber connecting device that can perform a fiber connecting operation without any influence and that can exhibit a stable coating holding function without being influenced by molding dimension errors of components.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is provided between a main body, a closed position supported by the main body and fixedly holding the strand of the optical fiber, and an open position releasing the strand. An operable strand fixing member, an actuating member supported by the main body to operate the strand fixing member from the open position to the closed position, and an optical fiber coating portion having a strand sandwiched between the strand fixing members. In the optical fiber connection device that has a sheath holding mechanism that can be held in a fixed state, and connects the strands of a pair of optical fibers in a state of butting at the tip, the sheath holding mechanism is elastically deformable provided on the operating member The holding element has a passage for guiding the optical fiber in the body. And the holding element The elastic member is elastically deformed along with the movement of the actuating member that moves the wire fixing member to the closed position, and presses and holds the coated portion of the optical fiber in the passage by its own elastic restoring force, An optical fiber connecting device is provided.
[0009]
In this optical fiber connecting device, the holding element provided in the operating member is elastically deformed with the movement of the operating member that operates the wire fixing member from the open position to the closed position, and the optical fiber is recovered by its own elastic restoring force. The covering holding force that holds the covering portion of the is exhibited. It is not necessary to add a separate member as the covering and holding mechanism. Further, since the covering holding force depends on the elastic restoring force of the holding element, the influence due to the molding dimensional accuracy of the holding element is reduced.
[0010]
According to a second aspect of the present invention, in the optical fiber connecting device according to the first aspect, the holding element includes an elastic arm formed on the operating member, and the elastic arm is separated from the fixed end and the fixed end. And an optical fiber connecting device having a pressing portion that presses the coated portion of the optical fiber by the elastic restoring force of the elastic arm.
In this configuration, the covering holding force can be appropriately controlled by adjusting the material and shape of the elastic arm.
[0011]
The invention according to claim 3 is the optical fiber connection device according to claim 2, wherein the elastic arm further includes a locking portion positioned between the fixed end portion and the pressing portion, When the wire fixing member is in the open position, The locking portion provides an optical fiber connecting device that forms a constricted region in the passage that allows passage of the strand of the optical fiber while preventing passage of the coated portion of the optical fiber.
In this configuration, the locking portion of the elastic arm prevents the coated portion of the optical fiber introduced into the passage from entering the strand fixing member in the narrowed region.
[0012]
According to a fourth aspect of the present invention, in the optical fiber connecting device according to the third aspect, the locking portion of the elastic arm has a narrowed passage as the elastic arm is elastically deformed as the operating member moves on the main body. Provided is an optical fiber connecting device that opens an area.
In this configuration, it is possible to avoid applying an elastic restoring force from the elastic arm to the boundary region between the coated portion of the optical fiber and the exposed strand.
[0013]
According to a fifth aspect of the present invention, in the optical fiber connection device according to any one of the second to fourth aspects, the main body includes an introduction port that opens to an outer surface of the main body and communicates with the passage, Provided is an optical fiber connecting device in which a pressing portion is disposed close to an introduction port.
In this configuration, it is possible to avoid applying an elastic restoring force from the elastic arm to the boundary region between the coated portion of the optical fiber and the exposed strand.
[0014]
According to a sixth aspect of the present invention, there is provided the optical fiber connecting device according to any one of the first to fifth aspects, wherein the holding element is integrally formed with the operating member.
With this configuration, a holding element having an arbitrary shape can be easily manufactured.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Corresponding components are denoted by common reference symbols throughout the drawings.
1 and 2 are diagrams showing an optical fiber connection device 10 according to an embodiment of the present invention, FIGS. 3 to 11 are diagrams showing components of the optical fiber connection device 10, and FIGS. It is a figure which shows the semi-finished state which combined the component group of the optical fiber connection apparatus temporarily. The optical fiber connection device 10 can permanently connect the strands C of the pair of optical fibers F from which the coating has been removed, with their respective end faces confronting each other coaxially without being fused or bonded. It is.
[0018]
The optical fiber connecting device 10 is supported by the main body 12, the main body 12, and an openable and closable element fixing member 14 that holds the element C of the optical fiber F in a fixed manner. And an actuating member 16 that opens and closes 14.
As shown in FIGS. 3 to 5, the main body 12 is a square-shaped member made of, for example, an integrally molded product of a resin material, and is a cavity that accommodates the strand fixing member 14 so as to be deeply drawn in one diagonal direction. Part 18 is formed. The main body 12 has a symmetrical shape with respect to the virtual center planes TP and LP that bisect the cavity 18 in the vertical and horizontal directions.
[0019]
The hollow portion 18 of the main body 12 has a relatively wide first portion 18a in the center in the longitudinal direction of the main body 12, and a pair of relatively narrow second portions 18b in the vicinity of both ends in the longitudinal direction of the main body 12. Opens in one ridge region of the main body 12. The first portion 18a of the cavity portion 18 is provided with a relatively narrow bottom portion 18c that is deeper than the second portion 18b, and a support groove 20 that extends linearly along the bottom surface of the bottom portion 18c is formed. The The first portion 18a receives and supports a later-described hinge edge 14a of the strand fixing member 14 in the support groove 20, and accommodates the strand fixing member 14 so as to be capable of opening and closing. In each of the second portions 18b of the hollow portion 18, a passage groove 22 (for example, a V groove having a V-shaped cross section) extending linearly along the bottom surface thereof is aligned with the support groove 20 along the virtual center plane LP. Formed as follows. As will be described later, each second portion 18b accommodates a part of the operating member 16 so as to be elastically displaceable.
[0020]
The body 12 includes a pair of longitudinal end walls 12 a and transverse end walls 12 b that define a cavity 18. Each longitudinal end wall 12a is formed with an opening 24 that gradually opens toward the outer surface and communicates with the second portion 18b of the cavity 18. A pair of introduction ports 24 formed in both longitudinal end walls 12a communicate linearly with the corresponding passage grooves 22 and are coaxially aligned with each other. In addition, in each longitudinal end wall 12a, a recess 26 and a through hole 28 for locking the operating member 16 are locally formed at predetermined positions. Similarly, a plurality of depressions 30 for locking the actuating member 16 are locally formed at predetermined positions in each transverse end wall 12b.
[0021]
As shown in FIGS. 6-8, the strand fixing member 14 has the form which folded the thin plate-shaped member previously shape | molded from malleable materials, such as aluminum, into two along the centerline. The two-fold element wire fixing member 14 includes a pair of wings 32 arranged to face each other via a hinge edge 14a along the crease, and the element wire C of the optical fiber F is fixed to the mutually opposing surfaces of the wings 32. Openable and closable clamping surfaces 34 are formed respectively. In the illustrated embodiment, a linear guide groove 36 (for example, a V groove having a V-shaped cross section) for holding the optical fiber C at a predetermined position is provided at a predetermined position on the holding surface 34 of one blade 32. , Formed parallel to the hinge edge 14a. Note that such guide grooves can be provided in alignment with both of the pair of clamping surfaces 34.
[0022]
The pair of wings 32 of the strand fixing member 14 can swing or open and close about the hinge edge 14a while being elastically deformed in the region of the hinge edge 14a. Usually, the strand fixing member 14 is placed in an open position (FIG. 6C) in which the blades 32 are slightly separated from each other, and from this open position, an external force is applied to the blades 32 toward each other. As a result, the respective clamping surfaces 34 are displaced to close positions against the elastic restoring force of the hinge edge 14a. When the strand fixing member 14 is in the open position, the optical fiber strand C can be smoothly put in and out of the guide groove 36, and when the strand fixing member 14 is in the closed position, the optical fiber received in the guide groove 36 is allowed. The element wire C receives pressure from both clamping surfaces 34 and is firmly and securely clamped.
[0023]
The strand fixing member 14 is housed in a state in which the opening / closing operation is possible in the first portion 18a of the cavity 18 of the main body 12 with the hinge edge 14a placed in the support groove 20 of the main body 12 (see FIG. 13 and FIG. 13). (See FIG. 14). At this time, both the wings 32 of the strand fixing member 14 are disposed to face both the transverse end walls 12b of the main body 12 via a gap, respectively. Further, when the strand fixing member 14 is housed in an appropriate position of the hollow portion 18 of the main body 12, the guide groove 36 is disposed so as to be coaxially aligned with the pair of passage grooves 22 of the main body 12 in the closed position.
[0024]
As shown in FIGS. 9 to 11, the actuating member 16 is a rod-like member made of, for example, an integrally molded product of a resin material, and has a first functional portion 16 a at the center in the longitudinal direction having a substantially U-shaped cross section, and a first A pair of second functional portions 16b extending from the functional portion 16a at both ends in the longitudinal direction. The first functional portion 16 a of the actuating member 16 includes a pair of holding walls 40 that define a recess 38 that is sized to receive both wings 32 of the wire fixing member 14. The actuating member 16 has a symmetrical shape with respect to each of the virtual center planes TP and LP that bisect the recess 38 of the first functional portion 16a in the vertical direction and the horizontal direction.
[0025]
The pair of holding walls 40 provided in the first functional portion 16a of the actuating member 16 oppose each other at a predetermined interval and substantially parallel to each other, and the respective opposing surfaces are primary pressure surfaces 40a on the opening side of the recess 38. And a stepped surface having a secondary pressure surface 40b on the inner back side of the recess 38. Therefore, in the recess 38 of the first functional portion 16a, a relatively wide opening side region defined by both primary pressure surfaces 40a and a relatively narrow inner back region defined by both secondary pressure surfaces 40b, Is formed. Each holding wall 40 is locally formed with a plurality of protrusions 42 on the outer surface opposite to the pressurizing surfaces 40a and 40b for locking the operating member 16 to the main body 12 at predetermined positions. .
[0026]
As shown in FIGS. 12 to 14, the actuating member 16 is movably attached to the cavity 18 so as to complementarily close the opening region of the cavity 18 of the main body 12. At this time, the actuating member 16 is arranged in a state in which both the blades 32 of the strand fixing member 14 are received in the recess 38 of the first functional portion 16a with respect to the main body 12 in which the strand fixing member 14 is properly accommodated in the hollow portion 18. Is done. In this state, both the holding walls 40 of the actuating member 16 are interposed between both the transverse end walls 12b of the main body 12 and both the blades 32 of the strand fixing member 14, and step by step on the respective pressing surfaces 40a, 40b. In addition, both wings 32 are supported so as to be held from the outside. As will be described later, the actuating member 16 moves from both holding walls 40 to both wings 32 of the wire fixing member 14 while moving relative to the main body 12 from the temporary mounting position of FIGS. 12 to 14 to the final mounting position of FIG. Pressure is applied in a direction in which the clamping surfaces 34 are brought into close contact with each other, and the strand fixing member 14 is displaced from the open position to the closed position. In the final mounting position of FIG. 2, the actuating member 16 cooperates with the main body 12 to complementarily form the rectangular columnar outer peripheral surface of the optical fiber connecting device 10.
[0027]
The optical fiber connector 10 further includes a portion S (hereinafter referred to as a covering portion S) having a coating adjacent to the strand C of the optical fiber F having the strand C sandwiched between the strand fixing members 14. 12 is provided with a covering holding mechanism 44 that can be held in a fixed state. As a characteristic configuration of the present invention, the covering and holding mechanism 44 includes a pair of elastically deformable holding elements 44 provided on the pair of second functional portions 16b of the operating member 16 (FIG. 9). The holding elements 44 are respectively accommodated in the pair of second portions 18b of the cavity 18 of the main body 12 so as to be elastically displaceable when the operating member 16 is properly attached to the cavity 18 of the main body 12 as described above. A pair of passages 46 for individually guiding the optical fibers F are formed in the second portion 18b in cooperation with the corresponding passage grooves 22 (FIG. 13). As will be described later, each holding element 44 is elastically deformed in accordance with the above-described movement of the actuating member 16 that moves the wire fixing member 14 to the closed position on the main body 12, and the corresponding elastic restoring force is applied to each holding element 44. The coated portion S of the optical fiber F is pressed and held in the passage groove 22, that is, the passage 46.
[0028]
As shown in FIG. 9, each of the second functional portions 16b of the actuating member 16 further includes beam elements 48 that are fixedly extended in the longitudinal direction on both longitudinal sides of the first functional portion 16b. Each holding element 44 includes an elastic arm 50 that is bent and extended in a “<” shape on the same side as the pair of holding walls 40 of the first functional portion 16 a from the end of each beam element 48. The elastic arm 50 is positioned between the fixed end 52 fixed to the end of the beam element 48, the pressing portion 54 provided at the free end separated from the fixed end 52, and the fixed end 52 and the pressing portion 54. And a locking portion 56 provided in the bent region. It is advantageous from the viewpoint of facilitating the manufacturing process that the holding element 44 having such a bent elastic arm 50 is integrally formed with the actuating member 16. In each of the second functional portions 16b, a protrusion 58 for locking the operating member 16 to the main body 12 is locally formed at a predetermined position adjacent to the fixed end portion 52 of the elastic arm 50.
[0029]
The elastic arm 50 is in an unloaded state (FIG. 9) in which the elastic arm 50 is not elastically deformed, and the proximal end region 50a between the fixed end 52 and the locking portion 56 is formed from the end of the beam element 48 to the first functional portion 16a. The free end side region 50b between the locking portion 56 and the pressing portion 54 extends from the locking portion 56 toward the holding wall 40 so as to be gradually separated from the beam element 48. It extends so that it may approach the beam element 48 gradually toward the end. As a result, the elastic arm 50 is in an unloaded state, and the end surface (the lower end surface in the drawing) of the free end side region 50b on the side away from the base end side region 50a (FIG. 9B). Further, in this state, the free end side region 50b of the elastic arm 50 is disposed so as to extend farther than the lower end edge 40c in the drawing of the holding wall 40 of the first functional portion 16a with the beam element 48 as a reference. .
[0030]
When the elastic arm 50 in an unloaded state is elastically bent with the fixed end 52 as a fulcrum in the proximal side region 50a by applying an external force to the free end side region 50b in a direction approaching the beam element 48. At the same time, the free end side region 50b is elastically bent with the locking portion 56 (that is, the bent region) as a fulcrum, and thereby elastically displaced so as to approach the beam element 48 as a whole. Here, both the fixed end 52 and the locking portion 56 (bending region) have appropriate lengths in the direction intersecting the base end side region 50a and the free end side region 50b. Both the end side region 50 a and the free end side region 50 b can be elastically displaced to a position extending substantially parallel to the beam element 48. In the illustrated embodiment, the lower end surface of the free end side region 50b of the elastic arm 50 is substantially the same as the lower end edge 40c of the holding wall 40 of the first functional portion 16a with the beam element 48 as a reference at this final displacement position. Are arranged so as to be drawn to the same distance.
[0031]
More specifically with reference to FIGS. 15 to 17, the free end side region 50 b of the elastic arm 50 is a ridge extending along the longitudinal center line on the lower end surface on the side away from the base end side region 50 a. 60. The protrusion 60 has a shape in which the protrusion height at the lower end surface of the free end side region 50 b increases at the pressing portion 54 and the locking portion 56, and thereby, the protruding portion 60 and the locking portion 56 are raised. A flat pressing surface 54a and a curved locking surface 56a are formed. Further, flat relief surfaces 54b located on both sides of the pressing surface 54a are formed on both sides in the transverse direction of the ridge 60 in the pressing portion 54, respectively. Flat abutting surfaces 56b located on both sides of the stop surface 56a are formed. On each side of the ridge 60, the flank 54 b and the abutting surface 56 b are extended along the longitudinal direction of the ridge 60 and connected to each other at an obtuse angle at a predetermined portion 62. As shown in the drawing, the interconnection part 62 between the flank surface 54b and the abutting surface 56b is positioned in an intermediate region between the pressing surface 54a and the locking surface 56a. Further, at the end of the free end side region 50b, a tapered contact end surface 63 is formed on the side opposite to the pressing surface 54a and close to the fixed end portion 52. The contact end surface 63 is disposed at a position facing the receiving surface 64 having a corresponding shape provided at the fixed end portion 52 when the elastic arm 50 is elastically displaced to the final displacement position described above.
[0032]
While the elastic arm 50 is elastically displaced to the final displacement position described above, it cooperates with the main body 12 as will be described later so that the elastic arm 50 as a whole rotates in a direction approaching the beam element 48 around the fixed end 52. To work. As a result, at the final displacement position of the elastic arm 50, the pressing surface 54a of the pressing portion 54 is disposed in a horizontal posture substantially parallel to the lower end edge 40c of the holding wall 40 of the first functional portion 16a. The locking surface 56 of 56 is drawn and arranged at a position closer to the beam element 48 than the virtual plane H including the pressing surface 54a. The reversing operation of the free end side region 50b of the elastic arm 50 will be described in detail later.
[0033]
In the temporary attachment position of the actuating member 16 shown in FIG. 13, the elastic arm 50 of each holding element 44 has a free end side region 50 b opposed to the passage groove 22 of the cavity second portion 18 b of the main body 12, 46 is defined. At this time, the pressing portion 54 of each elastic arm 50 is disposed in proximity to the corresponding inlet 24 of the main body 12. Further, the locking portion 56 of each elastic arm 50 is disposed to face the reduced diameter portion 22a (FIG. 4) of the passage groove 22 adjacent to the hollow portion first portion 18a, and the locking surface 56a thereof is the reduced diameter portion. In cooperation with 22a, a local constriction region 66 is formed in the passage 46. The constricted region 66 of the passage 46 is disposed so as to be concentrically reduced in diameter with respect to the passage 46, and has a dimension that allows passage of the strand C of the optical fiber F while preventing passage of the coating portion S of the optical fiber F. Formed. Accordingly, the optical fiber F to be connected introduced into the passage 46 from the introduction port 24 passes through the constricted region 66 and linearly enters the guide groove 36 of the strand fixing member 14 at the open position. While being guided, the covering portion S is locked in the constriction region 66, and no more is inserted toward the strand fixing member 14.
[0034]
Here, as shown in an enlarged view in FIG. 18, between the locking surface 56 a of the locking portion 56 of the elastic arm 50 and the reduced diameter portion 22 a of the passage groove 22 of the main body 12 at the temporary mounting position of the operating member 16. (Ie, the radial dimension of the constricted region 66) is a pair of abutting surfaces 56b provided on the locking portion 56 of the elastic arm 50 adjacent to both outer sides of the passage groove 22 and a pair of This is ensured by abutting against shoulder surfaces 68 (also shown in FIGS. 4 and 5). As shown in the drawing, the transverse dimension of the protrusion 60 provided on the elastic arm 50 is formed larger than the radial dimension of the passage groove 22 (the reduced diameter portion 22a in the figure) of the main body 12, and correspondingly. The transverse dimension of the recess defined along the channel groove 22 between the shoulder surfaces 68 of the body 12 is such that the diameter of the channel groove 22 is increased by a widened surface 69 that extends supplementarily on both sides of the channel groove 22. It is wider than the directional dimension. According to such a configuration, the transverse dimension of the recess between the shoulder surfaces 68 is greater than the transverse dimension of the protrusion 60 due to the dimensional tolerances of the passage groove 22, both shoulder surfaces 68 and the protrusions 60. Even when it becomes larger than necessary, the strand C of the optical fiber F is reliably captured between the reduced diameter portion 22a of the passage groove 22 and the locking surface 56a of the locking portion 56, so that the passage 46 The stenosis region 66 is accurately passed.
[0035]
At the temporary mounting position of the operating member 16 described above, each elastic arm 50 is slightly elastic due to the abutment between both abutting surfaces 56b of the locking portion 56 and the shoulder surfaces 68 on both sides of the passage groove 22 of the main body 12. Placed in a bent state. Even in this state, the locking surface 56a of the locking portion 56 of each elastic arm 50 is arranged farther from the beam element 48 than the pressing surface 54a of the pressing portion 54, whereby the pressing portion 54 is In the vicinity of the inlet 24, a sufficiently expanded introduction region is formed in the passage 46 (see FIG. 13).
[0036]
An example of fiber connection work by the optical fiber connection device 10 having the above-described configuration will be described below with reference to FIGS.
First, as a preparatory work, with respect to the two optical fibers F to be connected (first and second), the covering of each desired length region of the line ends is removed to expose the strand C, and the exposed strand C The terminal processing which cuts to predetermined length with an exclusive cutting tool is performed (FIG. 1). On the other hand, as described above, the optical fiber connecting device 10 appropriately attaches the strand fixing member 14 to the first portion 18a of the cavity 18 of the main body 12, and then covers the operating member 16 on the strand fixing member 14. It attaches to the main body 12 and arrange | positions in a temporary attachment position (FIG. 13). In this temporary mounting position, the wire fixing member 14 is received in a relatively wide opening side region of the recess 38 defined by the primary pressure surfaces 40a of the both holding walls 40 of the actuating member 16 (FIG. 14). ). Further, the operating member 16 has a protrusion 42 below the first functional portion 16a inserted into the recess 30 above the main body 12, and a protrusion 58 of the second functional portion 16b received in the recess 26 of the main body 12, 12 is temporarily fixed.
[0037]
Therefore, as shown in FIG. 19, at the temporary mounting position, the gap is defined between one introduction port 24 of the main body 12 and one of the passage grooves 22 of the main body 12 and one elastic arm 50 of the operating member 16. The strand C of the first optical fiber F is introduced into the corresponding passage 46. The first optical fiber F is smoothly guided in the α direction in the figure in the passage 46, and the strand C passes through the narrowed region 66 of the passage 46 and is in the guide groove 36 of the strand fixing member 14 in the open position. The covering portion S is locked by the locking portion 56 of the elastic arm 50 in the narrowed region 66 of the passage 46 (FIG. 19A). In this state, the tip of the strand C reaches a position slightly beyond the center of the guide groove 36 of the strand fixing member 14. Further, the pressing portion 54 of the elastic arm 50 is disposed in a non-contact manner on the covering portion S of the first optical fiber F.
[0038]
Next, the second optical fiber F passes from the other inlet 24 of the main body 12 to a corresponding passage 46 defined between the other passage groove 22 of the main body 12 and the other elastic arm 50 of the actuating member 16. The strand C is introduced. The second optical fiber F is smoothly guided in the β direction in the figure in the passage 46, and the strand C passes through the narrowed region 66 of the passage 46 and is in the guide groove 36 of the strand fixing member 14 in the open position. Inserted. At this time, when an appropriate length of the second optical fiber F is inserted into the passage 46, the strand C of the second optical fiber F strikes the strand C of the first optical fiber F in the guide groove 36. Therefore, when the second optical fiber F is further inserted into the passage 46 until the covering portion S is locked by the constriction region 66, the first optical fiber F is pushed by the second optical fiber F. Then, it moves in the direction of discharging from the passage 46 (β direction) (FIG. 19B). The operator visually observes the discharge operation of the first optical fiber F, so that the strands C of the pair of optical fibers F are brought into a tip end state in the guide groove 36 of the strand fixing member 14. I can know that. The covering portion S of the second optical fiber F is also disposed in a non-contact manner on the pressing portion 54 of the elastic arm 50.
[0039]
Subsequently, after aligning the tip positions of the optical fibers F with respect to the strand fixing member 14 as necessary, the operating member 16 is pushed into the cavity 18 of the main body 12. As the actuating member 16 is pushed and moved, the wire fixing member 14 enters a relatively narrow inner back region defined by the secondary pressurizing surfaces 40b of both holding walls 40 of the actuating member 16, and both blades 32 are moved. Receives a pressure in the direction in which the clamping surface 34 is brought into close contact with the secondary pressure surface 40b, and is displaced from the open position to the closed position. As a result, the strands C of the pair of optical fibers F are firmly and securely clamped between the clamping surfaces 34 of the strand fixing member 14 under pressure, and are coaxially interconnected in the guide groove 44 ( FIG. 20).
[0040]
On the other hand, as shown in FIG. 21, the elastic arm 50 of each holding element 44 is moved to the corresponding passage groove of the main body 12 at both abutting surfaces 56 b of the locking portion 56 with the pushing movement M of the operating member 16. 22 Reaction force f in the direction approaching the beam element 48 (FIG. 17) from the shoulder surface 68 provided on both sides 1 (FIG. 21A). Thereby, each elastic arm 50 is elastically bent in a direction approaching the beam element 48 as a whole. During this bending operation, the stress generated in the proximal end side region 50a and the free end side region 50b of the elastic arm 50, the relative angle between the flank 54b and the abutting surface 56b provided in the free end side region 50b, and the interconnection Due to structural factors of the elastic arm 50 itself, such as the position of the portion 62, the free end region 50b swings on the shoulder surface 68 about the interconnecting portion 62 at a certain point in time, and the abutting surface 56b Deviates from the shoulder surface 68. Then, as the bending operation of the elastic arm 50 progresses, the swing angle of the free end side region 50b on the shoulder surface 68 increases, and the pressing surface 54a of the pressing portion 54 is an edge portion 54c (near the locking surface 56a). 17 (also shown in FIG. 17), it comes into contact with the coated portion S of the optical fiber F located in the passage 46 (FIG. 21B).
[0041]
Immediately before the actuating member 16 is completely pushed into the cavity 18 of the main body 12, each elastic arm 50 rotates in a direction approaching the beam element 48 with the fixed end 52 as a center, and the pressing portion 54. However, before the flank 54 b is brought into contact with the shoulder surface 68 of the passage groove 22, the pressing surface 54 a is brought into contact with the coating portion S of the optical fiber F. Accordingly, the free end side region 50b of the elastic arm 50 causes the above-described reversing operation in which the locking surface 56a of the locking portion 56 is attracted to the beam element 48 rather than the pressing surface 54a of the pressing portion 54. As a result, in the final attachment position where the actuating member 16 is completely pushed into the cavity 18 of the main body 12, the elastic arm 50 of each holding element 44 has the interconnection part 62 between the flank face 54b and the abutting face 56b as well. The engagement portion 56 sufficiently opens the constricted region 66 of the passage 46 while being separated from the shoulder surface 68 of the passage groove 22, while the pressing surface 54 a of the pressing portion 54 is substantially the entirety of the elastic arm 50 itself. An appropriate pressing force f is applied to the coating portion S of the optical fiber F in the passage 46 by the elastic restoring force. 2 Is added (FIG. 21 (c) and FIG. 22).
[0042]
In addition, due to errors in structural factors of the elastic arm 50 itself, the above reversal operation of the free end side region 50b does not occur as expected, and the pressing portion 54 pushes the coated portion S of the optical fiber F in the passage 46. There is a risk of falling into a situation where pressure cannot be applied. In order to eliminate such a concern, when the reversing operation is not performed on each elastic arm 50 immediately before the operating member 16 reaches the final mounting position, the contact end surface 63 of the free end side region 50b of the elastic arm 50 is obtained. It is advantageous to set the dimensions of each part so that (FIG. 17) and the receiving surface 64 (FIG. 17) of the fixed end 52 abut each other. According to this configuration, a downward force due to mutual contact between the contact end surface 63 and the receiving surface 64 is applied to the pressing portion 54 of the elastic arm 50 that is not reversed, and this force is applied to the coated portion of the optical fiber F. An insulator action is generated in the locking portion 56 with the edge portion 54c of the pressing surface 54a in contact with S as a fulcrum. As a result, when the actuating member 16 reaches the final mounting position, a required reversal operation is forcibly generated in the free end side region 50b of each elastic arm 50, and the locking portion 56 is sufficiently pulled toward the beam element 48 side. Will be. Even in this configuration, the pressing force applied to the coating portion S of the optical fiber F by the pressing surface 54a of the pressing portion 54 depends on the elastic restoring force of the elastic arm 50 itself.
[0043]
In this way, when the actuating member 16 reaches the final attachment position with respect to the main body 12, the strands C of the pair of optical fibers F are firmly fixed in the guide groove 36 of the strand fixing member 14 in the leading end butting state. On the other hand, the covering portions S of both optical fibers F are fixed to the main body 12 in the corresponding passages 46 under an appropriate pressing force due to the elastic restoring force of the elastic arms 50 themselves of both holding elements 44. Pressed and held. In this state, the end butting connection of both optical fibers F is completed. At the final mounting position, the operating member 16 has all the protrusions 42 of the first functional portion 16a inserted into all the recesses 30 of the main body 12, and the protrusion 58 of the second functional portion 16b is a through hole of the main body 12. 28 is received and fixed to the main body 12.
[0044]
In the fiber connection operation described above, the strand C of the optical fiber F is formed immediately after the actuating member 16 starts pushing movement, with the primary pressure surface 40a and the secondary pressure surface 40b of both the clamping surfaces 34 of the strand fixing member 14. Under pressure from the transition region, the wire fixing member 14 is substantially fixed. However, at this stage, the pressing portion 54 of each elastic arm 50 has not yet applied the required pressing force to the coating portion S of the optical fiber F. As the operation member 16 is pushed and moved, the clamping force applied to the strand C of the optical fiber F increases, and the strand C is finally firmly fixed. During this time, the pressing portion 54 of each elastic arm 50 applies a pressing force that gradually increases as the amount of elastic deformation of the elastic arm 50 increases to the coating portion S of the optical fiber F. Then, a required pressing force due to the elastic restoring force of each elastic arm 50 is applied to the coating portion S of the optical fiber F at the final mounting position described above. According to such an operation timing, the concern that the displacement of the strand C within the strand fixing member 14 due to the pressing and holding of the coated portion S of the optical fiber F within the passage 46 is surely eliminated. Is done.
[0045]
Further, in the fiber connection operation described above, the elastic arm 50 of each holding element 44 of the actuating member 16 finally wraps the coating portion S of the optical fiber F at a position where the pressing portion 54 is separated from the exposed strand C. While being pressed and held in a surface contact form by the pressing surface 54 a, the locking portion 56 is configured to be sufficiently separated from the strand C in the passage 46. According to such a configuration, the risk of applying a pressing force to the terminal region of the covering portion S that easily concentrates stress on the strand C (that is, the region adjacent to the exposed strand C) is eliminated. Further, at the temporary mounting position of the actuating member 16, the position of the abutted end of both optical fibers F is not always at the center of the wire fixing member 14, so that the pressing portion 54 of the elastic arm 50 is Forming at a position as close as possible to the introduction port 24 is advantageous from the viewpoint of preventing stress concentration on the strand C described above.
[0046]
As described above, according to the optical fiber connection device 10 having the above-described configuration, the covering holding mechanism that holds the covering portion S of the optical fiber F to be connected in a fixed state is provided with the elastically deformable holding element provided in the operating member 16. 44, the number of components is reduced and the assembling process of the optical fiber connecting device 10, that is, the fiber connecting operation is simplified as compared with the conventional technique using the clip member as a separate member. In the fiber connection work, a required pressing force is applied from the holding element 44 to the coating portion S of the optical fiber F by the pushing movement of the operation member 16 necessary for holding the optical fiber strand C between the strand fixing members 14. Therefore, the connection work can be carried out with a general tool conventionally used.
[0047]
Furthermore, since the pressing force (coating holding force) by the holding element 44 is generated by the elastic restoring force of the elastic arm 50 itself, the influence of the molding dimensional error of the elastic arm 50 or the optical fiber coating on the coating holding force. Can be reduced as much as possible. Therefore, according to the optical fiber connection device 10, it is possible to exhibit a stable coating holding function without being influenced by the molding size error of the component parts.
[0048]
The configuration of the coating holding mechanism of the optical fiber connection device according to the present invention is not limited to the configuration having the above-described bi-folded strand fixing member 14, but light having various other forms of strand fixing members 14 Applicable to fiber connection equipment. In this case, the present invention includes a strand fixing member that fixes the strand of the optical fiber, and a coating holding mechanism that can hold the coating portion of the optical fiber having the strand fixed to the strand fixing member in a fixed state. In the optical fiber connecting device that connects the strands of a pair of optical fibers in a state of tip end butting, the covering holding mechanism includes a holding element that can be elastically deformed independently of the strand fixing member, A path for guiding the optical fiber is formed outside the wire fixing member, and the coated portion of the optical fiber is pressed and held in the path by its own elastic restoring force.
[0049]
【The invention's effect】
As is apparent from the above description, according to the present invention, in the optical fiber connection device that can connect the strands of a pair of optical fibers in the end-to-end state, the number of components is reduced and the fiber connection work is simplified. In addition, the fiber connection operation can be performed without requiring a special tool, and a stable coating holding function can be exhibited without being influenced by the molding dimension error of the component parts.
[Brief description of the drawings]
FIG. 1 is an exploded front view of an optical fiber connecting device according to an embodiment of the present invention.
2 is an assembled front view of the optical fiber connection device of FIG. 1. FIG.
3 is a view of the main body of the optical fiber connection device of FIG. 1, (a) a plan view, (b) a front view, and (c) an end view.
4 is a cross-sectional view of the main body taken along line IV-IV in FIG. 3;
5 is a cross-sectional view of the main body taken along line VV in FIG. 3. FIG.
6 is a diagram of a wire fixing member of the optical fiber connection device of FIG. 1, (a) a plan view, (b) a front view, and (c) an end view.
7 is a cross-sectional view of the wire fixing member taken along line VII-VII in FIG. 6;
8 is a cross-sectional view of the wire fixing member taken along line VIII-VIII in FIG. 6;
9 is a diagram of an operation member of the optical fiber connection device of FIG. 1, (a) a plan view, (b) a front view, and (c) an end view.
10 is a cross-sectional view of the actuating member taken along line XX in FIG. 9;
11 is a cross-sectional view of the actuating member taken along line XI-XI in FIG. 9;
FIGS. 12A and 12B are diagrams showing the optical fiber connection device of FIG. 1 in a temporary attachment position, and are (a) a plan view, (b) a front view, and (c) an end view.
13 is a cross-sectional view of the optical fiber connecting device taken along line XIII-XIII in FIG.
14 is a cross-sectional view of the optical fiber connecting device taken along line XIV-XIV in FIG. 12;
15 is a partially enlarged front view showing the holding element of the optical fiber image pickup apparatus of FIG. 1 in a no-load state.
16 is an end view of the elastic arm as viewed from an arrow XVI in FIG. 15;
17 is a partially enlarged front view showing the holding element of FIG. 15 in a final displacement position.
18 is a cross-sectional view taken along line XVIII-XVIII in FIG.
FIGS. 19A and 19B are cross-sectional views showing fiber connection work by the optical fiber connection device of FIG. 1, showing (a) a state in which one optical fiber is inserted, and (b) a state in which two optical fibers are inserted.
20 is a cross-sectional view showing a completed state of fiber connection work by the optical fiber connection device of FIG. 1. FIG.
FIG. 21 is a partially enlarged view corresponding to FIGS. 19 and 20, wherein the elastic member reverses while the actuating member reaches (a) the temporary attachment position, (b) the intermediate position, and (c) the final attachment position. FIG.
22 is a cross-sectional view taken along line XXII-XXII in FIG. 21. FIG.
[Explanation of symbols]
10: Optical fiber connection device
12 ... Body
14 ... Wire fixing member
16 ... Actuating member
18 ... Cavity
24 ... Introduction port
34 ... clamping surface
36 ... Guide groove
44 ... holding element
46 ... passage
48 ... Beam element
50 ... Elastic arm
52. Fixed end
54 ... Pressing part
56 ... Locking part
66 ... Stenosis region

Claims (6)

本体と、該本体に支持され、光ファイバの素線を固定的に挟持する閉位置と該素線を解放する開位置との間で動作可能な素線固定部材と、該本体に支持され、該素線固定部材を該開位置から該閉位置へ動作させる作動部材と、該素線固定部材に挟持される素線を有する光ファイバの被覆部分を該本体に対し固定状態に保持可能な被覆保持機構とを具備し、一対の光ファイバの素線同士を先端突き合わせ状態で接続する光ファイバ接続装置において、
前記被覆保持機構は、前記作動部材に設けられる弾性変形可能な保持要素を備え、
前記保持要素は、光ファイバを案内する通路を前記本体と該保持要素との間に形成するとともに、前記素線固定部材を前記閉位置に動作させる前記作動部材の前記本体上での移動に伴い弾性変形して、それ自体の弾性復元力により前記通路に光ファイバの被覆部分を押圧保持すること、
を特徴とする光ファイバ接続装置。
Supported by the main body, and a wire fixing member that is supported by the main body and is operable between a closed position for fixing and holding the optical fiber strand and an open position for releasing the strand; An operating member that moves the wire fixing member from the open position to the closed position, and a coating that can hold the coated portion of the optical fiber having the strand held by the wire fixing member in a fixed state with respect to the main body In an optical fiber connection device that includes a holding mechanism and connects the strands of a pair of optical fibers in a state of end-to-end contact,
The covering holding mechanism includes an elastically deformable holding element provided on the operating member,
The holding element forms a passage for guiding an optical fiber between the main body and the holding element, and moves the actuating member that moves the wire fixing member to the closed position on the main body. Elastically deforming and pressing and holding the coated portion of the optical fiber in the passage by its own elastic restoring force;
An optical fiber connecting device characterized by the above.
前記保持要素は、前記作動部材に形成される弾性腕を備え、該弾性腕は、固定端部と、該固定端部から離隔して配置され、該弾性腕の前記弾性復元力により光ファイバの被覆部分を押圧する押圧部とを有する、請求項1に記載の光ファイバ接続装置。  The holding element includes an elastic arm formed on the actuating member, and the elastic arm is disposed at a fixed end portion and spaced apart from the fixed end portion. The optical fiber connection device according to claim 1, further comprising a pressing portion that presses the covering portion. 前記弾性腕は、前記固定端部と前記押圧部との間に位置する係止部をさらに有し、前記素線固定部材が前記開位置にあるときに、該係止部は、前記通路に、光ファイバの素線の通過を許容する一方で該光ファイバの被覆部分の通過を阻止する狭窄領域を形成する、請求項2に記載の光ファイバ接続装置。The elastic arm further includes a locking portion positioned between the fixed end portion and the pressing portion, and when the wire fixing member is in the open position, the locking portion is connected to the passage. The optical fiber connecting device according to claim 2, wherein a constriction region is formed which allows passage of the strand of the optical fiber while preventing passage of the coated portion of the optical fiber. 前記弾性腕の前記係止部は、前記作動部材の前記本体上での前記移動に伴い該弾性腕が弾性変形するに従って、前記通路の前記狭窄領域を開放する請求項3に記載の光ファイバ接続装置。  The optical fiber connection according to claim 3, wherein the locking portion of the elastic arm opens the narrowed region of the passage as the elastic arm is elastically deformed with the movement of the operating member on the main body. apparatus. 前記本体は、該本体の外面に開口するとともに前記通路に連通する導入口を備え、前記弾性腕の前記押圧部が該導入口に近接して配置される請求項2〜4のいずれか1項に記載の光ファイバ接続装置。  The said main body is provided with the inlet which opens to the outer surface of this main body, and is connected to the said channel | path, The said press part of the said elastic arm is arrange | positioned in proximity to this inlet. An optical fiber connection device according to claim 1. 前記保持要素が前記作動部材に一体成形される請求項1〜5のいずれか1項に記載の光ファイバ接続装置。  The optical fiber connecting device according to claim 1, wherein the holding element is integrally formed with the operating member.
JP2003207134A 2003-08-11 2003-08-11 Optical fiber connection device Expired - Fee Related JP4393128B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003207134A JP4393128B2 (en) 2003-08-11 2003-08-11 Optical fiber connection device
US10/595,079 US7234878B2 (en) 2003-08-11 2004-07-19 Optical fiber connecting device
PCT/US2004/023262 WO2005019890A1 (en) 2003-08-11 2004-07-19 Optical fiber connecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207134A JP4393128B2 (en) 2003-08-11 2003-08-11 Optical fiber connection device

Publications (2)

Publication Number Publication Date
JP2005062223A JP2005062223A (en) 2005-03-10
JP4393128B2 true JP4393128B2 (en) 2010-01-06

Family

ID=34208952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207134A Expired - Fee Related JP4393128B2 (en) 2003-08-11 2003-08-11 Optical fiber connection device

Country Status (2)

Country Link
JP (1) JP4393128B2 (en)
WO (1) WO2005019890A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042902A (en) * 1989-11-16 1991-08-27 Advanced Custom Applications, Inc. Optical fiber splice and method of use
US5638477A (en) * 1995-12-22 1997-06-10 Minnesota Mining And Manufacturing Company Strain relief means for optical fiber splicing member and improved tool for making the splice
FR2757958B1 (en) * 1996-12-30 1999-01-22 Alsthom Cge Alcatel TOOL FOR CONNECTING A FIBER TO ANOTHER FIBER OR TO AN OPTICAL CONNECTION ELEMENT THROUGH A CONNECTION MODULE
US6325549B1 (en) * 1999-07-13 2001-12-04 Lucent Technologies Inc Connectors for plastic optical fiber

Also Published As

Publication number Publication date
WO2005019890A1 (en) 2005-03-03
JP2005062223A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US7234878B2 (en) Optical fiber connecting device
JP4416591B2 (en) Optical connector and optical fiber connection system
US7140787B2 (en) Optical fiber mechanical splice with strain relief mechanism
US20060104590A1 (en) Tool for optical connector and tool equipped optical connector
JPH09318836A (en) Optical fiber connector
JPH0212112A (en) Mutual link centering mechanical element for stamp working precision light guide
JP2007517255A (en) Optical connector, optical fiber with connector, optical fiber connection device, and optical fiber connection method
WO2006019516A1 (en) Optical connector and optical fiber connecting system
JPH03172805A (en) Connector
JP4393128B2 (en) Optical fiber connection device
US20180128990A1 (en) Foldover optical fiber ferrule assembly
US10739535B2 (en) Process for reshaping and resizing grooves in optical fiber ferrules
EP0794447A1 (en) Apparatus for separating ribbon-coated multicore optical fiber
JP4441480B2 (en) Connection jig for optical connectors
JP4646263B1 (en) Mounting aid for optical connector and optical connector
US20120195557A1 (en) Connected optical fiber and method for assembling same
JP4270521B1 (en) Auxiliary tool for mechanical splice
JP5310508B2 (en) Optical fiber connector, optical connector, and optical fiber connector assembly method
JP2004078000A (en) Optical fiber connection member
EP2466352B1 (en) Method for connecting optical fibers
JP3478692B2 (en) Optical fiber splicer
KR20080083344A (en) Mechanical splice
JP4093884B2 (en) Connection mechanism and optical connector
KR102319052B1 (en) Clamp for moving optical fiber connector
JP4087856B2 (en) Mechanical splice

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090603

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees