JP4391152B2 - Method for manufacturing electret body and charging device - Google Patents

Method for manufacturing electret body and charging device Download PDF

Info

Publication number
JP4391152B2
JP4391152B2 JP2003273390A JP2003273390A JP4391152B2 JP 4391152 B2 JP4391152 B2 JP 4391152B2 JP 2003273390 A JP2003273390 A JP 2003273390A JP 2003273390 A JP2003273390 A JP 2003273390A JP 4391152 B2 JP4391152 B2 JP 4391152B2
Authority
JP
Japan
Prior art keywords
polar liquid
electret body
electret
ultrasonic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003273390A
Other languages
Japanese (ja)
Other versions
JP2005029944A (en
Inventor
治 秋庭
暁 小堀
雅章 川部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2003273390A priority Critical patent/JP4391152B2/en
Publication of JP2005029944A publication Critical patent/JP2005029944A/en
Application granted granted Critical
Publication of JP4391152B2 publication Critical patent/JP4391152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、熱可塑性樹脂からなる構造体をエレクトレット化するのに好適なエレクトレット体の製造方法と、この製造方法に用いて好適な帯電装置に関する。   The present invention relates to a method for manufacturing an electret body suitable for electretizing a structure made of a thermoplastic resin, and a charging device suitable for use in the manufacturing method.

従来から、気体中の塵埃等を除去するため、織布、不織布などの多孔質な熱可塑性樹脂から成る構造体が濾過材として用いられている。このような濾過材は、主として物理的作用によるブラウン拡散、遮り、慣性衝突によって塵埃等を除去するものであるため、この種の構造体が有する開孔径を小さくするほど、より小さな塵埃等を効率的に捕捉・除去することが可能である。周知の通り、所定粒径の塵埃を捕捉・除去する場合、濾過材が有する開孔径を小さくするほど濾過効率は高くなるが、同時に圧力損失も大きくなる。従って、濾過材を装着する機器にも、例えば送風能力に高性能を要するため、機器の運転コストも高くなるという問題が生じる。   Conventionally, a structure made of a porous thermoplastic resin such as a woven fabric or a non-woven fabric has been used as a filtering material in order to remove dust and the like in the gas. Since such a filter medium mainly removes dust and the like by Brownian diffusion, shielding and inertial collision due to physical action, the smaller the aperture diameter of this type of structure, the smaller the dust and the like. Can be captured and removed automatically. As is well known, when dust having a predetermined particle diameter is captured and removed, the filtration efficiency increases as the aperture diameter of the filter material decreases, but at the same time the pressure loss increases. Therefore, the apparatus to which the filter medium is attached also has a problem that the operating cost of the apparatus becomes high because the air blowing capacity requires high performance, for example.

上述した濾過効率と圧力損失との、相反する問題を改善する技術として、熱可塑性樹脂から成る構造体をエレクトレット化し、当該構造体をエレクトレット体とすることによって、実質的に同じ開孔径であっても、静電気的な作用によって、より小さな塵埃等の捕捉・除去を行い、高い濾過効率と低い圧力損失とを両立させる試みがなされている。このようなエレクトレット化技術として、大気中の放電現象を利用したコロナ帯電によってエレクトレット体とすることが広くなされている。   As a technique for improving the contradictory problems between the filtration efficiency and the pressure loss described above, a structure made of a thermoplastic resin is electretized, and the structure is made into an electret body, so that substantially the same opening diameter is obtained. However, attempts have been made to achieve both high filtration efficiency and low pressure loss by capturing and removing smaller dust and the like by electrostatic action. As such electretization technology, electret bodies are widely used by corona charging utilizing discharge phenomenon in the atmosphere.

また、上述した構造体をエレクトレット体とした後、与えられた電荷を安定化する目的で、当該構造体を構成する熱可塑性樹脂にヒンダードアミン系の化合物を添加する技術として、特開平1−287914号公報(以下、特許文献1)が知られている。この公報では、熱可塑性樹脂としてポリプロピレン樹脂を開示すると共に、係る樹脂を比較的細い繊維径、ひいては比較的小さな開孔径のシートを調製することが可能なメルトブロー不織布を例示し、空気中で電圧印加することによって、高効率かつ低圧損なエレクトレット体を得る技術が開示されている。   Also, as a technique for adding a hindered amine compound to a thermoplastic resin constituting the structure for the purpose of stabilizing the applied charge after the structure described above is an electret body, Japanese Patent Laid-Open No. 1-287914 A gazette (hereinafter referred to as Patent Document 1) is known. In this publication, a polypropylene resin is disclosed as a thermoplastic resin, and a melt blown nonwoven fabric capable of preparing a sheet having a relatively small fiber diameter, and thus a relatively small opening diameter, is illustrated as an example of such a resin. Thus, a technique for obtaining an electret body with high efficiency and low pressure loss is disclosed.

さらに、特表平11−510862号公報(以下、特許文献2)では、エレクトレット体を製造する技術として、多量の捕捉電荷を有し得る熱可塑性非導電性微小繊維の不織ウェブ上に、水の噴流または水滴流を、濾過向上性エレクトレット電荷をウェブに提供するのに十分な圧力で、衝突させる工程および該ウェブを乾燥する工程から成る、エレクトレット濾過材を提供するための熱可塑性微小繊維の不織ウェブの荷電方法によって、エレクトレット体を製造する技術が知られている。   Furthermore, in Japanese Patent Application Laid-Open No. 11-510862 (hereinafter referred to as Patent Document 2), as a technique for producing an electret body, a non-woven web of thermoplastic non-conductive microfibers that can have a large amount of trapped charges is used. Of a thermoplastic microfiber for providing an electret filter medium comprising the steps of impinging a jet or water stream of water at a pressure sufficient to provide a filtration enhancing electret charge to the web and drying the web Techniques for producing electret bodies by a method for charging a nonwoven web are known.

一方、本出願人は特願2002−5233号(以下、特許文献3)において、熱可塑性樹脂からなる構造体に対し、極性液体を介して超音波振動を作用させ、当該構造体をエレクトレット体とする技術を提案している。この技術によれば、上記特許文献2のような極性液体を衝突させる場合に比べて、当該極性液体と熱可塑性樹脂から成る構造体との摩擦が低く抑えられる。従って、この出願技術によれば、例えばメルトブロー不織布を構成する繊維の配向が水の噴流によって変わり、繊維が移動してシートに孔が開くことによる集塵効率の低下を抑制することが可能となる。   On the other hand, in Japanese Patent Application No. 2002-5233 (hereinafter referred to as Patent Document 3), the present applicant causes ultrasonic vibration to act on a structure made of a thermoplastic resin via a polar liquid, and the structure is designated as an electret body. The technology to do is proposed. According to this technique, the friction between the polar liquid and the structure made of the thermoplastic resin can be suppressed as compared with the case where the polar liquid is collided as in Patent Document 2 described above. Therefore, according to this application technique, for example, the orientation of the fibers constituting the meltblown nonwoven fabric is changed by the jet of water, and it is possible to suppress a decrease in dust collection efficiency due to movement of the fibers and opening of holes in the sheet. .

特開平1−287914号公報JP-A-1-287914

特表平11−510862号公報Japanese National Patent Publication No. 11-510862 特願2002−5233号Japanese Patent Application No. 2002-5233

上述したように、本出願人は、熱可塑性樹脂から成る構造体をエレクトレット化するに当たって、当該構造体を構成する繊維等に対する極性液体の物理的作用として極性液体中で超音波振動を作用させる技術に着目し、鋭意検討を続けた。その結果、この技術を特定の条件下で適用することによって、より優れたエレクトレット体を製造し得る技術と、これに用いて好適な帯電装置とを見出し、本出願に係る発明を完成するに至った。   As described above, the present applicant, when electretizing a structure made of a thermoplastic resin, a technique for applying ultrasonic vibration in the polar liquid as a physical action of the polar liquid on the fibers constituting the structure. Focused on the continual investigation. As a result, by applying this technology under specific conditions, a technology capable of producing a superior electret body and a charging device suitable for use in this technology have been found, and the invention according to the present application has been completed. It was.

従って、この出願に係る発明の目的は、熱可塑性樹脂からなる構造体をエレクトレット化するに際して、超音波振動による物理的作用による帯電効果をより効果的に実現し、かつ上記構造体をエレクトレット体とする過程での構造体損傷を抑制することによって、優れた濾過特性を実現し得るエレクトレット体を提供することにある。   Therefore, the object of the invention according to this application is to more effectively realize a charging effect due to a physical action by ultrasonic vibration when the structure made of a thermoplastic resin is electretized, and the structure is an electret body. An object of the present invention is to provide an electret body capable of realizing excellent filtration characteristics by suppressing structural damage during the process.

この目的の達成を図るため、本出願の第1発明に係るエレクトレット体の製造方法によれば、熱可塑性樹脂からなる構造体に対し、極性液体を介して超音波振動を作用させてエレクトレット体を製造するに当たり、超音波発振部材と、これに対向して設けられた規制部材との距離を、前記構造体の20(g/cm)圧縮荷重下での厚さの150倍未満とし、前記極性液体の温度を40℃以下に保つことを特徴としている。
In order to achieve this object, according to the method of manufacturing an electret body according to the first invention of the present application, an ultrasonic vibration is applied to a structure made of a thermoplastic resin via a polar liquid to thereby change the electret body. In manufacturing, the distance between the ultrasonic oscillation member and the regulating member provided to face the ultrasonic oscillation member is less than 150 times the thickness of the structure under a 20 (g / cm 2 ) compressive load , It is characterized by maintaining the temperature of the polar liquid at 40 ° C. or lower .

また、本出願の第2発明に係る帯電装置によれば、熱可塑性樹脂から成る構造体に対し、極性液体を介して超音波振動を作用せしめるための帯電装置であって、上述した極性液体を収容するための浴槽と、この浴槽中に収容された極性液体に浸漬状態で前述した構造体を搬送するため、構造体搬送方向に設けられた一対の搬送部材と、この一対の搬送部材間に設けられた超音波発振部材を含む超音波振動発生部と、この超音波発振部材に対向する規制部材とを備え、かつ前記超音波発振部材と規制部材との距離を調節固定するための可変固定手段を設け、さらに前記極性液体の温度を40℃以下に保つための冷却装置を備えてなることを特徴としている。
The charging device according to the second invention of the present application is a charging device for causing ultrasonic vibration to act on a structure made of a thermoplastic resin via a polar liquid. A pair of transport members provided in the structure transport direction and a pair of transport members for transporting the structure described above in a immersed state in a polar liquid stored in the bathtub, and the pair of transport members; An ultrasonic vibration generating portion including the provided ultrasonic oscillation member and a regulating member facing the ultrasonic oscillation member, and a variable fixing for adjusting and fixing the distance between the ultrasonic oscillation member and the regulating member And a cooling device for keeping the temperature of the polar liquid at 40 ° C. or lower .

この出願の第1発明に係るエレクトレット体の製造方法によれば、熱可塑性樹脂からなる構造体に対し、極性液体を介して超音波振動を作用させてエレクトレット体を製造するに当たり、超音波発振部材と、これに対向して設けられた規制部材との距離を、前記構造体の20(g/cm)の圧縮荷重下における厚さの150倍未満とし、前記極性液体の温度を40℃以下に保つことを特徴としている。このため、超音波発振部材と、これに対向する規制部材との間で極性液体の超音波による振動が効率的に構造体に伝わり、当該液体によって優れた帯電効果を実現することができる。
According to the method of manufacturing an electret body according to the first invention of this application, in manufacturing an electret body by applying ultrasonic vibration to a structure made of a thermoplastic resin via a polar liquid, an ultrasonic oscillation member And the distance between the regulating member and the regulating member provided opposite thereto is less than 150 times the thickness of the structure under a compressive load of 20 (g / cm 2 ), and the temperature of the polar liquid is 40 ° C. It is characterized by the following . For this reason, the vibration by the ultrasonic wave of the polar liquid is efficiently transmitted to the structure between the ultrasonic oscillation member and the regulating member opposed thereto, and an excellent charging effect can be realized by the liquid.

また、この出願の第2発明に係る帯電装置によれば、熱可塑性樹脂から成る構造体に対し、極性液体を介して超音波振動を作用せしめるための帯電装置であって、上述した極性液体を収容するための浴槽と、この浴槽中に収容された極性液体に浸漬状態で前述した構造体を搬送するため、構造体搬送方向に設けられた一対の搬送部材と、この一対の搬送部材間に設けられた超音波発振部材を含む超音波振動発生部とを備え、この超音波発振部材に対向する規制部材を備え、かつ前述した超音波発振部材と規制部材との距離を調節固定するための可変固定手段を設け、さらに前記極性液体の温度を40℃以下に保つための冷却装置を備える構成となっている。
The charging device according to the second invention of this application is a charging device for causing ultrasonic vibration to act on a structure made of a thermoplastic resin via a polar liquid, wherein the polar liquid described above is used. A pair of transport members provided in the structure transport direction and a pair of transport members for transporting the structure described above in a immersed state in a polar liquid stored in the bathtub, and the pair of transport members; An ultrasonic vibration generating unit including the provided ultrasonic oscillation member, a regulation member facing the ultrasonic oscillation member, and adjusting and fixing the distance between the ultrasonic oscillation member and the regulation member described above variable fixing means is provided, further a comprising Ru constituting a cooling device for keeping the temperature of the polar liquid 40 ° C. or less.

このため、前述した本出願の第1発明に係る製造方法を実施するに当たって、種々の厚さを有する構造体に対し、帯電効果の設計に基づいた超音波発振部材と規制部材との距離を規定し、優れた濾過性能を有するエレクトレット体を高い再現性で提供することができる。さらに、本発明の装置に備えられた一対の搬送部材は、上述した超音波発振部材と規制部材との特定距離で形成された極性液体の領域内に対して、構造体を安定した位置に搬送供給し得る。従って、例えば不織布などの繊維配向が乱れやすい構造体であっても、濾過性能及び品位に優れたエレクトレット体を提供することができる。   For this reason, in carrying out the manufacturing method according to the first invention of the present application described above, the distance between the ultrasonic oscillation member and the regulating member based on the design of the charging effect is defined for the structures having various thicknesses. And the electret body which has the outstanding filtration performance can be provided with high reproducibility. Further, the pair of conveying members provided in the apparatus of the present invention conveys the structure to a stable position with respect to the polar liquid region formed at a specific distance between the ultrasonic oscillation member and the regulating member. Can be supplied. Therefore, even if it is a structure which is easy to disturb fiber orientation, such as a nonwoven fabric, an electret body excellent in filtration performance and quality can be provided.

また、上記2つの部材で形成された領域を狭く採ることにより、所定の電荷量を付与するために必要な超音波出力(エネルギー)を小さくし、効率的な帯電処理を行い得る。このため、例えば超音波発振部材などの装置部分の寿命を延ばすことも可能である。   Further, by narrowing the region formed by the two members, the ultrasonic output (energy) necessary for applying a predetermined charge amount can be reduced, and an efficient charging process can be performed. For this reason, it is also possible to extend the lifetime of apparatus parts, such as an ultrasonic oscillation member, for example.

本出願の第1発明に係るエレクトレット体の製造方法では、熱可塑性樹脂からなる構造体に対し、極性液体を介して超音波振動を作用させるに当たって、超音波発振部材と、これに対向して設けられた規制部材との距離を、前記構造体の20(g/cm)圧縮荷重下での厚さの150倍未満としている。ここに言う圧縮荷重下での厚さとは、JIS L 1096の「一般織物試験方法」に準じて測定された値を示す。 In the method of manufacturing an electret body according to the first invention of the present application, an ultrasonic oscillation member is provided opposite to an ultrasonic oscillation member for applying ultrasonic vibration to a structure made of a thermoplastic resin via a polar liquid. The distance from the regulated member is less than 150 times the thickness of the structure body under 20 (g / cm 2 ) compressive load. The thickness under the compression load mentioned here indicates a value measured according to “General Textile Testing Method” of JIS L 1096.

まず、この方法発明が適用される熱可塑性樹脂からなる構造体は、濾過材として従来知られている多孔質素材で有れば種々の形態のものを用いることができ、例えば、織物、編物、不織布などの繊維からなる構造体に適用するのが好適である。特に、この構造体を構成する熱可塑性樹脂として、濾過特性に有効な帯電量を付与する目的で、1014(Ω・cm)以上の体積固有抵抗値、より好ましくは1016(Ω・cm)以上の体積固有抵抗値を示すものが好適である。尚、この体積固有抵抗値の上限は特に限定されない。また、この体積固有抵抗値とは、JIS K 6911に定められる「熱硬化性プラスチック一般試験法」に準じた、3端子法による絶縁抵抗試験で用いられる「体積固有抵抗値測定装置」によって測定して得られる数値を言う。上記体積固有抵抗値に該当する熱可塑性樹脂としては、ポリオレフィン系樹脂(例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリメチルペンテン系樹脂、ポリスチレン系樹脂など)、ポリ四フッ化エチレン樹脂、ポリ塩化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリウレタン系樹脂などを挙げることができる。これらの中でも、ポリオレフィン系樹脂は特に体積固有抵抗値が高く、しかも繊維等への加工性に優れることから好適に用いられ、特にポリプロピレン系樹脂、或いはポリメチルペンテン系樹脂は耐熱性に優れるため、濾過材として好適なエレクトレット体とすることができる。 First, the structure made of a thermoplastic resin to which this method invention is applied can be used in various forms as long as it is a porous material conventionally known as a filter material, such as woven fabric, knitted fabric, It is preferable to apply to structures made of fibers such as nonwoven fabric. In particular, as a thermoplastic resin constituting this structure, a volume specific resistance value of 10 14 (Ω · cm) or more, more preferably 10 16 (Ω · cm), for the purpose of imparting an effective charge amount to filtration characteristics. What shows the above volume specific resistance value is suitable. In addition, the upper limit of this volume specific resistance value is not specifically limited. This volume resistivity value is measured by a “volume resistivity measurement device” used in an insulation resistance test by a three-terminal method in accordance with “General Thermosetting Plastic Testing Method” defined in JIS K 6911. Is the number obtained. Examples of the thermoplastic resin corresponding to the volume resistivity value include polyolefin resins (for example, polyethylene resins, polypropylene resins, polymethylpentene resins, polystyrene resins, etc.), polytetrafluoroethylene resins, and polyvinylidene chloride. Examples thereof include a resin, a polyvinyl chloride resin, and a polyurethane resin. Among these, polyolefin resin is particularly suitable because it has a high volume resistivity and is excellent in processability to fibers and the like, and in particular, polypropylene resin or polymethylpentene resin is excellent in heat resistance. An electret body suitable as a filter medium can be obtained.

また、本方法発明に言う「超音波発振部材と、これに対向して設けられた規制部材」については、後段で述べる本出願の第2発明に係る帯電装置として詳述するが、これら部材間の距離として、構造体の20(g/cm)圧縮荷重下での厚さの150倍未満としている。この距離の下限は、エレクトレット化される構造体自体の極性液体中での見掛けの厚さに依存する。このため、特に限定されるものではないが、エレクトレット化に際して、構造体表面に、これら部材が接触した状態で搬送される場合、得られるエレクトレット体表面に物理的な損傷を来す恐れがある。従って、これら部材間の距離は、極性液体中で膨潤した状態の構造体が有する見掛けの厚さ以上とするのが好ましい。 Further, the “ultrasonic oscillation member and the regulating member provided opposite to the ultrasonic oscillation member” referred to in the present invention will be described in detail as a charging device according to the second invention of the present application described later. The distance is set to be less than 150 times the thickness of the structure under a 20 (g / cm 2 ) compressive load. The lower limit of this distance depends on the apparent thickness of the electretized structure itself in the polar liquid. For this reason, although not particularly limited, in the case of electretization, when these members are conveyed to the surface of the structure in a state of contact, there is a possibility that physical damage will be caused to the surface of the obtained electret. Therefore, the distance between these members is preferably equal to or greater than the apparent thickness of the structure in a swollen state in the polar liquid.

さらに、本方法発明に言う構造体を構成する熱可塑性樹脂として、その帯電状態を安定して、より多くの電荷を帯びる様に、ヒンダードアミン系化合物、脂肪族金属塩(例えばステアリン酸のマグネシウム塩、ステアリン酸のアルミニウム塩など)、不飽和カルボン酸変性高分子のうちから選ばれた1種または2種以上の化合物を含有させることもできる。これら一連の化合物の中でも、ヒンダードアミン系化合物は、前述した特許文献1にも開示されるとおり、帯電量が多くなる点で特に好ましい。   Further, as the thermoplastic resin constituting the structure according to the present invention, a hindered amine compound, an aliphatic metal salt (for example, a magnesium salt of stearic acid, An aluminum salt of stearic acid and the like) and one or more compounds selected from unsaturated carboxylic acid-modified polymers can also be contained. Among these series of compounds, hindered amine compounds are particularly preferable in that the charge amount increases as disclosed in Patent Document 1 described above.

このようなヒンダードアミン系化合物の具体例として、ポリ[{(6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4−ジイル){(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}}、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)などを挙げることができる。   Specific examples of such hindered amine compounds include poly [{(6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl) {(2, 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}}, dimethyl-1- (2-hydroxyethyl) succinate -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1, 2,2,6,6-pentamethyl-4-piperidyl) and the like.

このような構造体に対して帯電性を高めることが可能な化合物の含有量は特に限定されるものではないが、当該構造体若しくは得られるエレクトレット体を構成する熱可塑性樹脂の全質量に対して、0.01〜5(mass%)の重量で含有されていることが望ましい。当該化合物の含有量が0.01(mass%)未満では、添加による帯電特性への効果が小さい傾向にあり、0.05(mass%)以上の含有量とするのが好ましい。また、当該含有量が5(mass%)を超えた場合、構造体若しくはエレクトレット体を構成する繊維等の強度が著しく低下する傾向にあり、より好ましくは当該含有量を2.5(mass%)以下とするのが好適である。   The content of the compound capable of increasing the chargeability with respect to such a structure is not particularly limited, but relative to the total mass of the thermoplastic resin constituting the structure or the electret body to be obtained. , And preferably contained in a weight of 0.01 to 5 (mass%). When the content of the compound is less than 0.01 (mass%), the effect on the charging characteristics due to the addition tends to be small, and the content is preferably 0.05 (mass%) or more. Moreover, when the content exceeds 5 (mass%), the strength of the fibers constituting the structure or electret body tends to be remarkably reduced, and more preferably the content is 2.5 (mass%). The following is preferable.

加えて、本方法発明の実施に当たり、極性液体として、電気伝導率をより低いものを用いるのが好ましい。ここに云う電気伝導率とはJIS K 0101「工業用水試験方法」、或いはJIS K 0552「超純水の電気伝導率試験方法」に規定された測定法で得られる数値を言う。極性液体としては、例えば水、アルコール、アセトン、アンモニアが溶解した水などを挙げることができるが、特に水は、エレクトレット化に際しての作業環境に優れること、並びに、エレクトレット体を調製する最終段階での乾燥に際して引火ないしは発火を回避し得る点から好適である。   In addition, in carrying out the present invention, it is preferable to use a polar liquid having a lower electrical conductivity. The electric conductivity referred to here is a numerical value obtained by a measurement method defined in JIS K 0101 “Industrial water test method” or JIS K 0552 “Electrical conductivity test method of ultrapure water”. Examples of the polar liquid include water, alcohol, acetone, and water in which ammonia is dissolved. In particular, water is excellent in the working environment for electretization, and in the final stage of preparing the electret body. This is preferable because it can avoid ignition or ignition during drying.

さらに、本方法発明を適用してエレクトレット化する構造体として、比較的細い繊維径からなる濾過材に広く用いられているメルトブロー技術で調製された不織布を採用することができる。このメルトブロー不織布は、濾過特性の設計上、所定の繊維径分布とすることができる。また、当該不織布は繊維同士の絡合状態が比較的緩く、物理的な外力に対する繊維の動きが比較的大きいとされている。従って、極性溶媒との接触摩擦によって帯電するエレクトレット化技術のうち、例えば高圧水流との接触摩擦による従来技術に比べ、本方法発明では、巨視的には極性溶媒の動きが小さい超音波振動による帯電が可能であるため、エレクトレット化を受けた後の品位低下や、所定の濾材設計が変わってしまう現象を効果的に回避することができる。   Furthermore, as a structure to be electretized by applying the method of the present invention, a nonwoven fabric prepared by a melt blow technique widely used for filter media having a relatively thin fiber diameter can be employed. This melt blown nonwoven fabric can have a predetermined fiber diameter distribution in terms of design of filtration characteristics. Moreover, the said nonwoven fabric is said that the entanglement state of fibers is comparatively loose, and the movement of the fiber with respect to a physical external force is comparatively large. Therefore, among electretization techniques that are charged by contact friction with a polar solvent, for example, in the present method invention, charging by ultrasonic vibration in which the movement of the polar solvent is small compared to the conventional technique by contact friction with a high-pressure water stream. Therefore, it is possible to effectively avoid the deterioration of quality after electretization and the phenomenon that a predetermined filter medium design is changed.

次に、図面を参照して、本出願の第2発明に係る帯電装置の好適な態様につき、上述した方法発明を一部参照して説明する。図1は、本発明に係る帯電装置について、構造体の搬送方向に交差する装置側面に着目し、模式的な透視断面により示す図である。尚、同図では各構成成分の断面についてのハッチングを省略すると共に、同一の機能を有する構成成分には同一の符号を付して示す。   Next, with reference to the drawings, a preferred embodiment of the charging device according to the second invention of the present application will be described with reference to a part of the above-described method invention. FIG. 1 is a schematic perspective cross-sectional view of a charging device according to the present invention, focusing on the side of the device that intersects the conveyance direction of a structure. In the figure, hatching of the cross section of each component is omitted, and components having the same function are denoted by the same reference numerals.

まず、図1において、供給ロール10から、エレクトレット化されるべき熱可塑性樹脂より成る構造体12を極性液体14が収容された浴槽16に搬送供給する。この際、構造体12は、搬送方向上流側であって、しかも極性液体14中に浸漬配置された搬送部材18aに支持されることで当該液体14内に導かれる。ここで、構造体12は、ロール状に巻回せず、例えばメルトブロー不織布の生産ラインに続いてシート状のまま、搬送部材18aを介して極性液体14内に導入される形態を採ってもよい。また、搬送部材18aとして、1本のロール状の形態を例示しているが、コンベア等、任意好適な部材として設計することもできる。特に、この搬送部材18aに対向して、構造体12を挟むようにロール状部材を追加して配設することもでき、この場合には、超音波振動の作用に先立って、構造体12中に残存する空気を排除し、より良好な帯電処理を実現することもできる。   First, in FIG. 1, a structure 12 made of a thermoplastic resin to be electret is conveyed and supplied from a supply roll 10 to a bathtub 16 in which a polar liquid 14 is accommodated. At this time, the structure 12 is guided into the liquid 14 by being supported by a transport member 18 a that is upstream in the transport direction and is immersed in the polar liquid 14. Here, the structure 12 may not be wound in the form of a roll, and may be in the form of being introduced into the polar liquid 14 via the conveying member 18a, for example, in the form of a sheet following the production line of the melt blown nonwoven fabric. Moreover, although the one roll-shaped form is illustrated as the conveyance member 18a, it can also be designed as arbitrary suitable members, such as a conveyor. In particular, a roll-shaped member may be additionally provided so as to face the conveying member 18a so as to sandwich the structure 12, and in this case, in the structure 12 prior to the action of ultrasonic vibration, It is also possible to eliminate the air remaining on the surface and realize a better charging process.

次いで、構造体12は、浴槽16の底部側に設けられた規制部材20と、これに対向する超音波発振部材22との間を通過する。ここで、超音波発振部材22は、一般に知られている超音波発生装置のホーンに相当する部材である。図1の超音波発生装置24は、当該部材22とパワーユニット26、変換器28、及びブースター30などからなる構成を例示している。   Next, the structural body 12 passes between the regulating member 20 provided on the bottom side of the bathtub 16 and the ultrasonic oscillation member 22 facing the regulating member 20. Here, the ultrasonic oscillation member 22 is a member corresponding to a horn of a generally known ultrasonic generator. The ultrasonic generator 24 in FIG. 1 illustrates a configuration including the member 22, a power unit 26, a converter 28, a booster 30, and the like.

また、規制部材20と超音波発振部材22との間を搬送処理された構造体12は、搬送部材18bを介して極性液体14外に導かれ、図示していない乾燥装置によって乾燥後、エレクトレット体として巻き取られる。このように、搬送部材18aと搬送部材18bとは、構造体搬送方向の上流側と下流側とに夫々配設される一対の部材であり、規制部材20と超音波発振部材22との間の搬送領域を一定に保つ機能を担っている。   In addition, the structure 12 that has been transported between the regulating member 20 and the ultrasonic oscillation member 22 is guided out of the polar liquid 14 via the transport member 18b, dried by a drying device (not shown), and then electret body. Rolled up as As described above, the transport member 18a and the transport member 18b are a pair of members respectively disposed on the upstream side and the downstream side in the structure transport direction, and between the regulation member 20 and the ultrasonic oscillation member 22. It is responsible for keeping the transport area constant.

ここで、規制部材20と超音波発振部材22との距離について、図2を参照して説明する。図2は、図1に示す帯電装置のうち、これら対向配置された部材の装置部分を拡大して示す模式的な透視断面図である。尚、同図においては、説明の理解を容易とするため、構造体の図示を省略する。   Here, the distance between the regulating member 20 and the ultrasonic oscillation member 22 will be described with reference to FIG. FIG. 2 is a schematic perspective sectional view showing, in an enlarged manner, the device portions of the members arranged opposite to each other in the charging device shown in FIG. In the drawing, the structure is not shown for easy understanding of the description.

図2に示すように、規制部材20と超音波発振部材22とは、構造体を搬送しながら処理する領域として、距離Dを以って対向配置されている。この距離Dは、前述した構造体の20(g/m)圧縮荷重下での厚さに応じて種々に調節固定されるものである。このような調節固定に際しては、規制部材20と超音波発振部材22との一方または双方に、例えばラック(鋸歯状の刻みを設けた直線状の部品)と歯車とを組み合わせた、図示していない可変固定手段を設け、特定の構造体に対しては上記部材間の距離Dを固定すると共に、搬送部材18a及び18bと協働して、搬送処理されている構造体12と上記部材20及び/または22との接触による構造体12の損傷を回避することが可能となる。 As shown in FIG. 2, the regulating member 20 and the ultrasonic oscillating member 22 are disposed to face each other with a distance D as a region to be processed while conveying the structure. This distance D is variously adjusted and fixed according to the thickness of the above-described structure under a 20 (g / m 2 ) compressive load. For such adjustment and fixing, one or both of the regulating member 20 and the ultrasonic oscillating member 22 is combined with, for example, a rack (a linear part provided with a serrated notch) and a gear, not shown. A variable fixing means is provided to fix the distance D between the members for a specific structure, and in cooperation with the conveying members 18a and 18b, the structure 12 being conveyed and the members 20 and / or Alternatively, damage to the structure 12 due to contact with 22 can be avoided.

さらに、構造体12は極性液体14を含みながら超音波振動の作用を受けるものである。従って、連続的に処理を続けることによって、極性液体14の浴槽16における容量が減少する傾向にある。このような極性液体の目減りを解消し、安定した超音波振動処理を実現する目的で、浴槽16に液面センサーを配設すると共に、当該センサーと連動する可変固定手段とし、構造体12の搬送位置が一定の極性液体の深さで搬送処理できる構成としてもよい。   Furthermore, the structure 12 receives the action of ultrasonic vibration while containing the polar liquid 14. Therefore, the capacity of the polar liquid 14 in the bathtub 16 tends to decrease by continuing the processing. In order to eliminate such a loss of polar liquid and realize a stable ultrasonic vibration process, a liquid level sensor is provided in the bathtub 16 and a variable fixing means interlocked with the sensor is used to convey the structure 12. It is good also as a structure which can carry out a conveyance process with the depth of a polar liquid with a fixed position.

さらに、連続的に超音波振動の作用を受け続けることによって、極性液体14の温度が上昇する傾向にある。このため、冷却装置等を用い、当該液体が凝固しない範囲内で温度を低く保つことが好ましく、極性液体の温度は40℃以下にすることが好ましい。   Furthermore, the temperature of the polar liquid 14 tends to rise by continuously receiving the action of ultrasonic vibration. For this reason, it is preferable to use a cooling device or the like and keep the temperature low within a range where the liquid does not solidify, and the temperature of the polar liquid is preferably 40 ° C. or lower.

また、規制部材20と超音波発振部材22との搬送方向に渡る寸法は、周知の通り、超音波が当該発振部材の端面から略放射状に伝搬するため、必ずしも対向する面の寸法を一致させて配設する必要はない。これと同様に、構造体の幅(図示紙面奥行き方向に渡る寸法)と、規制部材20及び/または超音波発振部材22との寸法関係も種々に選択することができる。また、規制部材20の好適な形態として、平板状の部材を例示したが、所定の曲率を有する円柱状、または楕円状のロール形状として配設することもできる。   In addition, as is well known, the dimensions of the regulating member 20 and the ultrasonic oscillation member 22 in the conveyance direction are such that the ultrasonic waves propagate substantially radially from the end face of the oscillation member, so that the dimensions of the opposing surfaces are not necessarily matched. It is not necessary to arrange. Similarly, the dimensional relationship between the width of the structure (dimension in the depth direction in the drawing) and the regulating member 20 and / or the ultrasonic oscillation member 22 can be variously selected. Moreover, although the flat member was illustrated as a suitable form of the control member 20, it can also be arrange | positioned as a cylindrical shape which has a predetermined curvature, or an elliptical roll shape.

さらに、この装置を構成する各部材の材質は、使用する極性液体に対して耐腐食性を有するステンレス等で構成するなど、装置構成の材質、形状、配置関係並びに数値的条件などは、目的とするエレクトレット体の設計及び本発明の目的の範囲内で、種々に設計の変更及び変形を行うことができる。   Furthermore, the material of each member constituting this device is made of stainless steel having corrosion resistance to the polar liquid used, such as the material of the device configuration, shape, arrangement relationship and numerical conditions, etc. Various design changes and modifications can be made within the scope of the design of the electret body and the object of the present invention.

以下、本発明に係る方法及び装置について、好適な適用例としてエレクトレット体の評価結果を参照し、実施例としてより詳細に説明する。尚、本発明は、これら実施例にのみ限定されるものではない。   Hereinafter, the method and apparatus according to the present invention will be described in more detail as examples with reference to the evaluation results of electret bodies as a preferred application example. In addition, this invention is not limited only to these Examples.

始めに、本発明を適用する際に、図1を参照して説明した本発明の、規制部材20と超音波発振部材22との距離Dについての評価結果を説明する。まず、熱可塑性樹脂から成る構造体として、体積固有抵抗値が1016程度(Ω・cm)である市販のポリプロピレン樹脂に対して、市販のヒンダードアミン『CHIMASSORB 944FD』(チバ・スペシャルティーケミカルズ株式会社製,登録商標)を樹脂全体の1.0(mass%)含むメルトブロー不織布(面密度20(g/m)、平均繊維径5(μm))を調製した。 First, when applying the present invention, an evaluation result of the distance D between the regulating member 20 and the ultrasonic oscillation member 22 according to the present invention described with reference to FIG. 1 will be described. First, as a structure made of a thermoplastic resin, a commercially available hindered amine “CHIMASORB 944FD” (manufactured by Ciba Specialty Chemicals Co., Ltd.) is used for a commercially available polypropylene resin having a volume resistivity of about 10 16 (Ω · cm). , Registered trademark) containing 1.0 (mass%) of the entire resin, a melt blown nonwoven fabric (surface density 20 (g / m 2 ), average fiber diameter 5 (μm)) was prepared.

このようにして得られた構造体(以下、構造体1と称する)に対し、図1に示す帯電装置の浴槽16に、極性液体として電気伝導度が3.2(μS/cm)、温度25(℃)の純水(蒸留、イオン交換を経た二次蒸留水に相当)を収容し、超音波発振部材22から発生する超音波の振幅を0.5(μm)、及び構造体の搬送速度を1(m/min)に統一し、規制部材20と超音波発振部材22との距離Dを、後段に表1として示す種々の値として超音波振動を作用させ、所定の乾燥を経て、実施例1、実施例2及び比較例1のエレクトレット体を得た。尚、ここで用いた構造体の20(g/cm)圧縮荷重下での厚さは、いずれも0.3(mm)であった。超音波発生装置24として、定格出力600(W)の市販装置を用い、周波数19.5kHzの超音波振動を作用させた。 With respect to the structure thus obtained (hereinafter referred to as structure 1), the electric conductivity of 3.2 (μS / cm) as a polar liquid in the bathtub 16 of the charging device shown in FIG. (° C.) pure water (corresponding to secondary distilled water subjected to distillation and ion exchange) is accommodated, the amplitude of ultrasonic waves generated from the ultrasonic oscillation member 22 is 0.5 (μm), and the transport speed of the structure 1 (m / min), the distance D between the regulating member 20 and the ultrasonic oscillating member 22 is subjected to ultrasonic vibration with various values shown in Table 1 in the subsequent stage, and after passing through a predetermined drying The electret bodies of Example 1, Example 2, and Comparative Example 1 were obtained. The thickness of the structure used here under a 20 (g / cm 2 ) compressive load was 0.3 (mm). A commercially available device with a rated output of 600 (W) was used as the ultrasonic generator 24, and ultrasonic vibration with a frequency of 19.5 kHz was applied.

これら実施例に係るエレクトレット体の評価に当たっては、粒径0.3〜0.5(μm)の大気塵を用い、面風速10(cm/秒)の条件で捕集効率E(%)を測定した。また、評価結果として、捕集効率測定試験開始前、面風速10(cm/秒)の条件での圧力損失△P(Pa)と捕集効率E(%)とから、次の数式1(但し「ln」は自然対数)に基いてγ値を算出し、その百倍の値として100γを得た。
γ=―ln(1−E/100)/△P
一般に、この値が大きいほど捕集効率に優れ、しかも圧力損失が低い濾過特性を持つ。
In evaluating the electret bodies according to these examples, the collection efficiency E (%) was measured under the condition of a surface wind speed of 10 (cm / sec) using atmospheric dust having a particle size of 0.3 to 0.5 (μm). did. In addition, as an evaluation result, from the pressure loss ΔP (Pa) and the collection efficiency E (%) under the condition of the surface wind speed 10 (cm / sec) before the start of the collection efficiency measurement test, the following formula 1 (however, The γ value was calculated on the basis of “ln” is a natural logarithm), and 100 γ was obtained as a value of 100 times.
γ = −ln (1-E / 100) / ΔP
In general, the larger this value, the better the collection efficiency and the lower the pressure loss.

Figure 0004391152
Figure 0004391152

上記表1からも理解できるように、本発明の方法及び装置を使用して、規制部材20と超音波発振部材22との距離Dを50(mm)未満、即ち、これら部材に対する極性液体中での構造体の20(g/cm)圧縮荷重下での厚さの150倍未満とすることにより、100γを指標として、捕集効率と圧力損失との双方に優れたエレクトレット体を実現することができた。また、通常、ポリプロピレンを用いたメルトブロー不織布は水に対して濡れにくい性質を有することが知られている。上述した実施例において、帯電処理後に得られた各標品について、処理直後の極性液体に対する濡れ性を確認したところ、実施例1及び実施例2では、得られたエレクトレット体の全体に渡って良好な濡れ性を有していたが、比較例に係るエレクトレット体では、一部に濡れていない部分が観察された。 As can be understood from Table 1 above, using the method and apparatus of the present invention, the distance D between the regulating member 20 and the ultrasonic oscillation member 22 is less than 50 mm, that is, in a polar liquid with respect to these members. By realizing less than 150 times the thickness of the structure of 20 (g / cm 2 ) under compressive load, an electret body excellent in both collection efficiency and pressure loss can be realized using 100γ as an index. I was able to. Further, it is generally known that a melt blown nonwoven fabric using polypropylene has a property of being difficult to wet with water. In each of the above-described examples, the wettability with respect to the polar liquid immediately after the processing was confirmed for each sample obtained after the charging process. In Example 1 and Example 2, the obtained electret bodies were all good. However, in the electret body according to the comparative example, a part not wetted was observed.

次に、本発明を適用するに当たり、極性液体の電気伝導度を種々に変えた場合の評価結果につき説明する。この評価に当たっては、上述したメルトブロー不織布に対して、既に述べた純水(電気伝導度3.2(μS/cm)、温度25(℃))と、工業用水(茨城県にて採取:電気伝導度160(μS/cm)、温度25(℃))とを用い、前述した図1に示す装置の浴槽16に、夫々の極性液体として収容、超音波振動による処理を実施した実施例3及び実施例4のエレクトレット体について100γを求めた。用いた極性液体の違いに加えて、超音波の振幅条件は9(μm)、並びに構造体の搬送速度は0.7(m/min)に統一した。また、評価方法等については前述の通りである。   Next, evaluation results when the electric conductivity of the polar liquid is variously changed when the present invention is applied will be described. In this evaluation, the pure water (electric conductivity 3.2 (μS / cm), temperature 25 (° C.)) and industrial water (collected in Ibaraki Prefecture) were collected from the above melt-blown nonwoven fabric. Example 3 and implementation which carried out the process by ultrasonic vibration, each accommodated as each polar liquid in the bathtub 16 of the apparatus shown in FIG. 1 mentioned above using the temperature of 160 (μS / cm) and the temperature of 25 (° C.). For the electret body of Example 4, 100γ was determined. In addition to the difference in the polar liquid used, the amplitude condition of the ultrasonic wave was unified to 9 (μm), and the conveyance speed of the structure was unified to 0.7 (m / min). The evaluation method and the like are as described above.

Figure 0004391152
Figure 0004391152

この結果から理解できるとおり、極性液体の電気伝導率が低いほど、優れたエレクトレット体を得ることができた。   As can be understood from this result, an excellent electret body could be obtained as the electric conductivity of the polar liquid was lower.

次に、本発明を適用するに当たり、極性液体14の温度を種々に変えた場合の評価結果につき説明する。この評価に当たっては、上述したメルトブロー不織布に対して、純水(電気伝導度3.2(μS/cm))の温度を後段に表3として示す種々の値として超音波振動を作用させ、所定の乾燥を経て、実施例5、実施例6及び参考例のエレクトレット体を得た。用いた極性液体の温度の違いに加えて、超音波の振幅条件は9(μm)、並びに構造体の搬送速度は0.7(m/min)に統一した。また、評価方法等については前述の通りである。
Next, evaluation results when the temperature of the polar liquid 14 is variously changed when the present invention is applied will be described. In this evaluation, ultrasonic vibrations were applied to the melt blown nonwoven fabric described above, with the temperature of pure water (electric conductivity 3.2 (μS / cm)) as various values shown in Table 3 in the subsequent stage, The electret body of Example 5, Example 6, and the reference example was obtained through drying. In addition to the difference in temperature of the polar liquid used, the ultrasonic amplitude condition was unified to 9 (μm), and the conveyance speed of the structure was unified to 0.7 (m / min). The evaluation method and the like are as described above.

Figure 0004391152
Figure 0004391152

この結果から理解できるとおり、極性液体が凝固しない範囲で、その温度が低いほど優れたエレクトレット体を得ることができた。   As can be understood from this result, an excellent electret body could be obtained as the temperature decreased in the range where the polar liquid did not solidify.

図1は、本発明の装置の構成例を模式的な透視断面により示す図、FIG. 1 is a diagram showing a configuration example of a device of the present invention by a schematic perspective section, 図2は、本発明を説明するため、装置を部分的に拡大して示す模式的な透視断面図である。FIG. 2 is a schematic perspective sectional view showing the apparatus partially enlarged to explain the present invention.

符号の説明Explanation of symbols

10:供給ロール、
12:(熱可塑性樹脂から成る)構造体、
14:極性液体、
16:浴槽、
18a,18b:搬送部材、
20:規制部材、
22:超音波発振部材、
24:超音波発生装置、
26:パワーユニット、
28:変換器、
30:ブースター、
D:(規制部材と超音波発振部材との)距離。
10: supply roll,
12: structure (made of thermoplastic resin),
14: Polar liquid,
16: Bathtub
18a, 18b: conveying member,
20: restriction member,
22: Ultrasonic oscillation member,
24 : Ultrasonic generator,
26: Power unit,
28: Converter,
30: Booster,
D: Distance between the regulating member and the ultrasonic oscillation member.

Claims (6)

熱可塑性樹脂からなる構造体に対し、極性液体を介して超音波振動を作用させてエレクトレット体を製造するに当たり、超音波発振部材と、これに対向して設けられた規制部材との距離を、前記構造体の20(g/cm)の圧縮荷重下における厚さの150倍未満とし、前記極性液体の温度を40℃以下に保つことを特徴とするエレクトレット体の製造方法。 When manufacturing an electret body by applying ultrasonic vibration to a structure made of a thermoplastic resin via a polar liquid, the distance between the ultrasonic oscillation member and a regulating member provided facing the ultrasonic vibration member is The manufacturing method of the electret body characterized by making it less than 150 times the thickness under 20 (g / cm < 2 >) compressive load of the said structure, and keeping the temperature of the said polar liquid below 40 degreeC. 前記構造体を、1014Ω・cm以上の体積固有抵抗値としたことを特徴とする請求項1に記載のエレクトレット体の製造方法。   The method for producing an electret body according to claim 1, wherein the structure has a volume resistivity of 1014 Ω · cm or more. 前記構造体を、1016Ω・cm以上の体積固有抵抗値としたことを特徴とする請求項1に記載のエレクトレット体の製造方法。   The method for producing an electret body according to claim 1, wherein the structure has a volume resistivity of 1016 Ω · cm or more. 前記構造体が、ヒンダードアミン系化合物、脂肪酸金属塩、不飽和カルボン酸変性高分子の中から選ばれた1種または2種以上の化合物を含有することを特徴とする請求項1〜請求項3のいずれかに記載のエレクトレット体の製造方法。   The structure according to claim 1, wherein the structure contains one or more compounds selected from hindered amine compounds, fatty acid metal salts, and unsaturated carboxylic acid-modified polymers. The manufacturing method of the electret body in any one. 前記構造体がメルトブロー不織布で有ることを特徴とする請求項1〜請求項4のいずれかに記載のエレクトレット体の製造方法。   The said structure is a melt blown nonwoven fabric, The manufacturing method of the electret body in any one of Claims 1-4 characterized by the above-mentioned. 熱可塑性樹脂から成る構造体に対し、極性液体を介して超音波振動を作用せしめるための帯電装置であって、前記極性液体を収容するための浴槽と、該浴槽中に収容された極性液体に浸漬状態で前記構造体を搬送するため、構造体搬送方向に設けられた一対の搬送部材と、該一対の搬送部材間に設けられた超音波発振部材を含む超音波振動発生部と、該超音波発振部材に対向する規制部材とを備え、かつ前記超音波発振部材と規制部材との距離を調節固定するための可変固定手段を設け、さらに前記極性液体の温度を40℃以下に保つための冷却装置を備えたことを特徴とする帯電装置。 A charging device for applying ultrasonic vibration to a structure made of a thermoplastic resin via a polar liquid, the bathtub for containing the polar liquid, and the polar liquid contained in the bathtub In order to transport the structure in the immersion state, a pair of transport members provided in the structure transport direction, an ultrasonic vibration generation unit including an ultrasonic oscillation member provided between the pair of transport members, And a variable fixing means for adjusting and fixing the distance between the ultrasonic oscillation member and the regulating member, and further for maintaining the temperature of the polar liquid at 40 ° C. or lower. A charging device comprising a cooling device .
JP2003273390A 2003-07-11 2003-07-11 Method for manufacturing electret body and charging device Expired - Lifetime JP4391152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273390A JP4391152B2 (en) 2003-07-11 2003-07-11 Method for manufacturing electret body and charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273390A JP4391152B2 (en) 2003-07-11 2003-07-11 Method for manufacturing electret body and charging device

Publications (2)

Publication Number Publication Date
JP2005029944A JP2005029944A (en) 2005-02-03
JP4391152B2 true JP4391152B2 (en) 2009-12-24

Family

ID=34210643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273390A Expired - Lifetime JP4391152B2 (en) 2003-07-11 2003-07-11 Method for manufacturing electret body and charging device

Country Status (1)

Country Link
JP (1) JP4391152B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5475541B2 (en) * 2010-05-07 2014-04-16 日本バイリーン株式会社 Charging filter and mask
WO2023074758A1 (en) * 2021-10-29 2023-05-04 東洋紡株式会社 Electret, electret filter, and method for producing electret

Also Published As

Publication number Publication date
JP2005029944A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
KR101910312B1 (en) Electrically charged filter and mask
RU2266771C2 (en) Method and a device for manufacture of a fibrous electret linen with application of a wetting liquid and a water polar liquid
EP1545741B1 (en) High efficiency ashrae filter media
US20010042361A1 (en) Melt blown composite HEPA filter media and vacuum bag
US20010045086A1 (en) Melt blown composite hepa vacuum filter
EP1240935A2 (en) Filtering medium for air filters and process for producing the same
JPWO2003060216A1 (en) Electret body manufacturing method and manufacturing apparatus
JP5839547B2 (en) Filter filter medium pleating method and pleating apparatus
JP4391152B2 (en) Method for manufacturing electret body and charging device
JP3769233B2 (en) Manufacturing method of electret body
EP3794171A1 (en) Methods of saturating nonwoven fabrics with liquid and the making of electret thereof
JP2008221073A (en) Superfine fiber filter medium and its manufacturing method
JP2009179656A (en) Polytetrafluoroethylene porous membrane and method for producing the same
JP4886262B2 (en) Manufacturing method of electret sheet
JP6184766B2 (en) Porous laminate, adsorption buffer material, and adsorption method
JP2011184815A (en) Method for producing aromatic polyamide ultrafine fiber and aromatic polyamide ultrafine fiber
JP2008184701A (en) Nonwoven fabric and method for producing the same
JP6888242B2 (en) Extra fine fiber sheet
JP7167302B2 (en) Nonwoven fabric manufacturing method
JP7047593B2 (en) Wet non-woven fabric
WO2018008723A1 (en) Carrier for microbial adhesion and method for manufacturing same
JP2009248000A (en) Manufacturing method of electret filter medium
JP2004066027A (en) Production method of electret filter medium
JP2007160137A (en) Electret filter medium
JP2005131484A (en) Washable filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4391152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

EXPY Cancellation because of completion of term