JP4390129B2 - Estimation system of lower limb joint moment and lower limb muscle tension using plantar pressure - Google Patents

Estimation system of lower limb joint moment and lower limb muscle tension using plantar pressure Download PDF

Info

Publication number
JP4390129B2
JP4390129B2 JP2003125239A JP2003125239A JP4390129B2 JP 4390129 B2 JP4390129 B2 JP 4390129B2 JP 2003125239 A JP2003125239 A JP 2003125239A JP 2003125239 A JP2003125239 A JP 2003125239A JP 4390129 B2 JP4390129 B2 JP 4390129B2
Authority
JP
Japan
Prior art keywords
subject
lower limb
joint
estimating
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003125239A
Other languages
Japanese (ja)
Other versions
JP2004329280A (en
Inventor
喜雄 井上
拓也 松田
義弘 甲斐
哲也 谷岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi University of Technology
Original Assignee
Kochi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi University of Technology filed Critical Kochi University of Technology
Priority to JP2003125239A priority Critical patent/JP4390129B2/en
Publication of JP2004329280A publication Critical patent/JP2004329280A/en
Application granted granted Critical
Publication of JP4390129B2 publication Critical patent/JP4390129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は足底圧を用いた下肢関節モーメント及び下肢筋張力の推定システムに関し、より詳しくは、患者や被験者に負担をかけることがなく、場所の制約を受けず、大規模なシステム構成を必要としない足底圧を用いた下肢関節モーメント及び下肢筋張力の推定システムに関する。
【0002】
【従来の技術】
歩行機能の障害を有する高齢者や患者が、再び歩行機能を回復するためには、適切な歩行リハビリテーションを効率的に行うことが極めて重要である。
現在、歩行リハビリの現場では、医師や理学療法士が患者の症状や回復度を見ながら指導を行っているが、もし、筋張力や関節モーメントを定量的に把握することができれば、患者にとってどのようなリハビリが有効かを指導者が判断するための非常に貴重な情報となる。
また、このような情報は、リハビリテーションだけでなく、スポーツにおけるトレーニングにおいても非常に有用である。
【0003】
現在、このような情報を得るための方法としては、(1)患者や被験者に電極を貼り付け筋電位を測定する方法(例えば、特許文献1参照。)、(2)複数のCCDカメラを用いた3次元動作解析システムと複数の床反力計を組み合わせた大規模なシステムに動的な力のつりあい式を適用して関節モーメントを求める方法、等が知られている。
【0004】
【特許文献1】
特開平7−67982号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記したような現在用いられている方法には、それぞれ以下のような欠点がある。
先ず(1)の方法は、患者や被験者の負担が大きく、且つ準備にも時間がかかる。一方、(2)の方法は、大規模で据え置き型の床反力計でしか計測できないので、場所、歩数に制限があり、また非常に高価である。
従って、これらの方法は、日常のリハビリテーションに使用することは困難であり、専ら研究用としてのみ使用されているのが現状である。
【0006】
本発明はかかる実情に鑑みてなされたものであって、患者や被験者に負担をかけず、しかも場所の制約を受けず、安価な設備で実施することができる、足底圧を用いた下肢関節モーメント及び下肢筋張力の推定システムを提供せんとするものである。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、被験者が履いて歩行するための履物と、該履物表面の少なくとも4箇所に配置されて被験者の歩行中の足底にかかる圧力を計測する圧力センサとからなる足底圧計測装置と、該足底圧計測装置による計測値を解析する解析装置と、履物に取り付けられて被験者の歩行中の足首角度を測定する角度測定センサを備えてなり、前記解析装置は、前記足底圧計測装置の計測値から、被験者の歩行中の足裏にかかる鉛直方向の床反力と水平方向の床反力を推定する床反力推定手段と、前記計測値から被験者の歩行中の足関節モーメントを推定する足関節モーメント推定手段と、前記角度測定センサの測定値に基づいて被験者の歩行中の膝関節位置及び/又は股関節位置を推定する関節位置推定手段と、該関節位置推定手段により推定された膝関節位置及び/又は股関節位置の推定値と前記床反力の推定値を用いて被験者の歩行中の下肢関節モーメントを推定する関節モーメント推定手段を有することを特徴とする足底圧を用いた下肢関節モーメントの推定システムに関する。
請求項2に係る発明は、請求項1に記載の下肢関節モーメントの推定システムを用いる下肢筋張力の推定システムであって、前記関節モーメント推定手段により得られた推定値を筋骨格モデルに適用して被験者の筋張力を推定する筋張力推定手段を有することを特徴とする足底圧を用いた下肢筋張力の推定システムに関する。
【0010】
【発明の実施の形態】
以下、本発明に係る足底圧を用いた下肢関節モーメント及び下肢筋張力の推定システムの好適な実施形態について説明する。
図1は、本発明に係る下肢関節モーメント及び下肢筋張力の推定システムの全体構成を概略的に示したブロック図であって、本発明に係るシステムは、被験者の歩行中の足底にかかる圧力を計測する足底圧計測装置(10)と、該足底圧計測装置(10)の測定値を解析して床反力及び下肢関節モーメントや下肢筋張力を推定するための各手段を有するパーソナルコンピュータ等からなる解析装置(20)を備えている。また、本発明に係る床反力推定装置は、この足底圧計測装置(10)と解析装置(20)から構成される。尚、本発明に係るシステムの解析装置(20)に具備される各手段は、CPUにより実行される各種のプログラムからなるが、これら各手段は1台の解析装置に具備させてもよいし、複数台の解析装置に分けて具備させてもよい。
【0011】
本発明に係るシステムにおいては、先ず足底圧計測装置(10)によって被験者の歩行中の足底にかかる圧力が測定される。
図2は本発明に係るシステムに用いられる足底圧計測装置(10)を示す外観図であり、図3は圧力センサを取り付けた下敷シートの裏面図である。
圧力センサ(2)は、被験者の足の大きさに合わせた履物(1)の表面に敷かれる下敷シート(3)の裏面側(図3参照)における踵部(K)、ショパール関節部(P)、第1MP関節部(MP)、第4MP関節部(Q)、母趾部(ML)、第3趾部付近(U)の6箇所に面ファスナーを用いてそれぞれ固定されている。
被験者がこの履物(1)を履いて歩行すると、被験者の歩行中の足裏にかかる圧力が6箇所に配置された圧力センサ(2)により検知され、各センサからの出力は配線によって接続された計測器(図示略)に入力されて圧力値へと変換され、その値はパーソナルコンピュータ等からなる解析装置(20)へと入力される。
【0012】
解析装置(20)は、圧力センサ(2)により測定された各点の圧力の測定値から、重回帰分析プログラム等を用いて被験者の歩行中の床反力及び足関節モーメントを推定する床反力推定手段及び足関節モーメント推定手段を有している。
本発明においては、床反力を従来のように床反力計で直接測定するのではなく、圧力センサが受ける鉛直方向分力から床反力(鉛直方向)を推定する。これによって、場所や歩数の制限を受けることなく床反力を求めることが可能となる。尚、解析装置(20)においては、後述する関節モーメントの推定に使用するために、圧力センサの測定値から床反力の鉛直方向成分だけでなく水平方向成分も求める。求め方としては、例えば履物(1)に圧力センサ(2)を幾つかの方向に斜め、或いは水平、垂直を混ぜて埋め込み、圧力センサ(2)により測定された斜め、或いは水平、鉛直方向の力を鉛直方向分力と水平方向分力(せん断力)に分解し、これらに所定の係数を掛けることによって、鉛直方向の力とせん断力を求める方法が挙げられる。尚、ここで用いるセンサは必ずしも圧力センサに限定されるものではなく、床反力に起因して出力が発生するものであれば、重回帰分析等を適用して推定することができる。
【0013】
以下、解析装置(20)の床反力推定手段及び足関節モーメント推定手段による床反力及び足関節モーメントの推定方法について説明する。
床反力の鉛直方向分力(Y)は、次式(a)のように各センサ部の圧力(X)に圧力が加わる有効面積に相当する係数(A)を乗じたものの和であると考え、

Figure 0004390129
その係数を重回帰分析法を用いて求める。
具体的に、重回帰係数(A)及び回帰係数(B)を求めるための方法を以下に記載する。
【0014】
▲1▼被験者に上記した履物(1)を履かせて、右足のみを床反力計に乗せ、左足は床の上にあるようにする。このとき、身体の中心線が床反力計と床の境界上になるようにする。
▲2▼被験者には特別な指示は与えず、足位置は固定したままで体重心を上下左右に変化してもらい、床反力を測定する。
▲3▼重回帰分析にて各センサ(2)が測定している等価面積に対応する係数(A)を求める。その際、床反力の鉛直方向の力[N]を従属変数(Y)、6個のセンサ(2)からの足底圧値[kgf/cm]を独立変数(X,・・・,X)として用いる。
【0015】
図5は立脚期に足部にかかる力の矢状面内での様子を示している。尚、図5中の記号は以下の通りである。
,A:各センサにかかる床反力の鉛直方向成分
N:床反力の前後成分
h:足首関節軸と各センサまでの垂直距離
,l:足首関節軸と各センサまでの水平距離
:足首関節軸と足部の重心との水平距離
m:足部の重量
【0016】
上記▲3▼で得られたAを用いれば、床からの反力は図4のように各センサの位置に加えられる鉛直方向(A)の合力であるとみなせる。各センサの足首関節に対する位置は既知であるので、足首関節周りのモーメント(M)は慣性力を無視すれば、次式(b)のように表記できる。
Figure 0004390129
さらに、第2項のNh及び第3項のmglは、第1項に比べて十分小さいと考えられるので無視すれば、次式(c)となる。
Figure 0004390129
なお、足首関節位置から各センサまでの相対位置(l,・・・,l)はセンサの取り付け位置から定数として決まる。
【0017】
図5は、上記した重回帰分析にて導出した回帰係数と偏回帰係数を示す一覧表である。
この表はセンサ数6個、全63通りの組み合わせを示しており、左端より「踵部」、「第1MP関節部」、「第4MP関節部」、「母趾部」、「第3趾部」の偏回帰係数、「回帰係数」、精度の高さを示す「R」値、「センサの数」の順で表記している。尚、この一覧は精度のよい「R」値の高い降順で表記している。
【0018】
図5に示すように、センサの数が多いほど精度が高いことが認められる。上位22通りまでには踵部が必ず含まれた。通常、健常な歩行を行うためには、踵接地が重要であり、精度のよい計測結果を得る為には踵部のセンサが必須であると考えられる。また、センサ数5個の組み合わせの中で踵部を除いた組み合わせ(No.23)が最下位であったことからも同様に考えられる。
また、上記10通り中にセンサ数4個の組み合わせが5通り含まれていることから、センサ数は、組み合わせ次第では適当な4箇所のみでも高い精度で床反力を測定可能であると考えられる。
また、上位5通りの組み合わせ結果から、足部を「踵部」、「足弓部」、「中足骨部」、「趾部」の4分割にできるものと考えられる。従って、センサは4分割された各部分に最低1つずつ配置すれば、高い精度をもって床反力を測定することが可能であることが推察される。
従って、本発明においては、圧力センサは履物に少なくとも4箇所以上、具体的には「踵部」、「足弓部」、「中足骨部」、「趾部」の4箇所に最低1つずつ設けることとする。尚、より高い測定精度を求める場合には5箇所以上に設けるとよいが、7箇所以上設けても精度の向上は余り期待できないため、4〜6箇所の範囲内で設定することが好ましい。
【0019】
本発明に係るシステムにおいては、上記した如く、圧力センサにより被験者の歩行中の床反力及び足関節モーメントを推定した後、被験者の歩行中の膝関節及び/又は股関節の位置を求めるが、この際には以下の2種類の手段のいずれかが用いられる。
先ず、第一の手段について説明する。
第一の手段は、履物(1)に取り付けられて被験者の歩行中の足首の角度を測定する角度測定センサ(4)と、解析装置(20)に備えられた関節位置推定手段とからなる。関節位置推定手段は、角度測定センサ(4)により測定された被験者の足首角度に基づいて、被験者の歩行中の膝関節位置及び/又は股関節位置を推定する。或いは、膝関節の角度を足首とセンサ(4)で測定してもよい。
角度測定センサ(4)としては、特に限定はされないが、例えばゴニオメータを使用することができる。
関節位置推定手段による膝関節位置及び/又は股関節位置の推定は、予め被験者の体型(足の長さなど)を測定しておき、その体型に合った骨格モデルに対して、測定された足首角度を適用することで行うことができる。
【0020】
第二の手段は、被験者の歩行時における足の動きをCCDカメラ(5)で撮影し、信号処理をして被験者の歩行中の膝関節位置及び/又は股関節位置を測定する関節位置測定手段からなる。
この測定手段による測定は、被験者の膝や股関節などの特定位置にマーカーを取り付け、カメラで被験者の歩行中における足の動きを球状のマーカーの軌跡を捉えることで行う。
尚、この測定においては、カメラが被験者の膝や股関節の動きを正確に捉えるために、例えば、被験者の側方への延出部を有する車輪付き台車などにCCDカメラを取り付け、被験者が台車を押しながら歩くことで、カメラが被験者の足の動きを側方から被験者と同じ速度で動きながら撮影できるようにすることが好ましい。また、従来から用いられている複数のカメラの情報から3次元動作を計測する方法では、スペースが大きくなりがちであるので、1台のカメラとマーカーの画像としての断面積あるいは直径等の画像の大きさに関わる情報と画像でのマーカーの位置に関する情報からマーカーの方向とマーカーまでの距離を推定し、その情報からマーカーの3次元位置を推定する方法を用いれば、小さいスペースでの計測が可能となる。
【0021】
上記した2通りのいずれかの手段を用いて求められた被験者の歩行中の膝関節位置及び/又は股関節位置のデータは、解析装置(20)に入力される。
解析装置(20)には、各関節(足首関節、膝関節、股関節)の位置データと、前述した床反力の推定値を用いて、被験者の歩行中の各関節のモーメントを推定する関節モーメント推定手段と、得られた関節モーメントの推定値から被験者の筋張力を推定する筋張力推定手段が備えられており、これら各手段によって膝関節及び股関節のモーメント及び筋張力が推定される。尚、足関節位置については、上述した如く圧力センサと足首の相対位置が既知であるため、膝関節位置や股関節位置のように別途推定する必要はない。
【0022】
以下、解析装置(20)による関節モーメント及び筋張力の推定方法について具体的に説明する。
推定に際しては、図6に示すような筋骨格モデルが用いられる。
筋骨格モデルは、下肢の関節を駆動する際に支配的な9つの筋肉(▲1▼大腿直筋、▲2▼大殿筋、▲3▼ハムストリング、▲4▼広筋、▲5▼大腿二頭筋短頭、▲6▼腓腹筋、▲7▼ヒラメ筋、▲8▼前頚骨筋、▲9▼腸腰筋)からなる。
この方法は、ある時刻tに、この9つの各筋肉に加わる張力を、床反力のデータと、下肢の各関節の位置データ、および人体のパラメータから推定する方法である。
【0023】
以下に、その推定方法の詳細について、順を追って説明する。
(1)床反力のデータと関節の位置データおよび人体のパラメータ1から、各関節に発生するモーメントを次式1(数1)により計算する。
【数1】
Figure 0004390129
ここで、添字1は足首関節、2は膝関節、3は股関節を示している。またI,I,Iは各々足首関節、膝関節、股関節の慣性モーメント、m,m,mは各々足部(足首から先の部分)、下腿部、大腿部の質量、xg1,yg1は足部の質量中心、xg2,yg2は下腿部の質量中心、xg3,yg3は大腿部の質量中心を表しており、これらを総称して人体パラメータ1という。また、N,Nは各々床反力の鉛直方向成分及び水平方向成分であり、x,yは任意の位置に固定した原点座標である。
【0024】
(2)筋肉の張力にモーメントアームを掛け、それらを符号を考慮して足し算したものが、筋肉により発生する各関節のモーメントであるので、次式2(数2)が成り立つ。
【数2】
Figure 0004390129
【0025】
(3)上記式2に式1で計算した各関節モーメントを代入すれば、3つの方程式が得られる。モーメントアームは既知であるので、この3つの方程式は、9つの筋張力(未知数)の方程式となる。
(4)9つの未知数を3つの方程式のみから一般に求められないので、3つの方程式を満たし且つ次式3(数3)に示す評価関数Eを最小にするように9つの未知数(筋張力)を求める。
【数3】
Figure 0004390129
ここで、F maxは各筋の最大筋張力である。
また、各筋の最大筋張力は、次式で求められる。
max=fPCSA
ここで、PCSAは筋肉の生理断面積、fは筋の収縮速度や筋の伸長・収縮量に関する関数である。
【0026】
以上の方法により、下肢の関節モーメント及び筋張力を求めることができ、このように得られた筋張力のパターンと筋電位のパターンはよく一致することが確かめられている。
【0027】
本発明に係るシステムにおいては、以上のような方法により、被験者に負担をかけることなく、狭いスペースで、容易且つ安価に、被験者の歩行中の下肢関節モーメント及び筋張力を推定することができる。
【0028】
【発明の効果】
以上説明したように、本発明に係る床反力推定装置を用いたシステムによれば、従来の方法、例えば被験者に電極を貼り付け筋電位を測定する方法のように、被験者の身体に負担をかけることがなく、また3次元動作解析システムと複数の床反力計を組み合わせる方法のように、場所の制約を受けたり高価な設備を必要とすることがなく、被験者の下肢関節モーメント及び筋張力を容易且つ正確に把握することができる。
従って、歩行リハビリの現場において患者にとってどのようなリハビリが有効かを指導者が判断するための情報や、スポーツ選手のトレーニングにおいてどの部分の筋肉を重点的に鍛えればよいかなどの情報を取得するために極めて有効な方法となる。
【図面の簡単な説明】
【図1】本発明に係る下肢関節モーメント及び下肢筋張力の推定システムの全体構成を概略的に示したブロック図である。
【図2】本発明に係るシステムにおいて用いられる足底圧計測装置を示す外観図である。
【図3】圧力センサを取り付けた下敷シートの裏面図である。
【図4】立脚期に足部にかかる力の矢状面内での様子を示す図である。
【図5】重回帰分析にて導出した回帰係数と偏回帰係数を示す一覧表である。
【図6】筋骨格モデルの一例を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for estimating lower limb joint moment and lower limb muscle tension using plantar pressure . More specifically, the present invention does not place a burden on a patient or subject, is not limited by location, and requires a large-scale system configuration. The present invention relates to a system for estimating lower limb joint moment and lower limb muscle tension using sole pressure .
[0002]
[Prior art]
In order for an elderly person or patient having a disorder of walking function to recover the walking function again, it is extremely important to perform appropriate walking rehabilitation efficiently.
Currently, doctors and physiotherapists provide guidance while looking at the patient's symptoms and degree of recovery at gait rehabilitation, but if the muscle tension and joint moment can be quantitatively understood, This is very valuable information for instructors to judge whether such rehabilitation is effective.
Such information is very useful not only in rehabilitation but also in sports training.
[0003]
Currently, as a method for obtaining such information, (1) a method of measuring electrodes by attaching electrodes to a patient or a subject (see, for example, Patent Document 1), (2) using a plurality of CCD cameras. For example, a method of obtaining a joint moment by applying a dynamic force balance equation to a large-scale system combining a three-dimensional motion analysis system and a plurality of floor reaction force meters is known.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-67982
[Problems to be solved by the invention]
However, the methods currently used as described above have the following drawbacks.
First, the method (1) places a heavy burden on the patient and subject and takes time for preparation. On the other hand, since the method (2) can be measured only by a large-scale stationary floor reaction force meter, there are limitations on the place and the number of steps, and the method is very expensive.
Therefore, these methods are difficult to use for daily rehabilitation, and are currently used exclusively for research purposes.
[0006]
It is those the invention has been made in view of such circumstances, without straining the patient or subject, yet without being restricted location, can be implemented in inexpensive equipment, lower limb joints using plantar pressure It is intended to provide an estimation system for moment and lower limb muscle tension .
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a sole comprising footwear for a subject to wear and walking, and a pressure sensor that is disposed at at least four locations on the surface of the footwear and measures pressure applied to the footstep of the subject during walking. A pressure measurement device, an analysis device that analyzes the measurement value of the plantar pressure measurement device, and an angle measurement sensor that is attached to the footwear and measures an ankle angle during walking of the subject, the analysis device comprising: The floor reaction force estimating means for estimating the vertical floor reaction force and the horizontal floor reaction force applied to the soles of the subject during walking from the measured values of the plantar pressure measuring device, and the subject walking from the measured values An ankle joint moment estimating means for estimating an ankle joint moment of the subject, a joint position estimating means for estimating a knee joint position and / or a hip joint position during walking of the subject based on a measurement value of the angle measurement sensor, and the joint position estimation By means A plantar pressure characterized by comprising joint moment estimating means for estimating a lower limb joint moment during walking of a subject using an estimated value of an estimated knee joint position and / or hip joint position and an estimated value of the floor reaction force The present invention relates to a system for estimating lower limb joint moments .
The invention according to claim 2 is a lower limb muscle tension estimation system using the lower limb joint moment estimation system according to claim 1, wherein the estimated value obtained by the joint moment estimation means is applied to a musculoskeletal model. The present invention relates to a lower limb muscle tension estimation system using plantar pressure, characterized by having muscle tension estimation means for estimating a subject's muscle tension .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a lower limb joint moment and lower limb muscle tension estimation system using plantar pressure according to the present invention will be described.
FIG. 1 is a block diagram schematically showing an overall configuration of a lower limb joint moment and lower limb muscle tension estimation system according to the present invention, in which the system according to the present invention is a pressure applied to the sole of a subject during walking. A plantar pressure measuring device (10) for measuring the pressure and a personal computer having each means for analyzing the measured value of the plantar pressure measuring device (10) and estimating the floor reaction force, the lower limb joint moment and the lower limb muscle tension An analysis device (20) including a computer or the like is provided. Moreover, the floor reaction force estimation apparatus according to the present invention includes the plantar pressure measurement device (10) and the analysis device (20). Each means included in the analysis apparatus (20) of the system according to the present invention is composed of various programs executed by the CPU, but each of these means may be included in one analysis apparatus, A plurality of analysis devices may be provided separately.
[0011]
In the system according to the present invention, first, the pressure applied to the plantar while the subject is walking is measured by the plantar pressure measuring device (10).
FIG. 2 is an external view showing a plantar pressure measuring device (10) used in the system according to the present invention, and FIG. 3 is a back view of the underlay sheet to which a pressure sensor is attached.
The pressure sensor (2) includes a heel part (K) and a Chopard joint part (P) on the back side (see FIG. 3) of the underlay sheet (3) laid on the surface of the footwear (1) according to the size of the foot of the subject. ), The first MP joint part (MP), the fourth MP joint part (Q), the main heel part (ML), and the vicinity of the third heel part (U), respectively, are fixed using hook and loop fasteners.
When the subject walks while wearing the footwear (1), the pressure applied to the sole of the subject while walking is detected by the pressure sensors (2) arranged at six locations, and the output from each sensor is connected by wiring. It is input to a measuring instrument (not shown) and converted into a pressure value, and the value is input to an analyzer (20) composed of a personal computer or the like.
[0012]
The analysis device (20) estimates the floor reaction force and ankle joint moment during walking of the subject using a multiple regression analysis program or the like from the pressure measurement value of each point measured by the pressure sensor (2). Force estimation means and ankle joint moment estimation means are provided.
In the present invention, the floor reaction force is not directly measured by a floor reaction force meter as in the prior art, but the floor reaction force (vertical direction) is estimated from the vertical component force received by the pressure sensor. This makes it possible to obtain the floor reaction force without being restricted by the place or the number of steps. Note that the analysis device (20) obtains not only the vertical direction component of the floor reaction force but also the horizontal direction component from the measurement value of the pressure sensor in order to use for estimation of the joint moment described later. For example, the pressure sensor (2) is embedded in the footwear (1) obliquely in some direction or mixed in horizontal and vertical directions, and the oblique or horizontal or vertical direction measured by the pressure sensor (2) is embedded. There is a method in which the force is divided into a vertical component force and a horizontal component force (shear force), and these are multiplied by a predetermined coefficient to obtain a vertical force and a shear force. The sensor used here is not necessarily limited to the pressure sensor, and can be estimated by applying multiple regression analysis or the like as long as an output is generated due to the floor reaction force.
[0013]
Hereinafter, a method of estimating the floor reaction force and the ankle joint moment by the floor reaction force estimating means and the ankle joint moment estimating means of the analysis device (20) will be described.
The vertical component (Y) of the floor reaction force is the sum of the pressure (X i ) of each sensor section multiplied by a coefficient (A i ) corresponding to the effective area where the pressure is applied as shown in the following equation (a). Think there is,
Figure 0004390129
The coefficient is obtained using a multiple regression analysis method.
Specifically, a method for obtaining a multiple regression coefficient (A i ) and a regression coefficient (B) is described below.
[0014]
(1) Make the subject wear the above-mentioned footwear (1), put only the right foot on the floor reaction force meter, and keep the left foot on the floor. At this time, the center line of the body is on the boundary between the floor reaction force meter and the floor.
{Circle around (2)} No special instructions are given to the subject, and the body gravity is changed vertically and horizontally while the foot position is fixed, and the floor reaction force is measured.
(3) A coefficient (A i ) corresponding to the equivalent area measured by each sensor (2) is obtained by multiple regression analysis. At that time, the vertical force [N] of the floor reaction force is a dependent variable (Y), and the sole pressure value [kgf / cm 2 ] from six sensors (2) is an independent variable (X i ,... , X n ).
[0015]
FIG. 5 shows the state of the force applied to the foot during the stance phase in the sagittal plane. The symbols in FIG. 5 are as follows.
A 1 X 1 , A i X i : Vertical component of floor reaction force applied to each sensor N: Front / rear component of floor reaction force h: Vertical distance between ankle joint axis and each sensor l 1 , l i : Ankle joint axis And the horizontal distance l g to each sensor: horizontal distance between the ankle joint axis and the center of gravity of the foot m: the weight of the foot
Using A i obtained in (3) above, the reaction force from the floor can be regarded as a resultant force in the vertical direction (A i X i ) applied to the position of each sensor as shown in FIG. Since the position of each sensor with respect to the ankle joint is known, the moment (M) around the ankle joint can be expressed as the following equation (b) if the inertial force is ignored.
Figure 0004390129
Furthermore, mgl g of the second term of Nh and third terms, if ignored because considered sufficiently smaller than the first term, the following equation (c).
Figure 0004390129
The relative position (l 1 ,..., L 6 ) from the ankle joint position to each sensor is determined as a constant from the sensor mounting position.
[0017]
FIG. 5 is a list showing the regression coefficients and partial regression coefficients derived by the multiple regression analysis described above.
This table shows 6 sensors and 63 combinations in total. From the left end, “buttock”, “first MP joint”, “fourth MP joint”, “mother hip”, “third hip” "Partial regression coefficient", "regression coefficient", "R" value indicating high accuracy, and "number of sensors". This list is shown in descending order with high accuracy “R” value.
[0018]
As shown in FIG. 5, it is recognized that the greater the number of sensors, the higher the accuracy. The top 22 streets always included the buttocks. Usually, in order to perform a healthy walk, heel contact is important, and in order to obtain an accurate measurement result, it is considered that a sensor of the buttock is essential. Further, the combination (No. 23) excluding the buttocks in the combination of five sensors is considered to be the lowest, so that it can be considered similarly.
In addition, since there are five combinations of four sensors in the above ten patterns, it is considered that the floor reaction force can be measured with high accuracy even at only four appropriate positions depending on the number of sensors. .
Further, from the combination results of the top five, it can be considered that the foot can be divided into four parts of “buttock”, “foot arch”, “metatarsal bone”, and “buttock”. Therefore, it is presumed that the floor reaction force can be measured with high accuracy if at least one sensor is arranged in each of the four divided parts.
Therefore, in the present invention, at least four pressure sensors are provided on the footwear, and specifically, at least one pressure sensor is provided for each of the four areas of “buttock”, “foot arch”, “metatarsal bone”, and “buttock”. It will be provided one by one. When higher measurement accuracy is required, it may be provided at five or more locations. However, since improvement in accuracy cannot be expected even if seven or more locations are provided, it is preferably set within a range of 4 to 6 locations.
[0019]
In the system according to the present invention, as described above, after estimating the floor reaction force and the ankle joint moment during walking of the subject using the pressure sensor, the position of the knee joint and / or the hip joint during the walking of the subject is obtained. In this case, one of the following two types of means is used.
First, the first means will be described.
The first means comprises an angle measurement sensor (4) attached to the footwear (1) and measuring the angle of the ankle during walking of the subject, and joint position estimation means provided in the analysis device (20). The joint position estimation means estimates the knee joint position and / or the hip joint position of the subject during walking based on the ankle angle of the subject measured by the angle measurement sensor (4). Or you may measure the angle of a knee joint with an ankle and a sensor (4).
Although it does not specifically limit as an angle measurement sensor (4), For example, a goniometer can be used.
The estimation of the knee joint position and / or hip joint position by the joint position estimation means is performed by measuring the body shape (foot length, etc.) of the subject in advance and measuring the ankle angle with respect to the skeleton model that matches the body shape. This can be done by applying
[0020]
The second means is a joint position measuring means for photographing the movement of the foot while the subject is walking with the CCD camera (5) and performing signal processing to measure the knee joint position and / or the hip joint position during the walking of the subject. Become.
The measurement by this measuring means is performed by attaching a marker to a specific position such as the subject's knee or hip joint, and capturing the movement of the foot while the subject is walking with the camera using the spherical marker trajectory.
In this measurement, in order for the camera to accurately capture the movement of the subject's knees and hip joints, for example, a CCD camera is attached to a wheeled carriage having a lateral extension of the subject, and the subject removes the carriage. It is preferable that the camera can take a picture while moving the foot of the subject from the side at the same speed as the subject by walking while pushing. In addition, in the conventional method of measuring a three-dimensional motion from information of a plurality of cameras, a space tends to be large. Therefore, an image of a cross-sectional area or a diameter as an image of one camera and a marker is used. Measurement in a small space is possible by estimating the direction of the marker and the distance to the marker from information related to the size and information about the marker position in the image, and estimating the 3D position of the marker from that information. It becomes.
[0021]
The data of the knee joint position and / or the hip joint position during walking of the subject obtained by using any one of the two means described above is input to the analysis device (20).
The analysis device (20) uses the position data of each joint (ankle joint, knee joint, hip joint) and the estimated value of the floor reaction force described above to estimate the moment of each joint during walking of the subject. Estimating means and muscle tension estimating means for estimating the muscle tension of the subject from the estimated joint moment values are provided, and the moment and muscle tension of the knee joint and the hip joint are estimated by these means. As described above, since the relative position between the pressure sensor and the ankle is known, the ankle joint position does not need to be estimated separately like the knee joint position and the hip joint position.
[0022]
Hereinafter, the estimation method of the joint moment and the muscle tension by the analysis device (20) will be specifically described.
For estimation, a musculoskeletal model as shown in FIG. 6 is used.
The musculoskeletal model consists of nine dominant muscles (1) rectus femoris, (2) gluteal muscle, (3) hamstring, (4) broad muscle, and (5) thigh. Short head, (6) gastrocnemius, (7) soleus, (8) front tibial muscle, (9) iliopsoas muscle).
In this method, the tension applied to each of the nine muscles at a certain time t is estimated from the ground reaction force data, the position data of each joint of the lower limbs, and the parameters of the human body.
[0023]
Below, the detail of the estimation method is demonstrated later on.
(1) From the floor reaction force data, the joint position data, and the human body parameter 1, the moment generated in each joint is calculated by the following equation (1).
[Expression 1]
Figure 0004390129
Here, subscript 1 indicates an ankle joint, 2 indicates a knee joint, and 3 indicates a hip joint. In addition, I 1 , I 2 , and I 3 are the moments of inertia of the ankle joint, knee joint, and hip joint, and m 1 , m 2 , and m 3 are the feet (the part from the ankle to the tip), the lower leg, and the thigh, respectively. Mass, x g1 , y g1 represent the mass center of the foot, x g2 , y g2 represent the mass center of the lower leg, and x g3 , y g3 represent the mass center of the thigh. It is called parameter 1. N x and N y are vertical and horizontal components of the floor reaction force, respectively, and x 0 and y 0 are origin coordinates fixed at arbitrary positions.
[0024]
(2) Since the moment of each joint generated by the muscle is obtained by multiplying the muscle tension by the moment arm and adding them in consideration of the sign, the following equation (2) is established.
[Expression 2]
Figure 0004390129
[0025]
(3) Substituting the joint moments calculated in Equation 1 into Equation 2 above yields three equations. Since the moment arm is known, these three equations become equations of nine muscle tensions (unknown numbers).
(4) Since nine unknowns cannot generally be obtained from only three equations, nine unknowns (muscle tension) are set so as to satisfy the three equations and minimize the evaluation function E shown in the following Equation 3 (Equation 3). Ask.
[Equation 3]
Figure 0004390129
Here, F i max is the maximum muscle tension of each muscle.
Further, the maximum muscle tension of each muscle can be obtained by the following equation.
F i max = f j PCSA j
Here, PCSA j is a physiological cross-sectional area of the muscle, and f j is a function related to the muscle contraction speed and the amount of muscle extension / contraction.
[0026]
By the above method, the joint moment and the muscle tension of the lower limb can be obtained, and it has been confirmed that the muscle tension pattern thus obtained and the myoelectric potential pattern are in good agreement.
[0027]
In the system according to the present invention, the lower limb joint moment and muscle tension during walking of the subject can be estimated easily and inexpensively in a narrow space without imposing a burden on the subject by the method as described above.
[0028]
【The invention's effect】
As described above, according to the system using the floor reaction force estimation apparatus according to the present invention, the burden on the subject's body is reduced as in the conventional method, for example, the method of measuring the myoelectric potential by attaching electrodes to the subject. The subject's lower limb joint moments and muscle tensions are not subject to location constraints or expensive equipment, such as a method that combines a 3D motion analysis system and multiple floor reaction force meters. Can be easily and accurately grasped.
Therefore, the information for the leader to determine what kind of rehabilitation is effective for the patient in the field of walking rehabilitation, and information such as which part of the muscles should be focused on during training of athletes is acquired. Therefore, it becomes a very effective method.
[Brief description of the drawings]
FIG. 1 is a block diagram schematically showing the overall configuration of a lower limb joint moment and lower limb muscle tension estimation system according to the present invention.
FIG. 2 is an external view showing a plantar pressure measuring device used in the system according to the present invention.
FIG. 3 is a rear view of an underlay sheet to which a pressure sensor is attached.
FIG. 4 is a diagram illustrating a state in a sagittal plane of a force applied to a foot during a stance phase.
FIG. 5 is a list showing regression coefficients and partial regression coefficients derived by multiple regression analysis.
FIG. 6 is a diagram illustrating an example of a musculoskeletal model.

Claims (2)

被験者が履いて歩行するための履物と、該履物表面の少なくとも4箇所に配置されて被験者の歩行中の足底にかかる圧力を計測する圧力センサとからなる足底圧計測装置と、該足底圧計測装置による計測値を解析する解析装置と、履物に取り付けられて被験者の歩行中の足首角度を測定する角度測定センサを備えてなり、A plantar pressure measuring device comprising: a footwear for a subject to wear and walking; and a pressure sensor disposed at at least four locations on the surface of the footwear to measure pressure applied to the plantar during walking of the subject; An analysis device that analyzes the measurement value by the pressure measurement device, and an angle measurement sensor that is attached to the footwear and measures the ankle angle during walking of the subject,
前記解析装置は、前記足底圧計測装置の計測値から、被験者の歩行中の足裏にかかる鉛直方向の床反力と水平方向の床反力を推定する床反力推定手段と、前記計測値から被験者の歩行中の足関節モーメントを推定する足関節モーメント推定手段と、前記角度測定センサの測定値に基づいて被験者の歩行中の膝関節位置及び/又は股関節位置を推定する関節位置推定手段と、該関節位置推定手段により推定された膝関節位置及び/又は股関節位置の推定値と前記床反力の推定値を用いて被験者の歩行中の下肢関節モーメントを推定する関節モーメント推定手段を有することを特徴とする足底圧を用いた下肢関節モーメントの推定システム。  The analysis device includes a floor reaction force estimation unit that estimates a vertical floor reaction force and a horizontal floor reaction force applied to a sole of a subject during walking from a measurement value of the plantar pressure measurement device, and the measurement An ankle joint moment estimating means for estimating the ankle joint moment during walking of the subject from the values, and a joint position estimating means for estimating the knee joint position and / or the hip joint position of the subject walking based on the measurement value of the angle measurement sensor And joint moment estimating means for estimating a lower limb joint moment during walking of the subject using the estimated value of the knee joint position and / or the hip joint position estimated by the joint position estimating means and the estimated value of the floor reaction force. A system for estimating lower limb joint moments using plantar pressure.
請求項1に記載の下肢関節モーメントの推定システムを用いる下肢筋張力の推定システムであって、前記関節モーメント推定手段により得られた推定値を筋骨格モデルに適用して被験者の筋張力を推定する筋張力推定手段を有することを特徴とする足底圧を用いた下肢筋張力の推定システム。A lower limb muscle tension estimation system using the lower limb joint moment estimation system according to claim 1, wherein the estimated value obtained by the joint moment estimation means is applied to a musculoskeletal model to estimate a subject's muscle tension. A system for estimating lower limb muscle tension using plantar pressure, comprising muscle tension estimating means.
JP2003125239A 2003-04-30 2003-04-30 Estimation system of lower limb joint moment and lower limb muscle tension using plantar pressure Expired - Fee Related JP4390129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125239A JP4390129B2 (en) 2003-04-30 2003-04-30 Estimation system of lower limb joint moment and lower limb muscle tension using plantar pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125239A JP4390129B2 (en) 2003-04-30 2003-04-30 Estimation system of lower limb joint moment and lower limb muscle tension using plantar pressure

Publications (2)

Publication Number Publication Date
JP2004329280A JP2004329280A (en) 2004-11-25
JP4390129B2 true JP4390129B2 (en) 2009-12-24

Family

ID=33502565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125239A Expired - Fee Related JP4390129B2 (en) 2003-04-30 2003-04-30 Estimation system of lower limb joint moment and lower limb muscle tension using plantar pressure

Country Status (1)

Country Link
JP (1) JP4390129B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111085A (en) * 2013-12-06 2015-06-18 三菱重工業株式会社 Shoe insole pressure sensor and power assist suit
WO2018066151A1 (en) 2016-10-06 2018-04-12 Cyberdyne株式会社 Gait abnormality assistance device and gait abnormality assistance method
US11375924B2 (en) 2016-11-29 2022-07-05 Nec Corporation Walking state measurement device, walking state measurement system, walking state measurement method, and storage medium for storing walking state measurement program

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825456B2 (en) * 2005-06-14 2011-11-30 タマティーエルオー株式会社 Muscle activity estimation system
JP4608661B2 (en) * 2006-08-25 2011-01-12 公立大学法人高知工科大学 Stand-up training machine
JP4997595B2 (en) * 2007-05-29 2012-08-08 公立大学法人高知工科大学 Floor reaction force estimation system and floor reaction force estimation method
JP2009125506A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Walking figure improvement support system
KR101150053B1 (en) 2009-04-07 2012-05-31 곽동엽 Shoes with stimulating sole proprioceptor
KR101096327B1 (en) * 2009-04-07 2011-12-20 곽동엽 System for measuring quantitative movement of subtalar joint and method thereof
JP5459636B2 (en) * 2009-08-24 2014-04-02 株式会社センス・イット・スマート Support system and support method
JP5750751B2 (en) * 2010-08-20 2015-07-22 学校法人立命館 Foot slip detection device and insole
KR101724869B1 (en) * 2015-06-29 2017-04-19 한국표준과학연구원 System and apparatus for smart shoes using foot presure, manufacturing method thereof and method for controlling the same
JP6644298B2 (en) * 2016-07-22 2020-02-12 広島県 Walking data acquisition device and walking data acquisition system
JP2020028311A (en) * 2016-12-16 2020-02-27 Macrobiosis株式会社 Inversion analysis system and analysis method
CN106859651B (en) * 2017-04-01 2023-09-15 合肥工业大学 Wearable sole pressure measuring shoe and sole pressure measuring method
JP7146190B2 (en) * 2018-10-31 2022-10-04 株式会社テック技販 State estimation system and state estimation method
CN111035401B (en) * 2019-12-30 2022-11-04 中国科学院合肥物质科学研究院 Upper limb strength testing device and using method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111085A (en) * 2013-12-06 2015-06-18 三菱重工業株式会社 Shoe insole pressure sensor and power assist suit
WO2018066151A1 (en) 2016-10-06 2018-04-12 Cyberdyne株式会社 Gait abnormality assistance device and gait abnormality assistance method
US11654035B2 (en) 2016-10-06 2023-05-23 Cyberdyne Inc. Gait disorder support apparatus and gait disorder support method
US11375924B2 (en) 2016-11-29 2022-07-05 Nec Corporation Walking state measurement device, walking state measurement system, walking state measurement method, and storage medium for storing walking state measurement program

Also Published As

Publication number Publication date
JP2004329280A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4390129B2 (en) Estimation system of lower limb joint moment and lower limb muscle tension using plantar pressure
Monaghan et al. Increasing the number of gait trial recordings maximises intra-rater reliability of the CODA motion analysis system
CN107920782B (en) Walking analysis method and walking analysis system
Kadaba et al. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait
US9186096B2 (en) System and method for measuring balance and track motion in mammals
Hunter et al. Reliability of biomechanical variables of sprint running
Najafi et al. Estimation of center of mass trajectory using wearable sensors during golf swing
Laudanski et al. Measurement of lower limb joint kinematics using inertial sensors during stair ascent and descent in healthy older adults and stroke survivors
JP2017086184A (en) Muscular activity visualization system and muscular activity visualization method
Bötzel et al. Quantification of gait parameters with inertial sensors and inverse kinematics
Lee et al. Motion anlaysis in lower extremity joints during ski carving turns using wearble inertial sensors and plantar pressure sensors
Di Gironimo et al. Development of a new experimental protocol for analysing the race-walking technique based on kinematic and dynamic parameters
US10722149B2 (en) Real-time biofeedback rehabilitation tool guiding and illustrating foot placement for gait training
Strutzenberger et al. Assessment of kinematic CMJ data using a deep learning algorithm-based markerless motion capture system
Kiss Verification of determining the spatial position of the lower extremity by ultrasound-based motion analyser
Lacirignola et al. Instrumented footwear inserts: a new tool for measuring forces and biomechanical state changes during dynamic movements
Purkiss et al. Methods for calculating internal mechanical work: comparison using elite runners
Saga et al. Influence of lower extremity alignment on human gait based on wireless sensors
Chew et al. Investigating running gait using a shoe-integrated wireless inertial sensor
Shiotani et al. Estimation model for lower extremity strength using gait movement measured with inertial sensor considering differences of sex and environment
Park et al. A gait imbalance evaluation system using multi-sensors
Stoia et al. Comparison of treadmill-based and overground gait analysis
Whatling et al. Comparing different data collection and analysis techniques for quantifying healthy knee joint function during stair ascent and descent
Avvari et al. Gait analysis: an effective tool to measure human performance
Bini et al. Variability in vertical jump height and lower limb kinematics between days

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees