JP4389451B2 - Semiconductor laser pumped solid state laser device and operation method thereof - Google Patents

Semiconductor laser pumped solid state laser device and operation method thereof Download PDF

Info

Publication number
JP4389451B2
JP4389451B2 JP2003045905A JP2003045905A JP4389451B2 JP 4389451 B2 JP4389451 B2 JP 4389451B2 JP 2003045905 A JP2003045905 A JP 2003045905A JP 2003045905 A JP2003045905 A JP 2003045905A JP 4389451 B2 JP4389451 B2 JP 4389451B2
Authority
JP
Japan
Prior art keywords
value
drive current
solid
laser device
state laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003045905A
Other languages
Japanese (ja)
Other versions
JP2004259751A (en
Inventor
和明 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2003045905A priority Critical patent/JP4389451B2/en
Publication of JP2004259751A publication Critical patent/JP2004259751A/en
Application granted granted Critical
Publication of JP4389451B2 publication Critical patent/JP4389451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザ励起固体レーザ装置に関し、とくに固体レーザ装置出力レーザパワー一定制御機能を持った半導体レーザ励起固体レーザ装置に関する。
【0002】
【従来の技術】
半導体レーザ(LD)励起固体レーザ装置において、レーザ媒質励起用LDがその発振特性に劣化を生じてきたり、あるいは周囲温度の変化した場合に、固体レーザ発振器のレーザ出力パワーが変動するという問題がある。従来は、人手によりLD電流の調整を行ってパワー調整するか、あるいは自動パワー一定制御系を構成して行っていた。パワー一定制御を行う場合には、パワー特性がLD電流に対して線形な領域で行う必要があるため、この線形領域で所望の一定出力パワーに対応するLDの設定電流値を調整していた。また、通常駆動電流の過入力によるLDの破壊を防止するために電流リミットを掛けている。
しかし、LDの劣化が進行するとパワー特性が変化して初期設定のLD電流値では同一のパワー出力が得られなくなる。このため、LD劣化の進行とともに設定電流値を徐々に増加させることによってパワーを一定に保持することができるが、設定電流値が初期設定の電流リミット値を越えた場合はその時点で最適なリミット値を更に高く設定し直す必要が生じる。さらにLD劣化が進行したことによってリミットを調整してもパワー一定制御が不可能となった場合、LDを交換すべきかどうかの判断を行う必要がある。従来はこのリミット調整あるいはLD電流値調整を人手によって行っていたため、メンテナンス時には調整に熟練が必要であった。
出力の温度変動を生じたり劣化が生じているLDから常に所望の出力パワーを得るために、LDの特性検出手段によって求めたLD特性に基づいて目標値を補正して出力一定制御する技術が開示されている(例えば特許文献1参照)。この例は、固体レーザ出力ではなくLD自身の出力一定制御であり、また、リミット調整の機能を備えておらず、リミットを調整してもパワー一定制御が不可能となった場合、LDを交換すべきかどうかの判断を与える手段を備えていない。開示技術を用いてもなお固体レーザ励起用LDのメンテナンスには熟練が必要である。
【0003】
【特許文献1】
特開2000−294871号公報(第6−9頁、図1)
【0004】
【発明が解決しようとする課題】
本発明は、上記の課題に鑑みて成されたものであって、その目的とするところはLD駆動電流出力のリミットを自動的に調整し、レーザパワー出力一定フィードバック制御を行うことができ、さらにLD交換状態を指示するアラーム出力を備えた、LD調整に熟練の必要がなくなりメンテナンス性の向上を図ることができる半導体レーザ励起固体レーザ装置とその稼働方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の半導体レーザ励起固体レーザ装置は、半導体レーザ(LD)を励起光源とする固体レーザ装置であって、LDの駆動電流に制限を与える手段と、固体レーザ装置のレーザ出力がLDの駆動電流値によって自動的に一定となるように制御する手段と、固体レーザ装置のレーザ出力を一定にするために必要なLDの駆動電流値が、制限値を超える場合に、制限値を所要駆動電流値以上に増大させる手段、を備え、前記制限値は、レーザ出力をLDの駆動電流で微分した微分値が、微分値の最大値より所定の値だけ低下した値を与える駆動電流値であることを特徴とする。
【0006】
また本発明の半導体レーザ励起固体レーザ装置は、半導体レーザ(LD)を励起光源とする固体レーザ装置であって、固体レーザ装置のレーザ出力を検出する受光素子と、受光素子の出力が予め設定された目標値に自動的に一定となるようにLDの駆動電流を帰還制御する回路と、LDの駆動電流に制限を与える電流リミット回路と、受光素子の出力をLDの駆動電流で微分し、微分値が微分値の最大値より所定の値だけ低下した値を与える駆動電流値を電流リミット回路の制限値として出力する微分回路を備えることを特徴とする。
半導体レーザ励起固体レーザ装置が、さらに、制限値が予め設定した値を超える場合に警報を発する回路を備える。
微分回路が、LDの駆動電流値と微分値とを記憶するメモリを備える。
【0007】
また本発明の半導体レーザ励起固体レーザ装置の稼働方法は、上記の半導体レーザ励起固体レーザ装置において、レーザ装置の起動時毎に、LDの駆動電流を0から走引して、メモリのLDの駆動電流値と微分値の記憶データを書き換えるステップを含む。
また本発明の半導体レーザ励起固体レーザ装置の稼働方法は、上記の半導体レーザ励起固体レーザ装置において、適切な時間毎に、LDの駆動電流を0から走引して、メモリのLDの駆動電流値と微分値の記憶データを書き換えるステップを含む。
【0008】
【発明の実施の形態】
本発明の実施の形態を図面を参照して説明する。
本発明の半導体レーザ励起固体レーザ装置の概念装置構成を図1に示す。本構成は、レーザ発振器1とLDコントローラ6とで構成される。レーザ発振器1は、励起用LD2と、励起用LD2により励起されレーザ光を発振するレーザ共振器50と、レーザ共振器が発振したをレーザ光5をさえぎるシャッタ3と、レーザ光5の出力の一部をモニタするパワーモニタ4から構成され、LDコントローラ6は、パワーモニタ4の出力信号8をフィードバックしてLD電流出力信号9を生成するフィードバック回路7を内蔵している。
【0009】
フィードバック回路7の機能構成を図2に示す。フィードバック回路7は、指令パワーPを電流値に変換する制御ゲイン12、パワー入力にゲインを掛けるフィードバックゲイン14、LD電流出力とパワー入力から微分波形を生成する微分回路15、微分回路出力によりLD電流出力リミット値を変化させるリミット回路13、微分回路出力をモニタしてアラーム出力を行うアラーム回路16から構成される。
【0010】
本発明の半導体レーザ励起固体レーザ装置は、レーザ光5の出力パワーを一定に保つ機能と、励起LDが劣化や温度変動によって出力特性が変化した場合に、励起LDの駆動に設けられている電流リミットの値を自動的に調整する機能と、LD劣化が進行してリミット調整が不可能となった場合には、アラームを出力してLD交換を指示する機能を備える。
【0011】
次に本実施形態の動作を説明する。図3に励起LDの駆動電流とレーザ共振器出力パワーの関係を示す。実線の曲線10はLDに劣化を生じていない正常時の出力特性、破線11はLDに劣化が起こり始めた異常時の出力特性を示す。正常時に所要のレーザ出力パワーPを得るためにLDに印加する電流をIとした時、制御ゲイン12と、LD2と、パワーモニタ4と、フィードバックゲイン14とが構成する帰還回路は印加電流をIに増大して、異常時にも同一のパワーPを出力するようにパワー一定制御の動作を行う。それは、図3に示すようにレーザパワー出力特性が初期状態10からLD劣化状態11に変化してLD電流出力範囲が初期リミットILIM1を越える場合にも自動的にリミットをILIM2に調整してパワー一定制御を続行できるからである。LD劣化が進行してリミット調整が不可能となった場合にはアラームを出力してLD交換を指示できる。
【0012】
さらに、LD劣化によるリミット制御とアラーム出力の動作を細かく説明する。まずレーザ発振器立上げ時にシャッタ3をクローズし、帰還回路のループを解き、リミット回路の電流制限を解除し、LD2の電流出力を0Aから許容電流値までスキャンしながらパワーモニタ4によりパワー値を測定する(図4(A))。この時に図3で示した微分回路15では、LD電流出力とパワー入力から微分波形を生成する(図4(B))。正常時の微分出力波形17を示した場合、リミット回路13では、微分出力の定常出力状態又は最大値から一定値Δp‘低下したところをリミット値ILIM1としてLD電流の制限を行う。LDが劣化状態の異常時の出力特性に移行し、微分回路15の出力が微分出力波形18に移行した時、LD電流の制限を微分出力の定常出力状態又は最大値から一定値Δp‘低下したところをリミット値ILIM2とし、この制限電流内でパワー一定制御を続ける。
さらに、LDの劣化が進み、リミット値がパワーフィードバック不可の領域となる場合すなわち、リミット電流値におけるレーザ出力が飽和に近づき、微分出力が予め定めた値のアラームレベルPl‘より低下し、その点に対応する電流値に達した時、アラーム回路においてアラーム出力を行う。
以上により本発明の半導体レーザ励起固体レーザ装置では、パワー特性の変動がパワーフィードバック可能な領域にある場合には、自動的にリミット値が調整され、パワーフィードバック不可領域までパワーが変動した場合にはアラームが出力されるという処理が行われる。
【0013】
本発明は、LD劣化によるパワー変動だけでなく、周囲温度の変化によるパワー変動に対しても同様にリミット調整を行うことができるため、レーザパワー出力特性の測定を随時行うことにより、温度変化が大きい環境においても適用が可能である。
【0014】
【発明の効果】
以上説明したように、本発明の半導体レーザ励起固体レーザ装置は、レーザパワーのフィードバックを行うことができ、LD電流出力のリミットを自動的に調整し、アラーム出力によりLD交換状態も明確となるため、調整に熟練の必要がなくなりメンテナンス性の向上を図ることができる。
【0015】
【図面の簡単な説明】
【図1】本発明の半導体レーザ励起固体レーザ装置の概念的な構成を示す図である。
【図2】本発明の半導体レーザ励起固体レーザ装置が備えるフィードバック回路のブロック図である。
【図3】レーザパワー出力特性を示す図である。
【図4】本発明の半導体レーザ励起固体レーザ装置のフィードバック回路が備える微分回路の微分出力を示す図である。
【符号の説明】
1 レーザ発振器
2 LD
3 シャッタ
4 パワーモニタ
5 レーザ光
6 コントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor laser pumped solid-state laser device, and more particularly to a semiconductor laser pumped solid-state laser device having a function of controlling a constant laser power output from a solid-state laser device.
[0002]
[Prior art]
In a semiconductor laser (LD) pumped solid-state laser device, there is a problem that the laser output power of the solid-state laser oscillator fluctuates when the laser medium pumping LD deteriorates its oscillation characteristics or the ambient temperature changes. . Conventionally, the LD current is adjusted manually to adjust the power, or an automatic power constant control system is configured. When the constant power control is performed, it is necessary to perform the power characteristic in a region where the power characteristic is linear with respect to the LD current. Therefore, the set current value of the LD corresponding to a desired constant output power is adjusted in this linear region. In addition, a current limit is applied to prevent destruction of the LD due to excessive input of the normal drive current.
However, as the deterioration of the LD progresses, the power characteristics change, and the same power output cannot be obtained with the default LD current value. Therefore, the power can be kept constant by gradually increasing the set current value with the progress of LD degradation. However, if the set current value exceeds the default current limit value, the optimal limit at that point It becomes necessary to set the value higher. Furthermore, if constant power control becomes impossible even if the limit is adjusted due to the progress of LD deterioration, it is necessary to determine whether or not the LD should be replaced. Conventionally, this limit adjustment or LD current value adjustment has been performed manually, so that skill is required for adjustment during maintenance.
Disclosed is a technique for correcting the target value based on the LD characteristic obtained by the LD characteristic detecting means and controlling the output to be constant in order to always obtain a desired output power from the LD in which the output temperature fluctuates or deteriorates. (For example, refer to Patent Document 1). In this example, the output is constant control of the LD itself, not the solid laser output, and if the limit adjustment function is not provided and constant power control becomes impossible even after adjusting the limit, the LD is replaced. There is no means to give a judgment as to whether or not to do so. Even using the disclosed technology, skill is still required for the maintenance of the solid laser excitation LD.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-294871 (page 6-9, FIG. 1)
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and the object of the present invention is to automatically adjust the limit of the LD drive current output and perform constant feedback control of the laser power output. An object of the present invention is to provide a semiconductor laser pumped solid-state laser device having an alarm output for instructing an LD replacement state, eliminating the need for skill in LD adjustment and improving maintenance, and an operation method thereof.
[0005]
[Means for Solving the Problems]
The semiconductor laser pumped solid-state laser device of the present invention is a solid-state laser device using a semiconductor laser (LD) as a pumping light source, the means for limiting the drive current of the LD, and the laser output of the solid-state laser device is the drive current of the LD. The means for controlling automatically to be constant depending on the value and the drive current value of the LD required for making the laser output of the solid-state laser device constant exceed the limit value. comprising a means for increasing above the limit value, the differential value of the laser output obtained by differentiating the drive current of the LD is the drive current value that gives a value decreased by a predetermined value than the maximum value of the differential value Features.
[0006]
The semiconductor laser excitation solid-state laser device of the present invention is a solid-state laser device using a semiconductor laser (LD) as an excitation light source. The light-receiving element for detecting the laser output of the solid-state laser device and the output of the light-receiving element are preset. A circuit that feedback-controls the LD drive current so that the target value is automatically constant, a current limit circuit that limits the LD drive current, and the output of the light receiving element is differentiated by the LD drive current. And a differential circuit that outputs a drive current value that gives a value that is lower than a maximum value of the differential value by a predetermined value as a limit value of the current limit circuit.
The semiconductor laser excitation solid-state laser device further includes a circuit that issues an alarm when the limit value exceeds a preset value.
The differentiation circuit includes a memory that stores the drive current value and the differential value of the LD.
[0007]
The semiconductor laser pumped solid-state laser device according to the present invention operates in the above-described semiconductor laser pumped solid-state laser device by driving the LD drive current from 0 each time the laser device is started up. Rewriting the stored data of the current value and the differential value.
The semiconductor laser pumped solid-state laser device according to the present invention is operated in the above-described semiconductor laser pumped solid-state laser device by driving the LD drive current from 0 at an appropriate time interval. And rewriting the stored data of the differential value.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a conceptual device configuration of a semiconductor laser pumped solid-state laser device of the present invention. This configuration includes a laser oscillator 1 and an LD controller 6. The laser oscillator 1 includes an excitation LD 2, a laser resonator 50 that is excited by the excitation LD 2 to oscillate laser light, a shutter 3 that blocks the laser light 5 generated by the laser resonator, and an output of the laser light 5. The LD controller 6 includes a feedback circuit 7 that feeds back an output signal 8 of the power monitor 4 to generate an LD current output signal 9.
[0009]
The functional configuration of the feedback circuit 7 is shown in FIG. The feedback circuit 7 includes a control gain 12 for converting the command power P 0 into a current value, a feedback gain 14 for multiplying the power input by a gain, a differentiation circuit 15 for generating a differential waveform from the LD current output and the power input, and an LD based on the differentiation circuit output. A limit circuit 13 for changing the current output limit value and an alarm circuit 16 for monitoring the output of the differentiation circuit and outputting an alarm are configured.
[0010]
The semiconductor laser pumped solid-state laser device of the present invention has a function of keeping the output power of the laser beam 5 constant and a current provided for driving the pumping LD when the pumping LD changes its output characteristics due to deterioration or temperature fluctuation. A function of automatically adjusting the limit value and a function of outputting an alarm and instructing LD replacement when the limit adjustment becomes impossible due to the progress of LD deterioration.
[0011]
Next, the operation of this embodiment will be described. FIG. 3 shows the relationship between the drive current of the excitation LD and the laser resonator output power. A solid curve 10 indicates an output characteristic at a normal time when the LD does not deteriorate, and a broken line 11 indicates an output characteristic at an abnormal time when the LD starts to deteriorate. When the current applied to the LD in order to obtain the required laser output power P 0 under normal conditions is I 1 , the feedback circuit formed by the control gain 12, LD 2, power monitor 4, and feedback gain 14 is applied current. the increases in I 2, performs the operation of the power constant control so as to output the same power P 0 to abnormality. As shown in FIG. 3, even when the laser power output characteristic changes from the initial state 10 to the LD degradation state 11 and the LD current output range exceeds the initial limit I LIM1 , the limit is automatically adjusted to I LIM2. This is because constant power control can be continued. If the limit adjustment is impossible due to the progress of LD deterioration, an alarm can be output to instruct replacement of the LD.
[0012]
Furthermore, limit control and alarm output operations due to LD degradation will be described in detail. First, when the laser oscillator is started up, the shutter 3 is closed, the feedback circuit loop is released, the current limit of the limit circuit is released, and the power value is measured by the power monitor 4 while scanning the current output of LD2 from 0A to the allowable current value. (FIG. 4A). At this time, the differentiation circuit 15 shown in FIG. 3 generates a differential waveform from the LD current output and the power input (FIG. 4B). When the differential output waveform 17 at the normal time is shown, the limit circuit 13 limits the LD current by setting a constant value Δp ′ lower than the steady output state or the maximum value of the differential output as a limit value I LIM1 . When the LD shifts to the output characteristic when the LD is in an abnormal state and the output of the differentiating circuit 15 shifts to the differential output waveform 18, the LD current limit is lowered by a constant value Δp ′ from the steady output state or maximum value of the differential output. This is the limit value I LIM2 and constant power control is continued within this limit current.
Further, when the degradation of the LD progresses and the limit value becomes a region where power feedback is not possible, that is, the laser output at the limit current value approaches saturation, and the differential output falls below the alarm level Pl ′ of a predetermined value. When the current value corresponding to is reached, the alarm circuit outputs an alarm.
As described above, in the semiconductor laser pumped solid-state laser device of the present invention, when the fluctuation of the power characteristic is in the region where power feedback is possible, the limit value is automatically adjusted, and when the power fluctuates to the region where power feedback is impossible A process of outputting an alarm is performed.
[0013]
In the present invention, not only power fluctuation caused by LD degradation but also power fluctuation caused by change in ambient temperature can be similarly adjusted. It can be applied even in a large environment.
[0014]
【The invention's effect】
As described above, the semiconductor laser pumped solid-state laser device of the present invention can perform feedback of the laser power, automatically adjust the limit of the LD current output, and the LD exchange state is clarified by the alarm output. This eliminates the need for skill in adjustment, and improves maintainability.
[0015]
[Brief description of the drawings]
FIG. 1 is a diagram showing a conceptual configuration of a semiconductor laser excitation solid-state laser device of the present invention.
FIG. 2 is a block diagram of a feedback circuit provided in the semiconductor laser pumped solid-state laser device of the present invention.
FIG. 3 is a diagram showing laser power output characteristics.
FIG. 4 is a diagram showing a differential output of a differential circuit included in a feedback circuit of the semiconductor laser pumped solid-state laser device of the present invention.
[Explanation of symbols]
1 Laser oscillator 2 LD
3 Shutter 4 Power monitor 5 Laser light 6 Controller

Claims (6)

半導体レーザ(LD)を励起光源とする固体レーザ装置であって、
前記LDの駆動電流に制限を与える手段と、
前記固体レーザ装置のレーザ出力が前記LDの駆動電流値によって自動的に一定となるように制御する手段と、
前記固体レーザ装置のレーザ出力を一定にするために必要な前記LDの駆動電流値が、前記制限値を超える場合に、前記制限値を前記所要駆動電流値以上に増大させる手段と、
を備え、
前記制限値は、
前記レーザ出力を前記LDの駆動電流で微分した微分値が、前記微分値の最大値より所定の値だけ低下した値を与える駆動電流値である、
ことを特徴とする半導体レーザ励起固体レーザ装置。
A solid-state laser device using a semiconductor laser (LD) as an excitation light source,
Means for limiting the drive current of the LD;
Means for controlling the laser output of the solid-state laser device to be automatically constant according to the drive current value of the LD;
Means for increasing the limit value to be equal to or greater than the required drive current value when the drive current value of the LD required for making the laser output of the solid-state laser device constant exceeds the limit value;
With
The limit value is
The differential value obtained by differentiating the laser output with the drive current of the LD is a drive current value that gives a value lower than the maximum value of the differential value by a predetermined value.
Semiconductors laser pumped solid-state laser apparatus, characterized in that.
半導体レーザ(LD)を励起光源とする固体レーザ装置であって、
前記固体レーザ装置のレーザ出力を検出する受光素子と、
前記受光素子の出力が予め設定された目標値に自動的に一定となるように前記LDの駆動電流を帰還制御する回路と、
前記LDの駆動電流に制限を与える電流リミット回路と、
前記受光素子の出力を前記LDの駆動電流で微分し、前記微分値が前記微分値の最大値より所定の値だけ低下した値を与える駆動電流値を前記電流リミット回路の制限値として出力する微分回路、
を備えることを特徴とする半導体レーザ励起固体レーザ装置。
A solid-state laser device using a semiconductor laser (LD) as an excitation light source,
A light receiving element for detecting a laser output of the solid state laser device;
A circuit for feedback controlling the drive current of the LD so that the output of the light receiving element is automatically constant at a preset target value;
A current limit circuit for limiting the drive current of the LD;
Differentiating the output of the light receiving element with the drive current of the LD, and outputting a drive current value giving a value obtained by lowering the differential value by a predetermined value from the maximum value of the differential value as a limit value of the current limit circuit circuit,
A semiconductor laser-excited solid-state laser device.
前記半導体レーザ励起固体レーザ装置が、
さらに、前記制限値が予め設定した値を超える場合に警報を発する回路、
を備えることを特徴とする請求項に記載の半導体レーザ励起固体レーザ装置。
The semiconductor laser excitation solid-state laser device is
Further, a circuit that issues an alarm when the limit value exceeds a preset value,
The semiconductor laser excitation solid-state laser device according to claim 2 , comprising:
前記微分回路が、
前記LDの駆動電流値と前記微分値とを記憶するメモリ、
を備えることを特徴とする請求項に記載の半導体レーザ励起固体レーザ装置。
The differentiation circuit is
A memory for storing a drive current value of the LD and the differential value;
The semiconductor laser excitation solid-state laser device according to claim 2 , comprising:
請求項に記載の半導体レーザ励起固体レーザ装置において、
前記レーザ装置の起動時毎に、前記LDの駆動電流を0から走引して、前記メモリの前記LDの駆動電流値と前記微分値の記憶データを書き換えるステップ、
を含むことを特徴とする半導体レーザ励起固体レーザ装置の稼働方法。
In the semiconductor laser excitation solid-state laser device according to claim 4 ,
Rewriting the drive current value of the LD and the stored data of the differential value by running the drive current of the LD from 0 each time the laser device is activated;
A method for operating a semiconductor laser pumped solid-state laser device, comprising:
請求項に記載の半導体レーザ励起固体レーザ装置において、
適切な時間毎に、前記LDの駆動電流を0から走引して、前記メモリの前記LDの駆動電流値と前記微分値の記憶データを書き換えるステップ、
を含むことを特徴とする半導体レーザ励起固体レーザ装置の稼働方法。
In the semiconductor laser excitation solid-state laser device according to claim 4 ,
Rewriting the drive current value of the LD and the storage data of the differential value of the memory by running the drive current of the LD from 0 at appropriate time intervals;
A method for operating a semiconductor laser pumped solid-state laser device, comprising:
JP2003045905A 2003-02-24 2003-02-24 Semiconductor laser pumped solid state laser device and operation method thereof Expired - Fee Related JP4389451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045905A JP4389451B2 (en) 2003-02-24 2003-02-24 Semiconductor laser pumped solid state laser device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045905A JP4389451B2 (en) 2003-02-24 2003-02-24 Semiconductor laser pumped solid state laser device and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004259751A JP2004259751A (en) 2004-09-16
JP4389451B2 true JP4389451B2 (en) 2009-12-24

Family

ID=33112592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045905A Expired - Fee Related JP4389451B2 (en) 2003-02-24 2003-02-24 Semiconductor laser pumped solid state laser device and operation method thereof

Country Status (1)

Country Link
JP (1) JP4389451B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1681750A1 (en) * 2005-01-17 2006-07-19 Fanuc Ltd Laser oscillator and method of estimating the lifetime of a pump light source
JP2006210812A (en) * 2005-01-31 2006-08-10 Sumitomo Electric Ind Ltd Circuit and method for light output control
US7889772B2 (en) 2006-04-25 2011-02-15 Mitsubishi Electric Corporation Laser oscillator apparatus and power supply apparatus therefor, and control method therefor
CN100385756C (en) * 2006-05-19 2008-04-30 北京航空航天大学 Stable light source light power output apparatus with full optical fiber structure
JP2008130848A (en) * 2006-11-21 2008-06-05 Mitsutoyo Corp Laser frequency stabilizing apparatus, and laser frequency stabilizing method
JP4897449B2 (en) * 2006-12-04 2012-03-14 株式会社ミツトヨ Laser frequency stabilization device, laser frequency stabilization method, and laser frequency stabilization program
US8351477B2 (en) * 2010-07-22 2013-01-08 Coherent Gmbh Modulation method for diode-laser pumped lasers
JP5810264B2 (en) * 2012-12-06 2015-11-11 パナソニックIpマネジメント株式会社 Laser oscillator
CN103825185B (en) * 2014-03-25 2019-07-26 深圳市杰普特光电股份有限公司 A kind of control method of laser output device

Also Published As

Publication number Publication date
JP2004259751A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
EP1950853B1 (en) Fiber pulse laser apparatus and method of control the same
JP4389451B2 (en) Semiconductor laser pumped solid state laser device and operation method thereof
US9048622B2 (en) High power pulsed light generation device
JP6003581B2 (en) Optical amplifier
US9203214B2 (en) Laser system
TWI393313B (en) Femtosecond laser device having output stabilizing mechanism
JPH01205183A (en) Semiconductor laser output controller
JP4360619B2 (en) Temperature control device, temperature control method, and program
JP4491184B2 (en) Temperature control circuit for light emitting module
WO2008003997A1 (en) Laser control systems
US8351477B2 (en) Modulation method for diode-laser pumped lasers
JP4352871B2 (en) Pulse-driven laser diode-pumped Q-switched solid-state laser oscillator and its oscillation control method
JP2005175272A (en) Method for monitoring characteristic of excitation light source for optical amplification and optical amplifier
JP4533733B2 (en) Laser marking device
JPH0582755B2 (en)
JP3930374B2 (en) Optical fiber amplifier and pumping light source monitoring method
CN114447749B (en) Automatic locking method and system for laser frequency
JP3743399B2 (en) Laser diode control device and control method
JP2010157662A (en) Laser diode driving circuit and laser diode driving method
JP5485737B2 (en) Laser diode driving circuit and laser diode driving method
JP2010199315A (en) Solid-state laser oscillator and method for modulating solid-state laser output pulse
JPH10190107A (en) Optical fiber amplifier
JP2000340873A (en) Optical output control method of solid-state laser, the solid-state laser and laser power source
JP2004193348A (en) Laser diode control device, threshold decision method for controlling, and laser diode control method
JP2000037906A (en) Laser beam image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees