JP4387551B2 - Wireless communication system and transmission power control method used therefor - Google Patents

Wireless communication system and transmission power control method used therefor Download PDF

Info

Publication number
JP4387551B2
JP4387551B2 JP2000126834A JP2000126834A JP4387551B2 JP 4387551 B2 JP4387551 B2 JP 4387551B2 JP 2000126834 A JP2000126834 A JP 2000126834A JP 2000126834 A JP2000126834 A JP 2000126834A JP 4387551 B2 JP4387551 B2 JP 4387551B2
Authority
JP
Japan
Prior art keywords
electric field
transmission power
value
transmission
received electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000126834A
Other languages
Japanese (ja)
Other versions
JP2001308786A (en
Inventor
一等 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2000126834A priority Critical patent/JP4387551B2/en
Publication of JP2001308786A publication Critical patent/JP2001308786A/en
Application granted granted Critical
Publication of JP4387551B2 publication Critical patent/JP4387551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は無線通信システム及びそれに用いる送信電力制御方法に関し、特にマイクロ波無線通信システムの互いに対向する無線回線の送信電力制御方式に関する。
【0002】
【従来の技術】
従来、マイクロ波無線通信システムの送信電力制御方式においては、採用目的と作用とから採用システム毎に分類すると下記のようになる。すなわち、採用目的としては、(a1)伝搬路のフェージングでの電波減衰による回線品質の劣化の補償、(a2)送信電力を抑制して低消費電力化することによるシステムの運用の経済化、(a3)送信電力を抑制することによる隣接する回線やチャンネルへの干渉低減、(a4)伝搬路の降雨や温度変動での電波減衰による回線品質の劣化の補償等がある。
【0003】
また、送信電力制御方式の作用としては、(b1)受信電界を測定した結果を対向の送信側へ伝達して送信電力を制御する方式、(b2)受信電界を測定した結果で自局の送信電力を制御する方式等がある。
【0004】
採用システム毎の分類としては、(c1)特開昭57−116438号公報等に開示された移動通信システム、(c2)特開平7−66762号公報等に開示された衛星通信システム、(c3)固定マイクロ波無線システム等がある。
【0005】
(c1)の移動通信システムは基地局に対して複数の子局が存在するため、干渉問題が重要になるという特徴がある。したがって、主に(b2)の作用によって(a1),(a3),(a4)の目的から送信電力制御を行っている。また、(b2)の作用と同時に、子局間で(b1)の作用によって相手子局の送信電力を制御している。
【0006】
(c2)の衛星通信システムでは降雨や温度変動によって受信電界が変動する。このため、受信電界をサンプリングし、前回と今回との差分値としきい値とを比較した結果に応じて地球局の送信電力を制御している。したがって、主に(b2)の作用によって(a4)の目的から送信電力制御を行っている。
【0007】
(c3)の固定マイクロ波無線システムでは、使用する無線周波数帯に応じて2つの構成がある。第1の構成は使用する無線周波数帯が周波数選択制フェージングの影響を受ける場合で、フェージングが周波数選択的に発生することから(b1)の作用を有し、フェージングによる受信電界の変動情報を、専用回線を使用して対向する無線装置へ伝達することで送信電力を制御している。この制御としては、特開平5−122125号公報や特開昭63−301629号公報に記載された技術がある。
【0008】
この時、フェージングによる受信電界の劣化するスピードを補うように、対向の送信電力制御を行う必要があるため、専用回線は数十から数百bit/secの伝送容量が必要である。
【0009】
第2の構成は降雨減衰が支配的な無線周波数帯を使用する場合で、双方向の受信電界が降雨によって同時に影響を受けるため、(b2)の作用を有し、受信電界の変動により自己の送信電力制御を行っている。この制御としては、特開昭60−64539号公報に記載された技術がある。第2の構成は送信電力制御用の情報を対向に伝達する専用回線が不要であるため、無線占有帯域を低減することができるという効果を有している。
【0010】
降雨減衰が支配的な無線周波数を使用するシステムの送信電力制御で、第2の構成のような送信電力制御の専用回線を不要とする送信電力制御方式について、特開昭60−64539号公報に記載された技術を参照して説明する。
【0011】
特開昭60−64539号公報に記載された技術では、10GHz以上の周波数帯を使用する場合、降雨減衰がしばしば発生し、受信機の熱雑音によって信号のS/Nが大きく低下するのを軽減するために、電波の降雨減衰による受信電界がある設定した第1の値より低くなった時、ある設定した送信電力に増大する信号を発生させ、一定時間経過後に自局と対向の送信機とを実質的に同時に送信電力の増加をコントロールする電圧として送信機に加え、第2の値より高くなった時、送信電力を元に復旧する信号を発生し、一定時間経過した後に送信電力を復旧させる機能を有している。
【0012】
つまり、特開昭60−64539号公報に記載された技術では、送信電力制御のための専用制御線を不要にした構成と、第1の値と第2の値とを設定し、2つの送信電力値に切替える機能を有する点と、対向する装置が同一の制御を行う点とがその特徴とする点である。
【0013】
特開昭60−64539号公報に記載された技術の動作の特徴は、“第1の値より低くなった時にある設定した送信電力を増大する信号を発生させ、一定時間経過後に、自局と対向の送信機とを実質的に同時に送信電力の増加をコントロールする”という点にある。この記載から、対向する装置の送信電力制御が同一制御であり、制御タイミングが各々の装置のタイミング管理で制御することが分かる。
【0014】
無線通信装置は対向する装置の送信電力(出力レベル)制御誤差、受信電界モニタの検出誤差、使用している送信周波数、受信周波数の違いから生じる減衰量の差によって、対向する装置の受信電界値に差が生じるのが一般的である。
【0015】
この誤差によって、例えば降雨で装置Aのみが第1の値より低くなった場合、装置Aでは第1の値以下を検出したために一定時間経過後に送信電力を増加させる。これに対し、装置Bでは第1の値以下を検出していないため、自分の送信電力を変更しない。よって、装置Aで送信電力制御が行われた直後には、対向の装置Bで受信電界値が増加することになる。
【0016】
したがって、装置Bでは受信電界が増加し続け、第2の値より高くなるまで、自分の送信電力を変更しない。つまり、装置Aの送信電力と装置Bの送信電力とに大きな差が発生し、周辺システムに対して不用意に干渉を増加させる動作になる。
【0017】
【発明が解決しようとする課題】
上述した従来の無線通信装置では、対向する装置の送信電力(出力レベル)制御誤差、受信電界モニタの検出誤差、使用している送信周波数、受信周波数の違いから生じる減衰量の差によって、対向する装置の受信電界値に差が生じるのが一般的であるので、この誤差によって降雨で装置Aのみが第1の値より低くなった場合、装置Aで第1の値以下を検出したために一定時間経過後に送信電力を増加させると、装置Bでは第1の値以下を検出していないため、自分の送信電力を変更せず、装置Aで送信電力制御が行われた直後に対向の装置Bで受信電界値が増加することになる。
【0018】
したがって、対向の装置Bでは受信電界が増加し続け、第2の値より高くなるまで、自分の送信電力を変更しない。つまり、装置Aの送信電力と装置Bの送信電力とに大きな差が発生し、周辺システムに対して不用意に干渉を増加させる動作となる。
【0019】
そこで、本発明の目的は上記の問題点を解消し、送信電力制御値や受信電界モニタ値、及び伝搬路減衰量に誤差があっても、不用意に干渉を増加させることなく送信電力制御を行うことができる無線通信システム及びそれに用いる送信電力制御方法を提供することである。
【0020】
【課題を解決するための手段】
本発明による無線通信システムは、
互いに対向する無線装置間を無線回線を介して接続する無線通信システムであって、
前記互いに対向する無線装置を親装置と子装置とに設定する機能と、
前記親装置及び前記子装置の受信電界を周期的に検出する機能と、
検出された前記受信電界に応じて前記親装置及び前記子装置の送信電力を変更する機能とを有し、
前記親装置は、
標準受信電界設定値と検出した受信電界値とを比較してその差分が予め設定された制御許容値を越えるか否かを判定し、その差分を補うように受信が低下したら送信を増加させかつ受信が増加したら送信を低下させるように送信電力を制御することを特徴とする。
【0021】
本発明による無線通信システムの電力制御方法は、
互いに対向する無線装置間を無線回線を介して接続する無線通信システムの送信電力制御方法であって、
前記互いに対向する無線装置を親装置と子装置とに設定し、受信電界を周期的に検出するステップと、
検出された前記受信電界に応じて送信電力を変更するステップとを前記親装置及び前記子装置各々に有し、
前記親装置は、
標準受信電界設定値と検出した受信電界値とを比較してその差分が予め設定された制御許容値を越えるか否かを判定し、その差分を補うように受信が低下したら送信を増加させかつ受信が増加したら送信を低下させるように送信電力を制御することを特徴とする。
【0022】
すなわち、本発明の無線通信システムは、対向の装置を親装置と子装置とに設定する機能と、受信電界を周期的に検出する機能と、送信電力を変更する機能とを有している。
【0023】
この場合、親装置はP−P(Point to Point:1対1)無線回線のルート毎の標準受信電界値kと検出した受信電界とを比較して差分(低下量/増加量)が制御許容値mを越えたことを認識する機能と、その差分を補うよう(受信が低下したら、送信を増加させる)に自装置の送信電力を制御する機能とを有している。
【0024】
また、子装置は前回の受信電界を保持する機能と、前回の受信電界と今回検出した受信電界とを比較してその差分が制御許容値mを越えた時に同一量を親装置とは逆の制御(受信が低下したら、送信も低下させる)で自装置の送信電力を制御する機能とを有している。
【0025】
降雨の影響が支配的な無線周波数で通信を行う対向するP−P無線回線では、降雨によって下り回線や上り回線の受信電界に同じような減衰が発生するという特徴がある。
【0026】
本発明では、無線回線の設置環境である距離や降雨状態を考慮した標準受信電界値k、制御許容値mを設定し、この対向する装置に親子関係を持たせ、親装置と子装置とで異なる送信電力制御を行うことによって、回線の送信電力制御を標準受信電界値に近づける制御を行う。ここで、制御許容値mは送信電力制御を開始するためのしきい値である。
【0027】
親装置での送信電力を低下させる制御は受信電界モニタ値が「標準受信電界値k+制御許容値m」より高くなった時に動作し、送信電力を増加させる制御は受信電界モニタ値が「標準受信電界値k−制御許容値m」より低くなった時に動作する。子装置では前回の受信電界モニタ値と今回の受信電界モニタ値との差が、制御許容値mを越えた時に子装置の送信電力制御をその差だけ行うように動作する。
【0028】
対向のシステムが安定し、送信電力制御が行われている状態の動作について説明する。降雨でP−P無線回線の両対向の受信電界が低下した場合、親装置が受信電界モニタ値k1と既設定値kとを比較し、低下量a(a=k−k1)を検出する。この低下量aと規定値mとを比較し、低下量aが規定値mより低下したことを検出した時、この低下量aを補うように自分の送信電力を低下量aだけ増加させる。実際には、親装置の送信電力(出力レベル)に誤差±v1があるため、誤差±v1を含んだ量a’(a’=a±v1)が増加した親装置送信電力となる。これによって、子装置の受信電界が誤差±v1を含んだ量a’に相当する量だけ増加する。
【0029】
子装置ではこの受信電界の増加量a’を、前回の受信電界p1と今回の受信電界p1+a’との差を算出することで認識する。ここにも伝搬路誤差、受信電界モニタの検出誤差±v2が含まれているが、検出誤差v2は前回値にも今回値にも同一値を含むため、差分量は検出誤差±v2を相殺した+a’[a’=(p1+a’±v2)−(p1±v2)]が検出される。
【0030】
この増加量a’によって子装置の送信電力を増加量a’だけ増加させる。実際には子装置の送信電力(出力レベル)に誤差±v3があるため、その誤差±v3を含んだ量a”(a”=a’±v3)が増加した送信電力になる。これによって、対向する親装置の受信電界もa”(a”=a’±v3)だけ増加し、既設定値の受信電界に近づける補正を行うことができる。
【0031】
親装置にも伝搬路誤差、受信電界モニタ誤差v4が存在しているが、子装置での差分量算出時に誤差が相殺されたのと同様に、親装置の受信電界モニタ誤差v4も前回のモニタ値にも今回のモニタ値k1にも含まれているために相殺することが可能である。つまり、親装置の受信電界の増加量は誤差v1,v3のみを含んだ値a”(a”=a’±v3=a±v1±v3)だけ増加した値k2(k2=k1+a±v1±v3)となる。
【0032】
一方、降雨が止み、受信電界が増加した場合、親装置が受信電界モニタ値k3と既設定値kとを比較し、増加量b(b=k−k3)を検出する。この増加量bと規定値mとを比較し、増加量bが規定値mより増加したことを検出した時、他システムへの干渉電力を抑制するため、この増加量bを補なうように自装置の送信電力を増加量bだけ低下させる。実際には親装置の送信電力(出力レベル)に誤差±v1があるため、誤差を含んだ量b’(b’=b±v1)が低下した親装置送信電力となる。これによって、子装置の受信電界が誤差を含んだ量b’に相当する量だけ低下する。
【0033】
子装置ではこの受信電界の低下量b’を、前回の受信電界p2と今回の受信電界p2−b’との差を算出することで認識する。ここにも伝搬路誤差、受信電界モニタの検出誤差±v2が含まれているが、検出誤差v2は前回値にも今回値にも同一値を含むため、差分量は検出誤差±v2を相殺したb’[b’=(p2±v2)−(p2−b’±v2)]が検出される。
【0034】
この低下量b’によって子装置の送信電力を低下量b’だけ低下させる。実際には子装置の送信電力(出力レベル)に誤差±v3があるため、その誤差±v3を含んだ量b”(b”=b’±v3)が低下した送信電力になる。これによって、対向する親装置の受信電界もb”(b”=b’±v3)だけ低下し、既設定値の受信電界に近づける補正を行うことができる。親装置にも伝搬路誤差、受信電界モニタ誤差は存在しているが、子装置での差分量算出時に誤差が相殺されたのと同様に、親装置の受信電界モニタ誤差も相殺される。
【0035】
つまり、親装置の受信電界の低下量はv1,v3の誤差を含んだ値b”(b”=b’±v3=b±v1±v3)だけ低下した値k4(k4=k3−b±v1±v3)となる。
【0036】
送信電力制御を行った後の制御誤差は上述したように、最大で|v1+v3|を含む可能性がある。したがって、既設定値kに近づける送信電力制御を行う時、実際は|v1+v3|の誤差があるため、k−v1−v3<k<k+v1+v3の範囲の受信電界に制御していることになる。誤差|v1+v3|を理想的には“0”に近づける様に厳密な補正を行うことが望ましいが、調整工数が増大するために現実的でない。
【0037】
従来の技術では対向する装置が各々個別に送信電力制御を行うため、その誤差は最大で|v1+v2+v3+v4|になる。一般的に、対向する装置の回路構成、使用デバイスは同一であることから、送信電力制御誤差v1,v3、伝搬路誤差と受信電力モニタ誤差v2,v4との関係はv1≒v3、v2≒v4と近似させることができるため、|v1+v2+v3+v4|≒|v1+v3|×2となり、本発明の2倍の制御誤差が発生する。よって、従来の技術では本発明と同等の制御誤差にするために、各々の誤差を1/2に抑える必要がある。
【0038】
特に、降雨等の減衰が支配的な無線周波数を使用して対向する無線装置間の通信を行い、送信電力制御の専用制御線を使用せずに送信電力自動制御を行うことで、占有無線帯域を低減することが可能となり、同時に降雨減衰による回線品質の劣化を補償しつつ周辺機器への干渉や消費電力を軽減することが可能となる。
【0039】
降雨減衰が支配的な無線周波数帯を使用する場合には、双方向の受信電界が降雨によって同時に影響を受けるため、受信電界の変動によって自己の送信電力制御を行う送信電力制御方式において、送信電力制御用の情報を対向に伝達する専用回線が不要であるため、無線占有帯域を低減することが可能となる。
【0040】
無線通信装置は対向する装置の送信電力(出力レベル)の制御誤差、受信電界モニタの検出誤差、使用している送信周波数、受信周波数の違いから生じる伝搬路減衰量の差によって、対向する装置の受信電界値に差が生じるのが一般的である。
【0041】
従来の技術では上記の誤差が発生する点に対する考慮が足りないため、対向の送信電力制御が正常に動作することができない。よって、対向する装置の送信電力(出力レベル)の制御誤差、受信電界モニタの検出誤差、使用している送信周波数、受信周波数の違いから生じる伝搬路減衰量の差によって、対向する装置の受信電界値に差が生じることを考慮することで、誤差が発生しても、他システムへの干渉を軽減することができる送信電力制御が可能となる。
【0042】
【発明の実施の形態】
次に、本発明の一実施例について図面を参照して説明する。図1は本発明の一実施例による無線通信システムの構成を示すブロック図である。図1においては親装置1から子装置2への下りの無線周波数をf1、上りの無線周波数をf2とするP−P(Point to Point:1対1)無線回線の構成例を示している。
【0043】
親装置1は受信電界検出機能11と、送信機能12と、制御判定機能13と、送信電力制御機能14とから構成され、子装置2は受信電界検出機能21と、送信機能22と、受信電界値保持機能23と、差分判定機能24と、送信電力制御機能25とから構成されている。
【0044】
受信電界検出機能11は周期的に受信電界値を検出する。制御判定機能13はP−P無線回線毎に設定する標準受信電界値kと受信電界検出機能11で検出した受信電力値との差を判定し、その差が制御許容値mを越えた場合に送信電力制御を変更する。
【0045】
送信電力制御機能14は制御判定機能13の変更要求に応じて親装置1の送信電力を変更するための制御信号を生成する。送信機能12は送信電力制御機能14の制御信号に応じて送信電力を変更することができる。
【0046】
親装置1では標準受信電界設定値kと検出した受信電界値とを比較して差分(低下量/増加量)が制御許容値mを越えたことを判定し、その差分を補うように受信が低下したら送信を増加させ、受信が増加したら送信を低下させるように送信電力を制御している。
【0047】
受信電界検出機能21は親装置1の受信電界検出機能11と同様に、周期的に受信電界値を検出する。受信電界値保持機能23は前回検出した受信電界値を保持する。差分判定機能24は受信電界値保持機能23に保持していた前回の受信電界値と今回の受信電界値とを比較し、差分を判定する。
【0048】
送信電力制御機能25は差分判定機能24の変更要求に応じて子装置2の送信電力を変更するための制御信号を生成する。送信機能22は親装置1の送信機能12と同様に、送信電力制御機能25の制御信号に応じて送信電力を変更することができる。
【0049】
子装置1では受信電界値保持機能23に保持している前回検出した受信電界値と今回検出した受信電界値とを比較し、その差分(低下量/増加量)が制御許容値mを越えた場合に、受信が低下したら送信もその差分だけ低下させ、受信が増加したら送信をその差分だけ増加させるように送信電力を制御している。
【0050】
尚、親装置1と子装置2との識別方法として、親装置1と子装置2との設定は外部から与えてもよいが、P−P無線回線の一例としては送信周波数の違いによって自動識別することができる。例えば、f1>f2ならばf1を送信周波数とする装置を親装置1とし、f2を送信周波数とする装置を子装置2と自動的に設定する。この識別によって、親動作と子動作とを識別することができる。
【0051】
図2及び図3は図1の親装置1の動作を示すフローチャートである。これら図1〜図3を参照して親装置1の動作について以下説明する。
【0052】
親装置1ではP−P無線回線毎に送信電力制御の動作値を設定する標準受信電界値kと、送信電力制御の制御許容値mと、送信電力の初期値TXP0と、回線状態が有効であることを確認するための送信電力有効最小値TXminと、受信電界を有効とする受信電界最小値RXminとを予め設定した後に、装置運用を開始する(図2ステップS1)。
【0053】
まず、親装置1は初期化(手順1)を行い、送信出力電力値TXPを送信電力の初期値TXP0に設定し、受信電界モニタ値RSLに無効な値とするRXmin−1を設定する(図2ステップS2)。
【0054】
この後に、親装置1は電界値収集(手順2)を行い、送信電力モニタ値TXMと受信電界モニタ値RSLとを収集する(図2ステップS3)。続いて、親装置1は有効判定(手順3)を行い、手順2で収集した送信電力モニタ値TXMと受信電界モニタ値RSLとが有効であることを比較判定する(図2ステップS4,S5)。
【0055】
ここで、有効と判定する条件は送信電力モニタ値TXM>送信電力有効最小値Txminかつ受信電界モニタ値RSL>受信電界最小値RXminである。したがって、送信電力モニタ値TXM、受信電界モニタ値RSLのいずれかでも各最小値(Txmin、RXmin)未満の場合には送信電力制御を無効とし、初期収集周期t1経過後(図2ステップS6)、手順1の操作を行うことで送信電力の初期値TXP0の送信出力電力に固定する。尚、初期収集周期t1は装置の電源投入後や、無線回線瞬断から装置の信号通過が確立できるまでの時間に相当する。
【0056】
親装置1は送信電力モニタ値TXM、受信電界モニタ値RSLのいずれもが各最小値(Txmin、RXmin)より小さくなければ、送信電力モニタ値TXMと受信電界モニタ値RSLとを有効と判断し、処理開始保護(手順4)を行い、送信電力制御を開始するための保護時間をとる。
【0057】
親装置1は送信電力モニタ値TXM、受信電界モニタ値RSLがともに有効な時、信号通過状態から送信電力制御を開始するまでの保護時間に相当する待ち時間t2だけ遅延させた後(図2ステップS7)、再び手順2と同様に、送信電力モニタ値TXMと受信電界モニタ値RSLとを収集する(図2ステップS8)。
【0058】
親装置1は有効判定(手順5)を行い、手順5〜7の送信電力制御を開始させるための最終判定を行う(図2ステップS9,S10)。つまり、親装置1は手順4で収集した送信電力モニタ値TXM、受信電界モニタ値RSLの有効性を、手順3と同様にして比較判定し、有効な場合には標準受信電界値kと受信電界モニタ値RSLとを比較する手順6を行うが、無効の場合には初期収集周期t1経過後(図2ステップS6)、手順1の操作を行うことで送信電力の初期値TXP0の送信出力電力に固定する。つまり、親装置1は送信電力モニタ値TXM、受信電界モニタ値RSLが有効な時にのみ送信電力制御を行う。
【0059】
親装置1は補正値演算(手順6)を行い、標準受信電界値kと受信電界モニタ値RSLとを比較し、その結果に応じて送信出力電力TXPを変更するための補正値演算処理を行う。
【0060】
受信電界モニタ値RSLが「標準受信電界値k−制御許容値m」未満である時(図3ステップS11,S12)、つまり降雨によって伝搬損失が増大し、受信電界値が制御許容値mを含めた「標準受信電界値k−制御許容値m」より低下した場合、親装置1はその差分「(標準受信電界値k−制御許容値m)−受信電界モニタ値RSL」だけ自装置(親装置1)の送信電力TXPを増加させる(図3ステップS13)。
【0061】
受信電界モニタ値RSLが「標準受信電界値k+制御許容値m」の時(図3ステップS14,S15)、つまり晴天状態で伝搬損失が低下し、受信電界値が制御許容値mを含めた「標準受信電界値k+制御許容値m」を越えた場合、親装置1は差分「受信電界モニタ値RSL−(標準受信電界値k+制御許容値m)」だけ、自装置(親装置1)の送信電力TXPを低下させる(図3ステップS16)。
【0062】
標準受信電界値k+制御許容値m≦受信電界モニタ値RSL≦標準受信電界値k−制御許容値mの時(図3ステップS11〜S15)、つまり受信電界値が±mの制御許容内の場合、親装置1は送信出力電力TXPを現状のまま保持する。
【0063】
この後に、親装置1は制御周期の指定(手順7)を行い、送信電力制御の制御周期t3を指定する。すなわち、親装置1は手順6で送信出力電力TXPを制御、変更した後、制御周期t3時間経過後(図3ステップS17)、手順2と同様にして、送信電力モニタ値TXMと受信電界モニタ値RSLとを収集し、手順5に戻る(図3ステップS18)。
【0064】
回線が運用されている状態では手順5,6,7,5,・・・と繰り返すことで、降雨による伝搬損失を補償することができ、標準受信電界kと制御許容値mとによって設定される「標準受信電界k±制御許容値m」の受信電界内に制御することができることになる。尚、制御周期t3は子装置2の送信電力制御の応答が確実に収集することができるように、十分な時間に設定する必要がある。また、無線回線の設置環境に応じて、制御周期t3を変更することができるようにする場合もある。
【0065】
図4及び図5は図1の子装置2の動作を示すフローチャートである。これら図1と図4と図5とを参照して子装置2の動作について以下説明する。尚、図4及び図5においては図2及び図3内の記号と同一ものが上記と同一の値を示しているものとする。
【0066】
子装置2では上述した親装置1と同様に、P−P無線回線毎に送信電力制御の動作値を設定する標準受信電界値kと、送信電力制御の動作制御許容値mと、送信電力の初期値TXP0と、回線状態が有効であることを確認するための送信電力有効最小値TXminと、受信電界を有効とする受信電力最小値RXminとを予め設定した後に装置運用を開始する(図4ステップS21)。
【0067】
まず、子装置2は初期化(手順11)を行い、送信出力電力値TXPを送信電力の初期値TXP0に設定し、受信電界モニタ値RSLに無効な値とするRXmin−1を設定し、前回の受信電界値の保持レジスタreg1に上記の無効な値とするRXmin−1を設定する(図4ステップS22)。
【0068】
この後に、子装置2は電界値収集(手順12)を行い、送信電力モニタ値TXMと受信電界モニタ値RSLとを収集する(図4ステップS23)。続いて、子装置2は有効判定(手順13)を行い、手順12で収集した送信電力モニタ値TXM、受信電界モニタ値RSLが有効であることを比較判定する(図4ステップS24,S25)。
【0069】
ここで、有効と判定する条件は送信電力モニタ値TXM>送信電力有効最小値Txminかつ受信電界モニタ値RSL>受信電力最小値RXminである。したがって、送信電力モニタ値TXM、受信電界モニタ値RSLのいずれかでも各最小値(Txmin、RXmin)未満の場合には送信電力制御を無効とし、初期収集周期t1経過後(図4ステップS26)、手順11の操作を行うことで送信電力の初期値TXP0の送信出力電力に固定する。
【0070】
子装置2は送信電力モニタ値TXM、受信電界モニタ値RSLのいずれもが各最小値(Txmin、RXmin)でなければ、処理開始保護(手順14)を行い、送信電力制御を開始するための保護時間をとる。
【0071】
子装置2は送信電力モニタ値TXM、受信電界モニタ値RSLがともに有効な時、信号通過状態から送信電力制御を開始するまでの保護時間に相当する待ち時間t2だけ遅延させた後(図4ステップS27)、再び手順12と同様に、送信電力モニタ値TXMと受信電界モニタ値RSLとを収集する(図4ステップS28)。この後に、子装置2は保持レジスタreg1に今回収集した受信電界モニタ値RSLを設定する(図4ステップS29)。
【0072】
子装置2は有効判定(手順15)を行い、手順15〜17の送信電力制御を開始させるための最終判定を行う(図4ステップS30,S31)。つまり、子装置2は手順14で収集した送信電力モニタ値TXM、受信電界モニタ値RSLの有効性を、手順13と同様にして比較判定し、有効な場合には標準受信電界値kと受信電界モニタ値RSLとを比較する手順16を行うが、無効の場合には収集周期t1経過後(図4ステップS26)、手順11の操作を行うことで送信電力の初期値TXP0の送信出力電力に固定する。つまり、子装置2は送信電力モニタ値TXM、受信電界モニタ値RSLが有効な時にのみ送信電力制御を行う。
【0073】
子装置2は補正値演算(手順16)を行い、前回の受信電界モニタ値と今回の受信電界モニタ値とを比較することで、変化量を算出し、その変化量が制御許容値mを越えた場合に送信出力電力TXPを変更するための補正値演算処理を行う(図4ステップS32〜S34)。
【0074】
変化量は「保持レジスタreg1−受信電界モニタ値RSL」を行うことで算出することができる。変化量が増加したら、送信出力電力TXPをその変化量分増加させ、低下したらその変化量分低下させる動作を行う。
【0075】
この後、子装置2は制御周期の指定(手順17)を行い、手順16で送信出力電力TXPを制御、変更した後、制御周期t3時間経過後(図4ステップS35)、手順12と同様にして、送信電力モニタ値TXMと受信電界モニタ値RSLとを収集し(図4ステップS36)、保持レジスタreg1に今回収集した受信電界モニタ値RSLを設定した後(図4ステップS37)、手順15に戻る。
【0076】
回線が運用されている状態では、手順15,16,17,15,・・・と繰り返すことで、降雨による伝搬損失を補償することができ、標準受信電界kと制御許容値mとによって設定されるk±mの受信電界内に制御することができることになる。制御周期t3は子装置2の送信電力制御の応答が確実に収集することができるように、十分な時間に設定する必要がある。
【0077】
図6〜図8は本発明の一実施例による対向での送信電力制御の動作を説明するタイミングチャートである。これら図6〜図8を参照して本発明の一実施例による対向での送信電力制御の動作について説明する。
【0078】
対向の装置が親装置1と子装置2とで構成され、各々の装置では自装置の受信電界モニタ値によって自装置の送信電力値を変更させる制御をすることで、予め設定した標準受信電界値に調整する送信電力制御動作について以下説明する。
【0079】
親装置1は図2及び図3に示すフローチャートのような制御動作を行い、子装置2は図4及び図5に示すフローチャートのような制御動作を行う。これによって、親装置1と子装置2とは異なる制御をすることがわかる。標準受信電界値kに回線設計されたP−P無線回線における制御動作を図6〜図8を用いて説明する。
【0080】
図6には装置安定化までの動作、つまり対向の装置の電源を投入し、装置が安定した送信出力を行うまでの動作を示している。Step1では予め親装置1に電源が投入されており、子装置2の電源が後から投入された場合と、無線回線に瞬断が発生した場合とを示している。親装置1及び子装置2への電源の投入順序には特に問題ない。
【0081】
子装置2の電源投入され、受信電力最小値RXminを越える時点から信号通過することができる。信号通過が安定するまで、t1の周期で動作する。信号通過状態からt2の保護時間の間に送信電力が安定化する。後に、t1周期の送信電力制御が開始される。瞬断が発生した時にも、受信電界モニタ値RSLが受信電力最小値RXmin以下になるため、電源投入時と同様の動作となる。
【0082】
図7は降雨減衰時の動作、つまり降雨が発生し、降雨減衰により徐々に受信電界が低下していき、降雨が安定状態になり、雨が降り続いている場合の動作を示している。
【0083】
親装置1で受信電界モニタ値aを収集し、受信電界モニタ値aが制御許容値mを越えた場合に、送信電力制御を開始する。子装置2では前回の受信電界モニタ値と今回のモニタ値とを比較し、その差が制御許容値mを越えた(図中では、m<p3−p2と示す)時に送信電力制御を行うことを示している。子装置2の送信出力電力値TXPが増加されたことで、親装置1の受信電界モニタ値RSLをk±mの範囲内に最適化している。
【0084】
図8は天候が回復した時の動作、つまり雨が安定して降り続いていた状態から雨が止んで、晴れた状態の動作を示している。親装置1で受信電界モニタ値bを収集し、受信電界モニタ値bが制御許容値mを越えた場合(図中では、m<p2−p3と示す)に、送信電力制御を開始する。
【0085】
子装置2では前回の受信電界モニタ値と今回のモニタ値とを比較し、その差が制御許容値mを越えた時に送信電力制御を行うことを示している。子装置2の送信出力電力値TXPが低下されたことで、親装置1の受信電界モニタ値RSLをk±mの範囲内に最適化している。
【0086】
上述した本発明の一実施例ではP−P無線回線の例について述べたが、P−P無線回線に限らず、P−MP(Point to Multi Point:1対多)無線回線でも本発明の一実施例を適用することができる場合がある。
【0087】
図9は本発明の一実施例をP−MP無線回線に適用した例を示す図であり、図10は本発明の一実施例をP−MP無線回線に適用した時の親装置1の受信電界モニタ値RSLのイメージを示す図である。図10(a)は送信電力制御がない場合の親装置1の受信電界モニタ値RSLのイメージを示し、図10(b)は送信電力制御をバースト毎に行う場合の親装置1の受信電界モニタ値RSLのイメージを示している。
【0088】
本発明の一実施例を適用可能なP−MP無線回線としては、TDMA(Time Division Multiple Access)方式で親装置Aの管理するセル(エリア)内で、複数の子装置B1〜B4を配下に管理するシステムがある。親装置Aでは時分割で子装置B1〜B4との無線バースト信号を送信、受信する。子装置B1〜B4は親装置Aが管理するセル内を移動する場合もある。
【0089】
従来、P−MP無線回線では親装置Aと子装置B1〜B4との距離が様々に異なるため、各々の伝搬減衰量が異なり、時分割配置されている無線バーストの受信電界が様々である。この時、隣接する無線バーストを割り当てられた子装置B1〜B4の配置が、親装置Aとの距離が最遠端の子装置B3と親装置Aと近接する子装置B2との場合に、無線バースト間で干渉問題が発生する[図10(a)参照]。
【0090】
しかしながら、子装置B1〜B4と親装置Aとの間で、時分割で本発明の一実施例による送信電力制御を行えば、各々の子装置B1〜B4からの受信電界値を、親装置Aと子装置B1〜B4との間の伝搬距離によらず、ほぼ一定に制御することができる[図10(b)参照]。よって、子装置B1〜B4の配置状態によって発生していた干渉問題を解決することができる。但し、時分割バースト毎の送信電力制御の応答特性が実現性の鍵になる。
【0091】
無線通信装置は対向する装置の送信電力(出力レベル)の制御誤差、受信電界モニタの検出誤差、使用している送信周波数、受信周波数の違いから生じる減衰量の差によって、対向する装置の受信電界値に差が生じるのが一般的である点を考慮する必要がある。
【0092】
従来の技術で参照した特開昭60−64539号公報に記載の技術では、上記の誤差が発生する点の考慮と、対向との制御タイミングを一致させる点に関する考慮とが足りないため、対向の送信電力制御を正常に動作させることができない。よって、誤差が発生し、対向の制御タイミングを一致としなくとも、送信電力制御を可能とする方法が望まれている。
【0093】
本発明の一実施例では、上述したような対向の送信電力制御を行うことで、従来の技術で問題とされた点、つまり送信電力値、伝搬路減衰値、受信電界モニタ値に誤差が生じても対向間で送信電力制御を正常に行うことができる。送信電力制御値や受信電界モニタ値、及び伝搬路減衰量に誤差があっても、不用意に干渉を増加させることなく送信電力制御を行うことができる
【0094】
【発明の効果】
以上説明したように本発明によれば、互いに対向する無線装置間を無線回線を介して接続する無線通信システムにおいて、互いに対向する無線装置を親装置と子装置とに設定し、それら親装置及び子装置各々で、受信電界を周期的に検出するとともに、検出された受信電界に応じて送信電力を変更することによって、送信電力制御値や受信電界モニタ値、及び伝搬路減衰量に誤差があっても、不用意に干渉を増加させることなく送信電力制御を行うことができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例による無線通信システムの構成を示すブロック図である。
【図2】図1の親装置の動作を示すフローチャートである。
【図3】図1の親装置の動作を示すフローチャートである。
【図4】図1の子装置の動作を示すフローチャートである。
【図5】図1の子装置の動作を示すフローチャートである。
【図6】本発明の一実施例による対向での送信電力制御の装置安定化までの動作を示すタイミングチャートである。
【図7】本発明の一実施例による対向での送信電力制御の降雨減衰による動作を示すタイミングチャートである。
【図8】本発明の一実施例による対向での送信電力制御の天候が回復したときの動作を示すタイミングチャートである。
【図9】本発明の一実施例をP−MP無線回線に適用した例を示す図である。
【図10】(a)は本発明の一実施例をP−MP無線回線に適用した時の送信電力制御がない場合の親装置の受信電界モニタ値のイメージを示す図、(b)は本発明の一実施例をP−MP無線回線に適用した時の送信電力制御をバースト毎に行う場合の親装置の受信電界モニタ値のイメージを示す図である。
【符号の説明】
1,A 親装置
2,B1〜B4 子装置
11 受信電界検出機能
12 送信機能
13 制御判定機能
14 送信電力制御機能
21 受信電界検出機能
22 送信機能
23 受信電界値保持機能
24 差分判定機能
25 送信電力制御機能
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a radio communication system and transmission power control used thereforMethodIn particular, the present invention relates to a transmission power control system for radio channels facing each other in a microwave radio communication system.
[0002]
[Prior art]
Conventionally, in the transmission power control method of a microwave radio communication system, it is classified as follows for each adopted system based on the intended purpose and function. In other words, the purpose of adoption is (a1) compensation for degradation of channel quality due to radio wave attenuation due to propagation channel fading, (a2) economy of system operation by suppressing transmission power and reducing power consumption, ( a3) Reducing interference with adjacent lines and channels by suppressing transmission power, (a4) Compensating for deterioration in line quality due to radio wave attenuation due to rain in the propagation path and temperature fluctuations.
[0003]
Further, the transmission power control system operates as follows: (b1) a system in which the result of measurement of the received electric field is transmitted to the opposite transmission side to control the transmission power, and (b2) transmission of the own station based on the result of measurement of the received electric field. There are methods for controlling electric power.
[0004]
The classification of each adopted system includes (c1) a mobile communication system disclosed in Japanese Patent Application Laid-Open No. 57-116438, (c2) a satellite communication system disclosed in Japanese Patent Application Laid-Open No. 7-66762, and the like (c3) There are fixed microwave radio systems.
[0005]
The mobile communication system (c1) has a feature that an interference problem becomes important because a plurality of slave stations exist with respect to the base station. Therefore, transmission power control is performed mainly for the purposes (a1), (a3), and (a4) by the action (b2). Simultaneously with the operation (b2), the transmission power of the partner slave station is controlled between the slave stations by the operation (b1).
[0006]
In the satellite communication system (c2), the received electric field fluctuates due to rainfall or temperature fluctuations. For this reason, the reception electric field is sampled, and the transmission power of the earth station is controlled according to the result of comparing the difference value between the previous time and the current time and the threshold value. Therefore, transmission power control is performed mainly for the purpose of (a4) by the action of (b2).
[0007]
The fixed microwave radio system (c3) has two configurations depending on the radio frequency band to be used. The first configuration is the case where the radio frequency band to be used is affected by frequency selective fading, and since fading occurs in a frequency selective manner, it has the effect of (b1), and the received electric field fluctuation information due to fading is The transmission power is controlled by transmitting to the opposite radio apparatus using a dedicated line. As this control, there are techniques described in Japanese Patent Laid-Open Nos. 5-122125 and 63-301629.
[0008]
At this time, since it is necessary to perform opposite transmission power control so as to compensate for the speed at which the received electric field deteriorates due to fading, the dedicated line needs a transmission capacity of several tens to several hundreds of bits / sec.
[0009]
The second configuration uses a radio frequency band in which rain attenuation is dominant, and since the bidirectional received electric field is simultaneously affected by the rain, it has the function (b2), and the self electric field is affected by fluctuations in the received electric field. Transmission power control is performed. As this control, there is a technique described in Japanese Patent Application Laid-Open No. 60-64539. Since the second configuration does not require a dedicated line for transmitting transmission power control information to the opposite side, it has an effect that the radio occupied band can be reduced.
[0010]
Japanese Patent Laid-Open No. 60-64539 discloses a transmission power control method that eliminates the need for a dedicated line for transmission power control as in the second configuration in transmission power control of a system using a radio frequency in which rain attenuation is dominant. This will be described with reference to the described technology.
[0011]
In the technique described in Japanese Patent Laid-Open No. 60-64539, when using a frequency band of 10 GHz or more, rain attenuation often occurs, and the signal S / N is greatly reduced due to the thermal noise of the receiver. Therefore, when the received electric field due to the attenuation of radio wave rain is lower than a set first value, a signal that increases to a set transmission power is generated. Is added to the transmitter as a voltage to control the increase in transmission power at the same time, and when it becomes higher than the second value, a signal to restore based on the transmission power is generated, and the transmission power is restored after a certain period of time. It has a function to make it.
[0012]
That is, in the technique described in Japanese Patent Application Laid-Open No. 60-64539, a configuration in which a dedicated control line for transmission power control is not required, a first value, and a second value are set, and two transmissions are performed. The feature is that it has a function of switching to a power value and that the opposite device performs the same control.
[0013]
The feature of the operation of the technique described in Japanese Patent Application Laid-Open No. 60-64539 is that “a signal that increases a set transmission power when a value lower than the first value is generated, and after a certain time has passed, The increase in transmission power is controlled substantially simultaneously with the opposite transmitter. From this description, it can be seen that the transmission power control of the opposing devices is the same control, and the control timing is controlled by the timing management of each device.
[0014]
The radio communication device has a reception electric field value of the opposite device due to a transmission error (output level) control error of the opposite device, a detection error of the reception electric field monitor, a transmission frequency used, and a difference in attenuation caused by a difference in reception frequency. Generally, there is a difference between the two.
[0015]
Due to this error, for example, when only the device A becomes lower than the first value due to rain, the device A detects the first value or less and increases the transmission power after a certain time has elapsed. On the other hand, since the apparatus B has not detected the first value or less, it does not change its own transmission power. Therefore, immediately after the transmission power control is performed in the device A, the reception electric field value is increased in the opposite device B.
[0016]
Therefore, apparatus B does not change its transmission power until the received electric field continues to increase and becomes higher than the second value. That is, a large difference is generated between the transmission power of the device A and the transmission power of the device B, and the operation causes the interference to be increased carelessly with respect to the peripheral system.
[0017]
[Problems to be solved by the invention]
In the above-described conventional wireless communication device, the opposite device is opposed by the transmission power (output level) control error of the opposite device, the detection error of the reception electric field monitor, the transmission frequency being used, and the difference in attenuation caused by the difference in reception frequency. Since it is common that a difference occurs in the received electric field value of the device, when only the device A becomes lower than the first value due to this error due to this error, the device A detects the first value or less for a certain time. If the transmission power is increased after the elapse of time, since the device B has not detected the first value or less, the device B does not change its own transmission power. The received electric field value will increase.
[0018]
Therefore, the opposing device B does not change its transmission power until the reception electric field continues to increase and becomes higher than the second value. That is, there is a large difference between the transmission power of the device A and the transmission power of the device B, and the operation is an operation that inadvertently increases interference with the peripheral system.
[0019]
  Therefore, an object of the present invention is to solve the above-mentioned problems, and even if there is an error in the transmission power control value, the received electric field monitor value, and the propagation path attenuation amount, the transmission power control is performed without inadvertently increasing interference. Radio communication system that can be used and transmission power control used thereforMethodIs to provide.
[0020]
[Means for Solving the Problems]
  A wireless communication system according to the present invention includes:
  A wireless communication system for connecting wireless devices facing each other via a wireless line,
  A function of setting the wireless devices facing each other as a parent device and a child device;
  A function of periodically detecting the received electric field of the parent device and the child device;
  A function of changing transmission power of the parent device and the child device according to the detected received electric field;Have
  The parent device is
  A comparison is made between the standard received electric field setting value and the detected received electric field value to determine whether or not the difference exceeds a preset control allowable value, and if reception decreases to compensate for the difference, transmission is increased and It is characterized in that the transmission power is controlled so as to reduce the transmission when the reception increases.
[0021]
  A power control method for a wireless communication system according to the present invention includes:
  Transmission power control of a wireless communication system that connects wireless devices facing each other via a wireless lineMethodBecause
  Setting the wireless devices facing each other as a parent device and a child device, and periodically detecting a received electric field;
  Changing the transmission power according to the detected received electric field to each of the parent device and the child device.Have
  The parent device is
  A comparison is made between the standard received electric field setting value and the detected received electric field value to determine whether or not the difference exceeds a preset control allowable value, and if reception decreases to compensate for the difference, transmission is increased and It is characterized in that the transmission power is controlled so as to reduce the transmission when the reception increases.
[0022]
That is, the wireless communication system of the present invention has a function of setting opposing devices as a parent device and a child device, a function of periodically detecting a received electric field, and a function of changing transmission power.
[0023]
In this case, the parent device compares the standard received electric field value k for each route of the P-P (Point to Point: 1 to 1) radio channel with the detected received electric field, and the difference (decrease / increase) is allowed to be controlled. It has a function of recognizing that the value m has been exceeded and a function of controlling the transmission power of its own device so as to compensate for the difference (increase transmission when reception decreases).
[0024]
In addition, the slave device compares the function of holding the previous received electric field with the previous received electric field and the received electric field detected this time, and when the difference exceeds the control allowable value m, the same amount is reverse to that of the parent device. It has a function of controlling the transmission power of its own device under control (when reception is reduced, transmission is also reduced).
[0025]
The opposing P-P radio link that performs communication at a radio frequency that is dominated by rainfall has the characteristic that the same attenuation occurs in the received electric field of the downlink or uplink due to the rain.
[0026]
In the present invention, the standard reception electric field value k and the control allowable value m are set in consideration of the distance and the rain condition that are the installation environment of the wireless circuit, and the opposing device has a parent-child relationship. By performing different transmission power control, the transmission power control of the line is controlled to approach the standard reception electric field value. Here, the control allowable value m is a threshold value for starting transmission power control.
[0027]
The control for reducing the transmission power in the parent device operates when the received electric field monitor value becomes higher than “standard received electric field value k + control allowable value m”, and the control for increasing the transmission power is performed when the received electric field monitor value is “standard reception electric power”. It operates when the electric field value k is lower than the control allowable value m ”. In the slave device, when the difference between the previous received electric field monitor value and the current received electric field monitor value exceeds the control allowable value m, the slave device operates so as to perform transmission power control of the slave device by that difference.
[0028]
An operation in a state where the opposite system is stable and transmission power control is performed will be described. When the reception electric field on both sides of the PP wireless line decreases due to rain, the parent apparatus compares the reception electric field monitor value k1 with the preset value k and detects the decrease amount a (a = k−k1). When the amount of decrease a is compared with the specified value m and it is detected that the amount of decrease a is lower than the specified value m, the transmission power is increased by the amount of decrease a so as to compensate for the amount of decrease a. Actually, since there is an error ± v1 in the transmission power (output level) of the parent device, the amount a ′ (a ′ = a ± v1) including the error ± v1 becomes the parent device transmission power increased. As a result, the reception electric field of the child device increases by an amount corresponding to the amount a ′ including the error ± v1.
[0029]
The slave device recognizes this increase in received electric field a ′ by calculating the difference between the previous received electric field p1 and the current received electric field p1 + a ′. This also includes the propagation path error and the detection error ± v2 of the received electric field monitor. Since the detection error v2 includes the same value in both the previous value and the current value, the difference amount offsets the detection error ± v2. + A ′ [a ′ = (p1 + a ′ ± v2) − (p1 ± v2)] is detected.
[0030]
The transmission power of the slave device is increased by the increase amount a ′ by the increase amount a ′. Actually, since there is an error ± v3 in the transmission power (output level) of the slave device, the amount a ″ (a ″ = a ′ ± v3) including the error ± v3 becomes the increased transmission power. As a result, the reception electric field of the opposing parent device is also increased by a ″ (a ″ = a ′ ± v3), and correction can be performed so as to approach the reception electric field of the preset value.
[0031]
The parent device also has a propagation path error and a received electric field monitoring error v4, but the received electric field monitoring error v4 of the parent device is also monitored in the same manner as the error is canceled when calculating the difference amount in the child device. Since it is included in both the value and the current monitor value k1, it can be canceled out. That is, the increase amount of the reception electric field of the parent device is a value k2 (k2 = k1 + a ± v1 ± v3) increased by a value a ″ (a ″ = a ′ ± v3 = a ± v1 ± v3) including only errors v1 and v3. )
[0032]
On the other hand, when the rain stops and the received electric field increases, the parent device compares the received electric field monitor value k3 with the preset value k and detects the increase b (b = k−k3). When this increase amount b is compared with the specified value m and it is detected that the increase amount b has increased from the specified value m, the increase amount b is compensated to suppress interference power to other systems. The transmission power of the own apparatus is reduced by the increase amount b. Actually, since there is an error ± v1 in the transmission power (output level) of the parent device, the error-containing amount b ′ (b ′ = b ± v1) is a reduced parent device transmission power. As a result, the received electric field of the child device is reduced by an amount corresponding to the amount b 'including the error.
[0033]
The slave device recognizes the reduction amount b 'of the received electric field by calculating the difference between the previous received electric field p2 and the current received electric field p2-b'. This also includes the propagation path error and the detection error ± v2 of the received electric field monitor. Since the detection error v2 includes the same value in both the previous value and the current value, the difference amount offsets the detection error ± v2. b ′ [b ′ = (p2 ± v2) − (p2−b ′ ± v2)] is detected.
[0034]
The transmission power of the slave device is reduced by the reduction amount b 'by the reduction amount b'. Actually, since there is an error ± v3 in the transmission power (output level) of the slave device, the amount b ″ (b ″ = b ′ ± v3) including the error ± v3 becomes a reduced transmission power. As a result, the reception electric field of the opposing parent device is also reduced by b ″ (b ″ = b ′ ± v3), and correction can be performed so that the reception electric field approaches the preset value. Although a propagation path error and a received electric field monitoring error also exist in the parent device, the received electric field monitoring error of the parent device is also canceled in the same manner as the error is canceled when the difference amount is calculated in the child device.
[0035]
That is, the amount of decrease in the received electric field of the parent device is a value k4 (k4 = k3−b ± v1) that is decreased by a value b ″ (b ″ = b ′ ± v3 = b ± v1 ± v3) including errors of v1 and v3. ± v3).
[0036]
As described above, the control error after performing transmission power control may include | v1 + v3 | at maximum. Therefore, when performing transmission power control close to the preset value k, there is actually an error of | v1 + v3 |, so that the reception electric field is controlled in the range of k−v1−v3 <k <k + v1 + v3. Although it is desirable to perform a strict correction so that the error | v1 + v3 | ideally approaches “0”, it is not practical because the number of adjustment steps increases.
[0037]
In the conventional technique, each opposing device individually performs transmission power control, so the maximum error is | v1 + v2 + v3 + v4 |. In general, since the circuit configuration and devices used in the opposite apparatus are the same, the relationship between the transmission power control errors v1 and v3, the propagation path error and the received power monitoring errors v2 and v4 is v1≈v3, v2≈v4. Therefore, | v1 + v2 + v3 + v4 | ≈ | v1 + v3 | × 2, which is twice the control error of the present invention. Therefore, in the conventional technique, it is necessary to suppress each error to ½ in order to obtain a control error equivalent to that of the present invention.
[0038]
In particular, dedicated radio bandwidth is achieved by performing communication between opposing wireless devices using a radio frequency in which attenuation such as rainfall is dominant and performing transmission power automatic control without using a dedicated control line for transmission power control. At the same time, it is possible to reduce interference with peripheral devices and power consumption while compensating for deterioration in line quality due to rain attenuation.
[0039]
When using a radio frequency band in which rainfall attenuation is dominant, the bidirectional received electric field is simultaneously affected by rainfall, so in the transmission power control method that controls its own transmission power by fluctuation of the received electric field, Since a dedicated line for transmitting control information to the opposite side is unnecessary, it is possible to reduce the radio occupied band.
[0040]
The wireless communication device has a control error of the transmission power (output level) of the opposite device, a detection error of the received electric field monitor, a transmission frequency used, and a difference in propagation path attenuation resulting from a difference in the reception frequency. Generally, a difference occurs in the received electric field value.
[0041]
In the conventional technique, since the above-described error is not sufficiently considered, the opposite transmission power control cannot operate normally. Therefore, the reception electric field of the opposite device is determined by the difference in propagation attenuation caused by the control error of the transmission power (output level) of the opposite device, the detection error of the reception electric field monitor, the transmission frequency used, and the reception frequency. Considering the difference in value, even if an error occurs, transmission power control that can reduce interference with other systems becomes possible.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a wireless communication system according to an embodiment of the present invention. FIG. 1 shows a configuration example of a P-P (Point to Point: 1 to 1) wireless line from the parent apparatus 1 to the child apparatus 2 where the downlink radio frequency is f1 and the uplink radio frequency is f2.
[0043]
The parent device 1 includes a reception electric field detection function 11, a transmission function 12, a control determination function 13, and a transmission power control function 14. The child device 2 includes a reception electric field detection function 21, a transmission function 22, and a reception electric field. The value holding function 23, the difference determination function 24, and the transmission power control function 25 are configured.
[0044]
The reception electric field detection function 11 periodically detects the reception electric field value. The control determination function 13 determines the difference between the standard received electric field value k set for each PP wireless line and the received power value detected by the received electric field detection function 11, and when the difference exceeds the control allowable value m. Change transmission power control.
[0045]
The transmission power control function 14 generates a control signal for changing the transmission power of the parent apparatus 1 in response to the change request of the control determination function 13. The transmission function 12 can change the transmission power according to the control signal of the transmission power control function 14.
[0046]
The parent device 1 compares the standard received electric field setting value k with the detected received electric field value, determines that the difference (decrease / increase) exceeds the control allowable value m, and receives the signal so as to compensate for the difference. The transmission power is controlled so as to increase the transmission when the power decreases and to decrease the transmission when the reception increases.
[0047]
The reception electric field detection function 21 detects the reception electric field value periodically, similarly to the reception electric field detection function 11 of the parent device 1. The reception electric field value holding function 23 holds the reception electric field value detected last time. The difference determination function 24 compares the previous received electric field value held in the received electric field value holding function 23 with the current received electric field value, and determines the difference.
[0048]
The transmission power control function 25 generates a control signal for changing the transmission power of the child device 2 in response to the change request of the difference determination function 24. The transmission function 22 can change the transmission power according to the control signal of the transmission power control function 25, similarly to the transmission function 12 of the parent device 1.
[0049]
The slave device 1 compares the reception field value detected last time held in the reception field value holding function 23 with the reception field value detected this time, and the difference (decrease / increase) exceeds the control allowable value m. In this case, the transmission power is controlled so that the transmission is reduced by the difference when the reception is reduced, and the transmission is increased by the difference when the reception is increased.
[0050]
As a method for discriminating between the parent device 1 and the child device 2, the setting of the parent device 1 and the child device 2 may be given from the outside. However, as an example of a P-P wireless line, automatic identification is performed according to a difference in transmission frequency. can do. For example, if f1> f2, the device having f1 as the transmission frequency is automatically set as the parent device 1, and the device having f2 as the transmission frequency is automatically set as the child device 2. By this identification, it is possible to identify the parent operation and the child operation.
[0051]
2 and 3 are flowcharts showing the operation of the parent device 1 of FIG. The operation of the parent apparatus 1 will be described below with reference to FIGS.
[0052]
In the parent device 1, the standard reception electric field value k for setting the operation value of the transmission power control for each P-P wireless line, the control allowable value m of the transmission power control, the initial value TXP0 of the transmission power, and the line state are valid. After the transmission power effective minimum value TXmin for confirming that there is a reception electric field minimum value RXmin that makes the reception electric field effective is set in advance, the apparatus operation is started (step S1 in FIG. 2).
[0053]
First, parent device 1 performs initialization (procedure 1), sets transmission output power value TXP to initial value TXP0 of transmission power, and sets RXmin-1 as an invalid value to reception electric field monitor value RSL (FIG. 2 step S2).
[0054]
Thereafter, the parent device 1 performs electric field value collection (procedure 2), and collects the transmission power monitor value TXM and the reception electric field monitor value RSL (step S3 in FIG. 2). Subsequently, the parent device 1 performs validity determination (procedure 3), and compares and determines that the transmission power monitor value TXM and the received electric field monitor value RSL collected in procedure 2 are valid (steps S4 and S5 in FIG. 2). .
[0055]
Here, the conditions for determining validity are transmission power monitor value TXM> transmission power effective minimum value Txmin and reception electric field monitor value RSL> reception electric field minimum value RXmin. Therefore, if any of the transmission power monitor value TXM and the reception electric field monitor value RSL is less than each minimum value (Txmin, RXmin), the transmission power control is invalidated, and after the initial collection period t1 has elapsed (step S6 in FIG. 2), By performing the operation of the procedure 1, the transmission output power is fixed to the transmission power initial value TXP0. Note that the initial collection period t1 corresponds to the time from when the apparatus is turned on or until the signal transmission of the apparatus can be established after the instantaneous interruption of the wireless line.
[0056]
If neither the transmission power monitor value TXM nor the reception electric field monitor value RSL is smaller than the minimum values (Txmin, RXmin), the parent device 1 determines that the transmission power monitor value TXM and the reception electric field monitor value RSL are valid, Processing start protection (procedure 4) is performed, and a protection time for starting transmission power control is taken.
[0057]
When the transmission power monitor value TXM and the reception electric field monitor value RSL are both valid, the parent device 1 delays by a waiting time t2 corresponding to the protection time until the transmission power control is started from the signal passing state (step in FIG. 2). S7) The transmission power monitor value TXM and the received electric field monitor value RSL are collected again as in the procedure 2 (step S8 in FIG. 2).
[0058]
The parent device 1 performs validity determination (procedure 5), and performs final determination for starting transmission power control in steps 5 to 7 (steps S9 and S10 in FIG. 2). That is, the parent apparatus 1 compares and determines the effectiveness of the transmission power monitor value TXM and the reception electric field monitor value RSL collected in the procedure 4 in the same manner as in the procedure 3, and if it is valid, the standard reception electric field value k and the reception electric field. The procedure 6 for comparing the monitor value RSL is performed. If the procedure is invalid, after the initial collection period t1 has elapsed (step S6 in FIG. 2), the procedure 1 is performed to obtain the transmission output power of the initial transmission power TXP0. Fix it. That is, the parent apparatus 1 performs transmission power control only when the transmission power monitor value TXM and the reception electric field monitor value RSL are valid.
[0059]
The parent device 1 performs correction value calculation (procedure 6), compares the standard received electric field value k with the received electric field monitor value RSL, and performs correction value calculation processing for changing the transmission output power TXP according to the result. .
[0060]
When the received electric field monitor value RSL is less than “standard received electric field value k−control allowable value m” (steps S11 and S12 in FIG. 3), that is, the propagation loss increases due to rain, and the received electric field value includes the control allowable value m. When “standard reception electric field value k−control allowable value m” falls, parent device 1 determines its own device (parent device) by the difference “(standard reception electric field value k−control allowable value m) −reception electric field monitor value RSL”. The transmission power TXP of 1) is increased (step S13 in FIG. 3).
[0061]
When the received electric field monitor value RSL is “standard received electric field value k + control allowable value m” (steps S14 and S15 in FIG. 3), that is, in a clear sky state, the propagation loss decreases, and the received electric field value includes the allowable control value m. When the standard reception electric field value k + control allowable value m ”is exceeded, the parent apparatus 1 transmits its own apparatus (parent apparatus 1) by the difference“ reception electric field monitor value RSL− (standard reception electric field value k + control allowable value m) ”. The power TXP is reduced (step S16 in FIG. 3).
[0062]
Standard received electric field value k + control allowable value m ≦ received electric field monitor value RSL ≦ standard received electric field value k−control allowable value m (steps S11 to S15 in FIG. 3), that is, when the received electric field value is within the control allowable value of ± m. The parent device 1 holds the transmission output power TXP as it is.
[0063]
Thereafter, the parent device 1 designates a control cycle (procedure 7) and designates a control cycle t3 of transmission power control. That is, the parent device 1 controls and changes the transmission output power TXP in the procedure 6, and after the elapse of the control period t3 (step S17 in FIG. 3), the transmission power monitor value TXM and the received electric field monitor value are the same as the procedure 2. RSL is collected, and the process returns to step 5 (step S18 in FIG. 3).
[0064]
By repeating steps 5, 6, 7, 5,... In a state where the line is in operation, propagation loss due to rainfall can be compensated and is set by the standard received electric field k and the control allowable value m. Control can be performed within the received electric field of “standard received electric field k ± control allowable value m”. The control cycle t3 needs to be set to a sufficient time so that the transmission power control responses of the slave device 2 can be reliably collected. In some cases, the control cycle t3 can be changed according to the installation environment of the wireless line.
[0065]
4 and 5 are flowcharts showing the operation of the slave device 2 of FIG. The operation of the child device 2 will be described below with reference to FIG. 1, FIG. 4, and FIG. In FIGS. 4 and 5, the same symbols as those in FIGS. 2 and 3 indicate the same values as described above.
[0066]
Similarly to the above-described master device 1, the slave device 2 sets the standard reception electric field value k for setting the operation value for transmission power control for each P-P radio line, the operation control allowable value m for transmission power control, and the transmission power control value. The apparatus operation is started after the initial value TXP0, the transmission power effective minimum value TXmin for confirming that the line state is valid, and the reception power minimum value RXmin for enabling the reception electric field are set in advance (FIG. 4). Step S21).
[0067]
First, the slave device 2 performs initialization (procedure 11), sets the transmission output power value TXP to the initial value TXP0 of the transmission power, sets RXmin-1 as an invalid value to the reception electric field monitor value RSL, RXmin−1, which is the above invalid value, is set in the received electric field value holding register reg1 (step S22 in FIG. 4).
[0068]
Thereafter, the slave device 2 performs electric field value collection (procedure 12), and collects the transmission power monitor value TXM and the reception electric field monitor value RSL (step S23 in FIG. 4). Subsequently, the child device 2 performs validity determination (procedure 13), and compares and determines that the transmission power monitor value TXM and the received electric field monitor value RSL collected in procedure 12 are valid (steps S24 and S25 in FIG. 4).
[0069]
Here, the conditions for determining validity are transmission power monitor value TXM> transmission power effective minimum value Txmin and reception electric field monitor value RSL> reception power minimum value RXmin. Therefore, if any of the transmission power monitor value TXM and the reception electric field monitor value RSL is less than each minimum value (Txmin, RXmin), the transmission power control is invalidated and after the initial collection period t1 has elapsed (step S26 in FIG. 4), By performing the operation of the procedure 11, the transmission output power is fixed to the transmission power initial value TXP0.
[0070]
If neither the transmission power monitor value TXM nor the reception electric field monitor value RSL is the minimum value (Txmin, RXmin), the slave device 2 performs processing start protection (procedure 14) and protection for starting transmission power control. Take time.
[0071]
When the transmission power monitor value TXM and the reception electric field monitor value RSL are both valid, the slave device 2 is delayed by a waiting time t2 corresponding to the protection time until the transmission power control is started from the signal passing state (step in FIG. 4). S27) Again, similarly to the procedure 12, the transmission power monitor value TXM and the reception electric field monitor value RSL are collected (step S28 in FIG. 4). Thereafter, the child device 2 sets the received electric field monitor value RSL collected this time in the holding register reg1 (step S29 in FIG. 4).
[0072]
The slave device 2 performs validity determination (procedure 15), and performs final determination for starting transmission power control in procedures 15 to 17 (steps S30 and S31 in FIG. 4). That is, the slave device 2 compares and determines the validity of the transmission power monitor value TXM and the reception electric field monitor value RSL collected in the procedure 14 in the same manner as in the procedure 13, and if it is valid, the standard reception electric field value k and the reception electric field. The procedure 16 for comparing with the monitor value RSL is performed, but if it is invalid, after the collection period t1 has elapsed (step S26 in FIG. 4), the procedure 11 is performed to fix the transmission output power to the initial transmission power TXP0. To do. That is, the slave device 2 performs transmission power control only when the transmission power monitor value TXM and the reception electric field monitor value RSL are valid.
[0073]
The slave device 2 calculates the correction value (procedure 16), compares the previous received electric field monitor value with the current received electric field monitor value, calculates the change amount, and the change amount exceeds the control allowable value m. If the transmission output power TXP is changed, a correction value calculation process is performed (steps S32 to S34 in FIG. 4).
[0074]
The amount of change can be calculated by performing “holding register reg1—received electric field monitor value RSL”. When the amount of change increases, the transmission output power TXP is increased by the amount of change, and when it decreases, the operation of decreasing the amount of change is performed.
[0075]
Thereafter, the slave device 2 designates the control cycle (procedure 17), controls and changes the transmission output power TXP in the procedure 16, and after the elapse of the control cycle t3 (step S35 in FIG. 4), performs the same as the procedure 12. The transmission power monitor value TXM and the reception electric field monitor value RSL are collected (step S36 in FIG. 4), and the reception electric field monitor value RSL collected this time is set in the holding register reg1 (step S37 in FIG. 4). Return.
[0076]
When the line is in operation, it is possible to compensate for the propagation loss due to rainfall by repeating steps 15, 16, 17, 15,..., And set by the standard received electric field k and the control allowable value m. It can be controlled within the received electric field of k ± m. The control cycle t3 needs to be set to a sufficient time so that the transmission power control responses of the slave devices 2 can be collected reliably.
[0077]
6 to 8 are timing charts for explaining the operation of transmission power control in the opposite direction according to an embodiment of the present invention. With reference to FIG. 6 to FIG. 8, the operation of transmission power control in the opposite direction according to one embodiment of the present invention will be described.
[0078]
The opposite device is composed of a parent device 1 and a child device 2, and each device controls the transmission power value of its own device according to the received electric field monitor value of its own device, so that a preset standard received electric field value is obtained. The transmission power control operation to be adjusted to will be described below.
[0079]
The parent device 1 performs a control operation as shown in the flowcharts of FIGS. 2 and 3, and the child device 2 performs a control operation as shown in the flowcharts of FIGS. Thus, it can be seen that the parent device 1 and the child device 2 perform different control. A control operation in a PP radio line designed for a standard received electric field value k will be described with reference to FIGS.
[0080]
FIG. 6 shows the operation until the device is stabilized, that is, the operation until the device performs stable transmission output by turning on the power of the opposite device. Step 1 shows a case where the parent device 1 is powered on in advance and the child device 2 is powered on later, and a case where a momentary interruption occurs in the wireless line. There is no particular problem with the power-on sequence of the parent device 1 and the child device 2.
[0081]
The signal can pass from the time when the power of the slave device 2 is turned on and the received power minimum value RXmin is exceeded. It operates at a period of t1 until the signal passing is stabilized. The transmission power is stabilized during the protection time t2 from the signal passing state. Later, transmission power control of the t1 period is started. Even when a momentary interruption occurs, the received electric field monitor value RSL is equal to or lower than the received power minimum value RXmin, and thus the operation is the same as when the power is turned on.
[0082]
FIG. 7 shows the operation at the time of rain attenuation, that is, the operation when rain occurs, the received electric field gradually decreases due to rain attenuation, the rain becomes stable, and it continues to rain.
[0083]
The received electric field monitor value a is collected by the parent device 1, and transmission power control is started when the received electric field monitor value a exceeds the control allowable value m. The slave device 2 compares the previous received electric field monitor value with the current monitor value, and performs transmission power control when the difference exceeds the control allowable value m (in the figure, m <p3-p2). Is shown. As the transmission output power value TXP of the slave device 2 is increased, the received electric field monitor value RSL of the master device 1 is optimized within a range of k ± m.
[0084]
FIG. 8 shows an operation when the weather recovers, that is, an operation in a rainy state where the rain has stopped from a state where the rain has been stably falling. The received electric field monitor value b is collected by the parent device 1, and when the received electric field monitor value b exceeds the control allowable value m (denoted as m <p2-p3 in the figure), transmission power control is started.
[0085]
The slave device 2 compares the previous received electric field monitor value with the current monitor value, and indicates that transmission power control is performed when the difference exceeds the control allowable value m. Since the transmission output power value TXP of the slave device 2 is reduced, the received electric field monitor value RSL of the master device 1 is optimized within a range of k ± m.
[0086]
In the above-described embodiment of the present invention, an example of a PP wireless line has been described. However, the present invention is not limited to a PP wireless line, but is also applicable to a P-MP (Point to Multi Point: 1-to-many) wireless line. Examples may be applicable.
[0087]
FIG. 9 is a diagram showing an example in which one embodiment of the present invention is applied to a P-MP wireless line, and FIG. 10 is a diagram illustrating reception of the parent device 1 when one embodiment of the present invention is applied to a P-MP wireless line. It is a figure which shows the image of the electric field monitor value RSL. FIG. 10A shows an image of the received electric field monitor value RSL of the parent apparatus 1 when there is no transmission power control, and FIG. 10B shows the received electric field monitor of the parent apparatus 1 when transmission power control is performed for each burst. An image of the value RSL is shown.
[0088]
As a P-MP wireless line to which an embodiment of the present invention can be applied, a plurality of child devices B1 to B4 are subordinated in a cell (area) managed by the parent device A by a TDMA (Time Division Multiple Access) method. There is a system to manage. The parent device A transmits and receives radio burst signals with the child devices B1 to B4 in a time division manner. The child devices B1 to B4 may move in the cell managed by the parent device A.
[0089]
Conventionally, in the P-MP wireless line, since the distance between the parent device A and the child devices B1 to B4 is different, the propagation attenuation amounts are different, and the reception electric fields of the radio bursts arranged in a time division manner are different. At this time, when the arrangements of the child devices B1 to B4 to which the adjacent radio bursts are assigned are the child device B3 having the farthest distance from the parent device A and the child device B2 adjacent to the parent device A, the wireless devices Interference problems occur between bursts [see FIG. 10 (a)].
[0090]
However, if transmission power control according to an embodiment of the present invention is performed in time division between the child devices B1 to B4 and the parent device A, the received electric field values from the child devices B1 to B4 are changed to the parent device A. It can be controlled to be substantially constant regardless of the propagation distance between the device B1 and the child devices B1 to B4 [see FIG. 10B]. Therefore, the interference problem that has occurred depending on the arrangement state of the slave devices B1 to B4 can be solved. However, the response characteristic of transmission power control for each time division burst is the key to feasibility.
[0091]
The wireless communication device has a reception electric field of the opposite device due to a difference in attenuation caused by a control error of the transmission power (output level) of the opposite device, a detection error of the reception electric field monitor, a transmission frequency used, and a difference of the reception frequency. It is necessary to take into account that it is common for differences to occur in values.
[0092]
In the technique described in Japanese Patent Application Laid-Open No. 60-64539 referred to in the prior art, there is not enough consideration for the point at which the above error occurs and the point at which the control timing coincides with the opposite. Transmission power control cannot be operated normally. Therefore, there is a demand for a method that enables transmission power control even if an error occurs and the opposing control timings do not coincide.
[0093]
In one embodiment of the present invention, the opposite transmission power control as described above causes an error in the points that have been problematic in the prior art, that is, the transmission power value, the propagation path attenuation value, and the received electric field monitor value. However, transmission power control can be normally performed between the opposite sides. Even if there is an error in the transmission power control value, reception electric field monitor value, and propagation path attenuation, transmission power control can be performed without inadvertently increasing interference.
[0094]
【The invention's effect】
As described above, according to the present invention, in a wireless communication system in which wireless devices facing each other are connected via a wireless line, the wireless devices facing each other are set as a parent device and a child device, and the parent device and Each of the slave devices periodically detects the received electric field and changes the transmission power according to the detected received electric field, so that there is an error in the transmission power control value, the received electric field monitor value, and the propagation path attenuation. However, there is an effect that transmission power control can be performed without inadvertently increasing interference.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a wireless communication system according to an embodiment of the present invention.
FIG. 2 is a flowchart showing the operation of the parent device of FIG.
FIG. 3 is a flowchart showing an operation of the parent device of FIG. 1;
4 is a flowchart showing the operation of the child device of FIG. 1. FIG.
FIG. 5 is a flowchart showing the operation of the child device of FIG. 1;
FIG. 6 is a timing chart showing an operation until device stabilization of transmission power control at the opposite side according to an embodiment of the present invention;
FIG. 7 is a timing chart showing an operation by rain attenuation of transmission power control at the opposite side according to an embodiment of the present invention;
FIG. 8 is a timing chart showing an operation when the weather of the transmission power control at the opposite side is recovered according to an embodiment of the present invention;
FIG. 9 is a diagram illustrating an example in which an embodiment of the present invention is applied to a P-MP wireless line.
FIG. 10A is a diagram showing an image of a received electric field monitor value of a parent apparatus when there is no transmission power control when an embodiment of the present invention is applied to a P-MP wireless line; FIG. It is a figure which shows the image of the receiving electric field monitor value of a parent | device when the transmission power control is performed for every burst when one Example of invention is applied to a P-MP radio channel.
[Explanation of symbols]
1, A Parent device
2, B1-B4 Slave device
11 Received electric field detection function
12 Transmission function
13 Control judgment function
14 Transmission power control function
21 Received electric field detection function
22 Transmission function
23 Received electric field value holding function
24 Difference judgment function
25 Transmission power control function

Claims (16)

互いに対向する無線装置間を無線回線を介して接続する無線通信システムであって、
前記互いに対向する無線装置を親装置と子装置とに設定する機能と、
前記親装置及び前記子装置の受信電界を周期的に検出する機能と、
検出された前記受信電界に応じて前記親装置及び前記子装置の送信電力を変更する機能とを有し、
前記親装置は、
標準受信電界設定値と検出した受信電界値とを比較してその差分が予め設定された制御許容値を越えるか否かを判定し、その差分を補うように受信が低下したら送信を増加させかつ受信が増加したら送信を低下させるように送信電力を制御することを特徴とする無線通信システム。
A wireless communication system for connecting wireless devices facing each other via a wireless line,
A function of setting the wireless devices facing each other as a parent device and a child device;
A function of periodically detecting the received electric field of the parent device and the child device;
Possess the function of changing the transmission power of the parent device and the child device in response to said detected received electric field,
The parent device is
A comparison is made between the standard received electric field setting value and the detected received electric field value to determine whether or not the difference exceeds a preset control allowable value, and if reception decreases to compensate for the difference, transmission is increased and A wireless communication system , wherein transmission power is controlled so as to reduce transmission when reception increases .
前記子装置は、
保持している前回検出した受信電界値と今回検出した受信電界値とを比較してその差分が予め設定された制御許容値を越えた時に受信が低下したら送信もその差分だけ低下させかつ受信が増加したら送信を増加させるようにその差分だけ送信電力を制御することを特徴とする請求項1記載の無線通信システム。
The child device is
When the received electric field value detected this time is compared with the received electric field value detected this time and the difference exceeds a preset control allowable value, if the reception is reduced, the transmission is also reduced by the difference and the reception is not performed. 2. The wireless communication system according to claim 1, wherein the transmission power is controlled by the difference so that the transmission is increased when the transmission is increased .
周期的に受信電界値を検出する受信電界検出機能と、前記無線回線毎に設定する標準受信電界値と前記受信電界検出機能で検出された受信電力値との差を判定しかつその判定結果に応じて送信電力制御の変更を要求する制御判定機能と、前記制御判定機能からの変更要求に応じて送信電力を変更するための制御信号を生成する送信電力制御機能と、前記送信電力制御機能からの制御信号に応じて送信電力を変更する送信機能とを前記親装置に含み、
周期的に受信電界値を検出する受信電界検出機能と、前記受信電界検出機能で前回検出した受信電界値を保持する受信電界値保持機能と、前記受信電界値保持機能に保持された前回の受信電界値と前記受信電界検出機能で今回の受信電界値とを比較して差分を判定しかつその判定結果に応じて送信電力制御の変更を要求する差分判定機能と、前記差分判定機能からの変更要求に応じて送信電力を変更するための制御信号を生成する送信電力制御機能と、前記送信電力制御機能からの制御信号に応じて送信電力を変更する送信機能とを前記子装置に含むことを特徴とする請求項1または2記載の無線通信システム。
A reception electric field detection function for periodically detecting a reception electric field value, and a difference between a standard reception electric field value set for each wireless line and a reception power value detected by the reception electric field detection function are determined and the determination result A control determination function for requesting a change in transmission power control in response, a transmission power control function for generating a control signal for changing transmission power in response to a change request from the control determination function, and the transmission power control function A transmission function for changing transmission power according to the control signal of the parent device,
A reception electric field detection function for periodically detecting a reception electric field value, a reception electric field value holding function for holding a reception electric field value detected last time by the reception electric field detection function, and a previous reception held in the reception electric field value holding function A difference determination function that compares the electric field value with the received electric field value this time by the received electric field detection function to determine a difference and requests a change in transmission power control according to the determination result, and a change from the difference determination function The slave device includes a transmission power control function for generating a control signal for changing transmission power in response to a request and a transmission function for changing transmission power in response to a control signal from the transmission power control function. The wireless communication system according to claim 1 or 2, characterized in that:
外部からの設定信号に応じて前記親装置と前記子装置とを設定するようにしたことを特徴とする請求項1から請求項3のいずれか記載の無線通信システム。The wireless communication system according to any one of claims 1 to 3, wherein the parent device and the child device are set according to a setting signal from the outside . 送信周波数の違いに応じて前記親装置と前記子装置とを自動識別するようにしたことを特徴とする請求項1から請求項4のいずれか記載の無線通信システム。The wireless communication system according to any one of claims 1 to 4, wherein the parent device and the child device are automatically identified in accordance with a difference in transmission frequency . 周波数f1>周波数f2の時に周波数f1を送信周波数とする装置を前記親装置に設定し、周波数f2を送信周波数とする装置を前記子装置に設定するようにしたことを特徴とする請求項記載の無線通信システム。 A device for the transmission frequency to the frequency f1 when the frequency f1> frequency f2 is set to the parent device, according to claim 5, wherein the device for the transmission frequency of the frequency f2 is characterized in that so as to set the child device Wireless communication system. 前記無線回線は、ポイントツウポイント無線回線であることを特徴とする請求項1から請求項6のいずれか記載の無線通信システム。The wireless communication system according to claim 1 , wherein the wireless line is a point-to-point wireless line . 前記無線回線は、ポイントツウマルチポイント無線回線であることを特徴とする請求項1から請求項のいずれか記載の無線通信システム。The radio channel is a radio communication system according to any one of claims 1 to 6, characterized in that the point-to-multipoint radio channel. 互いに対向する無線装置間を無線回線を介して接続する無線通信システムの送信電力制御方法であって、A transmission power control method for a wireless communication system for connecting wireless devices facing each other via a wireless line,
前記互いに対向する無線装置を親装置と子装置とに設定し、受信電界を周期的に検出するステップと、Setting the wireless devices facing each other as a parent device and a child device, and periodically detecting a received electric field;
検出された前記受信電界に応じて送信電力を変更するステップとを前記親装置及び前記子装置各々に有し、Changing the transmission power according to the detected received electric field in each of the parent device and the child device,
前記親装置は、The parent device is
標準受信電界設定値と検出した受信電界値とを比較してその差分が予め設定された制御許容値を越えるか否かを判定し、その差分を補うように受信が低下したら送信を増加させかつ受信が増加したら送信を低下させるように送信電力を制御することを特徴とする送信電力制御方法。A comparison is made between the standard received electric field setting value and the detected received electric field value to determine whether or not the difference exceeds a preset control allowable value, and if reception decreases to compensate for the difference, transmission is increased and A transmission power control method, wherein transmission power is controlled so as to decrease transmission when reception increases.
前記子装置は、
保持している前回検出した受信電界値と今回検出した受信電界値とを比較してその差分が予め設定された制御許容値を越えた時に受信が低下したら送信もその差分だけ低下させかつ受信が増加したら送信を増加させるようにその差分だけ送信電力を制御することを特徴とする請求項9記載の送信電力制御方法
The child device is
When the received electric field value detected this time is compared with the received electric field value detected this time and the difference exceeds a preset control allowable value, if the reception is reduced, the transmission is also reduced by the difference and the reception is not performed. The transmission power control method according to claim 9, wherein the transmission power is controlled by the difference so as to increase the transmission when the transmission is increased .
周期的に受信電界値を検出するステップと、その検出された受信電力値と前記無線回線毎に設定する標準受信電界値との差を判定しかつその判定結果に応じて送信電力制御の変更を要求するステップと、当該変更要求に応じて送信電力を変更するための制御信号を生成するステップと、この制御信号に応じて送信電力を変更するステップとを前記親装置に含み、
周期的に受信電界値を検出するステップと、前回検出した受信電界値を保持するステップと、前記前回検出された受信電界値と今回検出した受信電界値とを比較して差分を判定しかつその判定結果に応じて送信電力制御の変更を要求するステップと、当該変更要求に応じて送信電力を変更するための制御信号を生成するステップと、この制御信号に応じて送信電力を変更するステップとを前記子装置に含むことを特徴とする請求項9または請求項10記載の送信電力制御方法
Periodically detecting a received electric field value, determining a difference between the detected received power value and a standard received electric field value set for each of the wireless lines, and changing transmission power control according to the determination result The parent device includes a requesting step, a step of generating a control signal for changing the transmission power in response to the change request, and a step of changing the transmission power in accordance with the control signal,
Periodically detecting the received electric field value, holding the previously detected received electric field value, comparing the previously detected received electric field value with the currently detected received electric field value, and determining a difference; A step of requesting a change in transmission power control according to the determination result, a step of generating a control signal for changing the transmission power according to the change request, and a step of changing the transmission power according to the control signal; 11. The transmission power control method according to claim 9, wherein:
外部からの設定信号に応じて前記親装置と前記子装置とを設定するようにしたことを特徴とする請求項9から請求項11のいずれか記載の送信電力制御方法The transmission power control method according to any one of claims 9 to 11, wherein the parent device and the child device are set in accordance with an external setting signal . 送信周波数の違いに応じて前記親装置と前記子装置とを自動識別するようにしたことを特徴とする請求項から請求項12のいずれか記載の送信電力制御方法The transmission power control method according to any one of claims 9 to 12, wherein the parent device and the child device are automatically identified in accordance with a difference in transmission frequency . 周波数f1>周波数f2の時に周波数f1を送信周波数とする装置を前記親装置に設定し、周波数f2を送信周波数とする装置を前記子装置に設定するようにしたことを特徴とする請求項13記載の送信電力制御方法 14. The apparatus according to claim 13 , wherein when f1> frequency f2, a device having a frequency f1 as a transmission frequency is set as the parent device, and a device having a frequency f2 as a transmission frequency is set as the child device. Transmission power control method . 前記無線回線は、ポイントツウポイント無線回線であることを特徴とする請求項から請求項14のいずれか記載の送信電力制御方法 The radio channel is the transmission power control method according to claim 14 claim 9, characterized in that a point-to-point radio channel. 前記無線回線は、ポイントツウマルチポイント無線回線であることを特徴とする請求項9から請求項14のいずれか記載の送信電力制御方法 15. The transmission power control method according to claim 9 , wherein the wireless line is a point-to-multipoint wireless line .
JP2000126834A 2000-04-27 2000-04-27 Wireless communication system and transmission power control method used therefor Expired - Fee Related JP4387551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000126834A JP4387551B2 (en) 2000-04-27 2000-04-27 Wireless communication system and transmission power control method used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000126834A JP4387551B2 (en) 2000-04-27 2000-04-27 Wireless communication system and transmission power control method used therefor

Publications (2)

Publication Number Publication Date
JP2001308786A JP2001308786A (en) 2001-11-02
JP4387551B2 true JP4387551B2 (en) 2009-12-16

Family

ID=18636528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000126834A Expired - Fee Related JP4387551B2 (en) 2000-04-27 2000-04-27 Wireless communication system and transmission power control method used therefor

Country Status (1)

Country Link
JP (1) JP4387551B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736675B2 (en) * 2010-06-23 2015-06-17 株式会社ニコン Wireless communication system
JP6257756B2 (en) 2013-06-12 2018-01-10 コンヴィーダ ワイヤレス, エルエルシー Context and power control information management for proximity services
JP6348583B2 (en) 2013-06-21 2018-06-27 コンヴィーダ ワイヤレス, エルエルシー Context management
KR101975365B1 (en) 2013-07-10 2019-05-07 콘비다 와이어리스, 엘엘씨 Context-aware proximity services

Also Published As

Publication number Publication date
JP2001308786A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
US7089028B1 (en) Radio communication system
US6031828A (en) Radio communication system
EP1185037B1 (en) Radio network, relay node, core node, relay transmission method used in the same and program thereof
JP3214466B2 (en) Mobile communication system, communication control method therefor, base station and mobile station used for the same
US6690915B1 (en) Booster, monitoring apparatus, booster system, control method and monitoring method
CN101032180B (en) Cell search control method and mobile device using the method
US8086259B2 (en) Radio communication apparatus, radio communication system and radio communication method
US8897839B2 (en) Method, apparatus and system for controlling distributed antenna system
US20010027106A1 (en) Mobile radio communication system and radio circuit controlling method therefor
JP2001520475A (en) Apparatus and method for optimized power control
US8190105B2 (en) Modulation mode switching type communication device and modulation mode switching method
US20120009969A1 (en) Apparatus and method for controlling uplink transmission power in a mobile communication system
CA2524516C (en) Communication system
JP4387551B2 (en) Wireless communication system and transmission power control method used therefor
US20020160800A1 (en) Method and system for providing a multi-level power control loop
KR100418837B1 (en) Transmission power control system and method capable of saving battery consumption of mobile station and preventing connection capacity from being reduced
US20060128317A1 (en) Method and station for transmitting data in a radio communication system
US20100240409A1 (en) Wireless communication system, wireless base station, wireless terminal station, and transmission power control method using the same
JP4133447B2 (en) Wireless communication apparatus and transmission output control method
JP3610911B2 (en) Transmission power control method and transmission power control apparatus
JP4009232B2 (en) Base station for subscriber radio access system
JP2011114825A (en) Radio communication apparatus, radio communication system and radio communication method
RU2311735C2 (en) Method for controlling output power for communication uplinks with a set of time intervals
JP2007300366A (en) Microwave wireless communication system with low power consumption
RU2263414C2 (en) Method for expanding a cell in tdma cell phone system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4387551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees