JP4387470B2 - Thin film formation method - Google Patents

Thin film formation method Download PDF

Info

Publication number
JP4387470B2
JP4387470B2 JP32704897A JP32704897A JP4387470B2 JP 4387470 B2 JP4387470 B2 JP 4387470B2 JP 32704897 A JP32704897 A JP 32704897A JP 32704897 A JP32704897 A JP 32704897A JP 4387470 B2 JP4387470 B2 JP 4387470B2
Authority
JP
Japan
Prior art keywords
thin film
titanium
temperature
film
titanium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32704897A
Other languages
Japanese (ja)
Other versions
JPH11140628A (en
Inventor
靖 樋口
城司 廣石
孝 小松
和之 富沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP32704897A priority Critical patent/JP4387470B2/en
Publication of JPH11140628A publication Critical patent/JPH11140628A/en
Application granted granted Critical
Publication of JP4387470B2 publication Critical patent/JP4387470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は薄膜形成方法にかかり、特に、連続的に薄膜を形成する薄膜形成方法に関する。
【0002】
【従来の技術】
従来より、シリコン(Si)基板上に配線薄膜を形成する場合には、先ず、接触抵抗を低下させるチタン(Ti)薄膜を形成し、その表面にバリア層となる窒化チタン(TiN)薄膜を形成し、更にその表面に濡れ性を高めるチタン薄膜を形成した後、アルミニウム(Al)薄膜を形成しており、窒化チタン薄膜が配線薄膜の主材料となるアルミニウム原子の拡散を防止する結果、シリコン基板内にスパイクが発生しないようになっている。
【0003】
従って、この場合には、アルミニウム薄膜に加え、Ti層/TiN層/Ti層の3層積層膜からなる薄膜がシリコン基板上に形成されることになる。
【0004】
ところで、チタン薄膜と窒化チタン薄膜は、共にチタン金属をターゲットとし、チタン薄膜の場合はアルゴンガスを用いた通常のスパッタリング法で、窒化チタン薄膜の場合は窒素ガスを添加したアルゴンガスを用い、反応性スパッタリング法によって形成できるため、3層積層膜は、同一の真空槽内で、同一のチタンターゲットを用いて形成することが可能である。
【0005】
しかしながら実際には、同一の真空槽内で、チタン薄膜と窒化チタン薄膜とを連続形成して得られた3層積層膜では、その表面に形成されたアルミニウム薄膜は、反射率が低く、エレクロトンマイグレーション耐性やストレスマイグレーション耐性が低くなってしまう。
【0006】
そこで従来技術では、チタン薄膜を形成する真空槽と、窒化チタン薄膜を形成する真空槽とを別々に用意し、3層積層膜の各層の薄膜を形成する毎に、成膜対象物を真空槽間で搬送していた。
【0007】
しかしながら上記のように、真空槽を2個用意し、チタン薄膜と窒化チタン薄膜とを別々に形成すると、装置コストが上昇し、装置管理も面倒である。
また、装置が大型化する結果、広い設置面積が必要になってしまう。
【0008】
【発明が解決しようとする課題】
本発明は、上述した従来技術の不都合を解消するために創作されたものであり、その目的は、好ましい形成温度が異なる薄膜を、同じ真空槽内で連続して形成できる技術を提供することにある。
【0009】
【課題を解決するための手段】
従来より、配線薄膜の最上層を構成するアルミニウム薄膜の膜質は、下層の3層積層膜の膜質に強く影響されることが知られているが、本発明者等の検討によると、アルミニウム薄膜は、その表面が(111)面のときに平坦性、エレクトロマイグレーション(EM)耐性、及びストレスマイグレーション耐性に優れていることが判明した。
【0010】
そして、(111)配向のアルミニウム薄膜を得るためには、下層の窒化チタン薄膜を(111)配向にすることが必要であり、更に、(111)配向の窒化チタン薄膜を得るためには、その下層のチタン薄膜(成膜対象物であるシリコン基板と接するチタン薄膜)を(002)配向にすることが必要であることが分かった。
【0011】
配向性と薄膜形成温度の関係を調べるため、成膜対象物の温度を変え、チタン薄膜を形成した場合と、その温度でチタン薄膜と窒化チタン薄膜を連続形成した場合の、各薄膜の配向性と形成温度の関係を測定した。その結果を図4のグラフに示す。
【0012】
図4のグラフの横軸は、成膜対象物の温度であり、縦軸は、X線回折におけるチタン薄膜の(011)配向と(002)配向のピーク強度、及び、窒化チタン薄膜の(200)配向と(111)配向のピーク強度(相対値)である。
【0013】
この図4から分かるように、チタン薄膜中の(002)配向の強度は、形成温度が温度が上昇すると減少し、逆に、(011)配向の強度が増加してしまうことが分かる。
その結果、チタン薄膜表面に形成される窒化チタン薄膜では、温度が上昇するに従って(111)配向の強度が減少してしまうと考えられる。
従って、窒化チタン薄膜の(111)配向を強くするためには、成膜対象物を低温にした状態で、チタン薄膜を形成すればよいことになる。
【0014】
他方、図5に示すように、窒化チタン薄膜に内在する応力は、低温で大きい圧縮応力を持ち、400℃〜500℃付近で応力がゼロになり、それ以上の温度では、伸張応力が大きくなることが判明している。
【0015】
従って、窒化チタン薄膜を200℃〜300℃程度の低温で形成すると、圧縮応力が大きくなり、その結果、窒化チタン薄膜が剥離しやすくなり、表面に形成されるアルミニウム薄膜もストレスマイグレーションを起こしやすくなってしまう。
【0016】
以上の結果によると、(111)配向の強度が強い窒化チタン薄膜を得るためには、成膜対象物は比較的低温(約300℃)にした状態でチタン薄膜を形成するのが好ましいのに、逆に、低ストレスの窒化チタン薄膜を得るためには、成膜対象物を比較的高温(約450℃)に加熱した状態で形成するのが好ましいことになる。
【0017】
一般に、スパッタリングを行う場合には、成膜対象物を、熱容量の大きい静電吸着手段の表面に静電吸着させ、静電吸着手段に内蔵されたヒータを発熱させ、成膜対象物を昇温させている。そのため、ヒータへの通電量を変えても、成膜対象物の温度は変化しずらく、同一の真空槽内で連続形成する場合、チタン薄膜の形成温度と窒化チタン薄膜の形成温度とが同程度の温度になってしまう。
【0018】
従って、従来技術のように、別々に用意した真空槽内にそれぞれ静電吸着手段を配置し、予め、それらの静電吸着手段を形成すべき薄膜に対応した形成温度に昇温させておく場合には、先ず、低温で(002)配向強度の高いチタン薄膜が得られ、次に、そのチタン薄膜表面に、高温で低ストレスの窒化チタン薄膜が形成されるから、その窒化チタン薄膜の(111)配向強度は強くなる結果、最上層のアルミニウム薄膜の膜質が向上することになる。
【0019】
他方、同じ真空槽内でチタン薄膜と窒化チタン薄膜を形成する場合でも、成膜対象物の温度を制御し、低温形成によって(002)配向のチタン薄膜を得て、高温形成によって低ストレスで(111)配向強度の強い窒化チタン薄膜を得れば、高品質のアルミニム薄膜を形成できることになる。
【0020】
本発明は上記知見に基づいて創作されたものであり、好ましい形成温度が異なる薄膜を成膜対象物上に形成する場合に、成膜対象物を同一の静電吸着手段上に載置し、静電吸着状態を変化させて成膜対象物の温度を制御する薄膜形成方法である。
【0021】
具体的には、請求項1記載の本発明は、成膜対象物の温度を室温以上300℃以下にして窒素成分を含まないスパッタリングガスでチタンターゲットをスパッタリングし、前記成膜対象物の表面にチタン薄膜を形成した後、前記チタン薄膜を形成した前記成膜対象物を前記チタン薄膜の形成温度よりも高温である400℃以上500℃以下の温度にして窒素成分を含むスパッタリングガスでチタンターゲットをスパッタリングし、前記チタン薄膜の表面に、窒化チタン薄膜を形成する薄膜形成方法である。
請求項2記載の発明は、前記チタン薄膜が形成される前の前記成膜対象物を、昇温した静電吸着装置上に配置し、前記チタン薄膜の形成時には、前記成膜対象物を250℃以上300℃以下に加熱し、前記窒化チタン薄膜の形成時には、前記チタン薄膜が形成された前記成膜対象物を400℃以上450℃以下に加熱する請求項1記載の薄膜形成方法であって、前記静電吸着装置の吸着力は、前記チタン薄膜形成時よりも、前記窒化チタン薄膜形成時の方を強くする薄膜形成方法である。
【0022】
本発明は上述したように構成されており、同一の静電吸着手段上に成膜対象物を載置し、好ましい形成温度が比較的高温の薄膜と比較的低温の薄膜とを連続的に形成する薄膜形成方法であり、静電吸着手段を、予め比較的高温の形成温度に昇温させ、静電吸着力を異ならせて薄膜形成を行っている。
【0023】
静電吸着力を弱くした状態では、微視的にみれば、成膜対象物は静電吸着手段に点接触した状態で載置されている。このとき、真空槽内では、熱の伝達媒体である気体が希薄であることから、点接触していない隙間部分では、気体が介在する熱伝導が極めて少ない。従って、成膜対象物と静電吸着手段の間の熱伝達は非常に小さいものとなる。
【0024】
他方、静電吸着力が強い状態では、成膜対象物と静電吸着手段とは密着し、互いに面接触する状態となる。従って、静電吸着手段の表面と成膜対象物裏面の間の熱伝導率が高くなり、熱流は大きなものとなる。
【0025】
このように、静電吸着力が弱い状態では、成膜対象物は、点接触部分からの熱伝導や輻射によってしか加熱されない。一方、基板表面からは、ターゲットや防着板等の低温物体へ向けての放射冷却が生じるため、成膜対象物の温度は、静電吸着手段の温度よりも低くなる。他方、静電吸着力が強い状態では、面接触部分の熱伝導によって、成膜対象物は静電吸着手段と略同じ温度まで加熱される。
【0026】
そのため、成膜対象物は、静電吸着力が弱い状態では、比較的低温の形成温度と略等しくなり、静電吸着力が強い状態では、比較的高温の形成温度と略等しくなり、その結果、好ましい形成温度が異なる薄膜を高品質に形成することが可能となっている。
形成温度が比較的低温の薄膜を形成する場合、静電吸着を行わない場合が、成膜対象物を最も低温にできる。
【0027】
このように、静電吸着力の強弱を切り換えることによって、成膜対象物の温度を静電吸着手段の温度やヒータの発熱量とは別個に急変させ、同一の静電吸着手段上に成膜対象物を載置したまま、異なる形成温度の薄膜を形成できる。
【0028】
このような静電吸着手段が配置された真空槽内にチタンターゲットを設け、スパッタリングする場合、アルゴンガスをスパッタリングガスに用いると、チタン薄膜が形成でき、窒素成分が添加されたアルゴンガスをスパッタリングガスに用い、反応性スパッタリングを行うと、窒化チタン薄膜を形成できる。
【0029】
上述したように、チタン薄膜と窒化チタン薄膜とを比べた場合、チタン薄膜の方が形成温度が比較的低温(約300℃)であり、窒化チタン薄膜の方が形成温度が比較的高温(約450℃)である。
【0030】
静電吸着手段を300℃以上の高温にした場合、強い静電吸着力で密着させたときの成膜対象物の温度と、静電吸着力を弱めたときの温度とでは、温度差を100℃〜150℃程度にすることができる。
【0031】
従って、静電吸着手段を、予め、窒化チタン薄膜の好ましい形成温度まで加熱しておき、チタン薄膜を形成するときは、静電吸着力を弱くし、成膜対象物を比較的低温にした状態で、アルゴンガスでチタンターゲットをスパッタリングすると、成膜対象物表面に、(002)配向のチタン薄膜を得ることができる。
この場合、静電吸着手段の温度によっては、静電吸着装置を動作させず、静電吸着しないでおくこと、成膜対象物を低温にできる。
【0032】
他方、窒化チタン薄膜を形成するときは静電吸着力を強くし、成膜対象物を比較的高温にし、窒素成分(窒素ガス等)が添加されたアルゴンガスでチタンターゲットを反応性スパッタリングすると、(002)配向のチタン薄膜表面に、ストレスが小さい(111)配向が強い窒化チタン薄膜を得ることができる。
【0033】
そして、その窒化チタン薄膜上に形成するアルミニウム薄膜は(111)配向となるので、その結果、配線薄膜のエレクトロマイグレーション耐性等が高くなり、信頼性が向上する。
【0034】
また、アルミニウム薄膜の平坦性が向上する結果、フォトリソグラフィ時の露光光の乱反射が少なくなり、微細加工が容易となる。
【0035】
アルミニウム薄膜を形成する前に、(111)配向の窒化チタン薄膜表面にチタン薄膜を形成しておくと、濡れ性が向上し、アルミニウム薄膜と窒化チタン薄膜との付着力が増大する。この場合、窒化チタン薄膜表面のチタン薄膜の膜厚は薄いので、アルミニウムニウム薄膜の配向性に影響を与えないことは実験で確認されている。
【0036】
【発明の実施の形態】
本発明の実施の形態について図面を参照して説明する。
本発明に用いられるスパッタ装置の一例を、図1の符号10に示す。このスパッタ装置10は、ロードロック室38と、搬送室40と、真空槽12とを備えている。
【0037】
真空槽12の天井には、カソード電極16が配置され、底壁上には支持台18が配置されている。
カソード電極16表面には、チタンターゲット15が配置されており、支持台18上には、静電吸着手段20が設けられている。
【0038】
静電吸着手段20内には、抵抗加熱ヒータ24が内蔵されており、図示しない真空排気系によって真空槽12内を真空排気し、次いで、抵抗加熱ヒータに通電し、予め450℃に昇温させておく。
【0039】
成膜対象である基板をロードロック室38内に装着し、内部を真空排気した後、搬送室40内に配置された基板搬送ロボットによって真空槽12内に搬送し、静電吸着手段20上に載置する。このとき、静電吸着手段20は動作させず、基板30は静電吸着しないでおく。
【0040】
その状態の基板30は、チタンターゲット15と平行に対向しており、真空槽12と搬送室40との間を遮蔽し、真空槽12内を高真空状態にした後、ガス導入系44によって真空槽12内にアルゴンガス(スパッタリングガス)を導入する。
【0041】
カソード電極16裏面にはマグネトロン磁石14が配置されており、真空槽12内が所定圧力で安定した後、カソード電極16に電圧を印加すると、真空槽12内に漏洩する磁束によって、チタンターゲット15の表面近傍にアルゴンガスの高密度プラズマが発生し、チタンターゲット15のスパッタリングが行われる。
【0042】
このときの基板30は、静電吸着手段20に静電吸着されていないため、その温度は、高々約300℃程度であり、チタン薄膜の好ましい形成温度になっている。
【0043】
その条件で所定時間のスパッタリングを行った後、電圧印加とアルゴンガス導入を停止する。
この状態の基板30を、図2(a)の符号301に示す。
【0044】
基板301は、シリコン単結晶層50と、その表面に形成されたシリコン酸化膜52と、シリコン酸化膜52に形成された高アスペクト比の微細孔53とを有しており、チタンターゲット15のスパッタリングにより、シリコン酸化膜52表面、及び微細孔53底面のシリコン単結晶層50表面に、膜厚100Å〜300Åのチタン薄膜54が形成されている。
【0045】
次に、静電吸着手段20を動作させ、基板301を静電吸着手段20に密着させ、加熱する。真空槽12内に、窒素ガスが50%〜100%添加されたアルゴンガスをスパッタリングガスとして導入し、真空槽12内が所定圧力で安定すると共に基板301が450℃に昇温したところで、カソード電極16に電圧を印加し、チタンターゲット15の反応性スパッタリングを行う。
【0046】
所定時間の反応性スパッタリングを行った後、電圧印加とスパッタリングガスの導入を停止すると、図2(b)の符号302で示すように、チタン薄膜54表面に、膜厚700Åの窒化チタン薄膜56が形成された基板が得られる。
【0047】
静電吸着装置20の動作を停止させ、静電吸着力をゼロにすると共に、真空槽12内を一旦高真空状態にし、基板を搬入して大気中に取り出す。大気中でバリア性を高める窒化処理を行った後、再びチタンターゲットのあるチャンバー内に基板を搬入する。次いで、スパッタリングガスとしてアルゴンガスを導入する。
【0048】
基板30の温度は、室温〜300℃程度までとし、また、真空槽12内が所定圧力で安定したところで、カソード電極16に電圧を印加し、チタンターゲット15のスパッタリングを行う。
【0049】
所定時間が経過した後、電圧印加とスパッタリングガス導入を停止すると、図2(c)の符号303で示すように、窒化チタン薄膜56表面に、膜厚300Åのチタン薄膜56が形成された基板が得られる。
【0050】
この基板303を、図示しない他の真空槽に搬送し、アルミニウムターゲットのスパッタリングを行うと、図2(d)の符号304で示すように、表層のチタン薄膜58表面に膜厚7000Åのアルミニウム薄膜60が形成された基板が得られる。この基板304では、微細孔53内はアルミニウム薄膜60で充填されており、シリコン層50とアルミニウム薄膜60とが、3層積層膜を介して電気的に接続される。
【0051】
基板304をスパッタリング装置10から取り出した後、X線回折による分析を行ったところ、アルミニウム薄膜60の表面は(111)配向であった。
【0052】
このように、本発明によれば、静電吸着手段20を一定温度に維持したまま、成膜対象物の温度を変えることができるので、同じ真空槽内で好ましい形成温度が異なる薄膜を形成できる。従って、装置の設置面積が小さくて済む。
また、静電吸着手段20を温度変化させなくても、成膜対象物の温度を変えられるので、昇温や冷却に要する時間が不要となり、薄膜形成時間が早くなる。
【0053】
次に、静電吸着手段20を種々の温度に設定し、チタン薄膜と窒化チタン薄膜とが積層された薄膜を形成した。形成された積層膜表面の窒化チタン薄膜の配向性と静電吸着手段20の設定温度との関係を、図3のグラフに示す。
【0054】
図3中、実線のグラフが本発明方法を用いた場合であり、上記のように、チタン薄膜を形成する場合は静電吸着せず、窒化チタン薄膜を形成する場合に強く静電吸着した。
【0055】
点線のグラフは、窒化チタン薄膜を形成するときだけでなく、チタン薄膜を形成するときも成膜対象物を強く静電吸着した場合である。
図3のグラフから明らかように、実線で示した本発明の場合は、静電吸着手段が300℃〜500℃の広い範囲で(111)配向の窒化チタン薄膜が得られている。特に、静電吸着手段を300℃〜500℃、望ましくは400℃以上500℃以下にすると、従来技術では得られなかったような、強い(111)配向の窒化チタン薄膜を得ることができる。
【0056】
それに対し、従来技術の場合には、前述したように、温度上昇によって下地のチタン薄膜の(002)配向強度が減少する結果、窒化チタン薄膜の(111)配向度が減少している。
【0057】
以上は、Ti/TiN/Tiの3層積層膜を形成する場合を例にとって説明したが、本発明はこれに限定されるものではない。連続形成の過程で成膜対象物の温度(薄膜形成温度)を異ならせたい場合に広く利用可能である。また、スパッタリング方法ばかりでなく、CVD方法等、静電吸着装置を用いる種々の薄膜形成方法について適用できる。
【0058】
更にまた、以上は、好ましい形成温度が比較的低温の薄膜については、静電吸着しないで形成したが、静電吸着しない代わりに、静電吸着手段への供給電圧を小さくする等により、静電吸着力をごく弱くしてもよい。
【0059】
また、成膜に先立ち、ベーキングやスパッタエッチング等の前処理により高温となって基板が送られて来る場所には、ロボットコア室付属のクリーニングステージ等で冷却するプロセスを入れてもよい。
【0060】
なお、窒化チタン薄膜を形成する際に、窒素ガスに替え、アンモニア等の窒素成分を含むガスを添加してもよい。
【0061】
更に、Ti/TiN形成後に、窒化チタン薄膜のバリア性を強化するプロセス、例えば、プラズマ酸窒化処理、プラズマ窒化処理、ファーネスによる酸窒化・窒化アニール等を入れてもよい。
【0062】
また、3層目のチタン薄膜は、窒化チタン薄膜で代用することも可能である。4層目のアルミニウム薄膜は、低温で約4000Å成膜後、高温で約3000Å成膜すると埋込特性が向上する。
【0063】
【発明の効果】
同一の真空槽内で形成温度が異なる薄膜を連続形成できる。
スパッタ装置が小型化し、低コストになる。
また、基板搬送回数を省略できるので、生産効率が向上する。
【図面の簡単な説明】
【図1】本発明に用いることができるスパッタ装置の一例
【図2】(a)〜(d):本発明の工程を説明するための成膜対象物の断面図
【図3】窒化チタン薄膜の配向と形成温度の関係を示すグラフ
【図4】チタン薄膜と窒化チタン薄膜の配向性と静電吸着手段の温度との関係を示すX線ピーク強度比のグラフ
【図5】窒化チタン薄膜の内部応力と形成温度の関係を示すグラフ
【符号の説明】
10……スパッタ装置 12……真空槽 15……チタンターゲット 20……静電吸着手段 30、301〜304……成膜対象物 54、58……チタン薄膜 56……窒化チタン薄膜 60……アルミニウム薄膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film forming method, and more particularly to a thin film forming method for continuously forming a thin film.
[0002]
[Prior art]
Conventionally, when forming a wiring thin film on a silicon (Si) substrate, first, a titanium (Ti) thin film for reducing contact resistance is formed, and a titanium nitride (TiN) thin film serving as a barrier layer is formed on the surface. In addition, after forming a titanium thin film that improves wettability on the surface, an aluminum (Al) thin film is formed, and the titanium nitride thin film prevents diffusion of aluminum atoms that are the main material of the wiring thin film. There are no spikes inside.
[0003]
Therefore, in this case, in addition to the aluminum thin film, a thin film composed of a three-layer laminated film of Ti layer / TiN layer / Ti layer is formed on the silicon substrate.
[0004]
By the way, both the titanium thin film and the titanium nitride thin film use titanium metal as a target. In the case of a titanium thin film, a normal sputtering method using an argon gas is used. In the case of a titanium nitride thin film, an argon gas added with a nitrogen gas is used for a reaction. Since it can be formed by the reactive sputtering method, the three-layer laminated film can be formed using the same titanium target in the same vacuum chamber.
[0005]
However, in actuality, in a three-layer laminated film obtained by continuously forming a titanium thin film and a titanium nitride thin film in the same vacuum chamber, the aluminum thin film formed on the surface has a low reflectance, and Migration resistance and stress migration resistance are reduced.
[0006]
Therefore, in the prior art, a vacuum chamber for forming a titanium thin film and a vacuum chamber for forming a titanium nitride thin film are prepared separately, and each time a thin film of each layer of a three-layer laminated film is formed, the film formation object is a vacuum chamber. Had been transported between.
[0007]
However, as described above, when two vacuum chambers are prepared and the titanium thin film and the titanium nitride thin film are formed separately, the apparatus cost increases and the apparatus management is troublesome.
Moreover, as a result of the increase in size of the apparatus, a large installation area is required.
[0008]
[Problems to be solved by the invention]
The present invention was created to eliminate the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide a technique capable of continuously forming thin films having different preferable forming temperatures in the same vacuum chamber. is there.
[0009]
[Means for Solving the Problems]
Conventionally, it has been known that the film quality of the aluminum thin film constituting the uppermost layer of the wiring thin film is strongly influenced by the film quality of the lower three-layer laminated film. It has been found that when the surface is a (111) plane, it is excellent in flatness, electromigration (EM) resistance, and stress migration resistance.
[0010]
In order to obtain an (111) -oriented aluminum thin film, it is necessary to make the underlying titanium nitride thin film (111) oriented, and in order to obtain a (111) -oriented titanium nitride thin film, It was found that the lower layer titanium thin film (titanium thin film in contact with the silicon substrate which is the film formation target) needs to be (002) oriented.
[0011]
In order to investigate the relationship between the orientation and the thin film formation temperature, the orientation of each thin film when the temperature of the film formation object is changed to form a titanium thin film and when the titanium thin film and the titanium nitride thin film are continuously formed at that temperature And the formation temperature were measured. The result is shown in the graph of FIG.
[0012]
The horizontal axis of the graph of FIG. 4 is the temperature of the film formation target, and the vertical axis is the peak intensity of the (011) orientation and (002) orientation of the titanium thin film in X-ray diffraction, and the (200) of the titanium nitride thin film. ) Orientation and (111) orientation peak intensity (relative value).
[0013]
As can be seen from FIG. 4, the strength of the (002) orientation in the titanium thin film decreases as the forming temperature increases, and conversely, the strength of the (011) orientation increases.
As a result, in the titanium nitride thin film formed on the surface of the titanium thin film, it is considered that the strength of the (111) orientation decreases as the temperature increases.
Therefore, in order to strengthen the (111) orientation of the titanium nitride thin film, it is only necessary to form the titanium thin film with the object to be deposited at a low temperature.
[0014]
On the other hand, as shown in FIG. 5, the stress inherent in the titanium nitride thin film has a large compressive stress at a low temperature, the stress becomes zero near 400 ° C. to 500 ° C., and the tensile stress increases at a temperature higher than that. It has been found.
[0015]
Therefore, when the titanium nitride thin film is formed at a low temperature of about 200 ° C. to 300 ° C., the compressive stress increases. As a result, the titanium nitride thin film is easily peeled off, and the aluminum thin film formed on the surface is also likely to cause stress migration. End up.
[0016]
According to the above results, in order to obtain a titanium nitride thin film having a strong (111) orientation strength, it is preferable to form the titanium thin film in a state where the film formation target is at a relatively low temperature (about 300 ° C.). On the other hand, in order to obtain a low-stress titanium nitride thin film, it is preferable to form the film formation target in a state of being heated to a relatively high temperature (about 450 ° C.).
[0017]
Generally, when sputtering is performed, a film formation target is electrostatically adsorbed on the surface of an electrostatic adsorption unit having a large heat capacity, a heater built in the electrostatic adsorption unit is heated, and the film formation target is heated. I am letting. For this reason, even if the amount of current supplied to the heater is changed, the temperature of the film formation object does not change easily. When continuously formed in the same vacuum chamber, the formation temperature of the titanium thin film and the formation temperature of the titanium nitride thin film are the same. It becomes the temperature of about.
[0018]
Therefore, as in the prior art, when electrostatic adsorption means are arranged in vacuum chambers prepared separately, and the temperature is raised in advance to the formation temperature corresponding to the thin film on which these electrostatic adsorption means are to be formed. First, a titanium thin film with high (002) orientation strength is obtained at low temperature, and then a titanium nitride thin film with low stress at high temperature is formed on the surface of the titanium thin film. ) As a result of increasing the orientation strength, the film quality of the uppermost aluminum thin film is improved.
[0019]
On the other hand, even when the titanium thin film and the titanium nitride thin film are formed in the same vacuum chamber, the temperature of the object to be formed is controlled, and a (002) -oriented titanium thin film is obtained by low-temperature formation, and low stress by high-temperature formation ( If a titanium nitride thin film having a strong 111) orientation strength is obtained, a high-quality aluminum thin film can be formed.
[0020]
The present invention was created based on the above knowledge, and when forming thin films having different preferable formation temperatures on a film formation object, the film formation object is placed on the same electrostatic adsorption means, This is a thin film forming method in which the temperature of a film formation target is controlled by changing the electrostatic adsorption state.
[0021]
Specifically, in the first aspect of the present invention, the temperature of the film formation target is set to room temperature or higher and 300 ° C. or lower, a titanium target is sputtered with a sputtering gas not containing a nitrogen component, and the surface of the film formation target is formed. After forming the titanium thin film, the film-forming object on which the titanium thin film is formed is heated to a temperature of 400 ° C. or higher and 500 ° C. or lower, which is higher than the formation temperature of the titanium thin film. This is a thin film forming method in which a titanium nitride thin film is formed on the surface of the titanium thin film by sputtering.
According to a second aspect of the present invention, the film formation target before the titanium thin film is formed is placed on a heated electrostatic adsorption device, and the film formation target is 250 when the titanium thin film is formed. 2. The thin film forming method according to claim 1, wherein when the titanium nitride thin film is formed, the film formation target on which the titanium thin film is formed is heated to 400 ° C. or more and 450 ° C. or less. In the thin film formation method, the adsorption force of the electrostatic adsorption device is stronger when the titanium nitride thin film is formed than when the titanium thin film is formed .
[0022]
The present invention is configured as described above, and a film formation target is placed on the same electrostatic attraction means, and a thin film having a relatively high preferred temperature and a thin film having a relatively low temperature are continuously formed. In this thin film forming method, the electrostatic adsorption means is heated in advance to a relatively high formation temperature to form a thin film by varying the electrostatic adsorption force.
[0023]
In a state where the electrostatic attraction force is weakened, when viewed microscopically, the film formation target is placed in a point contact with the electrostatic attraction means. At this time, since the gas that is a heat transfer medium is thin in the vacuum chamber, there is very little heat conduction through the gas in the gap portion that is not in point contact. Therefore, the heat transfer between the film formation target and the electrostatic adsorption means is very small.
[0024]
On the other hand, when the electrostatic attraction force is strong, the film formation target and the electrostatic attraction means are in close contact with each other and are in surface contact with each other. Therefore, the thermal conductivity between the surface of the electrostatic attraction means and the rear surface of the film formation target is increased, and the heat flow is increased.
[0025]
Thus, in a state where the electrostatic adsorption force is weak, the film formation target is heated only by heat conduction or radiation from the point contact portion. On the other hand, radiation cooling from the substrate surface toward a low-temperature object such as a target or an adhesion-preventing plate occurs, so that the temperature of the film formation target becomes lower than the temperature of the electrostatic adsorption means. On the other hand, in a state where the electrostatic attraction force is strong, the film formation target is heated to substantially the same temperature as the electrostatic attraction means by heat conduction in the surface contact portion.
[0026]
Therefore, the film formation target is substantially equal to the relatively low temperature when the electrostatic attractive force is weak, and is approximately equal to the relatively high temperature when the electrostatic attractive force is strong. It is possible to form thin films with different preferable formation temperatures with high quality.
When a thin film having a relatively low formation temperature is formed, the object to be formed can be made the lowest temperature when electrostatic adsorption is not performed.
[0027]
In this way, by switching the strength of the electrostatic attraction force, the temperature of the film formation target is suddenly changed separately from the temperature of the electrostatic attraction means and the amount of heat generated by the heater, and the film is formed on the same electrostatic attraction means. Thin films having different formation temperatures can be formed while the object is placed.
[0028]
When a titanium target is provided and sputtered in a vacuum chamber in which such electrostatic adsorption means is disposed, if argon gas is used as the sputtering gas, a titanium thin film can be formed, and argon gas to which a nitrogen component is added is used as the sputtering gas. When reactive sputtering is used, a titanium nitride thin film can be formed.
[0029]
As described above, when the titanium thin film and the titanium nitride thin film are compared, the formation temperature of the titanium thin film is relatively low (about 300 ° C.), and the formation temperature of the titanium nitride thin film is relatively high (about 450 ° C.).
[0030]
When the electrostatic attraction means is heated to a high temperature of 300 ° C. or higher, the temperature difference between the temperature of the film formation target when it is brought into close contact with a strong electrostatic attraction force and the temperature when the electrostatic attraction force is weakened is 100. It can be set to about 150 ° C to 150 ° C.
[0031]
Therefore, the electrostatic adsorption means is heated in advance to a preferable formation temperature of the titanium nitride thin film, and when forming the titanium thin film, the electrostatic adsorption force is weakened and the film formation target is at a relatively low temperature. Thus, when a titanium target is sputtered with argon gas, a (002) -oriented titanium thin film can be obtained on the surface of the film formation target.
In this case, depending on the temperature of the electrostatic chucking means, the electrostatic chucking device is not operated and electrostatic chucking is not performed, and the film formation target can be lowered.
[0032]
On the other hand, when forming a titanium nitride thin film, the electrostatic adsorption force is increased, the film formation target is made relatively high temperature, and when the titanium target is reactively sputtered with an argon gas to which a nitrogen component (nitrogen gas or the like) is added, A titanium nitride thin film with a small (111) orientation and a low stress can be obtained on the surface of the (002) oriented titanium thin film.
[0033]
And since the aluminum thin film formed on the titanium nitride thin film becomes (111) orientation, as a result, the electromigration tolerance etc. of a wiring thin film become high, and reliability improves.
[0034]
In addition, as a result of improving the flatness of the aluminum thin film, irregular reflection of exposure light during photolithography is reduced, and microfabrication is facilitated.
[0035]
If a titanium thin film is formed on the surface of a (111) -oriented titanium nitride thin film before forming the aluminum thin film, the wettability is improved and the adhesion between the aluminum thin film and the titanium nitride thin film is increased. In this case, since the thickness of the titanium thin film on the surface of the titanium nitride thin film is thin, it has been experimentally confirmed that the orientation of the aluminum thin film is not affected.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
An example of the sputtering apparatus used in the present invention is indicated by reference numeral 10 in FIG. The sputtering apparatus 10 includes a load lock chamber 38, a transfer chamber 40, and a vacuum chamber 12.
[0037]
A cathode electrode 16 is disposed on the ceiling of the vacuum chamber 12, and a support base 18 is disposed on the bottom wall.
A titanium target 15 is disposed on the surface of the cathode electrode 16, and electrostatic adsorption means 20 is provided on the support base 18.
[0038]
A resistance heater 24 is built in the electrostatic adsorption means 20, and the inside of the vacuum chamber 12 is evacuated by an unillustrated evacuation system, and then the resistance heater is energized to raise the temperature to 450 ° C. in advance. Keep it.
[0039]
A substrate to be deposited is mounted in the load lock chamber 38, the inside is evacuated, and then transported into the vacuum chamber 12 by the substrate transport robot disposed in the transport chamber 40, and placed on the electrostatic adsorption means 20 Place. At this time, the electrostatic chucking means 20 is not operated, and the substrate 30 is not electrostatically chucked.
[0040]
The substrate 30 in this state faces the titanium target 15 in parallel, shields the space between the vacuum chamber 12 and the transfer chamber 40, puts the inside of the vacuum chamber 12 into a high vacuum state, and then vacuums it with the gas introduction system 44. Argon gas (sputtering gas) is introduced into the tank 12.
[0041]
A magnetron magnet 14 is disposed on the back surface of the cathode electrode 16. When a voltage is applied to the cathode electrode 16 after the inside of the vacuum chamber 12 has been stabilized at a predetermined pressure, the magnetic flux leaking into the vacuum chamber 12 causes the titanium target 15 to move. Argon gas high density plasma is generated near the surface, and sputtering of the titanium target 15 is performed.
[0042]
Since the substrate 30 at this time is not electrostatically attracted to the electrostatic attracting means 20, the temperature is about 300 ° C. at most, which is a preferable forming temperature of the titanium thin film.
[0043]
After performing sputtering for a predetermined time under these conditions, voltage application and argon gas introduction are stopped.
The substrate 30 in this state, indicated by the reference numeral 30 1 in FIG. 2 (a).
[0044]
Substrate 30 1, a silicon single crystal layer 50, a silicon oxide film 52 formed on the surface thereof, has a fine hole 53 of the high aspect ratio formed in the silicon oxide film 52, the titanium target 15 A titanium thin film 54 having a thickness of 100 to 300 mm is formed on the surface of the silicon oxide film 52 and the surface of the silicon single crystal layer 50 on the bottom surface of the fine hole 53 by sputtering.
[0045]
Then, by operating the electrostatic attraction means 20 is brought into close contact with the substrate 30 1 in the electrostatic attraction means 20, is heated. In a vacuum chamber 12, the argon gas nitrogen gas was added at 50% to 100% is introduced as a sputtering gas, where the vacuum chamber 12 is heated on the substrate 30 1 450 ° C. with stabilized at the predetermined pressure, the cathode A voltage is applied to the electrode 16 to perform reactive sputtering of the titanium target 15.
[0046]
When the voltage application and the introduction of the sputtering gas are stopped after the reactive sputtering for a predetermined time, the titanium nitride thin film 56 having a thickness of 700 mm is formed on the surface of the titanium thin film 54 as indicated by reference numeral 30 2 in FIG. A substrate on which is formed is obtained.
[0047]
The operation of the electrostatic adsorption device 20 is stopped, the electrostatic adsorption force is made zero, the inside of the vacuum chamber 12 is once brought into a high vacuum state, the substrate is carried in and taken out into the atmosphere. After performing nitriding treatment for improving the barrier property in the atmosphere, the substrate is again carried into the chamber having the titanium target. Next, argon gas is introduced as a sputtering gas.
[0048]
The temperature of the substrate 30 is set to room temperature to about 300 ° C., and when the inside of the vacuum chamber 12 is stabilized at a predetermined pressure, a voltage is applied to the cathode electrode 16 to perform sputtering of the titanium target 15.
[0049]
When the application of voltage and the introduction of the sputtering gas are stopped after a predetermined time has elapsed, as shown by reference numeral 30 3 in FIG. 2C, the substrate on which the titanium thin film 56 having a thickness of 300 mm is formed on the surface of the titanium nitride thin film 56 Is obtained.
[0050]
When this substrate 30 3 is transported to another vacuum chamber (not shown) and the aluminum target is sputtered, an aluminum film having a thickness of 7000 mm is formed on the surface of the titanium thin film 58 as the surface layer, as indicated by reference numeral 30 4 in FIG. A substrate on which the thin film 60 is formed is obtained. In the substrate 30 4, the micropores 53 are filled with an aluminum thin film 60, and the silicon layer 50 and the aluminum thin film 60, it is electrically connected via a three-layer film.
[0051]
After removing the substrate 30 4 from the sputtering apparatus 10, was analyzed by X-ray diffraction, the surface of the aluminum thin film 60 was (111) orientation.
[0052]
As described above, according to the present invention, since the temperature of the film formation target can be changed while maintaining the electrostatic attraction means 20 at a constant temperature, thin films having different preferable formation temperatures can be formed in the same vacuum chamber. . Therefore, the installation area of the apparatus can be small.
Further, since the temperature of the film formation target can be changed without changing the temperature of the electrostatic attraction means 20, the time required for temperature rise and cooling is not required, and the time for forming a thin film is shortened.
[0053]
Next, the electrostatic adsorption means 20 was set to various temperatures to form a thin film in which a titanium thin film and a titanium nitride thin film were laminated. The relationship between the orientation of the titanium nitride thin film on the surface of the formed laminated film and the set temperature of the electrostatic adsorption means 20 is shown in the graph of FIG.
[0054]
In FIG. 3, the solid line graph shows the case where the method of the present invention was used. As described above, when the titanium thin film was formed, no electrostatic adsorption was performed, and when the titanium nitride thin film was formed, the electrostatic adsorption was strongly performed.
[0055]
The dotted line graph shows a case where the film formation target is strongly electrostatically adsorbed not only when the titanium nitride thin film is formed but also when the titanium thin film is formed.
As is apparent from the graph of FIG. 3, in the case of the present invention indicated by the solid line, a (111) -oriented titanium nitride thin film is obtained in a wide range of electrostatic adsorption means of 300 ° C. to 500 ° C. In particular, when the electrostatic adsorption means is set to 300 ° C. to 500 ° C., desirably 400 ° C. or more and 500 ° C. or less, a strong (111) oriented titanium nitride thin film that cannot be obtained by the prior art can be obtained.
[0056]
On the other hand, in the case of the conventional technique, as described above, the (002) orientation strength of the underlying titanium thin film decreases as the temperature rises, and as a result, the (111) orientation degree of the titanium nitride thin film decreases.
[0057]
In the above, the case of forming a Ti / TiN / Ti three-layer laminated film has been described as an example, but the present invention is not limited to this. It can be widely used when it is desired to vary the temperature of the film formation target (thin film formation temperature) during the continuous formation process. Moreover, it can be applied not only to the sputtering method but also to various thin film forming methods using an electrostatic adsorption device such as a CVD method.
[0058]
Furthermore, although the thin film having a relatively preferable formation temperature is formed without electrostatic adsorption, the electrostatic voltage is reduced by reducing the supply voltage to the electrostatic adsorption means instead of electrostatic adsorption. The adsorption power may be extremely weak.
[0059]
Prior to film formation, a process of cooling by a cleaning stage attached to the robot core chamber or the like may be placed in a place where the substrate is sent to a high temperature due to pretreatment such as baking or sputter etching.
[0060]
When forming the titanium nitride thin film, a gas containing a nitrogen component such as ammonia may be added instead of the nitrogen gas.
[0061]
Furthermore, after Ti / TiN formation, a process for enhancing the barrier property of the titanium nitride thin film, for example, plasma oxynitriding treatment, plasma nitriding treatment, furnace oxynitriding / nitriding annealing, etc. may be included.
[0062]
Moreover, the titanium thin film of the third layer can be substituted with a titanium nitride thin film. The film thickness of the fourth layer of aluminum thin film is improved by forming a film of about 4000 mm at a low temperature and then forming a film of about 3000 mm at a high temperature.
[0063]
【The invention's effect】
Thin films having different formation temperatures can be continuously formed in the same vacuum chamber.
The sputtering apparatus is downsized and the cost is reduced.
Further, since the number of times of substrate conveyance can be omitted, the production efficiency is improved.
[Brief description of the drawings]
1 is an example of a sputtering apparatus that can be used in the present invention. FIGS. 2A to 2D are cross-sectional views of an object to be formed for explaining the process of the present invention. FIG. 3 is a titanium nitride thin film. A graph showing the relationship between the orientation and the formation temperature of the film. FIG. 4 is a graph of the X-ray peak intensity ratio showing the relationship between the orientation of the titanium thin film and the titanium nitride thin film and the temperature of the electrostatic adsorption means. Graph showing the relationship between internal stress and formation temperature 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 10 ... Sputtering device 12 ... Vacuum chamber 15 ... Titanium target 20 ... Electrostatic adsorption means 30, 30 1 to 30 4 ... Deposition target 54, 58 ... Titanium thin film 56 ... Titanium nitride thin film 60 ... ... Aluminum thin film

Claims (2)

成膜対象物の温度を室温以上300℃以下にして窒素成分を含まないスパッタリングガスでチタンターゲットをスパッタリングし、前記成膜対象物の表面にチタン薄膜を形成した後、
前記チタン薄膜を形成した前記成膜対象物を前記チタン薄膜の形成温度よりも高温である400℃以上500℃以下の温度にして窒素成分を含むスパッタリングガスでチタンターゲットをスパッタリングし、前記チタン薄膜の表面に、窒化チタン薄膜を形成する薄膜形成方法。
Sputtering a titanium target with a sputtering gas that does not contain a nitrogen component by setting the temperature of the film formation target to room temperature to 300 ° C., and forming a titanium thin film on the surface of the film formation target,
Sputtering a titanium target with a sputtering gas containing a nitrogen component at a temperature of 400 ° C. or more and 500 ° C. or less, which is higher than the temperature at which the titanium thin film is formed , A thin film forming method for forming a titanium nitride thin film on a surface.
前記チタン薄膜が形成される前の前記成膜対象物を、昇温した静電吸着装置上に配置し、
前記チタン薄膜の形成時には、前記成膜対象物を250℃以上300℃以下に加熱し、
前記窒化チタン薄膜の形成時には、前記チタン薄膜が形成された前記成膜対象物を400℃以上450℃以下に加熱する請求項1記載の薄膜形成方法であって、
前記静電吸着装置の吸着力は、前記チタン薄膜形成時よりも、前記窒化チタン薄膜形成時の方を強くする薄膜形成方法。
The film formation target before the titanium thin film is formed is placed on a heated electrostatic adsorption device,
During the formation of the titanium thin film, the film formation target is heated to 250 ° C. or more and 300 ° C. or less,
The thin film forming method according to claim 1, wherein when forming the titanium nitride thin film, the film formation target on which the titanium thin film is formed is heated to 400 ° C. or higher and 450 ° C. or lower.
A method of forming a thin film, wherein the adsorption force of the electrostatic adsorption device is stronger when forming the titanium nitride thin film than when forming the titanium thin film .
JP32704897A 1997-11-12 1997-11-12 Thin film formation method Expired - Fee Related JP4387470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32704897A JP4387470B2 (en) 1997-11-12 1997-11-12 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32704897A JP4387470B2 (en) 1997-11-12 1997-11-12 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH11140628A JPH11140628A (en) 1999-05-25
JP4387470B2 true JP4387470B2 (en) 2009-12-16

Family

ID=18194733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32704897A Expired - Fee Related JP4387470B2 (en) 1997-11-12 1997-11-12 Thin film formation method

Country Status (1)

Country Link
JP (1) JP4387470B2 (en)

Also Published As

Publication number Publication date
JPH11140628A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
EP0867525B1 (en) Titanium nitride films
US6139699A (en) Sputtering methods for depositing stress tunable tantalum and tantalum nitride films
US5439574A (en) Method for successive formation of thin films
US5427666A (en) Method for in-situ cleaning a Ti target in a Ti + TiN coating process
EP0529321A1 (en) Metallic material deposition method for integrated circuit manufacturing
KR100522899B1 (en) A barrier layer, a structure comprising the barrier layer and a method of producing the structure
WO1999010921A1 (en) Method of forming a barrier layer in a contact structure
JPH09312262A (en) Multi-chamber sputtering equipment
JP2001358091A (en) Method and device for filling low temperature metal in contact, via, and trench on semiconductor wafer and flattening
JP2001044204A (en) Method and apparatus of depositing aluminum for filling holes
JPH11200035A (en) Sputtering-chemical vapor deposition composite device
JPH1070093A (en) Aluminum foil filling employing ionized metal adhesion layer
KR100308467B1 (en) Submicron Filling Method in Substrate
EP0788145A2 (en) Titanium aluminide wetting layer for aluminum contacts
JPH0661335A (en) Wafer holding plate for semiconductor manufacturing device
JPH0610125A (en) Formation of thin film
JP4387470B2 (en) Thin film formation method
US6607640B2 (en) Temperature control of a substrate
Westwood Physical vapor deposition
JP3793273B2 (en) Manufacturing method of semiconductor integrated circuit device
KR19980070035A (en) Sputtering apparatus for making barrier film for integrated circuit
WO2009096095A1 (en) Thin film forming method, plasma film forming apparatus and storage medium
JP3727693B2 (en) TiN film manufacturing method
US6030510A (en) Hot reflow sputtering method and apparatus
JP3987617B2 (en) Contact film barrier film continuous creation device and dissimilar thin film continuous creation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090824

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151009

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees