JP4387433B2 - Low cost and high performance water intake equipment and continuous siphon applicable to this - Google Patents

Low cost and high performance water intake equipment and continuous siphon applicable to this Download PDF

Info

Publication number
JP4387433B2
JP4387433B2 JP2007289523A JP2007289523A JP4387433B2 JP 4387433 B2 JP4387433 B2 JP 4387433B2 JP 2007289523 A JP2007289523 A JP 2007289523A JP 2007289523 A JP2007289523 A JP 2007289523A JP 4387433 B2 JP4387433 B2 JP 4387433B2
Authority
JP
Japan
Prior art keywords
siphon
water
foot plate
continuous
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007289523A
Other languages
Japanese (ja)
Other versions
JP2008082163A (en
Inventor
秀明 川崎
溥 寺田
敏 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yachiyo Engineering Co Ltd
Original Assignee
Yachiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yachiyo Engineering Co Ltd filed Critical Yachiyo Engineering Co Ltd
Priority to JP2007289523A priority Critical patent/JP4387433B2/en
Publication of JP2008082163A publication Critical patent/JP2008082163A/en
Application granted granted Critical
Publication of JP4387433B2 publication Critical patent/JP4387433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Barrages (AREA)

Description

本発明は取水設備に関し、特に、貯水池等で用いる空気を利用したゲートレス選択取水設備の機能改善に関わる。   The present invention relates to a water intake facility, and in particular, relates to a function improvement of a gateless selective water intake facility using air used in a reservoir or the like.

特許第3339023号公報 図1は従来の空気を利用して取水口の開閉を行うゲートレス取水設備の全体図を表し、図2は図1の設備の開閉機構を示す。図1は特許第3339023号の公報に於ける図5の引用であり、同特許の発明を示している。Patent No. 3339023 gazette FIG. 1 shows an overall view of a gateless water intake facility that opens and closes a water intake port using air, and FIG. 2 shows an opening and closing mechanism of the facility of FIG. FIG. 1 is a citation of FIG. 5 in Japanese Patent No. 3339023 and shows the invention of the patent.

従来のゲートレス取水設備は、図1(a)に示す利水最高水位1と利水最低水位2の間で選択的に取水を行うのに必要な個数だけ逆U字型取水管(以後はU字管と呼ぶ)3を取水塔に配置し、貯水池と塔槽4の水位差を利用して取水するものである。U字管の開閉は次のようにして行われる。図2に示す圧搾機5で蓄圧槽6に蓄えた空気を注入弁7を開くことにより給排気管8を通してU字管3に送り込むことにより、空気9が水10を押し下げ、水面11が形成されることによりU字管が閉じられる。以後はこの状態を空気ロック状態と呼ぶ。注入弁7が閉じた状態で解除弁12を開くと、U字管3内の空気9が大気中に放出され、水面11が消滅し、U字管3は開いた状態となり、もし貯水池と塔槽4内の水位に差があれば通水が始まる。   The conventional gateless intake system has the reverse U-shaped intake pipes (hereinafter referred to as U-shaped) as many as necessary to selectively take water between the highest water level 1 and the lowest water level 2 shown in Fig. 1 (a). (Referred to as a pipe) is placed in a water tower, and water is taken in using the difference in water level between the reservoir and the tower tank 4. The U-tube is opened and closed as follows. The air 9 stored in the pressure accumulator 6 shown in FIG. 2 is sent to the U-tube 3 through the air supply / exhaust pipe 8 by opening the injection valve 7, so that the air 9 pushes down the water 10 and the water surface 11 is formed. This closes the U-tube. Hereinafter, this state is referred to as an air lock state. If the release valve 12 is opened with the injection valve 7 closed, the air 9 in the U-shaped tube 3 is released into the atmosphere, the water surface 11 disappears, and the U-shaped tube 3 is opened, so that the reservoir and tower If there is a difference in the water level in the tank 4, the water flow will start.

解除弁12を開いても、貯水池の水位が低くて、空気9が抜けきらずに水面11が解消しない時は、真空ポンプ13を作動させて空気9を完全に抜き取る。以上の操作を実行する為に水面11の高さを常時把握する必要があり、機械室14に引き込まれた給排気管8に水面センサー15が取り付けられる。給排気管8内の圧力は空気9の圧力に等しいので、センサー15で空気圧を計測し、水面11の高さを知ることができる。   Even if the release valve 12 is opened, when the water level of the reservoir is low and the air 9 cannot be removed and the water surface 11 is not eliminated, the vacuum pump 13 is operated to completely extract the air 9. In order to perform the above operation, it is necessary to constantly grasp the height of the water surface 11, and the water surface sensor 15 is attached to the air supply / exhaust pipe 8 drawn into the machine room 14. Since the pressure in the air supply / exhaust pipe 8 is equal to the pressure of the air 9, the air pressure can be measured by the sensor 15 to know the height of the water surface 11.

発明が解決しようとする課題について図3〜図5を参照して説明を加える。図3〜図5は図1の設備が持つ技術的問題点を説明する為のもので、図3は貯水池内の水温と濁度の分布、図4は本発明において機能の改善目標とする円形多段式取水設備、図5は図1の設備の機能的限界を示す図である。   The problem to be solved by the invention will be described with reference to FIGS. 3 to 5 are for explaining the technical problems of the equipment of FIG. 1, FIG. 3 is a distribution of water temperature and turbidity in the reservoir, and FIG. 4 is a circular shape that is the improvement target of the function in the present invention. FIG. 5 is a diagram showing the functional limits of the equipment shown in FIG.

従来のゲートレス取水設備には次のような問題点がある。
1.貯水池の深さ方向の取水位置の選択自由度が制約される。
貯水池の深さ方向の取水位置はU字管3の位置で定まり、例えば、U字管とU字管の中間位置で取水することができない。選択取水のニーズは様々である。最も一般的なニーズは水質対策で、その中身には濁水対策、冷水対策、温水対策、富栄養化対策、鉱毒対策などの例がある。図3は貯水池の水質の例で、aが夏季の水温分布、bが洪水時の濁度分布であり、貯水池の水深方向に大きく変化して分布することを示している。水質対策の基本的考え方は貯水池からの放流水質をその時点で貯水池に流入する河川水質に近づけることである。流入水質、貯水池の水質分布、及び、貯水位は刻々と変化するので、それに応じて、放流水の取水位置を任意に選択できる機能が取水設備に求められることがある。図4はその様な機能を持つ円形多段式取水設備を示す。取水設備の呑み口16は、テレスコープ状の円形多段式ゲート17の伸縮により、自由に位置を選ぶことができる。しかしながら、この様な機能を従来のゲートレス取水設備に期待することはできない。図5はU字管3の呑み口を貯水池の深さ方向に配置する場合の密度的限界を示す。従来のゲートレス取水設備では、その構造上、図5のXに示すように隣接するU字管3とU字管3の間に間隙が生じるためである。
Conventional gateless water intake facilities have the following problems.
1. The degree of freedom in selecting the intake position in the depth direction of the reservoir is limited.
The water intake position in the depth direction of the reservoir is determined by the position of the U-shaped pipe 3, and for example, water cannot be taken at an intermediate position between the U-shaped pipe and the U-shaped pipe. There are various needs for selective water intake. The most common needs are water quality countermeasures, and the contents include examples such as muddy water countermeasures, cold water countermeasures, hot water countermeasures, eutrophication countermeasures, and mineral poisoning countermeasures. Fig. 3 shows an example of the water quality of the reservoir, where a is the water temperature distribution in the summer and b is the turbidity distribution during the flooding, showing that the distribution varies greatly in the depth direction of the reservoir. The basic idea of water quality countermeasures is to bring the quality of water discharged from the reservoir close to that of the river flowing into the reservoir at that time. Since the influent water quality, the water quality distribution of the reservoir, and the water storage level change every moment, the function of arbitrarily selecting the intake position of the discharged water may be required for the intake equipment accordingly. FIG. 4 shows a circular multi-stage water intake facility having such a function. The position of the water intake 16 of the water intake facility can be freely selected by expansion and contraction of the telescopic circular multistage gate 17. However, such a function cannot be expected from a conventional gateless water intake facility. FIG. 5 shows the density limit when the stagnation opening of the U-shaped tube 3 is arranged in the depth direction of the reservoir. This is because, in the conventional gateless water intake equipment, a gap is generated between the adjacent U-shaped tubes 3 and U-shaped tubes 3 as indicated by X in FIG.

本発明は上記課題を解決するためになされたもので、放流水の取水位置を任意に選択できる機能を備える取水設備を提供することを目的とする。   This invention was made | formed in order to solve the said subject, and it aims at providing the intake equipment provided with the function which can select arbitrarily the intake position of discharge water.

この発明は、水の入口である呑み口、前記呑み口よりも高い位置にあるサイホン頂部、及び、水の出口である吐き口をそれぞれ含む複数のサイホン水路を重ねることで構成される連続サイホンであって、
それぞれ断面逆V字型をしているサイホン床を3個以上積み重ね、隣接する前記サイホン床と前記サイホン床の間に前記サイホン水路を形成することにより、隣接する前記サイホン水路の前記呑み口の間に隙間を生じない、ものである。
なお、前記連続サイホンはゲートレス取水設備に適用可能であるが、これに限らず流体又はこれに準ずる物体を取入側(取水側)から取り入れて他方へ送り出すという用途にも適用可能である。
This invention is a continuous siphon configured by stacking a plurality of siphon water channels each including a stagnation mouth that is an inlet of water, a top portion of a siphon that is higher than the stagnation mouth, and a spout that is an outlet of water. There,
By stacking three or more siphon floors each having an inverted V-shaped cross section and forming the siphon channel between the adjacent siphon floors, a gap is formed between the squeezing mouths of the adjacent siphon channels. It is something that does not produce.
In addition, although the said continuous siphon is applicable to a gateless water intake equipment, it is applicable not only to this but the use of taking in the fluid or the object equivalent to this from the inlet side (water intake side) and sending it out to the other.

前記サイホン床は、前記断面逆V字型を構成する上流足板及び下流足板とを含み、
前記上流足板は前記呑み口の側に設けられ、前記下流足板は前記吐き口の側に設けられ、前記上流足板と前記下流足板は、前記断面逆V字型の頂点付近で互いに接していてもよい。
例えば、前記上流足板及び前記下流足板は断面軸に対してそれぞれλ1及びλ2の角度で交差し、前記上流足板及び前記下流足板の断面軸に対する角度λ1及びλ2は同じであるか、又は異なっている。
断面軸とは、サイホン床の基準となる軸である。断面軸と上流足板20との角度はλ1であり、下流足板21との角度はλ2である。複数のサイホン床を重ねたときに、各サイホン床の断面軸は同一直線上に位置する。
The siphon floor includes an upstream foot plate and a downstream foot plate constituting the inverted V-shaped cross section,
The upstream foot plate is provided on the side of the squeezing mouth, the downstream foot plate is provided on the side of the spout, and the upstream foot plate and the downstream foot plate are mutually close in the vicinity of the apex of the inverted V-shaped cross section. You may touch.
For example, the upstream foot plate and the downstream foot plate intersect with the cross-sectional axis at angles of λ1 and λ2, respectively, and the angles λ1 and λ2 with respect to the cross-sectional axis of the upstream foot plate and the downstream foot plate are the same, Or it is different.
The cross-sectional axis is a reference axis of the siphon floor. The angle between the cross-sectional axis and the upstream foot plate 20 is λ1, and the angle with the downstream foot plate 21 is λ2. When a plurality of siphon floors are stacked, the cross-sectional axes of the siphon floors are located on the same straight line.

前記サイホン床は、さらに、前記断面逆V字型の前記頂点の下側に設けられた導水板を含んでもよい。   The siphon floor may further include a water guide plate provided below the apex of the inverted V-shaped cross section.

前記サイホン床を次のように構成してもよい。
(1)前記導水板の断面を円弧状又は直線状とするか、あるいは前記導水板を省略する。
(2)断面逆V字型の頂点付近において前記上流足板及び前記下流足板の端部を円弧状又は直線状とする。
(3)前記上流足板及び前記下流足板の断面軸に対する角度λ1及びλ2を同じにするか、又は異ならせる。
上記(1)〜(3)を任意に組み合わせるようにしてもよい。
The siphon floor may be configured as follows.
(1) The cross section of the water guide plate is arcuate or linear, or the water guide plate is omitted.
(2) End portions of the upstream foot plate and the downstream foot plate are formed in an arc shape or a linear shape in the vicinity of the vertex of the inverted V-shaped cross section.
(3) The angles λ1 and λ2 with respect to the cross-sectional axes of the upstream foot plate and the downstream foot plate are made the same or different.
You may make it combine said (1)-(3) arbitrarily.

なお、取水口側となるサイホン床に導流部を設け、前記導流部に連続するように前記上流足板を設けてもよい。   In addition, a flow guide portion may be provided on the siphon floor on the intake side, and the upstream foot plate may be provided so as to be continuous with the flow guide portion.

発明の実施の形態1.
発明の実施の形態に係るゲートレス取水設備について図面を参照して説明を加える。
図6(a)は本願の発明によるサイホン床の断面形状を示し、図6(b)はサイホン床を用いて連続サイホンを形成する場合のサイホン床の重ね方を表す。
Embodiment 1 of the Invention
The gateless water intake equipment according to the embodiment of the invention will be described with reference to the drawings.
6A shows a cross-sectional shape of the siphon floor according to the invention of the present application, and FIG. 6B shows how the siphon floors are overlapped when a continuous siphon is formed using the siphon floor.

図6(a)において、サイホン床18は、断面図の左側から順番に、直線と円弧からなる導流部19、上流足板20、円弧からなる導水板22、及び下流足板21とから構成される。上流足板20と下流足板21は逆V字を形成するように交差し、断面軸23に対して、それぞれ、図の様にλ1及びλ2の傾斜角度を持ち、同図の例ではλ1とλ2が等しい。図6(b)において、同一形状の3個以上のサイホン床18を、(1)断面軸23が共通の直線を形成し、かつ、(2)一定間隔となるように積み重ねて、呑み口24、サイホン頂部25、吐き口26を経由するサイホン水路を複数持つ連続サイホン27を形成する。   6A, the siphon floor 18 is composed of a flow guide portion 19 made of a straight line and an arc, an upstream foot plate 20, a water guide plate 22 made of an arc, and a downstream foot plate 21 in order from the left side of the cross-sectional view. Is done. The upstream foot plate 20 and the downstream foot plate 21 intersect so as to form an inverted V shape, and have an inclination angle of λ1 and λ2, respectively, with respect to the cross-sectional axis 23 as shown in the figure, and in the example of FIG. λ2 is equal. In FIG. 6B, three or more siphon floors 18 having the same shape are stacked so that (1) the cross-sectional axes 23 form a common straight line and (2) are at regular intervals. A continuous siphon 27 having a plurality of siphon channels passing through the siphon top 25 and the spout 26 is formed.

図6(b)に示すように、図6(a)のサイホン床18を積み重ねることにより、隣接するサイホン床18とサイホン床18の間にサイホン水路を形成する。このサイホン水路が従来のU字管3に対応する。図6(b)を図5と比較すればわかるように、図6の構造によれば、図5のX部分(間隙)が生じない。したがって、図6の構造では取水位置を連続とすることができ、放流水の取水位置を任意に選択できることになる。   As shown in FIG. 6B, a siphon channel is formed between the adjacent siphon floors 18 by stacking the siphon floors 18 in FIG. This siphon waterway corresponds to the conventional U-shaped tube 3. As can be seen by comparing FIG. 6B with FIG. 5, according to the structure of FIG. 6, the X portion (gap) of FIG. 5 does not occur. Therefore, in the structure of FIG. 6, the water intake position can be made continuous, and the water intake position of the discharged water can be arbitrarily selected.

図6(a)について補足する。上流足板20と下流足板21の間に導水板22が位置する。導水板22は、上流足板20と下流足板21にそれぞれ滑らかに接している。導流部19の下側、上流足板20の下側、円弧からなる導水板22の下側及び下流足板21の下側は、サイホン水路の上面(天井)を構成する。導流部19の上側、上流足板20の上側及び下流足板21の上側は、サイホン水路の下面(床)を構成する。このように、サイホン床18を構成する要素19〜22がサイホン水路の天井と床の両方の機能を果たすので、サイホン水路の間に間隙が生じない。なお、上流足板20の下側、円弧からなる導水板22の上側及び下流足板21の下側で囲まれる断面略三角形の部分(取水管の頭頂部分)は、例えばエアーダクトとして用いることができる。
なお、サイホン床18は図示しない支持部材で支持されるとともにその側面は密閉され、隣接する2つのサイホン床18によりサイホン水路が形成されるようになっている。
It supplements about Fig.6 (a). A water guide plate 22 is located between the upstream foot plate 20 and the downstream foot plate 21. The water guide plate 22 is in smooth contact with the upstream foot plate 20 and the downstream foot plate 21, respectively. The lower side of the flow guide portion 19, the lower side of the upstream foot plate 20, the lower side of the circular water guide plate 22, and the lower side of the downstream foot plate 21 constitute an upper surface (ceiling) of the siphon water channel. The upper side of the flow guide portion 19, the upper side of the upstream foot plate 20, and the upper side of the downstream foot plate 21 constitute the lower surface (floor) of the siphon water channel. Thus, since the elements 19 to 22 constituting the siphon floor 18 function as both the ceiling and the floor of the siphon waterway, no gap is generated between the siphon waterways. Note that the substantially triangular portion (the top portion of the intake pipe) surrounded by the lower side of the upstream foot plate 20, the upper side of the water guide plate 22 made of an arc and the lower side of the downstream foot plate 21 is used as an air duct, for example. it can.
The siphon floor 18 is supported by a support member (not shown) and the side surface thereof is hermetically sealed, so that a siphon water channel is formed by two adjacent siphon floors 18.

図7〜図10は連続サイホンの貯水池への設置の仕方を事例的に示し、図11は比較的高速度で取水する場合の導水部の形状を事例的に示す。   FIGS. 7 to 10 show an example of how to install a continuous siphon in a reservoir, and FIG. 11 shows an example of the shape of a water conveyance section when water is taken at a relatively high speed.

図7は連続サイホン27を貯水池の堤体28の前面に設置した例を示し、図8は連続サイホン27を貯水池の堤体28の内部に設置した例を示し、図9は連続サイホン27を貯水池内に設けられた独立取水塔29に設置した例を示し、図10は連続サイホン27を貯水池内の地山に設けられた斜樋30に設置した例を示す。   7 shows an example in which the continuous siphon 27 is installed in front of the reservoir body 28, FIG. 8 shows an example in which the continuous siphon 27 is installed inside the reservoir body 28, and FIG. 9 shows the continuous siphon 27 in the reservoir. FIG. 10 shows an example in which the continuous siphon 27 is installed on a slope 30 provided on a natural ground in the reservoir.

図11は、呑み口24の流入速度が速くて、流水の不安定性と大きな水頭損失が懸念される場合の導流部19の形状と構造の例を示す。尚、流速が小さくて安定性と大きな水頭損失の懸念がない場合は導流部19を直線形状としたり、また、取水設備の目的によっては導流部19を欠く場合もある。   FIG. 11 shows an example of the shape and structure of the flow guide portion 19 when the inflow speed of the stagnation opening 24 is high and there is a concern about instability of flowing water and a large head loss. In addition, when the flow velocity is small and there is no concern about stability and large head loss, the flow guide portion 19 may be linear, or the flow guide portion 19 may be missing depending on the purpose of the water intake equipment.

図11において、導流部19の先端(開放端)が曲線をなして広がっている(例えばラッパ状に広がっている)。そのため、一部に間隙が生じているが、開口面は連続しているので取水位置を任意に選択できる。   In FIG. 11, the tip (open end) of the flow guide portion 19 spreads out in a curved line (for example, spreads in a trumpet shape). Therefore, although a gap is generated in part, the water intake position can be arbitrarily selected because the opening surface is continuous.

発明の実施の形態1によれば次のような作用効果を奏する。   According to the first embodiment of the invention, the following operational effects are obtained.

1.貯水池の深さ方向の取水位置が、実用上、自由に選択できる。
図6(b)に示されるように、連続サイホン27においては呑み口24は深さ方向に連続的に並ぶので、図7のように、必要高さ範囲に十分な段数の連続サイホン27を設置することにより、貯水池の常時満水位から最低水位迄の範囲から取水することが可能である。
1. The water intake position in the depth direction of the reservoir can be freely selected in practice.
As shown in FIG. 6B, in the continuous siphon 27, since the stagnation openings 24 are continuously arranged in the depth direction, the continuous siphon 27 having a sufficient number of stages is installed in the required height range as shown in FIG. By doing so, it is possible to take water from the range of the reservoir from the full water level to the lowest water level.

図4に示す円形多段式ゲート17は貯水池の表層から最低水位迄の任意の深さから取水できる機能を持つが、水質対策ニーズに限って見ると、
(ア)図3(a)に示す表層の水温は流入河川水より水温が高いため、この部分を選択的に取水しなければならない理由はない。
(イ)図3(a)は水温分布、同図(b)は濁度分布を示すが、これらに対する取水位置の適正深さはかなりの幅があるのが通常である。従って、連続サイホン27の段数が十分に確保されていれば、二一ズを満たすような取水位置の選択が可能である。
The circular multi-stage gate 17 shown in FIG. 4 has the function of taking water from any depth from the surface of the reservoir to the lowest water level.
(A) Since the water temperature of the surface layer shown in FIG. 3 (a) is higher than the inflowing river water, there is no reason to selectively take this part.
(A) FIG. 3 (a) shows the water temperature distribution, and FIG. 3 (b) shows the turbidity distribution, but the appropriate depth of the water intake position for these is usually quite wide. Therefore, if the number of stages of the continuous siphon 27 is sufficiently secured, it is possible to select a water intake position that satisfies the two requirements.

図6(a)において、λ1及びλ2が大き過ぎると、連続サイホン27の段数は増加するが、サイホン床18の断面形状が横方向に長くなるので好ましなく、また、逆に小さいと、サイホン床18の断面形状は横方向に短くなるが、連続サイホン27の段数が減少するので好ましくない。λ1及びλ2の最適値は、条件により変わってくると考えられるが、何ケースかの試算から、図7の様に連続サイホン27を垂直方向に重ねた場合はλ1=λ2=30°程度、図10の様に45°程度傾斜して重ねた場合はλ1=λ2=15°程度と考えられる。   In FIG. 6 (a), if λ1 and λ2 are too large, the number of stages of the continuous siphon 27 increases. However, the cross-sectional shape of the siphon floor 18 becomes longer in the horizontal direction. Although the cross-sectional shape of the floor 18 is reduced in the lateral direction, it is not preferable because the number of steps of the continuous siphon 27 is reduced. The optimum values of λ1 and λ2 are considered to vary depending on the conditions. From trial calculations in some cases, when continuous siphons 27 are stacked vertically as shown in FIG. 7, λ1 = λ2 = 30 °. As shown in FIG. 10, it is considered that λ1 = λ2 = 15 ° when the layers are inclined at about 45 °.

2.建設コストが、円形多段式ゲートに比較して、著しく低減する。
図4に示す在来形式の円形多段式ゲート17の取水位置選択の自由度は本発明の場合と比較して実用上同一であるが、連続サイホン27を用いた取水設備の建設コストは円形多段式ゲート17の1/3〜4/5程度である。スクリーン面積の少なさ、動く構造物と機械の少なさ、市販標準機器の使用など、本発明に直撃関わりのない要因も含めて達成されるコストであるが、本発明に関わる図6のサイホン床18と連続サイホン27のコストが低い要因を示す。
2. Construction costs are significantly reduced compared to circular multistage gates.
The degree of freedom in selecting the intake position of the conventional circular multi-stage gate 17 shown in FIG. 4 is practically the same as that of the present invention, but the construction cost of the intake equipment using the continuous siphon 27 is circular multi-stage. It is about 1/3 to 4/5 of the expression gate 17. The siphon floor of FIG. 6 relating to the present invention is a cost achieved including factors that are not directly related to the present invention, such as a small screen area, a small number of moving structures and machines, and use of commercially available standard equipment. 18 and the reason why the cost of the continuous siphon 27 is low.

(1)図6(b)において呑み口24、サイホン頂部25、吐き口26を経由するサイホン水路のサイホン床18が下段サイホン水路の天井を兼ねている。
(2)図6(b)において呑み口24が連続的に配置されているので、取水量が大きい時は複数段の呑み口からの取水が可能であり、設備が小型化できる。
(3)図6(a)に示すサイホン床18は、下記の理由で、施工のために必要な最小板厚の部材で構成できる。
(ア)作用荷重の大きさは、水平方向が貯水位と図1の塔槽4内の水位差に等しく、上下方向が空気が排除した水の量に等しいので、条件的に穏やかである。
(イ)図6のaに示すサイホン床18の断面が作用荷重を運ぶ梁の断面であり、断面剛性が大きい。
(4)サイホン床18は動かない構造物であり、加工精度が低くてよい。
(1) In FIG. 6B, the siphon floor 18 of the siphon channel that passes through the stagnation mouth 24, the siphon top 25, and the spout 26 also serves as the ceiling of the lower siphon channel.
(2) Since the stagnation openings 24 are continuously arranged in FIG. 6 (b), when the amount of water intake is large, water can be taken from a plurality of stagnation openings, and the equipment can be downsized.
(3) The siphon floor 18 shown in FIG. 6A can be constituted by a member having the minimum plate thickness necessary for construction for the following reason.
(A) The magnitude of the applied load is conditionally gentle because the horizontal direction is equal to the difference between the water storage level and the water level in the tower 4 of FIG. 1, and the vertical direction is equal to the amount of water removed by the air.
(A) The cross section of the siphon floor 18 shown in FIG. 6a is a cross section of the beam carrying the applied load, and the cross section rigidity is large.
(4) The siphon floor 18 is a structure that does not move, and the machining accuracy may be low.

発明の実施の形態2.
図12〜図15はV字管(連続サイホン)の工事コストを低減する為の実施例である。
図12においては、導水板22を直線断面とした例である。図13は、図12から導水板22を取り去った例である。図14は、図13の上流足板20と下流足板21を直線断面に変えた例である。図15においては、断面軸23を挟む二つの角度λ1、λ2に異なった値を与えた例である。
Embodiment 2 of the Invention
12 to 15 are embodiments for reducing the construction cost of the V-shaped tube (continuous siphon).
FIG. 12 shows an example in which the water guide plate 22 has a straight cross section. FIG. 13 shows an example in which the water guide plate 22 is removed from FIG. FIG. 14 shows an example in which the upstream foot plate 20 and the downstream foot plate 21 of FIG. 13 are changed to straight sections. FIG. 15 shows an example in which different values are given to the two angles λ1 and λ2 sandwiching the sectional axis 23.

図12〜図14はサイホン水路内の流速が比較的に小さい場合に適する実施例であり、流れによるエネルギー損失を犠牲にして部材形状の単純化によりコスト低減をはかるものである。図12は直線状の導水板22の採用で損失水頭は若干増加するが、部材の単純化によるコスト低減が実現する。図13は導水板22の省略に伴うコスト低減が実現する。サイホン水路の断面形状が大きく変化するので、図12に比較して損失水頭は増加する。図14は上流足板20と下流足板21の形状単純化でコスト低減が実現する。図13に比較して損失水頭が更に大きくなる。   FIGS. 12 to 14 show an embodiment suitable when the flow velocity in the siphon channel is relatively small, and the cost is reduced by simplifying the member shape at the expense of energy loss due to the flow. In FIG. 12, the loss head is slightly increased by the use of the linear water guide plate 22, but the cost is reduced by simplifying the members. FIG. 13 realizes cost reduction due to omission of the water guide plate 22. Since the cross-sectional shape of the siphon channel changes greatly, the loss head increases as compared with FIG. In FIG. 14, cost reduction is realized by simplifying the shapes of the upstream foot plate 20 and the downstream foot plate 21. Compared to FIG. 13, the loss head is further increased.

図15は水理的な改善により連続サイホンの小型化をはかる実施例である。図のように、λ1<λ2である場合は下流足内の流速が低下し、水頭損失の減少で連続サイホンの小型化がはかれる可能性があり、λ1>λ2である場合は上流足内の水面上昇量の減少で連続サイホンの小型化がはかれる可能性がある。図12〜15の例を組み合わせで、それなりにコスト低減をはかることもできる。   FIG. 15 shows an embodiment in which the size of the continuous siphon is reduced by hydraulic improvement. As shown in the figure, when λ1 <λ2, the flow velocity in the downstream foot decreases, and there is a possibility that the size of the continuous siphon can be reduced by reducing the head loss, and when λ1> λ2, the water surface in the upstream foot There is a possibility that downsizing will reduce the size of the continuous siphon. By combining the examples of FIGS. 12 to 15, the cost can be reduced accordingly.

本発明は、以上の実施の形態に限定されることなく、特許請求の範囲に記載された発明の範囲内で、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。   The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the invention described in the claims, and these are also included in the scope of the present invention. Needless to say.

空気を利用して取水口の開閉を行う従来のゲートレス取水設備の全体図である。It is a general view of the conventional gateless water intake equipment which opens and closes a water intake port using air. 図1の設備の開閉機構を示す図である。It is a figure which shows the opening-and-closing mechanism of the installation of FIG. 図3は貯水池内の水温と濁度の分布を示す図である。FIG. 3 is a diagram showing the distribution of water temperature and turbidity in the reservoir. 図4は従来の円形多段式取水設備の全体図である。FIG. 4 is an overall view of a conventional circular multistage intake system. 図1の設備の機能的限界(呑み口の密度的限界)の説明図である。It is explanatory drawing of the functional limit (density limit of a mouth opening) of the installation of FIG. 図6(a)は発明の実施の形態1に係るサイホン床の断面形状を示し、同図(b)は同図(a)のサイホン床を用いて連続サイホンを形成する場合のサイホン床の重ね方の説明図(断面図)である。FIG. 6A shows a cross-sectional shape of the siphon floor according to the first embodiment of the invention, and FIG. 6B shows the overlapping of the siphon floors when forming a continuous siphon using the siphon floor of FIG. It is explanatory drawing (sectional drawing) of a direction. 発明の実施の形態1に係る連続サイホンを貯水池の堤体の前面に設置した例を示す図である。It is a figure which shows the example which installed the continuous siphon which concerns on Embodiment 1 of invention in the front surface of the bank body of a reservoir. 発明の実施の形態1に係る連続サイホンを貯水池の堤体の内部に設置した例を示す図である。It is a figure which shows the example which installed the continuous siphon which concerns on Embodiment 1 of invention in the inside of the bank body of a reservoir. 発明の実施の形態1に係る連続サイホンを貯水池内に設けられた独立取水塔に設置した例を示す図である。It is a figure which shows the example which installed the continuous siphon which concerns on Embodiment 1 of invention in the independent intake tower provided in the reservoir. 発明の実施の形態1に係る連続サイホンを貯水池内の地山に設けられた斜樋に設置した例を示す図である。It is a figure which shows the example which installed the continuous siphon which concerns on Embodiment 1 of invention on the slope provided in the natural ground in a reservoir. 発明の実施の形態1に係る連続サイホンを、呑み口の流入速度が速くて、流水の不安定性と大きな水頭損失が懸念される場合の導流部に適用する場合の例を示す図である。It is a figure which shows the example in the case of applying the continuous siphon which concerns on Embodiment 1 of invention to the flow guide part in case the inflow speed of a stagnation mouth is quick, and the instability of flowing water and a big head loss are concerned. 発明の実施の形態2に係るサイホン床(導水板を直線断面とした例)を示す図である。It is a figure which shows the siphon floor (example which made the water guide plate the linear cross section) which concerns on Embodiment 2 of invention. 発明の実施の形態2に係るサイホン床(導水板を取り去った例)を示す図である。It is a figure which shows the siphon floor (example which removed the water guide plate) which concerns on Embodiment 2 of invention. 発明の実施の形態2に係るサイホン床(上流足板と下流足板を直線断面に変えた例)を示す図である。It is a figure which shows the siphon floor (example which changed the upstream foot board and the downstream foot board into the linear cross section) which concerns on Embodiment 2 of invention. 発明の実施の形態2に係るサイホン床(断面軸を挟む二つの角度λ1、λ2に異なった値を与えた例)を示す図である。It is a figure which shows the siphon floor (Example which gave the different value to two angles (lambda) 1 and (lambda) 2 which pinches | interposes a cross-sectional axis) concerning Embodiment 2 of invention.

符号の説明Explanation of symbols

1 利水最高水位
2 利水最低水位
3 U字管
4 塔槽
5 圧搾機
6 蓄圧槽
7 注入弁
8 給排気管
9 U字管頂部の空気
10 U字管内の水
11 空気9の存在により生じる水10の水面
12 解除弁
13 真空ポンプ
14 機械室
15 水面センサー
16 円形多段式取水設備の呑み口
17 円形多段式取水設備の円形多段式ゲート
18 サイホン床
19 導流部
20 上流足板
21 下流足板
22 導水板
23 断面軸
24 呑み口
25 サイホン頂部
26 吐き口
27 連続サイホン
DESCRIPTION OF SYMBOLS 1 Water utilization highest water level 2 Water utilization minimum water level 3 U-shaped pipe 4 Tower tank 5 Squeezer 6 Accumulator tank 7 Inlet valve 8 Supply / exhaust pipe 9 Air in the top of U-shaped pipe 10 Water 11 in U-shaped pipe Water 10 generated by the presence of air 9 Water level 12 Release valve 13 Vacuum pump 14 Machine room 15 Water level sensor 16 Mouth port 17 of circular multi-stage water intake facility Circular multi-stage gate 18 of circular multi-stage water intake facility Siphon floor 19 Current transfer section 20 Upstream foot plate 21 Downstream foot plate 22 Water guide plate 23 Cross-section axis 24 Mouth mouth 25 Siphon top 26 Spout 27 Continuous siphon

Claims (6)

水の入口である呑み口、前記呑み口よりも高い位置にあるサイホン頂部、及び、水の出口である吐き口をそれぞれ含む複数のサイホン水路を重ねることで構成される連続サイホンであって、
それぞれ断面逆V字型をしているサイホン床を3個以上積み重ね、隣接する前記サイホン床と前記サイホン床の間に前記サイホン水路を形成することにより、隣接する前記サイホン水路の前記呑み口の間に隙間を生じないことを特徴とする連続サイホン。
A continuous siphon configured by stacking a plurality of siphon water channels each including a water inlet that is a water inlet, a siphon top that is higher than the water mouth, and a water outlet that is a water outlet,
By stacking three or more siphon floors each having an inverted V-shaped cross section and forming the siphon channel between the adjacent siphon floors, a gap is formed between the squeezing mouths of the adjacent siphon channels. Continuous siphon characterized by not producing
前記サイホン床は、前記断面逆V字型を構成する上流足板と下流足板とを含み、
前記上流足板は前記呑み口の側に設けられ、前記下流足板は前記吐き口の側に設けられ、前記上流足板と前記下流足板は、前記断面逆V字型の頂点付近で互いに接していることを特徴とする請求項1記載の連続サイホン。
The siphon floor includes an upstream foot plate and a downstream foot plate constituting the inverted V-shaped cross section,
The upstream foot plate is provided on the side of the squeezing mouth, the downstream foot plate is provided on the side of the spout, and the upstream foot plate and the downstream foot plate are mutually close in the vicinity of the apex of the inverted V-shaped cross section. The continuous siphon according to claim 1, wherein the continuous siphon is in contact.
前記サイホン床は、さらに、前記断面逆V字型の前記頂点の下側に設けられた導水板を含むことを特徴とする請求項2記載の連続サイホン。   The continuous siphon according to claim 2, wherein the siphon floor further includes a water guide plate provided below the apex of the inverted V-shaped cross section. 水の入口である呑み口、前記呑み口よりも高い位置にあるサイホン頂部、及び、水の出口である吐き口をそれぞれ含み、選択的に取水を行うための複数のサイホン水路と、前記サイホン水路の前記サイホン頂部の近傍に接続された給排気管と、前記サイホン水路を閉じるために前記給排気管を通じて前記サイホン水路に空気を注入する注入手段と、前記サイホン水路を開けるために前記給排気管を通じて空気を排気する排気手段とを備えるゲートレス取水設備において、
それぞれ断面逆V字型をしているサイホン床を3個以上積み重ね、隣接する前記サイホン床と前記サイホン床の間に前記サイホン水路を形成することにより、隣接する前記サイホン水路の前記呑み口の間に隙間を生じない連続サイホンを形成したことを特徴とする取水設備。
A plurality of siphon water channels for selectively taking water, each including a water inlet that is a water inlet, a top portion of a siphon that is higher than the water outlet, and a water outlet that is a water outlet, and the siphon water channel A supply / exhaust pipe connected near the top of the siphon, injection means for injecting air into the siphon water path through the supply / exhaust pipe for closing the siphon water path, and the supply / exhaust pipe for opening the siphon water path In a gateless water intake facility provided with exhaust means for exhausting air through
By stacking three or more siphon floors each having an inverted V-shaped cross section and forming the siphon channel between the adjacent siphon floors, a gap is formed between the squeezing mouths of the adjacent siphon channels. Water intake equipment characterized by the formation of a continuous siphon that does not cause any problems.
前記サイホン床は、前記断面逆V字型を構成する上流足板と下流足板とを含み、
前記上流足板は前記呑み口の側に設けられ、前記下流足板は前記吐き口の側に設けられ、前記上流足板と前記下流足板は、前記断面逆V字型の頂点付近で互いに接しており、
前記呑み口の側の前記サイホン床に導流部を設け、前記導流部に連続するように前記上流足板を設けたことを特徴とする請求項4記載の取水設備。
The siphon floor includes an upstream foot plate and a downstream foot plate constituting the inverted V-shaped cross section,
The upstream foot plate is provided on the side of the squeezing mouth, the downstream foot plate is provided on the side of the spout, and the upstream foot plate and the downstream foot plate are mutually close in the vicinity of the apex of the inverted V-shaped cross section. Touching,
The water intake facility according to claim 4, wherein a flow guide portion is provided on the siphon floor on the side of the stagnation mouth, and the upstream foot plate is provided so as to be continuous with the flow guide portion.
前記サイホン床は、さらに、前記断面逆V字型の前記頂点の下側に設けられた導水板を含むことを特徴とする請求項5記載の取水設備。   The water intake facility according to claim 5, wherein the siphon floor further includes a water guide plate provided below the apex of the inverted V-shaped cross section.
JP2007289523A 2007-11-07 2007-11-07 Low cost and high performance water intake equipment and continuous siphon applicable to this Active JP4387433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007289523A JP4387433B2 (en) 2007-11-07 2007-11-07 Low cost and high performance water intake equipment and continuous siphon applicable to this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289523A JP4387433B2 (en) 2007-11-07 2007-11-07 Low cost and high performance water intake equipment and continuous siphon applicable to this

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005018206A Division JP4056527B2 (en) 2005-01-26 2005-01-26 Low cost and high performance water intake equipment and continuous siphon applicable to this

Publications (2)

Publication Number Publication Date
JP2008082163A JP2008082163A (en) 2008-04-10
JP4387433B2 true JP4387433B2 (en) 2009-12-16

Family

ID=39353294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289523A Active JP4387433B2 (en) 2007-11-07 2007-11-07 Low cost and high performance water intake equipment and continuous siphon applicable to this

Country Status (1)

Country Link
JP (1) JP4387433B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101090206B1 (en) 2009-07-23 2011-12-06 변원구 Intake apparatus of agricultural reservoir
CN108589624A (en) * 2018-06-14 2018-09-28 中国电建集团昆明勘测设计研究院有限公司 Multi-channel different-size inverted siphon

Also Published As

Publication number Publication date
JP2008082163A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
CN105421313A (en) Method and device for filling water and leveling pressure of ultrahigh water head gate
CN105951689B (en) A kind of reservoir let out in advance and ecological flow under let out structure
JP4387433B2 (en) Low cost and high performance water intake equipment and continuous siphon applicable to this
CN203080501U (en) Multi-stage sluice type first-stage ship lock
JP4056527B2 (en) Low cost and high performance water intake equipment and continuous siphon applicable to this
ES2746114T3 (en) Fish lock
CN107269892A (en) A kind of liquid transmission pipeline and its system
CN103046522A (en) Multi-stage-waterlock single-stage navigation lock
CN106930199A (en) Improve the fairing of arc Box-shaped Drainage Culvert water outlet fluidised form
AU2012202356A1 (en) Pipe branch piece for downpipes
CN216896008U (en) Erosion-resistant valve body
CN104358960B (en) Connecting pipe fitting for stand pipe for drainage
KR101690976B1 (en) Drain system
JP3913729B2 (en) Siphon type automatic lodging device
CN101435194A (en) Water surface floater interception apparatus
CN108589674A (en) A kind of change caliber the siphon priming device suitable for water variation
JP4139413B2 (en) Dam type fishway and fishway control method
CN207599034U (en) A kind of double Lode switching valves
CN209524178U (en) A kind of construction drainage pipe with noise reduction effect
CN201416171Y (en) Water surface floating material blocking device
CN206233202U (en) Steel bifurcated pipe guide plate structure
JP4795172B2 (en) Horizontal shaft pump
CN206571997U (en) Blast furnace opens diffusion valve with flexible
CN205576873U (en) Fill water surge suppressor suitable for major diameter conduit valve
KR20190045477A (en) The method and system for tide gate design and water flow control of tidal power plant which minimized the influence of bending angle of input water flow and which uniform the electricity output between each turbine generator and which keep the falling height by fast discharge of water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350