JP4386254B2 - Insertion sequences that function in coryneform bacteria - Google Patents

Insertion sequences that function in coryneform bacteria Download PDF

Info

Publication number
JP4386254B2
JP4386254B2 JP2003303577A JP2003303577A JP4386254B2 JP 4386254 B2 JP4386254 B2 JP 4386254B2 JP 2003303577 A JP2003303577 A JP 2003303577A JP 2003303577 A JP2003303577 A JP 2003303577A JP 4386254 B2 JP4386254 B2 JP 4386254B2
Authority
JP
Japan
Prior art keywords
plasmid
sequence
strain
insertion sequence
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003303577A
Other languages
Japanese (ja)
Other versions
JP2005065649A (en
Inventor
陽太 柘植
加奈 二ノ宮
かおり 中田
伸昭 鈴木
将行 乾
英明 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2003303577A priority Critical patent/JP4386254B2/en
Publication of JP2005065649A publication Critical patent/JP2005065649A/en
Application granted granted Critical
Publication of JP4386254B2 publication Critical patent/JP4386254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、コリネ型細菌由来の新規なDNA塩基配列を有する挿入配列(insertion sequence:IS)に関する。   The present invention relates to an insertion sequence (IS) having a novel DNA base sequence derived from coryneform bacteria.

トランスポゾン、挿入配列のような転位因子は、原核細胞・真核細胞において見いだされている。また、微生物の挿入配列は、大腸菌由来のもの、赤痢菌由来のもの、酢酸菌由来のもの、マイコプラズマ由来のものなどにおいて広く研究されている(非特許文献1〜4参照)。
微生物における転位配列の1つである挿入配列には、いくつかの特徴がある。例えば、挿入配列はおよそ1〜2kbの大きさを有しており、その両端にはインバーテッドリピート〔逆方向反復(塩基)配列:inverted repeat (sequence);IR〕が存在している。また、微生物染色体に挿入配列が挿入されたときに、ターゲットDNA塩基配列(転位部位)での重複配列が生じる等である。
Transposition factors such as transposons and insertion sequences have been found in prokaryotic and eukaryotic cells. In addition, insertion sequences of microorganisms are widely studied in E. coli-derived, Shigella-derived, acetic acid-derived, mycoplasma-derived and the like (see Non-Patent Documents 1 to 4).
An insertion sequence, which is one of translocation sequences in microorganisms, has several characteristics. For example, the inserted sequence has a size of about 1 to 2 kb, and inverted repeats [inverted repeat (sequence); IR] exist at both ends. In addition, when an insertion sequence is inserted into a microbial chromosome, an overlapping sequence occurs in the target DNA base sequence (translocation site).

近年、コリネ型細菌においても、転位因子である挿入配列やトランスポゾンが相次いで報告されている。具体的には、ISL3ファミリーに属するIS31831、ISCg1、IS13869、IS719、IS714、IS3ファミリーに属するIS1206、IS903、IS30ファミリーに属するISCg2、IS1513、IS256ファミリーに属するIS1249、IS1132などである(特許文献1〜5、非特許文献5〜11参照)。   In recent years, insertion sequences and transposons, which are transposable elements, have been reported one after another in coryneform bacteria. Specifically, IS3181, ISCg1, IS13869, IS719, IS714, IS1206, IS903, ISSCg2, IS1513, IS1253, IS1249, IS1132, IS256, and IS256 belonging to the IS30 family (Patent Documents 1 to 3). 5, refer nonpatent literature 5-11).

微生物由来の挿入配列などの転位因子を単離する手法としては、枯草菌由来のsacB遺伝子産物を利用する方法が知られている(非特許文献12、13参照)。
すなわち、sacB遺伝子産物は培地中のスクロースによって誘導生産されるので、本遺伝子を有する大腸菌を、スクロースを含有する培地で培養すると、本遺伝子の発現により、大腸菌は溶菌し、生育阻害をおこすことが知られている(非特許文献14参照)。
そこで、sacB遺伝子を有するプラスミドで大腸菌を形質転換し、スクロースを含有するプレート上に生育可能になった大腸菌からプラスミドを抽出すると、このプラスミド上のsacB遺伝子が欠失もしくは挿入変異(失活)を起こしているものが得られる。この挿入変異(失活)をおこしたものより転位因子を単離することができる。
As a method for isolating transposable elements such as an insertion sequence derived from a microorganism, a method using a sacB gene product derived from Bacillus subtilis is known (see Non-Patent Documents 12 and 13).
That is, since the sacB gene product is induced and produced by sucrose in the medium, when E. coli having this gene is cultured in a medium containing sucrose, the expression of this gene causes lysis of E. coli and inhibits growth. It is known (see Non-Patent Document 14).
Therefore, when E. coli is transformed with a plasmid having the sacB gene and the plasmid is extracted from E. coli that can grow on a plate containing sucrose, the sacB gene on this plasmid is deleted or inserted (inactivated). What is happening is obtained. A transposable element can be isolated from the one having this insertion mutation (inactivation).

コリネ型細菌においても、sacB遺伝子は生育阻害を引き起こすことが知られている(非特許文献13参照)。   Also in coryneform bacteria, the sacB gene is known to cause growth inhibition (see Non-Patent Document 13).

微生物に関しては、既に100株以上の全ゲノム解析が終了し、近年、コリネ型細菌に関しても全ゲノム配列があいついで決定されている(非特許文献15〜17参照)。
ゲノム情報からの発現機能を重要とするポストゲノム時代に入った現在、コリネ型細菌のような産業上重要な微生物に於いては、より効果的、効率的な遺伝子の組み換えを行なうべく、多数遺伝子導入法、多数遺伝子削除法、そして、繰り返しての染色体DNAに変異、削除、導入等の改質操作が一段と重要性を増している。
With respect to microorganisms, the analysis of whole genomes of 100 strains or more has already been completed, and in recent years, the whole genome sequences of coryneform bacteria have also been determined (see Non-Patent Documents 15 to 17).
Now that we have entered the post-genomic era where expression functions from genomic information are important, in industrially important microorganisms such as coryneform bacteria, a large number of genes are required to perform more effective and efficient gene recombination. Introduction methods, multiple gene deletion methods, and regenerative operations such as mutation, deletion, and introduction to repeated chromosomal DNA are becoming increasingly important.

挿入配列を利用した形質転換法の場合に、2度目以降に同種の挿入配列を変異、削除又は導入に用いると、制御機構が同一なため1度目に導入した挿入配列が染色体上を再度転位する可能性があり、安定な染色体変異、削除又は導入株を得ることができない。従って、お互いに制御機構が異なる挿入配列を用いることが必要となる。
特開平7− 107976号公報 特開平9−70291号公報 特開平9−70291号公報 特開平9−70291号公報) 欧州特許出願公開第0252558号公報 モル.ジェン.ジェネット(Mol. Gen. Genet),1973年,第122巻,p.267−277 ジャーナル オブ バクテリオロジー(J. Bacteriol),1990年,第172巻,p.4090−4099 モル.マイクロバイオール(Mol. Microbiol),1993年,第9巻,211−218 モル.マイクロバイオール(Mol. Microbiol),1993年,第7巻,577−584 バーテス エイ.エイ.(Vertes,A.A.),外4名,モル.マイクロバイオール(Mol.Microbiol),1994年,第11巻,p.739−746 ジャガー,ダブル.(Jager,W.),外3名,エフエーエムエス マイクロバイオロジー レターズ (FEMS Microbiol Lett.),1995年,第126巻,p.1−6 ジーン(Gene),1996年,第170巻,p.91−94 モル.マイクロバイオール(Mol. Microbiol),1994年,第11巻,738−748 モル.ジェン.ジェネット(Mol. Gen. Genet),1999年,第262巻,p.568−578 モル.ジェン.ジェネット(Mol. Gen. Genet),2000年,第263巻,p.1−11 プラスミド(Plasmid),1995年,第34巻,p.119−131 ジャーナル オブ バクテリオロジー(J. Bacteriol.),1985年,第164巻,p.918−921 ジャーナル オブ バクテリオロジー(J. Bacteriol.),1992年,第174巻,p.5462−5465 モル.ジェン.ジェネット(Mol. Gen. Genet),1983年,第191巻,p.138−144 野中 寛,外7名,「Corynebacterium glutamicum R ゲノム解析」,日本農芸化学会2003年度大会講演要旨集,2003年4月,p.20 イケダ エム.(IkedaM,),外1名,アプリ.ミクロバイオール.バイオテクノール.(Appl Microbiol Biotechnol.),2003年,第62巻,p.99−109 ニシオ ワイ.(Nishio Y),外10名,ゲノム リサーチ(Genome Res.),2003年,第13巻,p.1572−1579
In the case of a transformation method using an insertion sequence, if the same type of insertion sequence is used for mutation, deletion or introduction after the second time, the inserted sequence introduced the first time is translocated again on the chromosome because the control mechanism is the same. There is a possibility that stable chromosomal mutations, deletions or introduced strains cannot be obtained. Therefore, it is necessary to use insertion sequences having different control mechanisms.
JP-A-7-107976 JP-A-9-70291 JP-A-9-70291 (JP-A-9-70291) European Patent Application Publication No. 0525558 Mol. Jen. Genet (Mol. Gen. Genet), 1973, 122, p. 267-277 Journal of Bacteriol, 1990, 172, p. 4090-4099 Mol. Microbiol, 1993, 9, 211-218 Mol. Microbiol, 1993, Vol. 7, 577-584 Vertes A. A. (Vertes, AA), 4 others, Mole. Microbiol, 1994, Vol. 11, p. 739-746 Jaguar, double. (Jager, W.), three others, FEMS Microbiol Lett., 1995, vol. 126, p. 1-6 Gene, 1996, 170, p. 91-94 Mol. Microbiol, 1994, 11, 738-748 Mol. Jen. Genet, 1999, Vol. 262, p. 568-578 Mol. Jen. Gen. Genet, 2000, 263, p. 1-11 Plasmid, 1995, 34, p. 119-131 Journal of Bacteriology, 1985, 164, p. 918-921 Journal of Bacteriol., 1992, 174, p. 5462-5465 Mol. Jen. Genet (Mol. Gen. Genet), 1983, Vol. 191, p. 138-144 Hiroshi Nonaka, 7 others, “Corynebacterium glutamicum R Genome Analysis”, Abstracts of the 2003 Annual Meeting of the Agricultural Chemical Society of Japan, April 2003, p. 20 Ikeda M. (IkedaM,), one outside, app. Micro viol. Biotechnol. (Appl Microbiol Biotechnol.), 2003, Vol. 62, p. 99-109 Nishio Wai. (Nishio Y), 10 others, Genome Res., 2003, Vol. 13, p. 1572-1579

本発明の目的は、既知の挿入配列と異なる制御機構により染色体上に変異又は導入を可能とする新規な挿入配列を単離することである。また、本発明の別の目的は、新規な挿入配列が組み込まれたプラスミドを作成すること、又はコリネ型細菌の形質転換体を作成することである。
なお、本発明において、「挿入配列」とは、コリネ型細菌染色体上に存在しており、染色体上もしくはプラスミド上に転位することが可能なDNA塩基配列を意味するものである。
An object of the present invention is to isolate a novel insertion sequence that enables mutation or introduction into a chromosome by a control mechanism different from that of a known insertion sequence. Another object of the present invention is to create a plasmid incorporating a novel insertion sequence, or to produce a transformant of coryneform bacteria.
In the present invention, the “insertion sequence” means a DNA base sequence that exists on the coryneform bacterial chromosome and can be translocated onto the chromosome or plasmid.

本発明者らは、鋭意研究を重ねた結果、sacB遺伝子を利用する方法により、転位因子の1つである配列番号1に示される配列を有する新規な挿入配列を単離することに成功し、さらに研究を進め、本発明を完成するに至った。
すなわち、本発明は、
(1)コリネ型細菌内で機能する配列番号1に示されるDNA塩基配列を有することを特徴とする挿入配列、
(2)挿入配列内に少なくとも一つの薬剤耐性遺伝子を含むことを特徴とする上記(1)記載の挿入配列、
(3)染色体上に転位させ、増幅させることを目的として、プラスミドに組み込まれていることを特徴とする上記(1)又は(2)記載の挿入配列、および
(4)コリネバクテリウム・グルタミカムR株(FERM P−18976)、ATCC13032株又はATCC31831株の形質転換に使用されることを特徴とする上記(1)〜(3)のいずれかに記載の挿入配列、
に関する。
As a result of intensive studies, the present inventors succeeded in isolating a novel insertion sequence having the sequence shown in SEQ ID NO: 1 which is one of translocation factors by a method using the sacB gene, Further research has been conducted and the present invention has been completed.
That is, the present invention
(1) an insertion sequence characterized by having the DNA base sequence shown in SEQ ID NO: 1 that functions in coryneform bacteria,
(2) The insertion sequence according to (1) above, which comprises at least one drug resistance gene in the insertion sequence,
(3) The inserted sequence according to (1) or (2) above, which is incorporated into a plasmid for the purpose of translocation and amplification on a chromosome, and (4) Corynebacterium glutamicum R Strain (FERM P-18976), ATCC13032 strain or ATCC31831 strain, the insertion sequence according to any one of the above (1) to (3),
About.

本発明の挿入配列は、コリネバクテリウム・グルタミカム由来の後記配列表の配列番号1に示されるDNA塩基配列を有することを特徴とする。
そして、本発明の挿入配列は、これまでコリネ型細菌から見出された挿入配列とはDNAレベルで相同性を有さず、また、コリネ型細菌内で機能する既知挿入配列内に存在するトランスポザーゼ遺伝子(アミノ酸レベル)やインバーテッドリピート(DNAレベル)に対しても相同性を有さない新規なものである。
本発明の挿入配列は、後記実施例で示す如く、特にコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)R株(FERM P−18976)、ATCC13032株およびATCC31831株等の幾つかのコリネ型細菌に関して、これまで見出されてきた挿入配列とは異なるものである。
The insertion sequence of the present invention is characterized by having a DNA base sequence represented by SEQ ID NO: 1 in the sequence listing described later derived from Corynebacterium glutamicum.
The insertion sequence of the present invention has no homology at the DNA level with the insertion sequence previously found from coryneform bacteria, and also exists in a known insertion sequence that functions in coryneform bacteria. It is a novel one that has no homology to genes (amino acid level) and inverted repeats (DNA level).
The insertion sequence of the present invention has so far been described for several coryneform bacteria, such as Corynebacterium glutamicum R strain (FERM P-18976), ATCC13032 strain and ATCC31831 strain, as shown in the Examples below. It is different from the insertion sequence that has been found.

本発明の挿入配列を、供給源微生物であるコリネ型細菌から調製するための基本操作の一例を述べれば次のとおりである。すなわち、本発明の挿入配列は、上記コリネ型細菌、例えばコリネバクテリウム・グルタミカムATCC14999株の染色体上に存在し、本菌株を、枯草菌由来のsacB遺伝子を有し、コリネ型細菌内で複製可能なプラスミド、例えばプラスミドpMV5を用いて形質転換し、スクロースを含有するプレート上に塗抹し、生育してくるスクロース耐性株よりプラスミドを抽出することにより、分離取得することができる。   An example of the basic operation for preparing the insertion sequence of the present invention from the coryneform bacterium that is the source microorganism is as follows. That is, the insertion sequence of the present invention is present on the chromosome of the above-mentioned coryneform bacterium, for example, Corynebacterium glutamicum ATCC 14999 strain, and this strain has a sacB gene derived from Bacillus subtilis and can be replicated in the coryneform bacterium. It can be isolated and obtained by transforming with a plasmid such as plasmid pMV5, smearing on a plate containing sucrose, and extracting the plasmid from the growing sucrose resistant strain.

より具体的には、先ず、枯草菌、例えばマールバーグ(Marburg) 株〔Biochem. Biophys. Res. Commun., 第119巻, p.795-800 (1984年)〕の培養物から染色体DNAを抽出する。この染色体DNAを鋳型として、既知のsacBおよびsacR(sacB遺伝子の発現制御遺伝子)遺伝子を含む領域をPCR法により増幅単離する。該増幅DNA断片を大腸菌・コリネ型細菌のシャトルベクターに導入し、このベクターを用いて大腸菌(エシェリヒア・コリ;Escherichia coli)JM109(宝酒造より市販)を形質転換し、形質転換体を取得する。
次いで、得られた形質転換体よりプラスミドDNAを抽出し、本プラスミドを用いてコリネ型細菌、例えばコリネバクテリウム・グルタミカムATCC14999を形質転換し、スクロースを含有するプレート上に生育してくるスクロース耐性株よりプラスミドを抽出する。これらのプラスミドのうち、もとのプラスミドよりサイズが大きくなっているものを選択し、本プラスミドのsacBおよびsacR遺伝子領域に挿入されているDNA断片を単離することにより、挿入配列を分離取得することができる。
More specifically, first, chromosomal DNA was extracted from a culture of Bacillus subtilis, for example, the Marburg strain (Biochem. Biophys. Res. Commun., Vol. 119, p. 795-800 (1984)). To do. Using this chromosomal DNA as a template, a region containing known sacB and sacR (sacB gene expression control gene) genes is amplified and isolated by PCR. The amplified DNA fragment is introduced into an E. coli / coryneform bacterium shuttle vector, and Escherichia coli JM109 (commercially available from Takara Shuzo) is transformed using this vector to obtain a transformant.
Subsequently, plasmid DNA is extracted from the obtained transformant, and a coryneform bacterium such as Corynebacterium glutamicum ATCC 14999 is transformed using this plasmid, and the sucrose resistant strain that grows on a plate containing sucrose. Extract the plasmid. Among these plasmids, a plasmid having a size larger than that of the original plasmid is selected, and a DNA fragment inserted into the sacB and sacR gene regions of this plasmid is isolated to separate and acquire the inserted sequence. be able to.

このようにして得られる挿入配列の一つとしては、上記コリネ型細菌、例えばコリネバクテリウム・グルタミカムATCC14999株の染色体DNA上に存在し、大きさが約1.2kbの断片を挙げることができる。
この約1.2kbの挿入配列を、各種の制限酵素で切断したときの認識部位数および切断断片の大きさを下記第1表に示す。

Figure 0004386254
As one of the insertion sequences thus obtained, there can be mentioned a fragment which is present on the chromosomal DNA of the coryneform bacterium, for example, Corynebacterium glutamicum ATCC 14999, and has a size of about 1.2 kb.
The number of recognition sites and the size of the cleaved fragments when the inserted sequence of about 1.2 kb is cleaved with various restriction enzymes are shown in Table 1 below.
Figure 0004386254

上記表1において、制限酵素による「認識部位数」は、DNA断片又はプラスミドを制限酵素で完全消化し、それらの消化物をそれ自体公知の方法に従って1%アガロースゲル電気泳動および5%ポリアクリルアミドゲル電気泳動に供し、分離可能な断片の数から決定した値を採用した。
また、「切断DNA断片の大きさ」および「プラスミドの切断DNAの大きさ」は、アガロースゲル電気泳動を用いる場合には、大腸菌のラムダファージ(λphage)のDNAを制限酵素HindIIIで切断して得られる分子量既知のDNA断片の同一アガロースゲル上での泳動距離で描かれる標準線に基づき、また、ポリアクリルアミドゲル電気泳動を用いる場合には、大腸菌のファイ・エックス174ファージ(φx174phage)のDNAを制限酵素HaeIIIで切断して得られる分子量既知のDNA断片の同一ポリアクリルアミドゲル上での泳動距離で描かれる標準線に基づき、切断DNA断片およびプラスミドの各DNA断片の大きさを算出する。
なお、各DNA断片の大きさの決定において、1kb以上の断片の大きさについては、1%アガロースゲル電気泳動によって得られる結果を採用し、約0.1kbから1kb未満の断片の大きさについては5%ポリアクリルアミドゲル電気泳動によって得られる結果を採用することにより、より正確な断片の大きさを決定することができる。
プラスミドの大きさは、上記により得られた切断断片のそれぞれの大きさを加算して求めることができる。
In Table 1 above, “recognition site number” by restriction enzyme means that a DNA fragment or plasmid is completely digested with restriction enzyme, and those digests are subjected to 1% agarose gel electrophoresis and 5% polyacrylamide gel according to a method known per se. A value determined from the number of fragments that were subjected to electrophoresis and separable was adopted.
The “size of cleaved DNA fragment” and “size of cleaved DNA of plasmid” are obtained by cleaving lambda phage DNA of E. coli with restriction enzyme HindIII when using agarose gel electrophoresis. Based on the standard line drawn by the migration distance of DNA fragments of known molecular weight on the same agarose gel, and when using polyacrylamide gel electrophoresis, the DNA of E. coli 174 phage (φx174phage) is restricted. The size of each DNA fragment of the cleaved DNA fragment and the plasmid is calculated based on the standard line drawn by the migration distance on the same polyacrylamide gel of the DNA fragment of known molecular weight obtained by cleaving with the enzyme HaeIII.
In determining the size of each DNA fragment, the result obtained by 1% agarose gel electrophoresis was adopted for the size of fragments of 1 kb or more, and the size of fragments of about 0.1 kb to less than 1 kb was used. By adopting the results obtained by 5% polyacrylamide gel electrophoresis, a more accurate fragment size can be determined.
The size of the plasmid can be determined by adding the sizes of each of the cleaved fragments obtained as described above.

一方、上記のコリネバクテリウム・グルタミカムATCC14999の染色体DNA由来の挿入配列の塩基配列は、プラスミドpUC118またはpUC119(宝酒造製)を用いるジデオキシヌクレオチド酵素法〔dideoxy chain termination 法、Sanger, F. et. al., Proc. Natl. Acad. Sci. USA, 第74巻, p.5463 (1977年)〕により決定することができる。このようにして決定した上記約1.2kbのDNA断片の塩基配列を有する挿入配列は、後記配列表の配列番号1に示す配列を有するものである。   On the other hand, the nucleotide sequence of the insert sequence derived from the chromosomal DNA of Corynebacterium glutamicum ATCC 14999 is the dideoxynucleotide termination method using the plasmid pUC118 or pUC119 (Takara Shuzo) [dideoxy chain termination method, Sanger, F. et. Al. , Proc. Natl. Acad. Sci. USA, Vol. 74, p.5463 (1977)]. The inserted sequence having the base sequence of the DNA fragment of about 1.2 kb determined as described above has the sequence shown in SEQ ID NO: 1 in the sequence listing described later.

上記の塩基配列を包含する本発明の挿入配列は、天然のコリネ型細菌染色体DNAから分離されたもののみならず、通常用いられるDNA合成装置、例えばアプライド・バイオシステムズ(Applied Biosystems)社製394 DNA/RNAシンセサイザーを用いて合成されたものであってもよい。   The insertion sequence of the present invention including the above-described base sequence is not limited to those isolated from natural coryneform bacterial chromosomal DNA, but is also a commonly used DNA synthesizer, such as 394 DNA manufactured by Applied Biosystems. It may be synthesized using an / RNA synthesizer.

また、前記の如くコリネバクテリウム・グルタミカムATCC14999の染色体DNAから取得される本発明の挿入配列は、前記挿入配列の機能を実質的に損なうことがない限り、塩基配列の一部の塩基が他の塩基と置換されていてもよく又は削除されていてもよく、或いは新たに塩基が挿入されていてもよく、さらに塩基配列の一部が転位されているものであってもよく、これら置換、削除、挿入又は転位された塩基配列のいずれもが、本発明の挿入配列に包含される。   In addition, as described above, the insertion sequence of the present invention obtained from the chromosomal DNA of Corynebacterium glutamicum ATCC 14999 may have a part of the base sequence other than that unless the function of the insertion sequence is substantially impaired. A base may be substituted or deleted, a new base may be inserted, and a part of the base sequence may be rearranged, and these substitutions and deletions Any of the inserted or rearranged base sequences is included in the inserted sequence of the present invention.

本発明の挿入配列の単離に用いる枯草菌由来のsacB遺伝子を有しコリネ型細菌内で複製可能なプラスミドとしては、例えばプラスミドpMV5(Vertes,A.A., Inui,M., Kobayashi,M., Kurusu,Y. and Yukawa,H.:Mol.Microbiol., 第11巻, p.739-746 (1994年))が有利に使用できるが、同様の機能を有するプラスミドであれば、上記pMV5に限定するものではない。上記pMV5の外、sacBおよびsacR遺伝子領域が導入可能な大腸菌・コリネ型細菌のシャトルベクターとしては、例えば、pCR1(Kotrba, P., Inui, M., Yukawa, H.: Biochem Biophys Res Commun, 第289巻, p.1307-1313 (2001年))、特開昭58−67679号公報に記載のpAM330;特開昭58−77895号公報に記載のpHM1519;特開昭58−192900号公報に記載のpAJ655、pAJ611およびpAJ1844;特開昭57−134500号公報に記載のpCG1;特開昭58−35197号公報に記載のpCG2;特開昭57−183799号公報に記載のpCG4およびpCG11;特開平3−210184号公報に記載のプラスミドpCRY30;特開平2−276575号公報に記載のプラスミドpCRY21、pCRY2KE、pCRY2KX、pCRY31、pCRY3KEおよびpCRY3KX;特開平1−191686号公報に記載のプラスミドpCRY2およびpCRY3等を用いることができる。   As a plasmid having a sacB gene derived from Bacillus subtilis used for isolation of the insertion sequence of the present invention and capable of replicating in a coryneform bacterium, for example, plasmid pMV5 (Vertes, AA, Inui, M., Kobayashi, M., Kurusu , Y. and Yukawa, H .: Mol. Microbiol., Vol. 11, p.739-746 (1994)) can be used advantageously, but if it is a plasmid having a similar function, it is limited to the above pMV5. It is not a thing. As a shuttle vector for E. coli / coryneform bacteria into which sacB and sacR gene regions can be introduced in addition to pMV5, for example, pCR1 (Kotrba, P., Inui, M., Yukawa, H .: Biochem Biophys Res Commun, No. 1) 289, p.1307-1313 (2001)), pAM330 described in JP-A-58-76779; pHM1519 described in JP-A-58-77895; described in JP-A-58-192900. PAJ655, pAJ611 and pAJ1844; pCG1 described in JP-A-57-134500; pCG2 described in JP-A-58-35197; pCG4 and pCG11 described in JP-A-57-183799; The plasmid pCRY30 described in JP-A-3-210184; the plasmid pCRY2 described in JP-A-2-276575 , PCRY2KE, pCRY2KX, pCRY31, pCRY3KE and PCRY3KX; can be used plasmid pCRY2 and pCRY3 like described in JP-A-1-191686.

上記枯草菌由来のsacB遺伝子を有しコリネ型細菌内で複製増殖可能なプラスミドで形質転換しうる宿主コリネ型細菌としては、例えばコリネバクテリウム・グルタミカムATCC14999、ブレビバクテリウム・ラクトファーメンタム (Brevibacterium lactofermentum)ATCC13869;ブレビバクテリウム・フラバムMJ−233(FERM BP−1497)およびその由来株;ブレビバクテリウム・アンモニアゲネス (Brevibacterium ammoniagenes)ATCC6871、同ATCC13745、同ATCC13746;ブレビバクテリウム・デバリカタム (Brevibacterium divaricatum)ATCC14020等を好適に用いることができる。これらコリネ型細菌の中で、本発明の挿入配列の単離には、コリネバクテリウム・グルタミカムATCC14999を宿主として用いるのが最も好ましい。   Examples of host coryneform bacteria that have the sacB gene derived from Bacillus subtilis and can be transformed with a plasmid that can replicate and propagate in coryneform bacteria include Corynebacterium glutamicum ATCC 14999, Brevibacterium lactofermentum (Brevibacterium lactofermentum). ATCC 13869; Brevibacterium flavum MJ-233 (FERM BP-1497) and its derived strains; Brevibacterium ammoniagenes ATCC6871, ATCC 13745, ATCC 13746; Brevibacterium divaricatum ATCC 14020 Etc. can be used suitably. Among these coryneform bacteria, Corynebacterium glutamicum ATCC 14999 is most preferably used as a host for the isolation of the insertion sequence of the present invention.

上記宿主コリネ型細菌の前記組換えプラスミドによる形質転換は、それ自体公知の方法、例えばCalvin, N. M. and Hanawalt, P. C., Journal of Bacteriology, 第170巻, p.2796 (1988年); Ito, K., Nishida, T. and Izaki. K., Agricultural and Biological Chemistry, 第52巻, p.293 (1988年) 等の文献に記載の方法により、例えば宿主微生物にパルス波を通電〔Satoh, Y. et al., Journal of Industrial Microbiology, 第5巻, p.159 (1990年)参照〕することにより行うことができる。   Transformation of the host coryneform bacterium with the recombinant plasmid may be performed by a method known per se, such as Calvin, NM and Hanawalt, PC, Journal of Bacteriology, 170, p.2796 (1988); Ito, K. , Nishida, T. and Izaki. K., Agricultural and Biological Chemistry, Vol. 52, p.293 (1988), etc., for example, applying a pulse wave to a host microorganism [Satoh, Y. et al. al., Journal of Industrial Microbiology, Vol. 5, p. 159 (1990)].

かくして得られる形質転換体を、前記のとおり、スクロースを2〜15%含有するプレート上に塗抹して培養し、生育してくる各スクロース耐性株を液体培養する。次いで、培養物よりそれ自体公知の通常用いられる方法、例えばアルカリ−SDS法等によりプラスミドを抽出する。抽出したプラスミドを適当な制限酵素により解析し、もとのプラスミドよりサイズが大きいプラスミドを選択する。選択したプラスミドのsacBおよびsacR遺伝子領域に挿入されているDNA断片を単離することにより本発明の挿入配列を分離取得することができる。   The transformant thus obtained is smeared and cultured on a plate containing 2 to 15% sucrose as described above, and each sucrose resistant strain grown is liquid cultured. Next, the plasmid is extracted from the culture by a commonly used method known per se, for example, alkali-SDS method. The extracted plasmid is analyzed with an appropriate restriction enzyme, and a plasmid having a larger size than the original plasmid is selected. By isolating the DNA fragment inserted into the sacB and sacR gene regions of the selected plasmid, the inserted sequence of the present invention can be separated and obtained.

上記形質転換体の培養は、炭素源、窒素源、無機塩等を含む通常の栄養培地で行うことができ、炭素源としては、スクロースが好適である。窒素源としては、例えばアンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、尿素等をそれぞれ単独もしくは混合して用いることができる。また、無機塩としては、例えばリン酸一水素カリウム、リン酸二水素カリウム、硫酸マグネシウム等を用いることができる。この他にペプトン、肉エキス、酵母エキス、コーンスティープリカー、カザミノ酸、ビオチン等の各種ビタミン等の栄養素を適宜培地に添加することができる。   The transformant can be cultured in a normal nutrient medium containing a carbon source, a nitrogen source, an inorganic salt, etc., and sucrose is preferred as the carbon source. As the nitrogen source, for example, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea and the like can be used alone or in combination. Moreover, as inorganic salt, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate etc. can be used, for example. In addition, nutrients such as various vitamins such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, and biotin can be appropriately added to the medium.

培養は、通常、通気攪拌や振盪等(液体培養の場合)の好気条件下に、約25℃〜約35℃の温度で行うことができる。培養途中のpHは7〜8付近とすることができ、培養中のpH調整は酸又はアルカリを添加して行うことができる。培養開始時の炭素源濃度は、5〜12容量%である。
かくして得られる培養物を、前記のとおりスクロースを2〜15%含有するプレート上に塗抹して33℃で1〜3日間培養することにより、挿入配列が導入されたスクロース耐性株を取得することができる。
The culture can be usually performed at a temperature of about 25 ° C. to about 35 ° C. under aerobic conditions such as aeration stirring and shaking (in the case of liquid culture). The pH during the culture can be around 7 to 8, and the pH during the culture can be adjusted by adding an acid or an alkali. The carbon source concentration at the start of the culture is 5 to 12% by volume.
The culture thus obtained is smeared on a plate containing 2 to 15% sucrose as described above and cultured at 33 ° C. for 1 to 3 days to obtain a sucrose resistant strain into which the inserted sequence has been introduced. it can.

本発明の挿入配列は、例えば、もともとコリネ型細菌染色体上に存在し、形質転換に用いたプラスミド上には存在しなかったDNA断片が、スクロース培地培養条件下(挿入配列の転位誘発は、一般的には栄養源や温度等に関するストレス環境下の培養条件にてなされる)、染色体上からプラスミド上に転位してくる現象を観察することによって証明できる。また逆に、プラスミド上に転位した挿入配列を染色体上に転位させることによって本発明の挿入配列の機能(形質転換機能)をさらに確認することができる。
したがって、本発明の挿入配列は、相互に独立した制御機構による染色体上へのトランスポゾン転位が可能となる結果、多重遺伝子組換え等の形質転換技術が効果的、効率的に実施できる。
The insert sequence of the present invention is, for example, a DNA fragment that originally existed on the coryneform bacterial chromosome and did not exist on the plasmid used for transformation. This can be proved by observing the phenomenon of translocation from the chromosome to the plasmid). Conversely, the function (transformation function) of the insertion sequence of the present invention can be further confirmed by translocating the inserted sequence translocated on the plasmid onto the chromosome.
Therefore, the insertion sequence of the present invention enables transposon translocation onto the chromosome by a mutually independent control mechanism. As a result, transformation techniques such as multiple gene recombination can be carried out effectively and efficiently.

本発明を以下の実施例によりさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.

コリネバクテリウム・グルタミカム由来の挿入配列の単離:
(A)sacB耐性株の単離
プラスミドpMV5(Vertes, A. A., Inui, M.,Kobayashi, M., Kurusu, Y. and Yukawa, H. :Mol.Microbiol., 第11巻, p.739-746 (1994年))をコリネ型細菌に導入し、該細胞を形質転換した。用いた宿主コリネ型細菌は、コリネバクテリウム・グルタミカムATCC14999である。形質転換には電気パルス法を用いた。前記コリネ型細菌を100mLのA培地〔組成:尿素2g、硫酸アンモニウム7g、リン酸一カリウム0.5g、リン酸二カリウム0.5g、硫酸マグネシウム・7水和物 0.5g、硫酸マンガン・4〜6水和物 6mg、硫酸鉄・7水和物 6mg、酵母エキス1g、カザミノ酸1g、ビオチン200μg、塩酸チアミン100μgを脱イオン水に溶解して1リットルとする(pH7.4)〕で対数増殖初期まで培養した後、ペニシリンGを1unit/mLとなるように添加してさらに2時間振盪培養した。培養菌体を遠心分離にて集め、20mLのパルス用溶液〔組成:272mMスクロース、7mMリン酸二水素カリウム、1mM塩化マグネシウム;pH7.4〕にて洗浄した。再度、遠心分離にて菌体を集め、5mLのパルス用溶液に懸濁し、0.75mLの細胞と上記プラスミドpMV5溶液2μL(1μg)とを混合し、氷中にて20分間静置した。ジーンパルサー(バイオラド社製)を用いて、2500ボルト25μFに設定し、パルスを印加後氷中に20分間静置した。全量を30℃にて1時間培養した後、10%スクロース、カナマイシン50μg/mLを含むA寒天培地に塗抹した。30℃で2日間培養した。
Isolation of the insertion sequence from Corynebacterium glutamicum:
(A) Isolation of sacB resistant strain Plasmid pMV5 (Vertes, AA, Inui, M., Kobayashi, M., Kurusu, Y. and Yukawa, H .: Mol. Microbiol., Vol. 11, p. 739-746 (1994)) was introduced into coryneform bacteria, and the cells were transformed. The host coryneform bacterium used is Corynebacterium glutamicum ATCC 14999. An electric pulse method was used for transformation. 100 mL of the above-mentioned coryneform bacterium (composition: urea 2 g, ammonium sulfate 7 g, monopotassium phosphate 0.5 g, dipotassium phosphate 0.5 g, magnesium sulfate heptahydrate 0.5 g, manganese sulfate 4- 6 hydrate 6 mg, iron sulfate 7 hydrate 6 mg, yeast extract 1 g, casamino acid 1 g, biotin 200 μg, thiamine hydrochloride 100 μg dissolved in deionized water to 1 liter (pH 7.4)] After culturing to the initial stage, penicillin G was added to 1 unit / mL, and further cultured with shaking for 2 hours. The cultured cells were collected by centrifugation and washed with 20 mL of a pulse solution [composition: 272 mM sucrose, 7 mM potassium dihydrogen phosphate, 1 mM magnesium chloride; pH 7.4]. Again, the cells were collected by centrifugation, suspended in 5 mL of the pulse solution, 0.75 mL of cells and 2 μL (1 μg) of the above plasmid pMV5 solution were mixed, and allowed to stand in ice for 20 minutes. Using Gene Pulser (manufactured by Bio-Rad), it was set to 2500 volts 25 μF, and after applying a pulse, it was allowed to stand in ice for 20 minutes. The whole amount was cultured at 30 ° C. for 1 hour, and then smeared on an A agar medium containing 10% sucrose and kanamycin 50 μg / mL. The cells were cultured at 30 ° C. for 2 days.

(B)挿入配列の単離
出現したスクロース耐性およびカナマイシン耐性株より、プラスミドを特開平1−95785号公報記載の方法にて調製した。このプラスミドを各種制限酵素SmaIとXbaIで切断し、その大きさを確認した。その結果、コントロールである形質転換に用いたプラスミドpMV5が1.9kbで検出できるところが、2株において、3.1kbのバンドが検出され、約1.2kb大きくなったプラスミドが存在することが判明した。なお、pMV5の1.9kb SmaI・XbaI遺伝子断片は、sacB遺伝子の中に存在しており、該大きさが約1.2kbの挿入配列は、sacB遺伝子産物を不活性化していることが判明した。
(B) Isolation of Insertion Sequence A plasmid was prepared from the emerging sucrose and kanamycin resistant strains by the method described in JP-A-1-95785. This plasmid was digested with various restriction enzymes SmaI and XbaI, and its size was confirmed. As a result, it was found that the plasmid pMV5 used for control transformation, 1.9 kb, was detected at 1.9 kb, but a 3.1 kb band was detected in 2 strains, and there was a plasmid about 1.2 kb larger. . It was found that the 1.9 kb SmaI / XbaI gene fragment of pMV5 is present in the sacB gene, and the inserted sequence having a size of about 1.2 kb inactivates the sacB gene product. .

コリネバクテリウム・グルタミカム由来の挿入配列の塩基配列決定:
実施例1で得られた大きさが約1.2kbの挿入配列を特定するために、その塩基配列を、pUC118またはpUC119(宝酒造製)を用いるジデオキシヌクレオチド法により決定した。この結果、配列番号1に記載の配列が明らかとなった。本配列上には、343アミノ酸からなるオープンリーディングフレーム(open reading-frame;ORF)が存在した。また、この挿入配列の両端には22bp
5’側IR1;5’-TAGCTCCCCCAAAACAAAAGCT-3’
3’側IR2;5’-TAGCTCTCCCAAATCAAAAGCT-3’
からなるインバーテッドリピート(IR)、およびターゲット配列である2bp(5’-TA-3)のダイレクトリピートが存在した。この大きさが約1.2kbの挿入配列を、各種の制限酵素で切断したときの認識部位数および切断断片の大きさは、前記第1表のとおりであった。その制限酵素切断点地図を図1に示す。
Determination of the nucleotide sequence of the insert derived from Corynebacterium glutamicum:
In order to specify the inserted sequence having a size of about 1.2 kb obtained in Example 1, the base sequence was determined by the dideoxynucleotide method using pUC118 or pUC119 (Takara Shuzo). As a result, the sequence described in SEQ ID NO: 1 was revealed. On this sequence, there was an open reading frame (ORF) consisting of 343 amino acids. Also, 22 bp at both ends of this insertion sequence
5 'side IR1; 5'-TAGCTCCCCCAAAACAAAAGCT-3'
3 'side IR2; 5'-TAGCTCTCCCAAATCAAAAGCT-3'
There was an inverted repeat (IR) consisting of and a direct repeat of 2 bp (5′-TA-3) which is the target sequence. The number of recognition sites and the size of the cleaved fragment when the inserted sequence having a size of about 1.2 kb was cleaved with various restriction enzymes were as shown in Table 1 above. The restriction enzyme cleavage point map is shown in FIG.

挿入配列の存在と転位機能の確認
(A)挿入配列の存在の確認
単離した挿入配列をプローブとして、コリネバクテリウム・グルタミカムATCC14999の染色体DNAに対して、サザンハイブリダイゼーションを行った。プローブは、実施例1で得られた約1.2kbの挿入配列を用い、ランダムラベリングキット(宝酒造より市販)を用いて作製した。サザンハイブリダイゼーションは、常法〔“Molecular Cloning ”, Cold Spring Harbor Laboratory Press(1989) 〕の通り行った。コントロールとして、コリネバクテリウム・グルタミカムR株(FERM P-18976)の染色体DNAを用いた。この結果、該挿入配列は、コリネバクテリウム・グルタミカムATCC14999由来の染色体とハイブリダイズしたが、コリネバクテリウム・グルタミカムR株(FERM P-18976)由来の染色体DNAとはハリブリダイズしなかった。すなわち、本発明の挿入配列は、コントロールであるコリネバクテリウム・グルタミカムR株の染色体には存在しないが、コリネバクテリウム・グルタミカムATCC14999染色体中に存在し、染色体上からプラスミド上に転位することが可能であることを示している。
Presence of Insertion Sequence and Confirmation of Transposition Function (A) Confirmation of Presence of Insertion Sequence Southern hybridization was performed on the chromosomal DNA of Corynebacterium glutamicum ATCC 14999 using the isolated insertion sequence as a probe. The probe was prepared using a random labeling kit (commercially available from Takara Shuzo) using the insertion sequence of about 1.2 kb obtained in Example 1. Southern hybridization was performed according to a conventional method [“Molecular Cloning”, Cold Spring Harbor Laboratory Press (1989)]. As a control, chromosomal DNA of Corynebacterium glutamicum R strain (FERM P-18976) was used. As a result, the inserted sequence hybridized with a chromosome derived from Corynebacterium glutamicum ATCC 14999, but was not hybridized with a chromosomal DNA derived from Corynebacterium glutamicum R strain (FERM P-18976). That is, the insertion sequence of the present invention is not present in the chromosome of the control Corynebacterium glutamicum R strain, but is present in the Corynebacterium glutamicum ATCC 14999 chromosome and can be translocated onto the plasmid from the chromosome. It is shown that.

(B)転位機能検出プラスミドの作製
上記で得られた大きさが約1.2kbの挿入配列を、決定した配列をもとに、両末端と相補的で、かつEcoRVサイトを有するオリゴヌクレオチド(表2)を合成し、PCR法により増幅した。

Figure 0004386254
(B) Preparation of a transposition function detection plasmid The oligonucleotide obtained above was inserted into the oligonucleotide having a size of about 1.2 kb based on the determined sequence and complementary to both ends and having an EcoRV site (Table 2) was synthesized and amplified by the PCR method.
Figure 0004386254

得られた1.2kbのPCR断片に制限酵素EcoRV 5unitを加え、37℃で1時間反応させ完全消化後、65℃で15分間処理し、酵素を失活させた。一方、プラスミドpHSG398(宝酒造製)は、HindIII 5unitで完全消化後、DNA Blunting Kit(宝酒造製)で平滑末端処理を行い、上記EcoRV1.2kbPCR断片と混合し、50mMトリス緩衝液(pH7.6)、10mMジチオスレイトール、1mMアデノシン三リン酸(ATP)、10mM塩化マグネシウムおよびT4DNAリガーゼ1unitの各成分を添加し(各成分の濃度は最終濃度である)、4℃で15時間反応させ、結合させた。得られたプラスミド混液を用い、塩化カルシウム法〔J. Mol. Biol., 第53巻, p.159 (1970年)〕によりエシェリヒア・コリJM109(宝酒造より市販)を形質転換し、クロラムフェニコール50mgを含む培地〔トリプトン10g、イーストエキストラクト5g、塩化ナトリウム5gおよび寒天16gを蒸留水1リットルに溶解〕に塗抹した。この培地上の生育株を常法により液体培養し、培養液よりプラスミドDNAを抽出し、該プラスミドを制限酵素により処理し、挿入断片を確認した。この結果、プラスミドpHSG398の大きさが2.2kbのDNA断片に加え、大きさが約1.2kbの挿入断片が認められた。次に、構築したプラスミドを、本プラスミドを1ケ所で切断する制限酵素HindIIIで切断し、カナマイシン耐性遺伝子カセット(ファルマシア製)を挿入し、クロラムフェニコールとカナマイシンの両薬剤に耐性で、かつ挿入配列を有するプラスミドpHSG398−IS14999−Kmを作製した。
尚、該プラスミドにおいて、HindIIIサイトは、約1.2kbの挿入配列の末端付近に存在し、約1.2kbのDNA断片にコードされるオープンリーディングフレーム(ORF)を破壊しない。従って、コリネ型細菌内で増殖可能な複製領域を有さない本プラスミドを用いて、コリネ型細菌を形質転換し、カナマイシン耐性を指標に形質転換体を取得すると、本プラスミドがコリネ型細菌染色体に挿入された株が得られる。このうち、クロラムフェニコール感受性の株は、挿入配列部分のみが染色体上に転位し、pHSG398−IS14999−Km全体がはいったものではないと判断でき、本発明で得られた挿入配列が、染色体上へ転位可能であることを示す。
Restriction enzyme EcoRV 5 unit was added to the obtained 1.2 kb PCR fragment, reacted at 37 ° C. for 1 hour, completely digested and treated at 65 ° C. for 15 minutes to inactivate the enzyme. On the other hand, plasmid pHSG398 (Takara Shuzo) was digested completely with HindIII 5 unit, subjected to blunt end treatment with DNA Blunting Kit (Takara Shuzo), mixed with the EcoRV 1.2 kb PCR fragment, 50 mM Tris buffer (pH 7.6), Each component of 10 mM dithiothreitol, 1 mM adenosine triphosphate (ATP), 10 mM magnesium chloride and 1 unit of T4 DNA ligase was added (the concentration of each component is the final concentration) and reacted at 4 ° C. for 15 hours to bind. . The resulting plasmid mixture was used to transform Escherichia coli JM109 (commercially available from Takara Shuzo) by the calcium chloride method [J. Mol. Biol., Vol. 53, p.159 (1970)], and chloramphenicol. A medium containing 50 mg [tryptone 10 g, yeast extract 5 g, sodium chloride 5 g, and agar 16 g dissolved in 1 liter of distilled water] was smeared. The growing strain on this medium was subjected to liquid culture by a conventional method, plasmid DNA was extracted from the culture, and the plasmid was treated with a restriction enzyme to confirm the inserted fragment. As a result, in addition to the DNA fragment having a size of plasmid pHSG398 of 2.2 kb, an inserted fragment having a size of about 1.2 kb was observed. Next, the constructed plasmid is cleaved with a restriction enzyme HindIII that cleaves this plasmid at one place, a kanamycin resistance gene cassette (Pharmacia) is inserted, and the plasmid is resistant to both chloramphenicol and kanamycin and inserted. A plasmid pHSG398-IS14999-Km having the sequence was prepared.
In this plasmid, the HindIII site is present near the end of the insertion sequence of about 1.2 kb and does not destroy the open reading frame (ORF) encoded by the DNA fragment of about 1.2 kb. Therefore, when this plasmid that does not have a replication region that can grow in coryneform bacteria is transformed into coryneform bacteria and a transformant is obtained using kanamycin resistance as an index, this plasmid is transformed into the coryneform bacterial chromosome. An inserted strain is obtained. Among these, in the chloramphenicol sensitive strain, it can be determined that only the inserted sequence portion is translocated onto the chromosome and the entire pHSG398-IS14999-Km is not inserted, and the inserted sequence obtained in the present invention is Shows that dislocation is possible up.

(c)転位の確認
プラスミドpHSG398−IS14999−Kmをコリネ型細菌に導入し、該細胞を形質転換した。用いた宿主コリネ型細菌は、本挿入配列をもたないコリネバクテリウム・グルタミカムR株(FERM P-18976)である。形質転換には上記記載の電気パルス法を用いた。カナマイシン耐性株50株が得られた。このうち、4株のみがクロラムフェニコール耐性を示したが、残りは、クロラムフェニコール感受性であった。このことは、プラスミドpHSG398−IS14999−Km上に存在する挿入配列がカナマイシン耐性遺伝子と共に、染色体上に転位したことを示している。
(C) Confirmation of translocation Plasmid pHSG398-IS14999-Km was introduced into coryneform bacteria, and the cells were transformed. The host coryneform bacterium used is Corynebacterium glutamicum R strain (FERM P-18976) which does not have this insertion sequence. The electric pulse method described above was used for transformation. 50 kanamycin resistant strains were obtained. Of these, only 4 strains were resistant to chloramphenicol, but the rest were chloramphenicol sensitive. This indicates that the insert sequence present on the plasmid pHSG398-IS14999-Km has been translocated onto the chromosome together with the kanamycin resistance gene.

本発明のインサーションシクエンスは、染色体上のいろいろの部位に転位・挿入することが可能であるので、遺伝子解析の有効な手段として用いることができる。また、挿入変異株の作製、遺伝子マッピング、プロモーター検索、遺伝情報の挿入そして特定遺伝子の破壊等にも利用でき、産業上有用である。   Since the insertion sequence of the present invention can be translocated and inserted into various sites on the chromosome, it can be used as an effective means for gene analysis. It can also be used for the production of insertion mutants, gene mapping, promoter search, insertion of genetic information, destruction of specific genes, etc., and is industrially useful.

本発明のインサーションシーケンスの制限酵素切断地点地図を示す図である。It is a figure which shows the restriction enzyme cutting | disconnection site | part map of the insertion sequence of this invention.

Claims (5)

コリネ型細菌内で機能する配列番号1に示されるDNA塩基配列からなることを特徴とする挿入配列ポリヌクレオチドInsertion sequence polynucleotide, comprising the DNA base sequence shown in SEQ ID NO: 1 that functions in coryneform bacteria. 挿入配列内に少なくとも一つの薬剤耐性遺伝子を含むことを特徴とする請求項1記載の挿入配列ポリヌクレオチドThe insert sequence polynucleotide according to claim 1, wherein the insert sequence contains at least one drug resistance gene. 染色体上に転位させ、増幅させることを目的として、プラスミドに組み込まれていることを特徴とする請求項1又は請求項2記載の挿入配列ポリヌクレオチドThe inserted sequence polynucleotide according to claim 1 or 2, which is incorporated into a plasmid for the purpose of translocation and amplification on a chromosome. コリネバクテリウム・グルタミカムR株(FERM P−18976)、ATCC13032株又はATCC31831株の形質転換に使用されることを特徴とする請求項1〜3のいずれかに記載の挿入配列ポリヌクレオチドThe insertion sequence polynucleotide according to any one of claims 1 to 3, which is used for transformation of Corynebacterium glutamicum R strain (FERM P-18976), ATCC 13032 strain or ATCC 31831 strain. コリネバクテリウム・グルタミカムATCC14999株由来のものである、請求項1〜4のいずれかに記載の挿入配列ポリヌクレオチド The insertion sequence polynucleotide according to any one of claims 1 to 4, which is derived from Corynebacterium glutamicum ATCC 14999 strain .
JP2003303577A 2003-08-27 2003-08-27 Insertion sequences that function in coryneform bacteria Expired - Lifetime JP4386254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303577A JP4386254B2 (en) 2003-08-27 2003-08-27 Insertion sequences that function in coryneform bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303577A JP4386254B2 (en) 2003-08-27 2003-08-27 Insertion sequences that function in coryneform bacteria

Publications (2)

Publication Number Publication Date
JP2005065649A JP2005065649A (en) 2005-03-17
JP4386254B2 true JP4386254B2 (en) 2009-12-16

Family

ID=34407532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303577A Expired - Lifetime JP4386254B2 (en) 2003-08-27 2003-08-27 Insertion sequences that function in coryneform bacteria

Country Status (1)

Country Link
JP (1) JP4386254B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525234A (en) * 2022-02-18 2022-05-24 华南理工大学 Construction and application of corynebacterium glutamicum insertion sequence element deletion mutant strain

Also Published As

Publication number Publication date
JP2005065649A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP3967812B2 (en) Production method of organic acid by pyruvate carboxylase genetically modified cells
JP5266252B2 (en) Promoter nucleic acid molecule derived from Corynebacterium glutamicum, recombinant vector containing the promoter, host cell containing the recombinant vector, and method for expressing a gene using the host cell
WO2005010182A1 (en) Coryneform bacterium transformant and process for producing dicarboxylic acid using the same
JPH0783714B2 (en) Fermentation method for producing L-amino acid
JPH0795891A (en) Dna fragment having promoter function
JPH11196887A (en) Production of organic acid by phosphoenolpyruvic acid carboxylase gene recombinant microbe
JPH06261766A (en) Genetic dna capable of coding aspartokinase released from feedback inhibition and its utilization
JPS6062982A (en) Recombinant dna, bacteria having said recombinant dna and production of l-threonine or l-isoleucine using said bacteria
JP3408737B2 (en) Protein involved in nitrile hydratase activation and gene encoding the same
JP3009257B2 (en) Genetic DNA encoding aspartase and use thereof
JP3449758B2 (en) Insertion sequence
JPH07112431B2 (en) Gene expression regulation method
JP4386254B2 (en) Insertion sequences that function in coryneform bacteria
JP6739651B2 (en) Corynebacterium that fermentatively produces L-lysine
JP4927297B2 (en) Method for producing ethanol using recombinant coryneform bacteria
JPH05184366A (en) Gene dna coding aspartokinase and its use
JPH06277067A (en) Gene dna coding acetohydroxy acid isomeroreductase
JPH0775578A (en) Dna fragment containing gene coding dihyrodipicolinic acid reductase and utilization thereof
JP4531417B2 (en) High gene expression system in Streptomyces microorganisms
JPH06169780A (en) Gene dna participating in integration of membraneous protein to membrane
JPH0775579A (en) Dna fragment containing gene coding diaminopimeric acid decarboxylase and utilization thereof
JPH06277073A (en) Gene dna coding for translocation machinery of protein
JPH05284970A (en) Gene dna coding diaminopimelic acid dehydrogenase and its use
JPH0731478A (en) Dna fragment having promoter function in coryneform bacterium
JPH05284972A (en) Gene dna coding threonine synthase and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090527

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

R150 Certificate of patent or registration of utility model

Ref document number: 4386254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141009

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term