JP4384741B2 - Cleaning agent and cleaning method - Google Patents

Cleaning agent and cleaning method Download PDF

Info

Publication number
JP4384741B2
JP4384741B2 JP29883898A JP29883898A JP4384741B2 JP 4384741 B2 JP4384741 B2 JP 4384741B2 JP 29883898 A JP29883898 A JP 29883898A JP 29883898 A JP29883898 A JP 29883898A JP 4384741 B2 JP4384741 B2 JP 4384741B2
Authority
JP
Japan
Prior art keywords
cleaning
membrane
cleaning agent
separation membrane
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29883898A
Other languages
Japanese (ja)
Other versions
JP2000126560A5 (en
JP2000126560A (en
Inventor
謙治 亘
憲子 井上
修身 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP29883898A priority Critical patent/JP4384741B2/en
Priority claimed from US09/372,179 external-priority patent/US6280626B1/en
Priority to US09/372,179 priority patent/US6280626B1/en
Priority to CNB998107832A priority patent/CN1151863C/en
Priority to PCT/JP1999/004376 priority patent/WO2000009245A2/en
Priority to DE69942845T priority patent/DE69942845D1/en
Priority to EP99937049A priority patent/EP1105205B8/en
Priority to EP20070025006 priority patent/EP1911509A3/en
Priority to KR20017001779A priority patent/KR100429960B1/en
Priority to DE69940776T priority patent/DE69940776D1/en
Priority to AU51973/99A priority patent/AU5197399A/en
Priority to EP20070025007 priority patent/EP1911510B1/en
Publication of JP2000126560A publication Critical patent/JP2000126560A/en
Priority to US09/612,240 priority patent/US6325938B1/en
Priority to US09/612,234 priority patent/US6328886B1/en
Publication of JP2000126560A5 publication Critical patent/JP2000126560A5/ja
Publication of JP4384741B2 publication Critical patent/JP4384741B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過炭酸塩を含む洗浄剤及び洗浄方法に関する。
【0002】
【従来の技術】
従来より、分離膜は様々な用途で利用され、濾過による濃縮や分離が行われている。例えば、無菌水、飲料水、高純度水の製造、空気の浄化やガスの濃縮や添加などで利用されてきた。近年、限外濾過膜や精密濾過膜は、浄水場における河川水の直接濾過、工業用水道水の濾過、プール水の濾過、下水処理場における二次処理や三次処理、浄化槽における固液分離、産業廃水中のss(浮遊懸濁物質)の固液分離等の高汚濁性水処理用途に利用されている。
【0003】
しかしながらこれらの用途において、濾過などの運転の継続にしたがって膜面には目詰まりが生じ、濾過差圧が上昇する問題が生じる。このような濾過差圧の上昇は、いずれ処理液を確保するのには困難な程度にまで上昇することになるため、この目詰まり物質を除去することにより、上昇した差圧を低下させて再び運転を継続していくことが必要になる。
【0004】
膜面への目詰まりは、大きく2つに分類される。一つは膜面への微粒子など固形分の堆積である。これに対しては、クロスフロー濾過や気液混合流によるスクラビング洗浄により膜面の洗浄、即ち膜面の堆積物の除去が可能である。もう一方は有機物や微少な無機化合物などの、膜材への吸着に由来したファウリングである。このファウリングは、スクラビング洗浄のような物理的手段では容易に除去することができず、薬液などによる化学的な洗浄が必要となる。
【0005】
様々な洗浄剤が、膜の薬液洗浄において利用されている。金属塩などに代表される無機化合物のファウリングが生じた場合には、酸の水溶液などに膜を浸漬、あるいは通液することで洗浄を行う。また、有機物のファウリングが生じた場合には、酸やアルカリで除去可能なものもあるが、多く用いられるのは次亜塩素酸塩の水溶液を洗浄剤として用いる方法である。この洗浄剤中の活性な塩素により、有機物が酸化分解して膜面より除去される。
【0006】
【発明が解決しようとする課題】
しかしながら、次亜塩素酸塩を含む洗浄剤で洗浄した後に、使用した洗浄液をそのまま下水等へ放流すると、次亜塩素酸塩中の塩素は有機物と反応して分解しにくいトリハロメタン等を生成する可能性がある。上水道では殺菌の目的で投入される次亜塩素酸塩と有機物とによる反応で生成するトリハロメタンが問題となっているが、上記のような膜の洗浄において、特に高濃度の次亜塩素酸塩を含有する従来の洗浄剤においても、同様の問題が生じる可能性がある。
【0007】
これに対して、膜の洗浄後に次亜塩素酸塩を含有する使用済液を、何らかの処理を行ってから放流し、環境に影響を与えないようにする方法も考えられる。しかしながら、大量で高濃度の液を処理する場合には大きな費用と煩雑な操作が必要となる。従って、従来の次亜塩素酸塩を含有する洗浄剤は、環境に悪影響を与える可能性があること、また使用済液の後処理が煩雑であること、の二点において好ましくない。
【0008】
本発明は上記課題を解決するためのものであり、次亜塩素酸塩を使用しないで安全に取り扱える分離膜洗浄剤、及び当該洗浄剤を使用した分離膜洗浄方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明者は上記課題を解決するために鋭意研究を重ねたところ、過炭酸塩を含む洗浄剤を用いると、環境に悪影響を与えないで分離膜の洗浄が行えることを見いだし、本発明に至った。
【0010】
本発明の分離膜洗浄剤は、ペルオクソ一炭酸塩を含むことを特徴とするものである。また、本発明の分離膜洗浄剤は、過炭酸塩とともに2価の鉄塩を更に含むものである。更に本発明の洗浄剤には、次亜塩素酸塩及び過酸化水素以外の酸化剤、界面活性剤、キレ−ト剤、並びにpH調節剤のうち少なくとも一つを更に含んでいてもよい。
【0011】
本発明の分離膜洗浄方法は、分離膜を上記の洗浄剤からなる溶液に接触させることを特徴とするものである。尚、洗浄する分離膜としては、中空糸膜が好適である。
【0012】
【発明の実施の形態】
以下、本発明を詳しく説明する。本発明の分離膜洗浄剤は、過炭酸塩を含むことを特徴とするものである。ここで過炭酸塩とは、ペルオクソ炭酸塩のことであり、ペルオクソ一炭酸塩とペルオクソ二炭酸塩とがある。本発明では主として、ペルオクソ一炭酸塩を利用する。過炭酸塩は、炭酸塩に過酸化水素がアダクトした形態で存在している。過炭酸塩としては、ナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩、ベリリウム塩等のアルカリ金属塩あるいはアルカリ土類金属塩が挙げられれるが、入手しやすいのは過炭酸ナトリウムとして市販されているものである。本発明の洗浄剤の好ましい態様においては、以下の化学式で表されるナトリウム塩を水に溶解させて利用する。
Na2CO3・1.5H22
【0013】
この化合物が溶解すると化合物中の過酸化水素成分により、膜面に付着している有機物が酸化分解されて、膜面から目詰まり物質を除去することができる。洗浄後の洗液は、そのまま放流しても有害な物質を生成することなく安全である。なお本発明の洗浄剤においては、過炭酸塩は洗浄溶液中、0.1重量%〜10重量%の範囲で含まれていることが好ましく、より好ましくは1重量%〜5重量%である。
【0014】
また、本発明の分離膜洗浄剤は、過炭酸塩による洗浄性をさらに高めるために、2価の鉄塩を含有するものであるこれにより、過炭酸塩中にアダクトしている過酸化水素と2価の鉄イオンとの間に下記の反応式に示される、いわゆるフェントン反応が生じて、OHラジカルが発生する。
+ Fe2+ → ・OH + OH + Fe3+
【0015】
このOHラジカルは、有機物に対して水素引き抜き等の酸化反応性が非常に高く、有機物の酸化分解を促進するものである。ここで用いられる2価の鉄塩は、どのような塩によって供給してよく、塩化物、硫酸塩、硝酸塩等の形態で本発明の洗浄剤へ含有させることができる。好ましくは、二価の鉄イオンは、本発明の洗浄溶液中に1×10-9〜1×10-1(mol/l)の範囲、より好ましくは1×10-7〜1×10-1(mol/l)の範囲にあるとよい。
【0016】
本発明の洗浄剤においては、過炭酸塩の他に洗浄を促進するものを含ませてもよい。例としては、界面活性剤、キレート剤、並びにpHを調整するような酸やアルカリ等が挙げられる。より具体的には、ドデシルスルホン酸ナトリウム等の界面活性剤、リン酸塩等のpH調節剤が挙げられる。尚、本発明の分離膜洗浄剤の使用にあたっては、上記組成からなる洗浄剤を水に完全に溶解して用いる。
【0017】
本発明の洗浄方法においては、洗浄する分離膜を上記の洗浄剤からなる溶液に接触させることを特徴としている。
【0018】
本発明の方法により洗浄する分離膜は、基本的に種々の形態及び材質のものであってもよく、特に限定されるものではない。膜の形態の例としては平膜、管状膜等が含まれる。更にそれらの膜がケ−シング内やハウジングに固定されて、モジュール化されているようなものであっても、本発明の洗浄方法を適用することが可能である。また、単位容積あたりの膜面積を大きくするという面において、中空糸膜タイプのものが種々の分離に広く用いられているが、もちろんこのタイプの分離膜の洗浄にも本発明の洗浄方法を適用することが可能である。
【0019】
一方、膜の材質も特に限定されるものではないが、例としてはポリオレフィン、ポリスルホン、ポリアクリロニトリル、ポリエステル、ポリカーボネート、ナイロン、ポリビニルアルコール、セルロース系、シリコン系、フッ素ポリマー系、セラミック等が含まれる。
【0020】
本発明の洗浄方法において、洗浄する分離膜と洗浄剤との接触方式は、洗浄する分離膜と洗浄剤とが十分に接触する限り、接触方法は特に限定されるものではないが、浸漬または通液によるのが好ましい。ここで浸漬とは、分離膜内部及び外部が完全に洗浄剤からなる溶液中に漬かるようにすることを意味する。一方、通液とは、分離膜に通常の分離時と同様にして洗浄溶液を通すことをいう。尚、洗浄溶液と分離膜との接触時には、併せてエア−バブリングによるスクラビング洗浄や超音波による洗浄等の物理的洗浄方法を組み合わせてもよい。
【0021】
また、洗浄時の種々の条件、例えば洗浄温度、洗浄時間等は、洗浄する分離膜の目詰まりの度合い、目詰まり物質の性質、及び洗浄液中の過炭酸塩濃度(洗浄力)等に応じて、当業者が適宜決定すればよい。
【0022】
【実施例】
本発明を実施例により詳細に説明する。
【0023】
(実施例1)
平膜タイプの濾過膜として、孔径0.22μmのセルロース混合エステル製のメンブレンフィルター(GSWPタイプ、直径47mm、日本ミリポア製)を用い、まず5000ppmの酵母懸濁水を濾過することによって、膜を目詰まらせた後、この目詰まった膜を1%過炭酸ナトリウム水溶液中に室温で6時間浸漬して洗浄を行った。
【0024】
各段階における、上記のメンブレンフィルタの膜間差圧0.1Mpaでの流量はそれぞれ以下の通りであった:
目詰まり前: 24.6mL/min・cm2
酵母懸濁液の濾過後: 7.77mL/min・cm2
洗浄後: 17.2mL/min・cm2
【0025】
(実施例2)
本実施例では、中空糸タイプの濾過膜を用いた。濾過膜作成は以下のようにして行った。ポリエチレンを溶融紡糸して孔径0.1μmの中空糸膜(外径410μm、内径270μm)を得た。この膜面にエチレン−ビニルアルコール共重合体をコーティングすることにより、中空糸膜を親水化した。この中空糸膜16本をU字状に折り返し、端部の開口状態を保持したまま樹脂固定することにより中空糸膜モジュールとした。この中空糸膜モジュールに5000ppmの酵母懸濁水を濾過することによって、膜を目詰まらせた。この目詰まった膜を1%過炭酸ナトリウム水溶液中に室温で6時間、または24時間浸漬して洗浄を行った。
【0026】
各段階における、上記のメンブレンフィルタの膜間差圧0.1Mpaでの流量はそれぞれ以下の通りであった:
目詰まり前: 4.15mL/min・cm2
酵母懸濁液の濾過後:0.85mL/min・cm2
6時間洗浄後: 1.96mL/min・cm2
24時間洗浄後: 2.41mL/min・cm2
【0027】
(実施例3)
実施例2で用いたのと同様の中空糸膜モジュールを作製し、この中空糸膜モジュールに5000ppmの酵母懸濁水を濾過することによって、膜を目詰まらせた。この目詰まった膜を1%過炭酸ナトリウムと500ppmの塩化鉄(II)FeCl2・nH2Oとからなる洗浄溶液に室温で6時間、又は24時間浸漬する洗浄を行った。
【0028】
各段階における、上記のメンブレンフィルタの膜間差圧0.1Mpaでの流量はそれぞれ以下の通りであった:
目詰まり前: 4.39mL/min・cm2
酵母懸濁液の濾過後:0.77mL/min・cm2
6時間洗浄後: 2.35mL/min・cm2
24時間洗浄後: 3.78mL/min・cm2
【0029】
【発明の効果】
本発明の分離膜洗浄剤は過炭酸塩を用いているので、使用後に下水、河川等に放流してもトリハロメタン等の発生による環境への悪影響がない。また本発明の洗浄剤が2価の鉄塩を含む場合には、鉄イオンが生じさせるOHラジカルに起因したラジカル反応により、膜に堆積・付着した物質、特に有機物の分解が生じるため、膜の洗浄効率が良くなる。更に、本発明の洗浄方法によれば、洗浄剤に起因するトリハロメタンなどの有害な物質を発生させることなく、安全に膜の洗浄を行い、分離膜の機能を回復させることが可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cleaning agent containing percarbonate and a cleaning method.
[0002]
[Prior art]
Conventionally, separation membranes have been used for various purposes, and concentration and separation by filtration have been performed. For example, it has been used for the production of aseptic water, drinking water, high-purity water, purification of air, concentration and addition of gas, and the like. In recent years, ultrafiltration membranes and microfiltration membranes have been used for direct filtration of river water in water purification plants, filtration of industrial tap water, filtration of pool water, secondary and tertiary treatment in sewage treatment plants, solid-liquid separation in septic tanks, It is used for highly polluted water treatment applications such as solid-liquid separation of ss (suspended suspended solids) in industrial wastewater.
[0003]
However, in these applications, the membrane surface becomes clogged as the operation such as filtration continues, and there arises a problem that the filtration differential pressure increases. Such an increase in the filtration differential pressure will eventually increase to the extent that it is difficult to secure the treatment liquid. Therefore, by removing this clogging substance, the increased differential pressure is lowered again. It is necessary to continue driving.
[0004]
The clogging on the film surface is roughly classified into two. One is the deposition of solids such as fine particles on the film surface. On the other hand, the film surface can be cleaned, that is, the deposit on the film surface can be removed by cross-flow filtration or scrubbing cleaning with a gas-liquid mixed flow. The other is fouling derived from adsorption to a film material, such as organic substances and minute inorganic compounds. This fouling cannot be easily removed by physical means such as scrubbing, and chemical cleaning with a chemical solution or the like is required.
[0005]
Various cleaning agents are used in chemical cleaning of membranes. When fouling of an inorganic compound typified by a metal salt or the like occurs, cleaning is performed by immersing or passing the film in an acid aqueous solution. In addition, when organic fouling occurs, some can be removed with acid or alkali, but a method often used is an aqueous solution of hypochlorite as a cleaning agent. The active chlorine in the cleaning agent oxidizes and decomposes organic substances from the film surface.
[0006]
[Problems to be solved by the invention]
However, after cleaning with a cleaning agent containing hypochlorite, if the used cleaning liquid is discharged directly into sewage, etc., chlorine in hypochlorite can react with organic substances to generate trihalomethane, etc., which is difficult to decompose. There is sex. In waterworks, trihalomethane produced by the reaction between hypochlorite and organic substances introduced for the purpose of sterilization is a problem, but in the cleaning of membranes as described above, particularly high concentrations of hypochlorite are used. Similar problems may occur in the conventional detergents to be contained.
[0007]
On the other hand, a method is also conceivable in which the spent liquid containing hypochlorite is discharged after the membrane is washed and then discharged after some treatment so as not to affect the environment. However, when a large amount of high-concentration liquid is processed, large costs and complicated operations are required. Therefore, the conventional detergent containing hypochlorite is not preferable in that it may adversely affect the environment and the post-treatment of the used liquid is complicated.
[0008]
The present invention has been made to solve the above problems, and an object thereof is to provide a separation membrane cleaning agent that can be handled safely without using hypochlorite, and a separation membrane cleaning method using the cleaning agent. .
[0009]
[Means for Solving the Problems]
The present inventor conducted extensive research to solve the above problems, and found that when a detergent containing percarbonate is used, the separation membrane can be washed without adversely affecting the environment, leading to the present invention. It was.
[0010]
The separation membrane cleaner of the present invention is characterized by containing peroxomonocarbonate . Moreover, the separation membrane cleaning agent of the present invention are further Dressings containing divalent iron salt with percarbonate. Furthermore, the cleaning agent of the present invention may further contain at least one of an oxidizing agent other than hypochlorite and hydrogen peroxide, a surfactant, a chelating agent, and a pH adjusting agent.
[0011]
The separation membrane cleaning method of the present invention is characterized in that the separation membrane is brought into contact with a solution comprising the above-described cleaning agent. A hollow fiber membrane is suitable as the separation membrane to be washed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The separation membrane cleaning agent of the present invention is characterized by containing a percarbonate. Here, the percarbonate is peroxocarbonate, and there are peroxomonocarbonate and peroxodicarbonate. In the present invention, peroxomonocarbonate is mainly used. Percarbonate is present in the form of adduct of hydrogen peroxide to carbonate. Examples of percarbonate include alkali metal salts or alkaline earth metal salts such as sodium salt, potassium salt, lithium salt, calcium salt, magnesium salt, and beryllium salt, but it is commercially available as sodium percarbonate. It is what has been. In a preferred embodiment of the cleaning agent of the present invention, a sodium salt represented by the following chemical formula is dissolved in water and used.
Na 2 CO 3 .1.5H 2 O 2
[0013]
When this compound is dissolved, the organic substance adhering to the film surface is oxidatively decomposed by the hydrogen peroxide component in the compound, and the clogging substance can be removed from the film surface. The washing solution after washing is safe without generating harmful substances even if it is discharged as it is. In the cleaning agent of the present invention, the percarbonate is preferably contained in the cleaning solution in the range of 0.1 wt% to 10 wt%, more preferably 1 wt% to 5 wt%.
[0014]
In addition, the separation membrane cleaning agent of the present invention contains a divalent iron salt in order to further enhance the cleaning properties with percarbonate. As a result, a so-called Fenton reaction represented by the following reaction formula occurs between hydrogen peroxide adducted in the percarbonate and divalent iron ions, and OH radicals are generated.
H 2 O 2 + Fe 2+ → · OH + OH - + Fe 3+
[0015]
This OH radical has very high oxidation reactivity such as hydrogen abstraction with respect to the organic matter, and promotes oxidative decomposition of the organic matter. The divalent iron salt used here may be supplied by any salt and can be contained in the cleaning agent of the present invention in the form of chloride, sulfate, nitrate or the like. Preferably, the divalent iron ion is in the range of 1 × 10 −9 to 1 × 10 −1 (mol / l), more preferably 1 × 10 −7 to 1 × 10 −1 in the cleaning solution of the present invention. It should be in the range of (mol / l).
[0016]
In the cleaning agent of this invention, you may include what accelerates | stimulates washing | cleaning other than percarbonate. Examples include surfactants, chelating agents, and acids and alkalis that adjust pH. More specifically, a surfactant such as sodium dodecyl sulfonate and a pH adjuster such as phosphate can be used. In using the separation membrane cleaning agent of the present invention, the cleaning agent having the above composition is completely dissolved in water.
[0017]
The cleaning method of the present invention is characterized in that a separation membrane to be cleaned is brought into contact with a solution comprising the above-described cleaning agent.
[0018]
The separation membrane washed by the method of the present invention may basically have various forms and materials, and is not particularly limited. Examples of the form of the membrane include a flat membrane and a tubular membrane. Furthermore, the cleaning method of the present invention can be applied even if these membranes are fixed in a casing or a housing and modularized. Moreover, in terms of increasing the membrane area per unit volume, hollow fiber membrane types are widely used for various separations. Of course, the cleaning method of the present invention is also applied to cleaning this type of separation membrane. Is possible.
[0019]
On the other hand, the material of the membrane is not particularly limited, but examples include polyolefin, polysulfone, polyacrylonitrile, polyester, polycarbonate, nylon, polyvinyl alcohol, cellulose, silicon, fluoropolymer, and ceramic.
[0020]
In the cleaning method of the present invention, the contact method of the separation membrane to be cleaned and the cleaning agent is not particularly limited as long as the separation membrane to be cleaned and the cleaning agent are in sufficient contact with each other. It is preferable to use a liquid. Here, “immersion” means that the inside and the outside of the separation membrane are completely immersed in a solution made of a cleaning agent. On the other hand, the term “liquid passing” refers to passing a cleaning solution through a separation membrane in the same manner as in normal separation. When contacting the cleaning solution with the separation membrane, a physical cleaning method such as scrubbing cleaning by air bubbling or ultrasonic cleaning may be combined.
[0021]
Various conditions during washing, such as washing temperature and washing time, depend on the degree of clogging of the separation membrane to be washed, the nature of the clogging substance, the concentration of percarbonate in the washing liquid (detergency), etc. Those skilled in the art may determine appropriately.
[0022]
【Example】
The present invention will be described in detail with reference to examples.
[0023]
Example 1
Using a membrane filter made of cellulose mixed ester with a pore size of 0.22 μm (GSWP type, diameter 47 mm, manufactured by Nihon Millipore) as a flat membrane type filtration membrane, first, 5000 ppm yeast suspension water is filtered to clog the membrane. Then, this clogged membrane was washed by immersing it in a 1% aqueous sodium percarbonate solution at room temperature for 6 hours.
[0024]
In each stage, the flow rate of the above membrane filter at a transmembrane pressure difference of 0.1 Mpa was as follows:
Before clogging: 24.6 mL / min · cm 2 ;
After filtration of the yeast suspension: 7.77 mL / min · cm 2 ;
After washing: 17.2 mL / min · cm 2 .
[0025]
(Example 2)
In this example, a hollow fiber type filtration membrane was used. The filtration membrane was prepared as follows. Polyethylene was melt-spun to obtain a hollow fiber membrane (outer diameter 410 μm, inner diameter 270 μm) having a pore diameter of 0.1 μm. The hollow fiber membrane was hydrophilized by coating the membrane surface with an ethylene-vinyl alcohol copolymer. 16 hollow fiber membranes were folded in a U shape, and fixed with resin while maintaining the open state of the end portion to obtain a hollow fiber membrane module. The hollow fiber membrane module was clogged by filtering 5000 ppm yeast suspension. The clogged membrane was washed by immersing it in a 1% aqueous sodium percarbonate solution at room temperature for 6 hours or 24 hours.
[0026]
In each stage, the flow rate of the above membrane filter at a transmembrane pressure difference of 0.1 Mpa was as follows:
Before clogging: 4.15 mL / min · cm 2 ;
After filtration of the yeast suspension: 0.85 mL / min · cm 2 ;
After washing for 6 hours: 1.96 mL / min · cm 2 ;
After washing for 24 hours: 2.41 mL / min · cm 2 .
[0027]
(Example 3)
A hollow fiber membrane module similar to that used in Example 2 was prepared, and the membrane was clogged by filtering 5000 ppm yeast suspension water into the hollow fiber membrane module. The clogged film was cleaned by immersing it in a cleaning solution consisting of 1% sodium percarbonate and 500 ppm of iron (II) chloride (FeCl 2 .nH 2 O) at room temperature for 6 hours or 24 hours.
[0028]
In each stage, the flow rate of the above membrane filter at a transmembrane pressure difference of 0.1 Mpa was as follows:
Before clogging: 4.39 mL / min · cm 2 ;
After filtration of the yeast suspension: 0.77 mL / min · cm 2 ;
After washing for 6 hours: 2.35 mL / min · cm 2 ;
After washing for 24 hours: 3.78 mL / min · cm 2 .
[0029]
【The invention's effect】
Since the separation membrane cleaning agent of the present invention uses percarbonate, there is no adverse environmental impact due to generation of trihalomethane or the like even if it is discharged into sewage, rivers, etc. after use. In addition, when the cleaning agent of the present invention contains a divalent iron salt, a radical reaction caused by OH radicals generated by iron ions causes decomposition of substances deposited on and adhered to the film, particularly organic substances. Cleaning efficiency is improved. Furthermore, according to the cleaning method of the present invention, it is possible to safely clean the membrane and restore the function of the separation membrane without generating harmful substances such as trihalomethane due to the cleaning agent.

Claims (3)

過炭酸塩と2価の鉄塩を含むことを特徴とする分離膜洗浄剤。  A separation membrane cleaning agent comprising a percarbonate and a divalent iron salt. 次亜塩素酸塩及び過酸化水素以外の酸化剤、界面活性剤、キレ−ト剤、並びにpH調節剤のうち少なくとも一つを更に含むことを特徴とする請求項1に記載の分離膜洗浄剤。  The separation membrane cleaning agent according to claim 1, further comprising at least one of an oxidizing agent other than hypochlorite and hydrogen peroxide, a surfactant, a chelating agent, and a pH adjusting agent. . 洗浄する分離膜を請求項1乃至いずれか一項に記載の洗浄剤からなる溶液に接触させることを特徴とする分離膜洗浄方法。A separation membrane cleaning method comprising contacting a separation membrane to be cleaned with a solution comprising the cleaning agent according to any one of claims 1 to 2 .
JP29883898A 1998-08-12 1998-10-20 Cleaning agent and cleaning method Expired - Fee Related JP4384741B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP29883898A JP4384741B2 (en) 1998-10-20 1998-10-20 Cleaning agent and cleaning method
US09/372,179 US6280626B1 (en) 1998-08-12 1999-08-11 Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly
KR20017001779A KR100429960B1 (en) 1998-08-12 1999-08-12 Membrane assembly for solid-liquid separation, method of cleaning the same, and detergent
EP20070025007 EP1911510B1 (en) 1998-08-12 1999-08-12 A membrane separator assembly
PCT/JP1999/004376 WO2000009245A2 (en) 1998-08-12 1999-08-12 Membrane assembly for solid-liquid separation, method of cleaning the same, and detergent
DE69942845T DE69942845D1 (en) 1998-08-12 1999-08-12 Membrane separator
EP99937049A EP1105205B8 (en) 1998-08-12 1999-08-12 Gas diffuser for solid-liquid separation membrane assembly
EP20070025006 EP1911509A3 (en) 1998-08-12 1999-08-12 A detergent for separating membrane
CNB998107832A CN1151863C (en) 1998-08-12 1999-08-12 Membrane assembly for solid-liquid separation method of cleaning the same, and detergent
DE69940776T DE69940776D1 (en) 1998-08-12 1999-08-12 GAS DISTRIBUTOR FOR MEMBRANE UNIT FOR THE SEPARATION OF SOLIDS AND LIQUIDS
AU51973/99A AU5197399A (en) 1998-08-12 1999-08-12 Membrane assembly for solid-liquid separation, method of cleaning the same, and detergent
US09/612,240 US6325938B1 (en) 1998-08-12 2000-07-07 Method of cleaning membrane assembly with detergent
US09/612,234 US6328886B1 (en) 1998-08-12 2000-07-07 Gas diffuser for aeration vessel of membrane assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29883898A JP4384741B2 (en) 1998-10-20 1998-10-20 Cleaning agent and cleaning method
US09/372,179 US6280626B1 (en) 1998-08-12 1999-08-11 Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly

Publications (3)

Publication Number Publication Date
JP2000126560A JP2000126560A (en) 2000-05-09
JP2000126560A5 JP2000126560A5 (en) 2005-12-02
JP4384741B2 true JP4384741B2 (en) 2009-12-16

Family

ID=26561680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29883898A Expired - Fee Related JP4384741B2 (en) 1998-08-12 1998-10-20 Cleaning agent and cleaning method

Country Status (1)

Country Link
JP (1) JP4384741B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135901A1 (en) * 2015-02-25 2016-09-01 三菱重工業株式会社 Cleaning method for water treatment membrane

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012691A1 (en) * 2004-08-04 2006-02-09 U.S. Filter Wastewater Group, Inc. Chemical and process for cleaning membranes
US20100133184A1 (en) 2007-04-03 2010-06-03 Asahi Kasei Chemicals Corporation Cleaning agent for separation membrane, process for preparing the cleaning agent, and cleaning method
CN115845625A (en) * 2022-11-24 2023-03-28 哈尔滨工业大学 Solid hydrogen peroxide effervescent tablet, preparation method thereof and method for cleaning ultrafiltration membrane in situ by using solid hydrogen peroxide effervescent tablet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135901A1 (en) * 2015-02-25 2016-09-01 三菱重工業株式会社 Cleaning method for water treatment membrane

Also Published As

Publication number Publication date
JP2000126560A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP5421768B2 (en) Cleaning agent for separation membrane, method for producing the cleaning agent, and cleaning method
US4740308A (en) Membrane cleaning process
JP2009509731A (en) Chemical cleaning agent and filtration membrane cleaning method
JP2007509740A (en) Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration
JP4384741B2 (en) Cleaning agent and cleaning method
JP2012086182A (en) Water treatment method and water treatment device
JP4580589B2 (en) Cleaning method of separation membrane
WO2007029291A1 (en) Separation membrane cleaning composition
JP2006239617A (en) Water treatment method and water treatment apparatus
JP2004154707A (en) Method for washing separation membrane
JPH0131403B2 (en)
JP3635934B2 (en) Cleaning method for water purification equipment
KR101958462B1 (en) Cleaning agent and cleaning method for separation membrane
JP2001070763A (en) Membrane washing method
JPH05168873A (en) Method for maintaining treating capacity of filter membrane
JP3866393B2 (en) Cleaning method for hollow fiber membrane module
JP2001070764A (en) Cleaning method
JPH07136474A (en) Washing of filter membrane module
JP4043628B2 (en) Cleaning method for hollow fiber membrane module
JPH10118471A (en) Cleaning of membrane module
JP2002035750A (en) Sewage filtering method
JP2003135937A (en) Method for cleaning separation membrane with chemical
JP2005144315A (en) Washing method using chemicals
JPS5889920A (en) Restoring method for capacity of ultrafiltration membrane
JP4255110B2 (en) Permeable membrane cleaner for water treatment and cleaning method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees