JP4383586B2 - High pressure rubber hose for construction and civil engineering machinery - Google Patents

High pressure rubber hose for construction and civil engineering machinery Download PDF

Info

Publication number
JP4383586B2
JP4383586B2 JP20943999A JP20943999A JP4383586B2 JP 4383586 B2 JP4383586 B2 JP 4383586B2 JP 20943999 A JP20943999 A JP 20943999A JP 20943999 A JP20943999 A JP 20943999A JP 4383586 B2 JP4383586 B2 JP 4383586B2
Authority
JP
Japan
Prior art keywords
layer
steel wire
bearing layer
tensile load
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20943999A
Other languages
Japanese (ja)
Other versions
JP2001032966A (en
Inventor
奈須雄 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP20943999A priority Critical patent/JP4383586B2/en
Publication of JP2001032966A publication Critical patent/JP2001032966A/en
Application granted granted Critical
Publication of JP4383586B2 publication Critical patent/JP4383586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、単長20m或いは40mのゴムホースの両端に金具を組み付けたアセンブリホースを数本連結し、リールに巻いて使用する建設・土木機械用高圧ゴムホースに係わり、更に詳しくは特に金具端末部で曲げ、引張り、曲げ変形を要求される土木機械等で使用される建設・土木機械用高圧ゴムホースに関するものである。
【0002】
【従来の技術】
従来、建設機械,土木機械等で使用される内圧と引張り荷重と曲げとが同時に作用し、しかもリール等に巻付け,巻出しを繰返し行う低伸長の高圧ゴムホースとしては、図6に示すように高圧ゴムホース1の両端に金具20を組付けたアセンブリホースを数本連結して使用され、このような高圧ゴムホース1の構成としては、例えば、図2〜図5に示すように、種々の構造のものが提案されている。
【0003】
例えば、図2に示すような汎用の高圧ゴムホース1の場合は、内面ゴム層2,センター布3と外面ゴム層4との間に、層間ゴム層5を中間に介在させて内圧力負担層となる6層の鋼線スパイラル補強層7a,7b,7c,7d,7e,7fを配設し、この鋼線スパイラル補強層7a〜7fの鋼線巻付け角度αa 〜αf は、αa <αb <αc <αd <αe <αf となるように構成されている。
【0004】
また、他の従来例としては、図3に示すように内面ゴム層2,センター布3と外面ゴム層4との間に、層間ゴム層5を中間に介在させて内圧力負担層となる4層の鋼線スパイラル補強層8a,8b,8c,8dと、引張り荷重負担層となる1層の鋼線編組層9とを配設して構成し、鋼線スパイラル補強層8a,8b,8c,8dの鋼線巻付け角度αa 〜αd は、αa <αb <αc <αd となるように構成されている。
【0005】
更に、図4に示す従来例は、内面ゴム層2と外面ゴム層4との間に、内圧力負担層となる2層の鋼線編組層10a,10bと、引張り荷重負担層となる1層の鋼線編組層10cとを配設して構成し、また図5に示す従来例は、内面ゴム層2と外面ゴム層4との間に、内圧力負担層となる2層の鋼線編組層11a,11bと、引張り荷重負担層となる1層の糸編組層11cとを配設して構成してある。
【0006】
【発明が解決しようとする課題】
然しながら、図2に示すような汎用の高圧ゴムホース1の場合は、内圧力負担層のみから構成されているため、ホースに引張り荷重が作用した場合、ホースの伸びが非常に大きくなると共に、ホース本体の内径が細くなり、後に荷重を取り除いても元の状態には復元しなくなると言う問題がある。
【0007】
また、図3に示す高圧ゴムホースの場合は、引張り荷重負担層となる1層の鋼線編組層9が最外層に配設され、この鋼線編組層9の鋼線径は、ホースの加工上直径0.4mm以下の制約があるため、耐引張り力不足となり、鋼線編組層9が図6で示すように金具20の金具端末部20aで破損すると言う問題がある。
【0008】
更に、図4に示す内圧力負担層となる2層の鋼線編組層10a,10bと、引張り荷重負担層となる1層の鋼線編組層10cとからなる高圧ゴムホースの場合は、耐圧力不足、及び座屈が発生し易いと言う問題がある。
【0009】
また、図5に示す内圧力負担層となる2層の鋼線編組層11a,11bと、引張り荷重負担層となる1層の糸編組層11cとからなる高圧ゴムホースの場合は、耐圧力不足及び耐引張り力不足のため荷重に対する伸びが大きく、荷重を取り除いても元の状態には復元しなくなると言う問題がある。
【0010】
以上のように、従来の高圧ホースの場合には、いずれも種々の問題を具備するものであった。
【0011】
この発明の目的は、高圧に耐えることが出来ると共に、耐引張り力が大きく金具端末部での破損を有効に防止でき、柔軟性に富んだ建設・土木機械用高圧ゴムホースを提供することにある。
【0012】
【課題を解決するための手段】
この発明は上記目的を達成するため、内面ゴム層(2) と外面ゴム層(4) との間に、層間ゴム層(5a),(5b) を介して複数の鋼線スパイラル補強層(12a,12b,12c,12d,13a,13b) を介在させて構成して成る高圧ゴムホース(1a)であって、前記鋼線スパイラル補強層12a,12b,12c,12d,13a,13b) の内面ゴム層(2) 側の二層以上を偶数層の内圧力負担層となる鋼線スパイラル補強層(12a,12b,12c,12d) で構成すると共に、その外周の少なくとも二層以上を偶数層の引張り荷重負担層となる鋼線スパイラル補強層(13a,13b) で構成し、前記引張り荷重負担層の巻付け角度 (αf ) を、前記内圧力負担層の巻付け角度 (αa ) よりも小さく(αa >αf )設定し、前記鋼線スパイラル補強層(12a,12b,12c,12d) の各鋼線巻付け角度(αa 〜αd )を、内圧力負担層から引張り荷重負担層に向かって順次大きくなる(αa <αb <αc <αd )ように構成し、前記引張り荷重負担層の巻付け角度(αf ) を、内圧力負担層の最小巻付け角度 (αa ) より小さい49.7°〜51.4°に設定したことを要旨とするものである。
ここで、前記引張り荷重負担層の鋼線密度を70%〜90%に設定し、前記引張り荷重負担層側の層間ゴム層(5b)の肉厚を、内圧力負担層側の層間ゴム層(5a)の肉厚よりも大きく設定するものである。また、前記引張り荷重負担層の鋼線の線径を、0.4mmよりも太い鋼線を使用することも可能である。
【0013】
この発明は、上記のように構成され、内圧力負担層が鋼線スパイラルで構成するため、高圧に耐え得ることが出来ると共に、引張り荷重負担層が鋼線スパイラルで構成されているため、鋼線線径は特に制約を受けることがなく、0.4mmより太い鋼線の使用も可能であり、耐引張り力が大きくなり金具端末部での破損を有効に防止することが出来るものである。更に、引張り荷重負担層の鋼線密度を70〜90%に設定してあるので、柔軟性に富みリールに巻付けることも容易に行うことが出来る。
【0014】
【発明の実施の形態】
以下、添付図面に基づき、この発明の実施形態を説明する。
なお、従来例と同一構成要素は、同一符号を付して説明は省略する。
【0015】
図1は、この発明を実施した建設・土木機械用のリール巻き高圧ゴムホースの補強構造を示す一部切欠した正面図を示し、この高圧ホース1aは、内面ゴム層2,センター布3と外面ゴム層4との間に、層間ゴム層5a,5bを中間に介在させて内圧力負担層となる4層の鋼線スパイラル補強層12a,12b,12c,12dと、引張り荷重負担層となる2層の鋼線スパイラル補強層13a,13bとを配設して構成してあり、内圧力負担層及び引張り荷重負担層は、バランスの関係上、二層以上の偶数層に設定する。
【0016】
前記内圧力負担層となる4層の鋼線スパイラル補強層12a,12b,12 c,12dの鋼線巻付け角度αa 〜αd は、従来の汎用ホースと同じ52.2°〜55 .2°に設定し、また引張り荷重負担層となる2層の鋼線スパイラル補強層13a,1 3bの鋼線巻付け角度αe ,αf は、49.7°〜51.4°に設定し、引張り荷重負 担層の巻付け角度を、内圧力負担層の最小巻付け角度より小さくなるように設定してあ る。
【0017】
即ち、一般の高圧ホースは、ホースの一端から引張り荷重が作用した場合、ホースの補強層の巻付け角度は変化し、その結果ホースは伸びることになる。その時、巻付け角度が大きいもの程変化し易く、巻付け角度が小さい程変化し難くなるものである。つまり、引張り荷重が作用した場合、巻付け角度が小さいものが引張り荷重を受けやすく、逆に巻付け角度が大きいものは変化し易い(伸び易い)ため、引張り荷重が作用した場合、変化して荷重を受け難くなる。
【0018】
従って、上記のように張り荷重負担層の巻付け角度を、内圧力負担層の巻付け角度より小さくしておかないと、引張り加重を内圧力負担層で受けなければならず、内圧力負担層がホース内圧に引張り加重を加えた加重が作用して破損しなくなり、これを防止するために上記のような巻付け角度配置としたものである。これを模式図で示すと、図7に示すようになる。
【0019】
即ち、鋼線(A)α:巻付け角度小(張り荷重負担層)、
鋼線(B)β:巻付け角度大(内圧力負担層)、
とした場合、今、各層を自由に動けると仮定した場合、ホースを引張ることにより、それぞれ(A),(B)は、(A’),(B’)へ移動する。
その時、ホースの伸び量をKA ,KBの関係は、KA<KBとなる。
実際のホースの伸びは、2層共同じであることから、(B)層には引張り荷重がかからないことになる。
【0020】
以上のような理由により、内圧力負担層から引張り荷重負担層の巻付け角度を、αe ≦αf <αa <αb <αc <αd に設定するのが望ましい。
【0021】
次に、前記引張り荷重負担層(鋼線スパイラル補強層13a,13b)の鋼線密度は、従来の高圧ホースは一般に90%を超え、95%以下に設定されているのに対して、この発明の実施形態における高圧ホース1aは、70%〜90%に設定してある。
【0022】
即ち、鋼線密度を70%以下に設定すると、ホースの口金を装着する際、鋼線の切れが発生し易く、また90%以上とした場合には、曲げ力が大きくなり、リールに巻付けるのが難くなり、使用上に支障を来すからである。
【0023】
また、前記引張り荷重負担層(鋼線スパイラル補強層13a,13b)側の層間ゴム層5bの肉厚を、内圧力負担層(鋼線スパイラル補強層12a,12b,12c,12d)側の層間ゴム層5aの肉厚よりも大きく設定してある。
【0024】
即ち、この発明の実施形態における高圧ゴムホース1aは、リール巻きのために柔軟性が要求される。柔軟性を良くするには、層間ゴムの厚さを厚くすれば良いが、反面ホース外径が太くなり、耐圧力が低下すると共に、質量が大きくなる等の問題が生じる。
【0025】
そこで、この実施形態における高圧ホース1aの場合には、内圧力負担層側の層間ゴム層5aの肉厚は、従来の汎用ホースの層間ゴム層の肉厚(0.2mm)と同様とし、引張り荷重負担層側の層間ゴム層5bの肉厚を、内圧力負担層側よりも厚く(例えば、0.6mm程度)とすることにより、ホースを曲げ易くしたものである。
【0026】
また、従来のような鋼線編組補強層の場合には、編組加工上、鋼線直径が0.4mm以下の制約があるが、この発明の実施形態では、鋼線スパイラル補強層で構成してあるため、加工上の制約がなく、従って引張り荷重負担層の鋼線の線径を0.4mmよりも太い鋼線を使用することが出来る。これにより、耐引張り力が大きくなり、金具端末部での破損を防止することが出来る。
【0027】
次に、この発明のリール巻き高圧ホースの実験結果を、以下の表1及び表2に示す。
【0028】
なお、この実験に使用した高圧ホースの仕様は、内径:50.8mm、外径:75mm、鋼線の線径:0.8 mm、層間ゴム(内圧力負担層:0.2 mm、引張り荷重負担層:0.6 mm) である。また、W/Sは鋼線(ワイヤー)/スパイラルを示している。
【0029】
以下の表1は、リール巻き高圧ホースの内圧力負担層の巻付け角度、引張り荷重負担層の巻付け角度を種々に設定した場合であり、本願発明の実施例1,2と、比較例1,2,3及び従来例1,2について、破壊圧力、引張り破断力、ホースの伸び、曲げ力を比較したものである。
【0030】
【表1】

Figure 0004383586
【0031】
なお、上記表1において、曲げ力は、比較例1>比較例3>実施例1>実施例2>比較例2の順になっているのは、引張り荷重負担層の巻付け角度によるものである。
【0032】
また、従来例2(汎用ホース)が実施例1,実施例2,比較例2よりも曲げ力が大きいのは、4W/Sと5W/S、5W/Sと6W/S間の層間ゴムの厚さが実施例1,実施例2,比較例2よりも薄いからである。つまり、従来例2の層間ゴムの厚さは0.2 mm、他のホースは0.6 mmである。
【0033】
また、以下の表2は、リール巻き高圧ホースの内圧力負担層の巻付け角度、引張り荷重負担層の巻付け角度を一定に設定し、層間ゴムの厚さを変えた場合の実験例を示している。
【0034】
【表2】
Figure 0004383586
【0035】
なお、上記表2において、比較例2では、実施例1,2に比べて曲げ力が小さいのは、引張り荷重負担層の層間ゴムの厚さが厚くなっているからである。
【0036】
【発明の効果】
以上のように、この発明では内面ゴム層(2) と外面ゴム層(4) との間に、層間ゴム層(5a),(5b) を介して複数の鋼線スパイラル補強層(12a,12b,12c,12d,13a,13b) を介在させて構成して成る高圧ゴムホース(1a)であって、前記鋼線スパイラル補強層(12a,12b,12c,12d,13a,13b) の内面ゴム層(2) 側の二層以上を偶数層の内圧力負担層となる鋼線スパイラル補強層(12a,12b,12c,12d) で構成すると共に、その外周の少なくとも二層以上を偶数層の引張り荷重負担層となる鋼線スパイラル補強層(13a,13b) で構成し、前記引張り荷重負担層の巻付け角度 (αf ) を、前記内圧力負担層の巻付け角度 (αa ) よりも小さく(αa >αf )設定し、前記鋼線スパイラル補強層(12a,12b,12c,12d) の各鋼線巻付け角度(αa 〜αd )を、内圧力負担層から引張り荷重負担層に向かって順次大きくなる(αa <αb <αc <αd )ように構成し、前記引張り荷重負担層の巻付け角度(αf ) を、内圧力負担層の最小巻付け角度 (αa ) より小さい49.7°〜51.4°に設定したので、高圧に耐えることが出来ると共に、耐引張り力が大きく金具端末部での破損を有効に防止でき、柔軟性に富んだ高圧ゴムホースとすることが出来る効果がある。
【図面の簡単な説明】
【図1】この発明を実施したリール巻き高圧ホースの補強構造を示す一部切欠した正面図である。
【図2】従来の汎用高圧ホースの補強構造を示す一部切欠した正面図である。
【図3】従来の高圧ホースの補強構造を示す一部切欠した正面図である。
【図4】従来の鋼線編組補強層を備えた高圧ホースの一部切欠した正面図である。
【図5】従来の鋼線編組補強層と糸編組補強層とを備えた高圧ホースの一部切欠した正面図である。
【図6】従来の金具を装着した高圧ゴムホースの一部拡大正面図である。
【図7】引張り荷重負担層の巻付け角度を、内圧力負担層の巻付け角度より小さく設定した場合の模式図である。
【符号の説明】
1 高圧ゴムホース
2 内面ゴム層
3 センター布
4 外面ゴム層
5 層間ゴム層
7a,7b,7c,7d,7e,7f 鋼線スパイラル補強層
8a,8b,8c,8d 鋼線スパイラル補強層
9 鋼線編組層
10a,10b,10c 鋼線編組層
11a,11b 鋼線編組層
11c 糸編組層
12a,12b,12c,12d 鋼線スパイラル補強層
13a,13b 鋼線スパイラル補強層
αa 〜αd 鋼線巻付け角度
20 金具 20a 金具端末部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-pressure rubber hose for construction / civil engineering machinery that is used by connecting several assembly hoses with metal fittings attached to both ends of a rubber hose having a single length of 20 m or 40 m and winding them around a reel. The present invention relates to a high-pressure rubber hose for construction / civil engineering machines used in civil engineering machines that require bending, tension and bending deformation.
[0002]
[Prior art]
As shown in FIG. 6, a low-elongation high-pressure rubber hose that has been subjected to internal pressure, tensile load, and bending, which are conventionally used in construction machines, civil engineering machines, etc., and that is repeatedly wound and unwound as shown in FIG. Several high pressure rubber hoses 1 are assembled and used by connecting several assembly hoses with metal fittings 20 at both ends. For example, as shown in FIG. 2 to FIG. Things have been proposed.
[0003]
For example, in the case of a general-purpose high-pressure rubber hose 1 as shown in FIG. 2, an internal pressure bearing layer is interposed between the inner rubber layer 2, the center cloth 3 and the outer rubber layer 4 with an interlayer rubber layer 5 interposed therebetween. The steel wire spiral reinforcement layers 7a, 7b, 7c, 7d, 7e, and 7f are arranged, and the steel wire winding angles α a to α f of the steel wire spiral reinforcement layers 7a to 7f are α a < α bcdef .
[0004]
As another conventional example, as shown in FIG. 3, an interlayer rubber layer 5 is interposed between the inner rubber layer 2, the center cloth 3 and the outer rubber layer 4 to form an internal pressure bearing layer 4. The steel wire spiral reinforcing layers 8a, 8b, 8c, 8d and the one steel wire braided layer 9 serving as a tensile load bearing layer are disposed, and the steel wire spiral reinforcing layers 8a, 8b, 8c, The steel wire winding angles α a to α d of 8d are configured to satisfy α abcd .
[0005]
Furthermore, in the conventional example shown in FIG. 4, between the inner rubber layer 2 and the outer rubber layer 4, two steel wire braiding layers 10a and 10b serving as internal pressure bearing layers and one layer serving as a tensile load bearing layer are provided. The steel wire braided layer 10c is disposed, and the conventional example shown in FIG. 5 is a two-layer steel wire braid serving as an internal pressure bearing layer between the inner rubber layer 2 and the outer rubber layer 4. The layers 11a and 11b and one yarn braided layer 11c serving as a tensile load bearing layer are provided.
[0006]
[Problems to be solved by the invention]
However, in the case of the general-purpose high-pressure rubber hose 1 as shown in FIG. 2, since it is composed only of the internal pressure bearing layer, when a tensile load acts on the hose, the hose stretches very much and the hose body There is a problem that the inner diameter of the tube becomes thinner and the original state cannot be restored even if the load is removed later.
[0007]
In the case of the high-pressure rubber hose shown in FIG. 3, a steel wire braided layer 9 serving as a tensile load bearing layer is disposed in the outermost layer, and the steel wire diameter of the steel wire braided layer 9 is determined in the processing of the hose. Since there is a restriction of a diameter of 0.4 mm or less, there is a problem that the tensile strength is insufficient, and the steel wire braided layer 9 is damaged at the metal terminal 20a of the metal 20 as shown in FIG.
[0008]
Furthermore, in the case of a high-pressure rubber hose comprising two steel wire braided layers 10a and 10b serving as internal pressure bearing layers and one steel wire braided layer 10c serving as tensile load bearing layers shown in FIG. There is a problem that buckling is likely to occur.
[0009]
Further, in the case of a high-pressure rubber hose comprising two steel wire braid layers 11a and 11b serving as an internal pressure bearing layer and one yarn braiding layer 11c serving as a tensile load bearing layer shown in FIG. There is a problem that the elongation with respect to the load is large due to insufficient tensile strength, and the original state cannot be restored even if the load is removed.
[0010]
As described above, all of the conventional high-pressure hoses have various problems.
[0011]
An object of the present invention is to provide a high-pressure rubber hose for a construction / civil engineering machine that can withstand high pressure, has high tensile resistance, and can effectively prevent breakage at a metal terminal portion, and is rich in flexibility.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a plurality of steel wire spiral reinforcing layers (12a) between an inner rubber layer (2) and an outer rubber layer (4) through interlayer rubber layers (5a) and (5b). , 12b, 12c, 12d, 13a, 13b), and a high-pressure rubber hose (1a) constructed by interposing the inner rubber layers of the steel wire spiral reinforcing layers 12a, 12b, 12c, 12d, 13a, 13b) (2) Two or more layers on the side are composed of steel wire spiral reinforcement layers (12a, 12b, 12c, 12d) that serve as internal pressure bearing layers of even layers, and at least two or more layers on the outer circumference are tensile loads of even layers It is composed of a steel wire spiral reinforcing layer (13a, 13b) serving as a bearing layer, and the winding angle (αf) of the tensile load bearing layer is smaller than the winding angle (αa) of the inner pressure bearing layer (αa> αf) is set, and the steel wire winding angles (α a to α d ) of the steel wire spiral reinforcing layers (12a, 12b, 12c, 12d) are sequentially increased from the inner pressure bearing layer toward the tensile load bearing layer. Become( α abcd ), and the winding angle (αf) of the tensile load bearing layer is 49.7 ° to smaller than the minimum winding angle (αa) of the inner pressure bearing layer. The gist is that the angle is set to 51.4 ° .
Here, the steel wire density of the tensile load bearing layer is set to 70% to 90%, and the thickness of the interlayer rubber layer (5b) on the tensile load bearing layer side is set to the interlayer rubber layer on the inner pressure bearing layer side ( It is set larger than the thickness of 5a). Moreover, it is also possible to use the steel wire whose diameter of the steel wire of the said tensile load bearing layer is thicker than 0.4 mm.
[0013]
Since the present invention is configured as described above, and the internal pressure bearing layer is configured by a steel wire spiral, it can withstand high pressure, and the tensile load bearing layer is configured by a steel wire spiral. The wire diameter is not particularly restricted, and a steel wire thicker than 0.4 mm can be used, and the tensile strength is increased, so that breakage at the metal terminal portion can be effectively prevented. Furthermore, since the steel wire density of the tensile load bearing layer is set to 70 to 90%, it is flexible and can be easily wound on a reel.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Note that the same components as those in the conventional example are denoted by the same reference numerals and description thereof is omitted.
[0015]
Figure 1 shows a front view with cutaway portions are shown the reinforcing structure of the reel-wound pressure rubber hoses for construction and civil engineering machinery embodying the present invention, the high pressure hose 1a is inner rubber layer 2, a center fabric 3 and the outer surface Interlayer rubber layers 5a and 5b are interposed between the rubber layer 4 and four steel wire spiral reinforcing layers 12a, 12b, 12c, and 12d that serve as internal pressure bearing layers, and 2 that serve as tensile load bearing layers. The steel wire spiral reinforcing layers 13a and 13b are arranged, and the internal pressure bearing layer and the tensile load bearing layer are set to an even number layer of two or more layers for balance.
[0016]
The steel wire wrapping angles αa to αd of the four steel wire spiral reinforcing layers 12a, 12b, 12c and 12d serving as the internal pressure bearing layer are the same as those of the conventional general-purpose hose, 52.2 ° to 55 . The steel wire wrapping angles αe and αf of the two steel wire spiral reinforcing layers 13a and 13b, which are set to 2 ° and serve as the tensile load bearing layer, are set to 49.7 ° to 51.4 ° , The winding angle of the load bearing layer is set to be smaller than the minimum winding angle of the internal pressure bearing layer.
[0017]
That is, when a general high pressure hose is subjected to a tensile load from one end of the hose, the winding angle of the hose reinforcing layer changes, and as a result, the hose extends. At that time, the larger the winding angle, the easier it is to change, and the smaller the winding angle, the more difficult it is to change. In other words, when a tensile load is applied, those with a small winding angle are likely to receive a tensile load, and those with a large winding angle are likely to change (easily stretch). It becomes difficult to receive the load.
[0018]
Thus, the winding angle of the pulling tension load bearing layer as described above, unless you have less than the winding angle of the inner pressure burden layer must be received by the inner pressure load layer tensile weighted inner pressure load In order to prevent the layer from damaging due to a load obtained by applying a tensile load to the internal pressure of the hose, in order to prevent this, the winding angle arrangement as described above is adopted. This is schematically shown in FIG.
[0019]
In other words, the steel wire (A) α: winding angle Small (pull tension load-bearing layer),
Steel wire (B) β: Large winding angle (internal pressure bearing layer),
Assuming that each layer can be moved freely, (A) and (B) move to (A ′) and (B ′), respectively, by pulling the hose.
At that time, the relationship between the amount of elongation of the hose KA and KB is KA <KB.
Since the actual elongation of the hose is the same for the two layers, the tensile load is not applied to the layer (B).
[0020]
For the reasons described above, it is desirable to set the winding angle from the internal pressure bearing layer to the tensile load bearing layer such that α e ≦ α fabcd .
[0021]
Next, the steel wire density of the tensile load bearing layer (steel wire spiral reinforcing layers 13a and 13b) is generally set to exceed 90% and 95% or less in the conventional high-pressure hose. The high-pressure hose 1a in the embodiment is set to 70% to 90%.
[0022]
That is, if the steel wire density is set to 70% or less, the steel wire is likely to be cut when the hose cap is attached. If the steel wire density is 90% or more, the bending force becomes large and the wire is wound around the reel. This is because it becomes difficult to use and will hinder use.
[0023]
Further, the thickness of the interlayer rubber layer 5b on the side of the tensile load bearing layer (steel wire spiral reinforcing layers 13a, 13b) is set to the interlayer rubber on the inner pressure bearing layer (steel wire spiral reinforcing layers 12a, 12b, 12c, 12d) side. It is set larger than the thickness of the layer 5a.
[0024]
That is, the high-pressure rubber hose 1a according to the embodiment of the present invention is required to be flexible for reel winding. In order to improve the flexibility, the thickness of the interlayer rubber may be increased. However, on the other hand, the outer diameter of the hose is increased, the pressure resistance is lowered, and the mass is increased.
[0025]
Therefore, in the case of the high-pressure hose 1a in this embodiment, the thickness of the interlayer rubber layer 5a on the inner pressure bearing layer side is the same as the thickness (0.2 mm) of the interlayer rubber layer of the conventional general-purpose hose. By making the thickness of the interlayer rubber layer 5b on the load bearing layer side thicker than the inner pressure bearing layer side (for example, about 0.6 mm), the hose can be easily bent.
[0026]
Further, in the case of a conventional steel wire braided reinforcing layer, there is a restriction that the steel wire diameter is 0.4 mm or less in terms of braiding, but in the embodiment of the present invention, the steel wire spiral reinforcing layer is configured. Therefore, there is no restriction in processing, and therefore, a steel wire having a diameter larger than 0.4 mm can be used for the steel wire of the tensile load bearing layer. Thereby, a tensile strength becomes large and it can prevent the failure | damage in a metal fitting terminal part.
[0027]
Next, Table 1 and Table 2 below show the experimental results of the reel-wound high-pressure hose of the present invention.
[0028]
The specifications of the high-pressure hose used in this experiment are: inner diameter: 50.8 mm, outer diameter: 75 mm, wire diameter of steel wire: 0.8 mm, interlayer rubber (inner pressure bearing layer: 0.2 mm, tensile load bearing layer: 0.6 mm ). W / S represents steel wire (wire) / spiral.
[0029]
Table 1 below shows the case where the winding angle of the internal pressure bearing layer and the winding angle of the tensile load bearing layer of the reel-wound high-pressure hose are variously set. Examples 1 and 2 of the present invention and Comparative Example 1 , 2, 3 and Conventional Examples 1 and 2 are compared with respect to breaking pressure, tensile breaking force, hose elongation, and bending force.
[0030]
[Table 1]
Figure 0004383586
[0031]
In Table 1 above, the bending force is in the order of Comparative Example 1> Comparative Example 3> Example 1> Example 2> Comparative Example 2 depending on the winding angle of the tensile load bearing layer. .
[0032]
In addition, the bending force of Conventional Example 2 (general purpose hose) is larger than that of Example 1, Example 2 and Comparative Example 2 of the interlayer rubber between 4 W / S and 5 W / S, 5 W / S and 6 W / S. This is because the thickness is thinner than that of Example 1, Example 2, and Comparative Example 2. That is, the thickness of the interlayer rubber in Conventional Example 2 is 0.2 mm, and the other hoses are 0.6 mm.
[0033]
Table 2 below shows an experimental example in which the winding angle of the inner pressure bearing layer and the winding angle of the tensile load bearing layer of the reel-wound high-pressure hose are set constant and the thickness of the interlayer rubber is changed. ing.
[0034]
[Table 2]
Figure 0004383586
[0035]
In Table 2, in Comparative Example 2, the bending force is smaller than in Examples 1 and 2 because the thickness of the interlayer rubber of the tensile load bearing layer is large.
[0036]
【The invention's effect】
As described above, in the present invention, a plurality of steel wire spiral reinforcing layers (12a, 12b) are interposed between the inner rubber layer (2) and the outer rubber layer (4) via the interlayer rubber layers (5a), (5b). , 12c, 12d, 13a, 13b) is a high-pressure rubber hose (1a) constructed by interposing the inner rubber layer (12a, 12b, 12c, 12d, 13a, 13b) of the inner surface rubber layer (12a, 12b, 12c, 12d, 13a, 13b) 2) The two or more layers on the side are composed of steel wire spiral reinforcing layers (12a, 12b, 12c, 12d) that serve as internal pressure bearing layers of even layers, and at least two or more layers on the outer periphery of the layers are the tensile load loads of even layers. Steel wire spiral reinforcement layers (13a, 13b), and the winding angle (αf) of the tensile load bearing layer is smaller than the winding angle (αa) of the inner pressure bearing layer (αa> αf ) Set the steel wire spiral reinforcement layers (12a, 12b, 12c, 12d) and gradually increase the winding angle (α a to α d ) of the steel wire from the internal pressure bearing layer toward the tensile load bearing layer. (Α abcd ), and the winding angle (αf) of the tensile load bearing layer is 49.7 ° to 51.4 ° smaller than the minimum winding angle (αa) of the inner pressure bearing layer. Having set, making it possible to withstand high pressure, can be effectively prevented from being damaged in the scratch tension force is large fitting terminal portion, there is an effect that it is possible to a high pressure rubber hose highly flexible.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view showing a reinforcing structure of a reel wound high pressure hose embodying the present invention.
FIG. 2 is a partially cutaway front view showing a reinforcing structure of a conventional general-purpose high-pressure hose.
FIG. 3 is a partially cutaway front view showing a reinforcing structure of a conventional high pressure hose.
FIG. 4 is a partially cutaway front view of a high pressure hose provided with a conventional steel wire braided reinforcing layer.
FIG. 5 is a partially cutaway front view of a high pressure hose provided with a conventional steel wire braid reinforcement layer and a yarn braid reinforcement layer.
FIG. 6 is a partially enlarged front view of a high-pressure rubber hose fitted with a conventional metal fitting.
FIG. 7 is a schematic view when the winding angle of the tensile load bearing layer is set smaller than the winding angle of the internal pressure bearing layer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High pressure rubber hose 2 Inner rubber layer 3 Center cloth 4 Outer rubber layer 5 Interlayer rubber layer 7a, 7b, 7c, 7d, 7e, 7f Steel wire spiral reinforcement layer 8a, 8b, 8c, 8d Steel wire spiral reinforcement layer 9 Steel wire braiding layers 10a, 10b, 10c steel braid layer 11a, 11b steel braid layer 11c yarn braided layers 12a, 12b, 12c, 12d steel wire spiral reinforcement layer 13a, 13b steel wire spiral reinforcement layer alpha a to? d steel wire wound Angle 20 bracket 20a bracket end

Claims (4)

内面ゴム層(2) と外面ゴム層(4) との間に、層間ゴム層(5a),(5b) を介して複数の鋼線スパイラル補強層(12a,12b,12c,12d,13a,13b) を介在させて構成して成る高圧ゴムホース(1a)であって、前記鋼線スパイラル補強層(12a,12b,12c,12d,13a,13b) の内面ゴム層(2) 側の二層以上を偶数層の内圧力負担層となる鋼線スパイラル補強層(12a,12b,12c,12d) で構成すると共に、その外周の少なくとも二層以上を偶数層の引張り荷重負担層となる鋼線スパイラル補強層(13a,13b) で構成し、前記引張り荷重負担層の巻付け角度 (αf ) を、前記内圧力負担層の巻付け角度 (αa ) よりも小さく(αa >αf )設定し、前記鋼線スパイラル補強層(12a,12b,12c,12d) の各鋼線巻付け角度(αa 〜αd )を、内圧力負担層から引張り荷重負担層に向かって順次大きくなる(αa <αb <αc <αd )ように構成し、前記引張り荷重負担層の巻付け角度 (αf ) を、内圧力負担層の最小巻付け角度 (αa ) より小さい49.7°〜51.4°に設定したことを特徴とする建設・土木機械用高圧ゴムホース。 A plurality of steel wire spiral reinforcement layers (12a, 12b, 12c, 12d, 13a, 13b) are provided between the inner rubber layer (2) and the outer rubber layer (4) via interlayer rubber layers (5a), (5b). ) And a high pressure rubber hose (1a) comprising two or more layers on the inner rubber layer (2) side of the steel wire spiral reinforcing layer (12a, 12b, 12c, 12d, 13a, 13b). The steel wire spiral reinforcement layer (12a, 12b, 12c, 12d), which is an even-layer inner pressure bearing layer, and at least two of the outer circumferences are even-layer tensile load bearing layers (13a, 13b), the winding angle (αf) of the tensile load bearing layer is set smaller than the winding angle (αa) of the inner pressure bearing layer (αa> αf), and the steel wire spiral Each steel wire winding angle (α a to α d ) of the reinforcing layer (12a, 12b, 12c, 12d) is gradually increased from the internal pressure bearing layer to the tensile load bearing layer (α abcd ) A construction / civil engineering machine characterized in that the winding angle (αf) of the tensile load bearing layer is set to 49.7 ° to 51.4 °, which is smaller than the minimum winding angle (αa) of the internal pressure bearing layer. High pressure rubber hose. 前記引張り荷重負担層の鋼線密度を70%〜90%に設定した請求項1に記載の建設・土木機械用高圧ゴムホース。 The high-pressure rubber hose for construction and civil engineering machines according to claim 1 , wherein a steel wire density of the tensile load bearing layer is set to 70% to 90% . 前記引張り荷重負担層側の層間ゴム層(5b)の肉厚を、内圧力負担層側の層間ゴム層(5a)の肉厚よりも大きく設定した請求項1または2に記載の建設・土木機械用高圧ゴムホース。 The construction / civil engineering machine according to claim 1 or 2, wherein a thickness of the interlayer rubber layer (5b) on the tensile load bearing layer side is set larger than a thickness of the interlayer rubber layer (5a) on the inner pressure bearing layer side. High pressure rubber hose. 前記引張り荷重負担層の鋼線の線径を、0.4mmよりも太い鋼線を使用する請求項1,2または3に記載の建設・土木機械用高圧ゴムホース。The high-pressure rubber hose for construction / civil engineering machines according to claim 1, 2 or 3, wherein the steel wire of the tensile load bearing layer has a wire diameter thicker than 0.4 mm.
JP20943999A 1999-07-23 1999-07-23 High pressure rubber hose for construction and civil engineering machinery Expired - Fee Related JP4383586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20943999A JP4383586B2 (en) 1999-07-23 1999-07-23 High pressure rubber hose for construction and civil engineering machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20943999A JP4383586B2 (en) 1999-07-23 1999-07-23 High pressure rubber hose for construction and civil engineering machinery

Publications (2)

Publication Number Publication Date
JP2001032966A JP2001032966A (en) 2001-02-06
JP4383586B2 true JP4383586B2 (en) 2009-12-16

Family

ID=16572889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20943999A Expired - Fee Related JP4383586B2 (en) 1999-07-23 1999-07-23 High pressure rubber hose for construction and civil engineering machinery

Country Status (1)

Country Link
JP (1) JP4383586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217898A1 (en) 2019-04-24 2020-10-29 住友理工ホーステックス株式会社 High-pressure hose and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679054B (en) * 2011-12-31 2016-03-30 漯河市利通橡胶有限公司 A kind of steel wire wound hydraulic hose of resistance to pulse feature
JP6049264B2 (en) * 2012-01-25 2016-12-21 株式会社ブリヂストン High pressure hose

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217898A1 (en) 2019-04-24 2020-10-29 住友理工ホーステックス株式会社 High-pressure hose and method for manufacturing same
US11333272B2 (en) 2019-04-24 2022-05-17 Sumitomo Riko Hosetex, Ltd. High-pressure hose and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001032966A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
US6112771A (en) Reinforced pressure hose
EP1745232B1 (en) Flat high-tensile wire as hose reinforcement
JPH0380095B2 (en)
JP2000035167A (en) Kinking resistant high pressure hose structure having spirally wound composite extremely inside reinforcing layer
US6677018B1 (en) High pressure rubber hose and manufacturing method thereof
JP4383586B2 (en) High pressure rubber hose for construction and civil engineering machinery
JP3096961B2 (en) Reinforced high pressure hose
JP2001037378A (en) Fishing rod
JP4212665B2 (en) High pressure hose
JP4348100B2 (en) High pressure hose
JPH10132153A (en) High-pressure hose
JP3170663B2 (en) High pressure rubber hose
JP3086205B2 (en) Pressure hose
JPH0914518A (en) Reinforced high pressure hose
JP3714981B2 (en) Reinforced high pressure hose
JPH10259886A (en) High pressure hose
JPH0133904Y2 (en)
JPH08200561A (en) Small extention high-pressure hose
JPH11230429A (en) Structure of high pressure hose
ITMI990940A1 (en) HOSE
JPH08200560A (en) Small extention high-pressure hose
HU209195B (en) Hose of combined structure
JP3372988B2 (en) Composite yarn for high pressure rubber hose
JP3721228B2 (en) High pressure hose
JP3695130B2 (en) Low extension hose with pulley

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees