JP4383224B2 - Optical pickup - Google Patents

Optical pickup Download PDF

Info

Publication number
JP4383224B2
JP4383224B2 JP2004103712A JP2004103712A JP4383224B2 JP 4383224 B2 JP4383224 B2 JP 4383224B2 JP 2004103712 A JP2004103712 A JP 2004103712A JP 2004103712 A JP2004103712 A JP 2004103712A JP 4383224 B2 JP4383224 B2 JP 4383224B2
Authority
JP
Japan
Prior art keywords
light
glass material
optical
optical path
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004103712A
Other languages
Japanese (ja)
Other versions
JP2005292239A (en
Inventor
清司 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004103712A priority Critical patent/JP4383224B2/en
Publication of JP2005292239A publication Critical patent/JP2005292239A/en
Application granted granted Critical
Publication of JP4383224B2 publication Critical patent/JP4383224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

本発明は、ーザー素子から出射され、光ディスクに照射されるレーザー光の光路の光路長が調整可能な光ピックアップに関する。 The present invention is emitted from Les Za element, an optical path length adjustable optical pickup of the optical path of the laser beam irradiated on the optical disk.

例えばCD(Compact Disk)やDVD(Digital Versatile Disk)等の光ディスク装置の光ピックアップは、レーザーダイオードのようなレーザー素子から照射されたレーザー光を光ディスクの信号面又は記録面に集光させて、光ディスクに記録された信号の再生や光ディスクへの信号の記録を行うようにしている。   For example, an optical pickup of an optical disk device such as a CD (Compact Disk) or a DVD (Digital Versatile Disk) condenses laser light emitted from a laser element such as a laser diode on the signal surface or recording surface of the optical disk, The signal recorded on the optical disc is reproduced and the signal is recorded on the optical disc.

図15に示す光ピックアップの一構成例では、上記レーザー素子100から出射されたレーザー光は、偏光ビームスプリッタ101、コリメータレンズ102、1/4波長板103及び対物レンズ104を通って光ディスクの記録面に照射される。   In the configuration example of the optical pickup shown in FIG. 15, the laser light emitted from the laser element 100 passes through the polarization beam splitter 101, the collimator lens 102, the quarter wavelength plate 103, and the objective lens 104, and is recorded on the optical disk. Is irradiated.

偏光ビームスプリッタ101は、入射された光のP波成分の大部分(例えば90%)を透過し、S波成分のほぼ全てを反射する。レーザー素子100から偏光ビームスプリッタ101に入射されたレーザー光は、P波直線偏光とされており、その大部分は、偏光ビームスプリッタ101を透過する。ここで透過された光ビームは、コリメータレンズ102にて平行光に変換され、更に1/4波長板103にて直線偏光から円偏光へと変換される。円偏光に変換された光ビームは、対物レンズ104により集光され、光ディスクODの信号面にて結像される。   The polarization beam splitter 101 transmits most (for example, 90%) of the P wave component of incident light and reflects almost all of the S wave component. Laser light incident on the polarization beam splitter 101 from the laser element 100 is P-wave linearly polarized light, and most of the light is transmitted through the polarization beam splitter 101. The transmitted light beam is converted into parallel light by the collimator lens 102, and further converted from linearly polarized light to circularly polarized light by the quarter wavelength plate 103. The light beam converted into circularly polarized light is collected by the objective lens 104 and imaged on the signal surface of the optical disc OD.

光ディスクODの信号面にて反射されたレーザー光は、対物レンズ104を通って1/4波長板103に再び入射され、円偏光から直線偏光へと変換される。ただしこのときには、レーザー素子100の出射光とは逆位相のS波直線偏光に変換される。そのため、反射光は、偏光ビームスプリッタ101で全反射され、センサレンズ105を通って受光素子106の受光面に集光される。受光素子106は、その受光面に集光された光を電気信号に変換する。センサレンズ105には、一般的な非点収差法を用いてフォーカス誤差の検出を行う場合には、直交二断面で焦点の異なるアナモフィックレンズが使用される。   The laser light reflected by the signal surface of the optical disc OD passes through the objective lens 104 and is incident on the quarter-wave plate 103 again, and is converted from circularly polarized light to linearly polarized light. However, at this time, it is converted into S-wave linearly polarized light having an opposite phase to the light emitted from the laser element 100. Therefore, the reflected light is totally reflected by the polarization beam splitter 101, passes through the sensor lens 105, and is collected on the light receiving surface of the light receiving element 106. The light receiving element 106 converts the light collected on the light receiving surface into an electric signal. As the sensor lens 105, when focus error detection is performed using a general astigmatism method, an anamorphic lens having different focal points in two orthogonal cross sections is used.

このように光ピックアップでは、光ディスクODからの反射光は偏光ビームスプリッタ101で全て反射され、再びレーザー素子100に入光することがないように設計されている。しかしながら実際には、上記1/4波長板103を通過して偏光ビームスプリッタ101に入射される反射光には、若干のP波成分が含まれており、全反射光の1%程度の僅かな量ではあるが、偏光ビームスプリッタ101を透過してレーザー素子100に再入射される、いわゆる戻り光が発生する。   As described above, the optical pickup is designed so that all the reflected light from the optical disk OD is reflected by the polarization beam splitter 101 and does not enter the laser element 100 again. In practice, however, the reflected light that passes through the quarter-wave plate 103 and is incident on the polarization beam splitter 101 includes a slight P-wave component, which is a little as 1% of the total reflected light. Although it is a quantity, so-called return light that is transmitted through the polarization beam splitter 101 and re-enters the laser element 100 is generated.

また偏光ビームスプリッタ101は、光学多層膜により構成されており、入射角度45°で入光された光のP波成分を透過、S波成分を反射するように設計されている。ところが偏光ビームスプリッタ101に入射される光ビーム、特にその周辺光には、拡散により完全な平行光とならずに45°とは異なる角度で入射される光が存在する。このような設計とは異なる入射角度の光については、偏光ビームスプリッタ101はその機能を完全に発揮できないため、反射光のS波成分の一部は、反射されることなく、偏光ビームスプリッタ101を透過してしまう。これによっても上記戻り光は発生する。   The polarization beam splitter 101 is composed of an optical multilayer film, and is designed to transmit a P wave component of light incident at an incident angle of 45 ° and reflect an S wave component. However, the light beam that is incident on the polarization beam splitter 101, particularly the peripheral light thereof, does not become completely parallel light due to diffusion, and there is light incident at an angle different from 45 °. For light having an incident angle different from such a design, the polarization beam splitter 101 cannot fully perform its function. Therefore, a part of the S wave component of the reflected light is not reflected, and the polarization beam splitter 101 is not reflected. It will be transparent. This also generates the return light.

こうしてレーザー素子100に再入射された戻り光の位相が、レーザー素子100の発振器内での発振光の位相と完全に一致すると、レーザー素子100から出射されるレーザー光の光量変動が著しく増大する、いわゆる戻り光ノイズが発生し、信号の再生・記録の品質を大きく劣化させる。したがって、図16に示すように、レーザー素子100から出射されてから、光ディスクODの信号面にて反射されてレーザー素子100に再入射されるまでの戻り光の光路長が、レーザー素子100のコヒーレント長Cの整数倍、すなわちレーザー素子100の発振器の光路長の整数倍となると、著しい戻り光ノイズが発生することになる。   When the phase of the return light re-entered into the laser element 100 in this way completely coincides with the phase of the oscillation light in the oscillator of the laser element 100, the light amount fluctuation of the laser light emitted from the laser element 100 is remarkably increased. So-called return light noise is generated, which greatly deteriorates the quality of signal reproduction / recording. Therefore, as shown in FIG. 16, the optical path length of the return light after being emitted from the laser element 100, reflected from the signal surface of the optical disk OD, and re-entered the laser element 100 is the coherent of the laser element 100. When the length C is an integral multiple of the length C, that is, an integral multiple of the optical path length of the oscillator of the laser element 100, significant return light noise is generated.

こうした戻り光ノイズを低減するための技術としては、レーザー素子100に高周波電
圧を印加して、シングルモード発振を避けてレーザー素子100をマルチモード発振の状態に維持する高周波重畳がある。しかしながら、こうした高周波重畳だけでは、戻り光ノイズの低減には自ずと限界がある。
As a technique for reducing such return light noise, there is high-frequency superposition in which a high-frequency voltage is applied to the laser element 100 to avoid single mode oscillation and maintain the laser element 100 in a multimode oscillation state. However, such high-frequency superposition alone has a limit in reducing the return light noise.

したがって戻り光ノイズの解消には、結局のところ、戻り光の光路長がレーザー素子100のコヒーレント長Cの整数倍とならないように、光ピックアップの光学系を設計することが最も有効な対策となっている。そのためには、レーザー素子100を含む光学素子の寸法公差やそれらの組付公差、光ディスクODの面ぶれ等を見込んだ上で、上記光路長が戻り光ノイズの発生条件を確実に回避可能な長さとなるように光ピックアップを設計する必要がある。   Therefore, in the end, the most effective measure for eliminating the return light noise is to design the optical system of the optical pickup so that the optical path length of the return light does not become an integral multiple of the coherent length C of the laser element 100. ing. For this purpose, the length of the optical path including the laser element 100, the assembling tolerance of the optical element, the optical disc OD surface blur, etc. are taken into account, and the length of the optical path can be surely avoided. It is necessary to design the optical pickup so that

ところが近年には、光ディスクの高密度化のためのレーザー光の短波長化が進められており、その一方で光ディスク装置の多機能化に伴って、光ピックアップに組み込まれる部品の点数は増える傾向にある。部品点数の増加に伴い、それらの寸法公差や組付公差が重畳して上記光路長のずれの範囲は増大する傾向にあるにも拘わらず、短波長化によりレーザー素子100のコヒーレント長Cが短くなって、戻り光ノイズの発生する光路長の間隔は短くなっており、上記のような設計は益々困難となっている。   However, in recent years, the wavelength of laser light has been shortened to increase the density of optical discs. On the other hand, the number of components incorporated in an optical pickup tends to increase with the increase in the number of optical disc devices. is there. The coherent length C of the laser element 100 is shortened by shortening the wavelength even though the range of the optical path length tends to increase as the number of parts increases and the dimensional tolerances and assembly tolerances overlap. Thus, the interval between the optical path lengths where the return light noise is generated is shortened, and the design as described above becomes more difficult.

そこで従来、光ピックアップの製造後に上記光路長の調整を可能とする機構が提案されている。例えば特許文献1には、光ピックアップ内でレーザー素子を変位させて光路長を調整する機構が開示されている。また特許文献2には、屈率1以上の光路長補正用光学素子を、光ピックアップの平行光中に必要に応じて挿入することで、光路長を調整する機構が開示されている。
特開平11−16188号公報 特開2000−155972号公報
Therefore, conventionally, a mechanism has been proposed that allows the optical path length to be adjusted after the optical pickup is manufactured. For example, Patent Document 1 discloses a mechanism for adjusting an optical path length by displacing a laser element in an optical pickup. Also in Patent Document 2, the refraction index of 1 or more optical path length correcting optical element, by inserting as needed during the parallel light of an optical pickup, a mechanism for adjusting the optical path length is disclosed.
Japanese Patent Laid-Open No. 11-16188 JP 2000-155972 A

これら従来の光路長調整機構によれば、光ピックアップの製造後、その光路長を実測しつつ、上記戻り光ノイズの発生条件を避けるように光路長を調整することができる。すなわち、こうした光路長調整機構を備える光ピックアップでは、上記寸法公差や組付公差による個体毎の光路長のずれを、その製造後に補償することができる。しかしながら、これら従来の光路長調整機構は、下記のように、調整の自由度が制限されたものとなっている。   According to these conventional optical path length adjustment mechanisms, after manufacturing the optical pickup, the optical path length can be adjusted so as to avoid the conditions for generating the return light noise while actually measuring the optical path length. That is, in an optical pickup provided with such an optical path length adjusting mechanism, the deviation of the optical path length for each individual due to the dimensional tolerance and the assembly tolerance can be compensated after its manufacture. However, these conventional optical path length adjustment mechanisms are limited in the degree of freedom of adjustment as described below.

例えば上記特許文献1のようにレーザー素子を変位させれば、それに伴い自ずとレーザー素子とそれ以外の光学素子との位置関係が変化してしまうため、光ピックアップの光学特性に好ましくない影響を与える虞がある。特に、レーザー素子と受光素子とが異なる部位に配設される構成の光ピックアップでは、レーザー素子が変位されると、集光位置が主光線の進行方向にずれてしまい、受光素子の受光面に反射光を集光できなくなってしまうことがある。したがって現実的には、調整に伴う光学特性の変化が許容される程度に収まるような限られた範囲でしか光路長を調整することができないものとなっている。   For example, if the laser element is displaced as in Patent Document 1, the positional relationship between the laser element and the other optical elements changes accordingly, which may adversely affect the optical characteristics of the optical pickup. There is. In particular, in an optical pickup having a configuration in which a laser element and a light receiving element are arranged at different parts, if the laser element is displaced, the condensing position is shifted in the traveling direction of the principal ray, and the light receiving surface of the light receiving element is The reflected light may not be collected. Therefore, in actuality, the optical path length can be adjusted only within a limited range within which the change in optical characteristics accompanying the adjustment is allowed.

また上記特許文献2のように光路長補正用光学素子を挿入して光路長を調整する機構では、光路長の微調整が必要となった場合には、厚さや屈率の異なる複数種の光学素子を用意しなければならず、また用意したとしても段階的にしか光路長を調整できないため、光路長の微調整は困難となっている。 In the mechanism for adjusting the optical path length by inserting an optical element for the optical path length correction, as disclosed in Patent Document 2, when a fine adjustment of the optical path length is required, the thickness and refraction index different plural kinds An optical element has to be prepared, and even if it is prepared, the optical path length can be adjusted only in steps, so that fine adjustment of the optical path length is difficult.

本発明は、こうした実状に鑑みてなされたものであって、その解決しようとする課題は、路長を容易且つ細密に調整可能で、好適に戻り光ノイズの解消を図ることのできる光
ピックアップを提供することにある。
The present invention has been made in view of such a situation, and the problem to be solved is an optical pickup in which the optical path length can be easily and finely adjusted, and the return optical noise can be preferably eliminated. Is to provide.

以下、上記課題を解決するための手段、及びその作用効果を記載する。   Hereinafter, means for solving the above-described problems and the effects thereof will be described.

請求項1に記載の発明は、レーザー素子から出射されたレーザー光を光ディスクに照射する光ピックアップにおいて、当該光ピックアップの光路内の平行光中に、屈折率を同じくし、且つ入光面と出光面との挟み角が同一の第1硝材部品及び第2硝材部品を備え、前記第1硝材部品をその入光面が前記平行光の進行方向に対して略垂直をなすよう配置し、且つ前記第2硝材部品をその入光面が前記第1硝材部品の出光面に対して平行をなして対向するように配置し、前記第1硝材部品及び第2硝材部品は、それらの入光面と出光面と間の厚さの変化方向が、前記光ディスクのトラックの接線方向と一致するように配設されてなることをその要旨とする。 According to the first aspect of the present invention, in an optical pickup that irradiates an optical disk with laser light emitted from a laser element, the refractive index is the same in parallel light in the optical path of the optical pickup, and the light incident surface and light output A first glass material component and a second glass material component having the same sandwich angle with the surface, the first glass material component is disposed such that a light incident surface thereof is substantially perpendicular to a traveling direction of the parallel light, and The second glass material component is disposed so that the light incident surface thereof faces and is parallel to the light output surface of the first glass material component, and the first glass material component and the second glass material component are disposed on the light incident surface. The gist thereof is that the change direction of the thickness between the light-emitting surface and the light-emitting surface is aligned with the tangential direction of the track of the optical disk .

第1硝材部品の入光面及び第2硝材部品の出光面を平行光の進行方向に垂直をなすように配置すると、第1硝材部品の出光面及び第2硝材部品の入光面は、光軸に対して鋭角にて傾斜されるようになる。そしてレーザー光は、第1硝材部品の入光面に垂直に入光され、その内部を通過した後、第2硝材部品の内部を通過し、同第2硝材部品の出光面から垂直に出光されるようになる。このとき、入光面と出光面との間の厚みが変化する方向へと両硝材部品を相対変位させると、光ピックアップの光路における硝材部品の厚さが増減されて、その結果、空気と硝材部品との屈折率の違いによって光ピックアップの光路長が変化される。そのため、上記構成では、光ピックアップの光路長を連続的に変化させることができ、戻り光ノイズを回避するように光路長を調整することができる。 If the light incident surface of the first glass material component and the light emission surface of the second glass material component are arranged so as to be perpendicular to the traveling direction of the parallel light, the light emission surface of the first glass material component and the light incident surface of the second glass material component are It is inclined at an acute angle with respect to the axis. The laser light is incident perpendicularly to the light incident surface of the first glass component, passes through the interior, then passes through the second glass component, and is emitted vertically from the light exit surface of the second glass component. Become so. At this time, if the two glass material components are relatively displaced in the direction in which the thickness between the light incident surface and the light emission surface changes, the thickness of the glass material components in the optical path of the optical pickup is increased or decreased. The optical path length of the optical pickup is changed depending on the difference in refractive index from the component. Therefore, in the above configuration, the optical path length of the optical pickup can be continuously changed, and the optical path length can be adjusted so as to avoid return light noise .

ここで、第1硝材部品と第2硝材部品とが離間されるとレーザー光が、各硝材部品の厚さの変化する方向に対して平行移動する。そしてその平行移動により、平行光の対物レンズへの入射位置が同方向に移動する。一方、光ピックアップの対物レンズは、トラッキング誤差の補正のため、光ディスクのラジアル方向に移動される。上記入射位置の移動が、そうした対物レンズの移動方向と一致すると、対物レンズの移動方向の順逆により、同対物レンズへの入射の総光量の変化の様相が異なるようになり、制御上問題となる。 Here, when the first glass material part and the second glass material part are separated from each other, the laser light moves in parallel with respect to the direction in which the thickness of each glass material part changes. Due to the parallel movement, the incident position of the parallel light on the objective lens moves in the same direction. On the other hand, the objective lens of the optical pickup is moved in the radial direction of the optical disk in order to correct the tracking error. If the movement of the incident position coincides with the movement direction of the objective lens, the change in the total amount of light incident on the objective lens changes depending on the order of the movement direction of the objective lens, which causes a problem in control. .

その点、上記構成では、第1硝材部品及び第2硝材部品でのレーザー光の平行移動は、対物レンズの移動方向である光ディスクのラジアル方向に直交する、同光ディスクのトラックの接線方向に対して生じるようになっている。そのため、対物レンズの移動に伴う総入光量変化に対してレーザー光の平行移動が与える影響を、必要最小限に留めることができる。 In that respect, in the above configuration, the parallel movement of the laser light in the first glass component and the second glass component is perpendicular to the radial direction of the optical disk, which is the direction of movement of the objective lens, with respect to the tangential direction of the track of the optical disk. It has come to occur. For this reason, the influence of the parallel movement of the laser beam on the change in the total amount of incident light accompanying the movement of the objective lens can be kept to the minimum necessary.

請求項2に記載の発明は、請求項1に記載の光ピックアップにおいて、前記第1硝材部品の出光面と前記第2硝材部品の入光面とを摺接させたことをその要旨とする。The gist of the invention according to claim 2 is that, in the optical pickup according to claim 1, the light exit surface of the first glass material part and the light entrance surface of the second glass material part are brought into sliding contact.

平行光の進行方向に対して鋭角にて傾斜した第1硝材部品の出光面と第2硝材部品の入光面との対向面が離間されていると、レーザー光が平行移動してしまう。その点、上記構成では、それら対向面が密着されているため、レーザー光の平行移動を生じさせることなく、光路長を調整することができる。When the light-emitting surface of the first glass material component and the light incident surface of the second glass material component that are inclined at an acute angle with respect to the traveling direction of the parallel light are separated from each other, the laser light moves in parallel. In that respect, in the above configuration, since the facing surfaces are in close contact with each other, the optical path length can be adjusted without causing parallel movement of the laser light.

請求項3に記載の発明は、請求項1に記載の光ピックアップにおいて、前記第1硝材部品の出光面と前記第2硝材部品の入光面との間に、それら第1硝材部品及び第2硝材部品と略同一の屈折率を有する液体又は粘弾性体を介設したことをその要旨とする。According to a third aspect of the present invention, in the optical pickup according to the first aspect, between the first glass material part and the second glass material part, the first glass material part and the second glass material part are disposed between the light exit surface of the first glass material part and the light incident surface of the second glass material part. The gist is that a liquid or viscoelastic body having substantially the same refractive index as that of the glass part is interposed.

上記構成では、レーザー光は、第1硝材部品の入光面より入光されてその内部を通過しIn the above configuration, the laser light is incident from the light incident surface of the first glass component and passes through the interior.
、両硝材部品間に介設された液体又は粘弾性体を通り、更に第2硝材部品の内部を通過して、その出光面から出光される。こうして光路長調整機構の内部を通過する間、屈折率がほとんど変化されないため、レーザー光の平行移動は生じないようになる。また両硝材部品間に介設された液体又は粘弾性体が光路長調整に係る相対変位に追従して柔軟に変形して間隙を埋めるため、両硝材部品間での間隙の形成による不要な反射の発生を抑制することができる。Then, it passes through the liquid or viscoelastic body interposed between the two glass material parts, further passes through the inside of the second glass material part, and is emitted from its light exit surface. Thus, since the refractive index is hardly changed while passing through the inside of the optical path length adjusting mechanism, the parallel movement of the laser light does not occur. In addition, the liquid or viscoelastic body interposed between the two glass material parts flexibly deforms following the relative displacement associated with the optical path length adjustment to fill the gap, so unnecessary reflection due to the formation of a gap between the two glass material parts. Can be suppressed.

本発明の光ピックアップによれば、光路内の平行光中に介設された第1及び第2硝材部品をそれらの厚さ変化方向に対して相対変位させることで、前記第1及び第2硝材部品のレーザー光が通過する部分の厚さを変化させることができ、光ピックアップの光路長さを容易且つ細密に調整して、好適に戻り光ノイズの解消を図ることができる。そして、第1硝材部品及び第2硝材部品でのレーザー光の平行移動を光ディスクのトラックの接線方向に対して生じるようにしているので、レーザー光の平行移動が対物レンズのトラッキング誤差の補正のための移動に伴う総入光量変化に対して与える影響を、必要最小限に留めることができる。 According to the optical pickup of the present invention, the first and second glass materials are disposed by relatively displacing the first and second glass material components interposed in the parallel light in the optical path with respect to the thickness changing direction thereof. The thickness of the part through which the laser beam passes can be changed, and the optical path length of the optical pickup can be adjusted easily and finely, so that the return light noise can be suitably eliminated. Since the parallel movement of the laser light in the first glass material part and the second glass material part occurs with respect to the tangential direction of the track of the optical disk, the parallel movement of the laser light is for correcting the tracking error of the objective lens. It is possible to keep the influence on the total incident light amount change accompanying the movement of the required minimum.

(第1実施形態)
以下、本発明のピックアップを具体化した第1実施形態を、図1〜図9を参照して詳細に説明する。
(First embodiment)
Hereinafter, a first embodiment of an optical pickup according to the present invention will be described in detail with reference to FIGS.

図1は、本実施形態のピックアップの適用される光ディスク装置の構成を示している。 Figure 1 shows the structure of an optical disk apparatus used for the optical pickup of the present embodiment.

同図に示すように、光ディスク装置10のシャーシ11には、光ディスクODを保持する保持部12、及びその保持部12に保持された光ディスクODを回転させるスピンドルモータ13が設置されている。またシャーシ11には、シャフト14が固定され、そのシャフト14には、同シャフト14に沿って変位可能に光ピックアップ20が設けられている。   As shown in the figure, the chassis 11 of the optical disc apparatus 10 is provided with a holding unit 12 that holds the optical disc OD and a spindle motor 13 that rotates the optical disc OD held by the holding unit 12. Further, a shaft 14 is fixed to the chassis 11, and an optical pickup 20 is provided on the shaft 14 so as to be displaceable along the shaft 14.

光ピックアップ20は、光ディスクODの信号面又は記録面(反射面)にレーザー光を照射して、同光ディスクODに記録された信号の再生や同光ディスクODへの信号の記録を行う。こうした光ピックアップ20を上記シャフト14に沿って変位されることで、上記レーザー光の照射位置が光ディスクODのラジアル方向に変位されるようになっている。   The optical pickup 20 irradiates a signal surface or a recording surface (reflection surface) of the optical disc OD with a laser beam to reproduce a signal recorded on the optical disc OD and record a signal on the optical disc OD. By displacing the optical pickup 20 along the shaft 14, the irradiation position of the laser light is displaced in the radial direction of the optical disc OD.

図2は、上記光ピックアップ20の光学系の斜視構造を示している。光ピックアップ20は、レーザー光を出射するレーザー素子21、そのレーザー光を上記光ディスクODの信号面や記録面に結像させるべく集光させる対物レンズ22、及び光ディスクODの信号面や記録面にて反射されたレーザー光を受光して電気信号に変換する受光素子23を備えて構成されている。   FIG. 2 shows a perspective structure of the optical system of the optical pickup 20. The optical pickup 20 includes a laser element 21 that emits laser light, an objective lens 22 that focuses the laser light to form an image on the signal surface and recording surface of the optical disc OD, and the signal surface and recording surface of the optical disc OD. A light receiving element 23 that receives the reflected laser light and converts it into an electrical signal is provided.

レーザー素子21のレーザー光の出射方向には、回折格子24、偏光ビームスプリッタ25、コリメータレンズ26、1/4波長板27及び反射ミラー28がレーザー素子21側から順に配列されており、更に反射ミラー28の上方には上記対物レンズ22が配設されている。また偏光ビームスプリッタ25の両側方には、上記受光素子23とフロントモニタ29とがそれぞれ配設されており、偏光ビームスプリッタ25と受光素子23との間にはセンサレンズ30が介設されている。なおこの光ピックアップ20では、1/4波長板27と反射ミラー28との間に、光路長調整機構40が介設されている。   A diffraction grating 24, a polarization beam splitter 25, a collimator lens 26, a ¼ wavelength plate 27, and a reflection mirror 28 are arranged in this order from the laser element 21 side in the laser beam emission direction of the laser element 21, and further, a reflection mirror. Above the lens 28, the objective lens 22 is disposed. The light receiving element 23 and the front monitor 29 are provided on both sides of the polarizing beam splitter 25, and a sensor lens 30 is interposed between the polarizing beam splitter 25 and the light receiving element 23. . In the optical pickup 20, an optical path length adjustment mechanism 40 is interposed between the quarter wavelength plate 27 and the reflection mirror 28.

図3に示すように、レーザー素子21から出射されたレーザー光は、回折格子24に入射され、0次光と±1次光とに分岐される。ここで分岐された0次光は、信号の記録・再生に係る光ディスクODへの照射光や主たるサーボ信号として用いられるメインビームとなり、偏光ビームスプリッタ25に入射される。これに対して±1次光は、補助的なサーボ信号に用いられる。   As shown in FIG. 3, the laser light emitted from the laser element 21 enters the diffraction grating 24 and is branched into zero-order light and ± first-order light. The 0th-order light branched here becomes a main beam used as irradiation light to the optical disc OD related to signal recording / reproduction or a main servo signal, and is incident on the polarization beam splitter 25. On the other hand, the ± first-order light is used as an auxiliary servo signal.

偏光ビームスプリッタ25は、入射光のP波成分の大部分(約90%)を透過し、同P波成分の残りの部分及びS波成分を反射する。レーザー素子21から出射されたレーザー光は、P波直線偏光とされており、上記メインビームの大部分は、これを透過してコリメータレンズ26に入射される。またメインビームの残りの部分は、ここでフロントモニタ29側に反射される。   The polarization beam splitter 25 transmits most (about 90%) of the P wave component of the incident light, and reflects the remaining portion of the P wave component and the S wave component. The laser light emitted from the laser element 21 is P-wave linearly polarized light, and most of the main beam is transmitted through the collimator lens 26. Further, the remaining part of the main beam is reflected to the front monitor 29 side here.

フロントモニタ29は、入射された光を電気信号に変換して出力する。この電気信号は、レーザー素子21から出射されるレーザー光のパワー制御に用いられる。   The front monitor 29 converts the incident light into an electrical signal and outputs it. This electrical signal is used for power control of laser light emitted from the laser element 21.

一方、コリメータレンズ26は、入射された光を平行光に変換する。よって上記偏光ビームスプリッタ25を透過したメインビームは、ここで平行光に変換された後、1/4波長板27に入射される。   On the other hand, the collimator lens 26 converts incident light into parallel light. Therefore, the main beam transmitted through the polarizing beam splitter 25 is converted into parallel light here and then incident on the quarter-wave plate 27.

1/4波長板27は、入射されたメインビームを、直線偏光から円偏光へと変換する。円偏光とされたメインビームは、上記光路長調整機構40を通過した後、反射ミラー28で反射され、対物レンズ22に入射される。対物レンズ22は、入射されたメインビームを集光して光ディスクODの信号面や記録面に結像させる。   The quarter wavelength plate 27 converts the incident main beam from linearly polarized light to circularly polarized light. The main beam converted into circularly polarized light passes through the optical path length adjusting mechanism 40, is reflected by the reflecting mirror 28, and enters the objective lens 22. The objective lens 22 focuses the incident main beam and forms an image on the signal surface or recording surface of the optical disc OD.

図4に示すように、光ディスクODの信号面や記録面からの反射光は、往路とは逆に、対物レンズ22及び反射ミラー28を介して1/4波長板27に再入射され、円偏光から直線偏光へと再変換される。ただしこのときに変換された光は、レーザー素子21からの出射時とは逆位相のS波直線偏光となる。   As shown in FIG. 4, the reflected light from the signal surface and recording surface of the optical disc OD is re-incident on the quarter-wave plate 27 via the objective lens 22 and the reflecting mirror 28, and is circularly polarized, contrary to the forward path. To linearly polarized light. However, the light converted at this time becomes S-wave linearly polarized light having an opposite phase to that emitted from the laser element 21.

S波直線偏光に変換された反射光は、偏光ビームスプリッタ25に入射される。偏光ビームスプリッタ25は、ここで入射された反射光のほぼ全てを受光素子23側に反射する。そしてその反射光は、センサレンズ30を通って受光素子23の受光面に集光される。受光素子23は、この集光された光を電気信号に変換して出力する。この電気信号からは、光ディスクODに記録された信号の再生や、光ディスクODでのフォーカッシング誤差やトラッキング誤差の補償等が行われる。   The reflected light converted into S-wave linearly polarized light enters the polarization beam splitter 25. The polarization beam splitter 25 reflects almost all of the incident reflected light to the light receiving element 23 side. The reflected light passes through the sensor lens 30 and is collected on the light receiving surface of the light receiving element 23. The light receiving element 23 converts the collected light into an electrical signal and outputs it. From this electrical signal, reproduction of a signal recorded on the optical disc OD, compensation of a focusing error and a tracking error in the optical disc OD, and the like are performed.

ただし上述したように若干の反射光は、偏光ビームスプリッタ25にて反射されることなく、これを透過し、戻り光としてレーザー素子21に再入射される。本実施形態の光ピックアップ20には、こうした戻り光によるノイズが回避されるように、すなわち戻り光の光路長がレーザー素子21のコヒーレント長Cの整数倍とならないように光路長の調整を行う機構として、上記光路長調整機構40が設けられている。上記のようにこの光路長調整機構40は、コリメータレンズ26と対物レンズ22との間の平行光中に配設されている。   However, as described above, some reflected light passes through the reflected light without being reflected by the polarization beam splitter 25, and is reincident on the laser element 21 as return light. The optical pickup 20 of the present embodiment has a mechanism for adjusting the optical path length so that noise due to such return light is avoided, that is, the optical path length of the return light is not an integral multiple of the coherent length C of the laser element 21. As described above, the optical path length adjusting mechanism 40 is provided. As described above, the optical path length adjusting mechanism 40 is disposed in the parallel light between the collimator lens 26 and the objective lens 22.

図5に、光路長調整機構40の斜視構造を示す。同図に示すように、光路長調整機構40は、第1硝材部品41及び第2硝材部品からなる硝材部品の対によって構成されている。これら第1硝材部品41及び第2硝材部品は、同一材質とされ、ゆえに両者の屈折率は全く同じとなっている。ここでは、屈折率が1より大きいガラスやプラスティック等の硝材がそれらの材質として用いられている。   FIG. 5 shows a perspective structure of the optical path length adjusting mechanism 40. As shown in the figure, the optical path length adjusting mechanism 40 is constituted by a pair of glass material parts including a first glass material part 41 and a second glass material part. The first glass material component 41 and the second glass material component are made of the same material, and therefore the refractive indexes of both are exactly the same. Here, glass materials such as glass and plastic having a refractive index larger than 1 are used as the materials.

ちなみに以下の説明では、これら第1硝材部品41及び第2硝材部品42の入光面及び出光面を、光ピックアップ20の光路における往路、すなわちレーザー素子21から出射されてから光ディスクODに照射されるまでの光路での光ビームの通過方向を基準として定義する。よって復路の反射光については、その名称とは逆であるが、各硝材部品の出光面から入光され、入光面から出光されることになる。   Incidentally, in the following description, the light incident surface and the light exit surface of the first glass material component 41 and the second glass material component 42 are emitted from the optical path of the optical pickup 20, that is, emitted from the laser element 21 and then irradiated onto the optical disk OD. Is defined with reference to the passing direction of the light beam in the optical path up to. Therefore, the name of the reflected light in the return path is opposite to the name, but the light is incident from the light exit surface of each glass material component and is emitted from the light entrance surface.

図6(a)に示すように、第1硝材部品41の入光面41aと出光面41bとの挟み角、及び第2硝材部品42の入光面42aと出光面42bとの挟み角とは、互いに等しい鋭角θ(0<θ<π/2)とされている。なお本実施形態では、第1硝材部品41及び第2硝材部品42は、合同形状に形成されている。   As shown in FIG. 6 (a), the sandwich angle between the light incident surface 41a and the light exit surface 41b of the first glass material component 41 and the sandwich angle between the light incident surface 42a and the light exit surface 42b of the second glass material component 42 are as follows. The acute angles θ are equal to each other (0 <θ <π / 2). In the present embodiment, the first glass material part 41 and the second glass material part 42 are formed in a congruent shape.

光ピックアップ20において第1硝材部品41は、その入光面41aが上記平行光の進行方向に垂直となるように配置される。また第2硝材部品42は、その入光面42aが第1硝材部品41の出光面41bに対して若干の間隔をおいて対向し、且つそれらの対向面(出光面41b、入光面42a)が平行をなすように、光ピックアップ20に配置されている。したがって第2硝材部品42は、その出光面42bが、第1硝材部品41の入光面41aと平行で、且つ上記平行光の進行方向に垂直をなすように配置されることになる。なおこの光路長調整機構40では、第1硝材部品41の入光面41a及び第2硝材部品42の出光面42bは矩形状に形成されている。   In the optical pickup 20, the first glass component 41 is disposed such that the light incident surface 41a is perpendicular to the traveling direction of the parallel light. Further, the second glass material part 42 has its light incident surface 42a opposed to the light output surface 41b of the first glass material component 41 with a slight space therebetween, and the opposed surfaces (light output surface 41b, light incident surface 42a). Are arranged in the optical pickup 20 so as to be parallel to each other. Accordingly, the second glass material part 42 is arranged such that the light exit surface 42b is parallel to the light incident surface 41a of the first glass material part 41 and perpendicular to the traveling direction of the parallel light. In this optical path length adjusting mechanism 40, the light incident surface 41a of the first glass material component 41 and the light exit surface 42b of the second glass material component 42 are formed in a rectangular shape.

これら第1硝材部品41及び第2硝材部品42は、光ピックアップ20において、それらの対向面(出光面41b、入光面42a)を平行に保ちつつ、各硝材部品の入光面と出光面との間の厚みが変化する方向Fへと相対変位可能な状態で配設されている。実際には、第1硝材部品41及び第2硝材部品42のうちの一方が上記方向Fに変位可能な状態で光ピックアップ20に配設されている。   The first glass material component 41 and the second glass material component 42 are arranged in the optical pickup 20 so that their opposing surfaces (light-emitting surface 41b and light-incident surface 42a) are kept parallel, while the light-incident surface and light-emitting surface of each glass material component are It is arranged in a state in which it can be relatively displaced in the direction F in which the thickness changes. Actually, one of the first glass material component 41 and the second glass material component 42 is disposed in the optical pickup 20 in a state in which it can be displaced in the direction F.

こうした光路長調整機構40をレーザー光が通過する際には、第1硝材部品41の出光面41b及び第2硝材部品42の入光面42aが光軸に対して鋭角にて傾斜しているため、通過光の光線は、上記方向Fへと平行移動することになる。ただしそれら出光面41b及び入光面42aは平行に配置されているため、全体としては、上記光線の平行移動を除いて平行平板の硝材部品とほぼ等価となり、通過光に対してプリズムのような作用を及ぼすことはない。   When the laser beam passes through the optical path length adjusting mechanism 40, the light exit surface 41b of the first glass material component 41 and the light incident surface 42a of the second glass material component 42 are inclined at an acute angle with respect to the optical axis. The light rays of the passing light are translated in the direction F. However, since the light exit surface 41b and the light entrance surface 42a are arranged in parallel, the whole is substantially equivalent to a parallel-plate glass material part except for the parallel movement of the light beam, and is like a prism with respect to the passing light. There is no effect.

こうした光路長調整機構40では、第1硝材部品41及び第2硝材部品42の上記方向Fへの相対変位を通じて、光ピックアップ20の光路長を変化させられる。例えば図6(b)に示すように第1硝材部品41及び第2硝材部品42を相対変位させると、各硝材部品内での光路が長くなる。すなわち平行光の進行方向おける硝材部品の厚さが増大する。また図6(c)に示すように第1硝材部品41及び第2硝材部品42を相対変位させると、各硝材部品内での光路が短くなり、平行光の進行方向おける硝材部品の厚さが減少する。更にこうして平行光の進行方向おける硝材部品の厚さが増減すれば、光路内での空気層の厚さがそれに併せて減増されることになる。 In such an optical path length adjusting mechanism 40, the optical path length of the optical pickup 20 can be changed through relative displacement of the first glass material component 41 and the second glass material component 42 in the direction F. For example, as shown in FIG. 6B, when the first glass material component 41 and the second glass material component 42 are relatively displaced, the optical path in each glass material component becomes longer. That increases the thickness of the glass material component definitive in the traveling direction of the parallel light. Further, when the first glass material component 41 and the second glass material component 42 is relatively displaced as shown in FIG. 6 (c), the optical path in each glass material components is reduced, the thickness of the glass material component definitive in the traveling direction of the parallel light Decrease. If decrease further thus the thickness of the glass material component definitive in the traveling direction of the parallel light, so that the thickness of the air layer in the optical path is Masa reduced accordingly.

ここで上記方向Fへの第1硝材部品41及び第2硝材部品42の相対変位量を「Δs」とすると、相対変位に伴う上記光軸方の硝材部品の厚さの変化量Δtは、下式(1)の通りとなる。また空気の屈折率を「1.0」、両硝材部品の屈折率を「n」とすると、上記相対変位に伴う光路長の変化量ΔOPは、下式(2)の通りとなる。   Here, when the relative displacement amount of the first glass component 41 and the second glass component 42 in the direction F is “Δs”, the change amount Δt of the thickness of the glass component in the optical axis direction due to the relative displacement is as follows. It becomes as a formula (1). When the refractive index of air is “1.0” and the refractive indexes of both glass parts are “n”, the change amount ΔOP of the optical path length due to the relative displacement is expressed by the following equation (2).


Δt=Δs×tanθ …(1)

ΔOP=n×Δt−1.0×Δt=(n−1.0)×Δt=Δs×tanθ …(2)

以上説明したように構成された光ピックアップ20では、その各構成部品の組み付け後に、光ディスクODの信号面や記録面を想定した反射面に対してレーザー光の照射試験を行うようにしている。そして光ディスクODのディスク面の振れに追従した光ピックアップ20の対物レンズ22の垂直方向の変位の範囲内で、戻り光ノイズの発生するか否かを確認するようにしている。ここで戻り光ノイズの発生が確認されると、上記光路長調整機構40の第1硝材部品41及び第2硝材部品42の少なくとも一方の上記方向Fの位置を調整し、戻り光ノイズが解消されるように光路長の調整が行われる。

Δt = Δs × tan θ (1)

ΔOP = n × Δt−1.0 × Δt = (n−1.0) × Δt = Δs × tan θ (2)

In the optical pickup 20 configured as described above, the laser light irradiation test is performed on the reflection surface assuming the signal surface and the recording surface of the optical disc OD after assembling the respective components. Then, it is confirmed whether or not return light noise is generated within the range of vertical displacement of the objective lens 22 of the optical pickup 20 following the vibration of the disk surface of the optical disk OD. When the occurrence of return light noise is confirmed, the position of the first glass material part 41 and the second glass material part 42 of the optical path length adjustment mechanism 40 in the direction F is adjusted, and the return light noise is eliminated. Thus, the optical path length is adjusted.

ところで、こうした光ピックアップ20では、光路長調整機構40において上述した光線の平行移動が発生する。そしてこの光線の平行移動が下記のような不具合を招くことがある。   By the way, in such an optical pickup 20, the above-described parallel movement of the light beam occurs in the optical path length adjusting mechanism 40. The parallel movement of the light beam may cause the following problems.

図7に示すように、光路長調整機構40にて光線が平行移動すると、対物レンズ22に対するメインビームの入射位置もそれに併せて平行移動する。こうして入射位置が移動し、メインビームのビーム中心COと対物レンズ22の入光面中心OとのずれΔが縮小・拡大すると、対物レンズ22への総入光量が変化して、受光素子23に受光される反射光の光量が増減されるようになる。   As shown in FIG. 7, when the light beam is translated by the optical path length adjusting mechanism 40, the incident position of the main beam with respect to the objective lens 22 is also translated. Thus, when the incident position moves and the shift Δ between the beam center CO of the main beam and the light incident surface center O of the objective lens 22 is reduced or enlarged, the total amount of light incident on the objective lens 22 changes, and the light receiving element 23 is changed. The amount of reflected light received is increased or decreased.

一方、光ピックアップ20では、光ディスクOD上の結像位置のトラッキング誤差を補正するため、対物レンズ22を光ディスクODのラジアル方向に移動させている。ここでそうした対物レンズ22の移動方向と上記入射位置の平行移動の方向とが一致していると、対物レンズ22の移動方向の順逆により、上記総入光量の変化の様相が違ってしまうことになる。   On the other hand, in the optical pickup 20, the objective lens 22 is moved in the radial direction of the optical disc OD in order to correct the tracking error of the image forming position on the optical disc OD. Here, if the movement direction of the objective lens 22 and the parallel movement direction of the incident position coincide with each other, the aspect of the change in the total incident light amount differs depending on the order of the movement direction of the objective lens 22. Become.

図8の曲線Aは、図7に実線で示される位置から矢印R側及び矢印L側に対物レンズ22を移動させたときの受光素子23での受光量の変化を示す。同図に示すように、図7の矢印R側に対物レンズ22が移動されると上記ずれΔが縮小されるため、対物レンズ22への総入光量が増大し、受光素子23での受光量が増大する。一方、図7の矢印L側に対物レンズ22が移動されると上記ずれΔが拡大されるため、対物レンズ22への総入光量が減少し、受光素子23での受光量は減少する。こうした対物レンズ22の移動方向の順逆による入光量変化の非対称性の存在は、制御上問題となる。また対物レンズ22の移動による総入光量の変化幅が増大して、対物レンズ22の移動に伴い受光素子23の受光量に過不足が生じてしまう虞もある。   A curve A in FIG. 8 shows a change in the amount of light received by the light receiving element 23 when the objective lens 22 is moved from the position indicated by the solid line in FIG. 7 to the arrow R side and the arrow L side. As shown in the figure, when the objective lens 22 is moved to the arrow R side in FIG. 7, the shift Δ is reduced, so that the total amount of light incident on the objective lens 22 increases and the amount of light received by the light receiving element 23. Will increase. On the other hand, when the objective lens 22 is moved to the arrow L side in FIG. 7, the shift Δ is enlarged, so that the total amount of incident light to the objective lens 22 is reduced and the amount of light received by the light receiving element 23 is reduced. The existence of asymmetry in the change in the amount of incident light due to the forward / reverse movement direction of the objective lens 22 is a problem in control. Further, the change width of the total incident light amount due to the movement of the objective lens 22 increases, and there is a possibility that the received light amount of the light receiving element 23 becomes excessive or insufficient as the objective lens 22 moves.

そこで本実施形態では、図9に示すように、両硝材部品41,42の厚さの変化する方向Fが、集光スポットSにおける光ディスクODのトラックTRの接線方向Pとなるように、両硝材部品41,42を配置するようにしている。この場合、光路長調整機構40での光線の平行移動の方向、及びそれによる対物レンズ22に対するメインビームの入射位置の移動方向は、光ディスクODのトラックの接線方向、すなわち対物レンズ22の移動方向である光ディスクODのラジアル方向と直交する方向となる。そのため、光路長調整機構40での光線の平行移動は、対物レンズ22の移動に伴う総入光量の変化に対しては、ほとんど影響しないようになる。   Therefore, in the present embodiment, as shown in FIG. 9, both glass materials are arranged such that the direction F in which the thickness of both glass material parts 41, 42 changes is the tangential direction P of the track TR of the optical disc OD at the focused spot S. Components 41 and 42 are arranged. In this case, the direction of parallel movement of the light beam by the optical path length adjusting mechanism 40 and the direction of movement of the incident position of the main beam with respect to the objective lens 22 are the tangential direction of the track of the optical disc OD, that is, the direction of movement of the objective lens 22. The direction is orthogonal to the radial direction of a certain optical disc OD. For this reason, the parallel movement of the light beam by the optical path length adjusting mechanism 40 has little influence on the change in the total incident light amount accompanying the movement of the objective lens 22.

図8には、こうした本実施形態での対物レンズ22の移動量と受光素子23での受光量との関係が曲線Bにて示されている。同図に示されるように本実施形態では、対物レンズ22の移動に対する受光素子23の受光量の変化の態様は、対物レンズ22の移動方向の順逆に拘わらず、ほぼ同様となる。   In FIG. 8, the relationship between the amount of movement of the objective lens 22 and the amount of light received by the light receiving element 23 in this embodiment is indicated by a curve B. As shown in the figure, in this embodiment, the change in the amount of light received by the light receiving element 23 with respect to the movement of the objective lens 22 is substantially the same regardless of the order of movement of the objective lens 22.

以上説明した本実施形態によれば、次の効果を奏することができる。   According to this embodiment described above, the following effects can be obtained.

(1)光ピックアップ20の平行光中に配設された第1硝材部品41及び第2硝材部品42を相対変位させてそれら硝材部品の厚さを変えることで、光ピックアップ20の光路長が連続的に変化されるため、戻り光ノイズを回避するための光路長の調整を容易且つ精細に行うことができる。   (1) The optical path length of the optical pickup 20 is continuously changed by relatively displacing the first glass material component 41 and the second glass material component 42 arranged in the parallel light of the optical pickup 20 to change the thickness of the glass material components. Therefore, the optical path length can be adjusted easily and finely to avoid return light noise.

(2)各硝材部品41,42の厚さが変化する方向が光ディスクODのトラックTRの接線方向となるように各硝材部品41,42を配設するようにしている。これにより、光路長調整機構40での光線の平行移動に伴う対物レンズ22の入射位置のずれは、光ディスクODのトラックTRの接線方向に、すなわち対物レンズ22の移動方向に直交する方向に生じるようになる。そのため、対物レンズ22の移動に伴う総入光量の変化に対して光路長調整機構40での光線の平行移動が与える影響を、必要最小限に留めることができる。   (2) The glass material parts 41, 42 are arranged so that the direction in which the thickness of the glass material parts 41, 42 changes is the tangential direction of the track TR of the optical disk OD. Thereby, the shift of the incident position of the objective lens 22 due to the parallel movement of the light beam in the optical path length adjusting mechanism 40 occurs in the tangential direction of the track TR of the optical disc OD, that is, in the direction orthogonal to the moving direction of the objective lens 22. become. Therefore, the influence of the parallel movement of the light beam in the optical path length adjusting mechanism 40 on the change in the total incident light amount accompanying the movement of the objective lens 22 can be kept to the minimum necessary.

(第2実施形態)
続いて本発明を具体化した第2実施形態を、第1実施形態と異なる点を中心に説明する。
(Second Embodiment)
Next, a second embodiment that embodies the present invention will be described focusing on differences from the first embodiment.

第1実施形態の光ピックアップ20における光路長調整機構40のように、第1硝材部品41の出光面41bと第2硝材部品42の入光面41aとの対向面に間隙が形成されていると、上述したような光線の平行移動が生じてしまう。そこで本実施形態では、硝材部品をそれらの対向面間に間隙が生じないように配置することで、光線の平行移動の防止を図っている。 As in the optical path length adjusting mechanism 40 in the optical pickup 20 of the first embodiment, a gap is formed on the facing surface of the light exit surface 41b of the first glass material component 41 and the light incident surface 41a of the second glass material component 42. As described above, the parallel movement of the light beam occurs. Therefore, in the present embodiment, the glass material parts are arranged so as not to generate a gap between their facing surfaces, thereby preventing the parallel movement of the light beam.

図10は、そうした本実施形態の光ピックアップ20における光路長調整機構140の斜視構造を示している。同図に示すように、本実施形態の光路長調整機構140を構成する硝材部品(第1硝材部品41,第2硝材部品42)の各々は、第1実施形態と同一のものが用いられている。ただし本実施形態の光路長調整機構140では、図11(a)に示すように、第1硝材部品41の出光面41bと第2硝材部品42の入光面42aとが摺接した状態で両硝材部品41,42が配置されている。 FIG. 10 shows a perspective structure of the optical path length adjusting mechanism 140 in the optical pickup 20 of this embodiment. As shown in the figure, each of the glass material parts (the first glass material part 41 and the second glass material part 42) constituting the optical path length adjusting mechanism 140 of the present embodiment is the same as that of the first embodiment. Yes. However, in the optical path length adjusting mechanism 140 of the present embodiment, as shown in FIG. 11A, both the light exit surface 41b of the first glass material component 41 and the light incident surface 42a of the second glass material component 42 are in sliding contact with each other. Glass material parts 41 and 42 are arranged.

こうした光路長調整機構140では、出光面41bに沿って入光面42aをスライドさせつつ、両硝材部品41,42の厚さの変化方向Fにそれら両硝材部品41,42を相対変位させることで、光ピックアップ20の光路長を変化させるようにしている。例えば図11(b)に示すように第1硝材部品41及び第2硝材部品42を相対変位させると、平行光の進行方向おける硝材部品の厚さが減少されて、光ピックアップ20の光路長が短縮される。また図11(c)に示すように第1硝材部品41及び第2硝材部品42を相対変位させると、平行光の進行方向おける硝材部品の厚さが増大されて、光ピックアップ20の光路長が伸長される。 In such an optical path length adjustment mechanism 140, the light incident surface 42a is slid along the light exit surface 41b, and the both glass material components 41, 42 are displaced relative to each other in the thickness changing direction F of the both glass material components 41, 42. The optical path length of the optical pickup 20 is changed. For example, a first glass material component 41 and the second glass material component 42 is relatively displaced as shown in FIG. 11 (b), the thickness of the glass material component definitive in the traveling direction of the parallel light is reduced, the optical path length of the optical pickup 20 Is shortened. Further, when the first glass material component 41 and the second glass material component 42 is relatively displaced as shown in FIG. 11 (c), if the thickness of the glass material component definitive in the traveling direction of the parallel light is increased, the optical path length of the optical pickup 20 Is expanded.

こうした本実施形態の光ピックアップ20における光路長調整機構140は、実質的に平行光中に平行平板を挿入した状態とほぼ等価であるため、光線を平行移動させることなく、光路長の調整が可能となる。そのため、第1実施形態のように、各硝材部品41,42の厚さが変化する方向が光ディスクODのトラックTRの接線方向となるように各硝材部品41,42を配設せずとも、対物レンズ22の移動に伴う受光素子23の受光量の過不足は生じないようになる。 Since the optical path length adjustment mechanism 140 in the optical pickup 20 of this embodiment is substantially equivalent to a state in which a parallel plate is inserted in parallel light, the optical path length can be adjusted without translating light beams. It becomes. Therefore, as in the first embodiment, the objectives can be provided without arranging the glass material parts 41 and 42 so that the thickness changing direction of the glass material parts 41 and 42 is the tangential direction of the track TR of the optical disk OD. An excess or deficiency in the amount of light received by the light receiving element 23 accompanying the movement of the lens 22 does not occur.

(第3実施形態)
続いて本発明を具体化した第3実施形態を、第1実施形態と異なる点を中心に説明する。
(Third embodiment)
Next, a third embodiment that embodies the present invention will be described focusing on differences from the first embodiment.

第2実施形態の光ピックアップ20における光路長調整機構140では、第1硝材部品41と第2硝材部品42とが密着されているため、光線の平行移動は生じないようになっている。ところが、光路長の調整に係る相対変位に際しての力の掛かり方によっては、両硝材部品41,42の摺接面(出光面41b、入光面42a)間に僅かな隙間が形成されてしまうことがあり、これにより摺接面間に空気層が介在されると、硝材部品間の界面で不要な反射が生じてしまう虞がある。 In the optical path length adjusting mechanism 140 in the optical pickup 20 of the second embodiment, the first glass material component 41 and the second glass material component 42 are in close contact with each other, so that no parallel movement of the light beam occurs. However, depending on how the force is applied during the relative displacement associated with the adjustment of the optical path length, a slight gap may be formed between the sliding contact surfaces (the light exit surface 41b and the light entrance surface 42a) of both glass parts 41 and 42. Thus, if an air layer is interposed between the sliding contact surfaces, unnecessary reflection may occur at the interface between the glass parts.

本実施形態の光ピックアップ20における光路長調整機構には、上記のような隙間の形成を防止して、不要な反射の発生を抑制する対策が施されている。図12に、そうした対策の施された本実施形態の光路長調整機構240の斜視構造を示す。同図に示すように、光路長調整機構240を構成する硝材部品(第1硝材部品41、第2硝材部品42)の各々は、第1実施形態と同一のものが用いられている。 In the optical path length adjusting mechanism in the optical pickup 20 of the present embodiment, measures are taken to prevent the occurrence of unnecessary reflection by preventing the formation of the gap as described above. FIG. 12 shows a perspective structure of the optical path length adjusting mechanism 240 of this embodiment in which such measures are taken. As shown in the figure, each of the glass material parts (the first glass material part 41 and the second glass material part 42) constituting the optical path length adjusting mechanism 240 is the same as that of the first embodiment.

本実施形態の光ピックアップ20における光路長調整機構240では、第1硝材部品41の出光面41bと第2硝材部品42の入光面42aとの対向面間に、透明グリース43が介設されている。この透明グリース43は、両硝材部品41,42とほぼ同一の屈折率を有するものが用いられている。したがって、こうした光路長調整機構240では、その内部での屈折率の変化がほとんど無く、これを通過する平行光は入光から出光まで直線に進むため、光線の平行移動は生じないようになっている。 In the optical path length adjusting mechanism 240 in the optical pickup 20 of the present embodiment, the transparent grease 43 is interposed between the opposed surfaces of the light exit surface 41b of the first glass material component 41 and the light incident surface 42a of the second glass material component 42. Yes. As this transparent grease 43, a grease having substantially the same refractive index as that of the both glass parts 41 and 42 is used. Therefore, in such an optical path length adjusting mechanism 240, there is almost no change in the refractive index inside, and the parallel light passing through the optical path length advances in a straight line from incident light to outgoing light. Yes.

また光路長の調整に係る相対変位に際して、隙間が生じたとしても、その隙間は透明グリース43によって直に充填されてしまうため、両硝材部品41,42の界面での不要な反射の発生を抑制することができる。ちなみに、両硝材部品41,42間に介設する充填物質としては、屈折率が硝材部品とほぼ同一で、光路長調整に係る相対変位に追従して柔軟に変形可能な液体や粘弾性体であれば、透明グリース43に代えて採用することが可能である。   In addition, even if a gap is generated at the time of relative displacement related to the adjustment of the optical path length, the gap is directly filled with the transparent grease 43, so that unnecessary reflection at the interface between both glass material parts 41 and 42 is suppressed. can do. By the way, the filling material interposed between the glass parts 41 and 42 is a liquid or viscoelastic body that has a refractive index almost the same as that of the glass parts and can be flexibly deformed following the relative displacement associated with the optical path length adjustment. If present, the transparent grease 43 can be used instead.

以上説明した各実施形態は、下記のように変形して実施することもできる。   Each embodiment described above can also be carried out with the following modifications.

・上記各実施形態では、第1硝材部品41の入光面41a及び第2硝材部品42の出光面42bを矩形状としていたが、光ピックアップ20の配置スペース等の都合に応じて、これらの形状を任意に変更しても良い。例えば図13(a)には、第1硝材部品の入光面及び第2硝材部品の出光面を円形状とした光路長調整機構の構成例が示されている。   In each of the above embodiments, the light incident surface 41a of the first glass material component 41 and the light emission surface 42b of the second glass material component 42 are rectangular, but these shapes may be used depending on the convenience of the arrangement space of the optical pickup 20, etc. May be arbitrarily changed. For example, FIG. 13A shows a configuration example of an optical path length adjusting mechanism in which the light incident surface of the first glass material component and the light exit surface of the second glass material component are circular.

・第1硝材部品41、第2硝材部品42とは必ずしも合同形状でなくても良い。要は、両硝材部品が同一屈折率とされ、且つそれらの入光面と出光面との挟み角が同じ鋭角に形成されているのであれば、上記各実施形態の光ピックアップ20と同様の光路長調整機構を構成することが可能である。 -The 1st glass material component 41 and the 2nd glass material component 42 do not necessarily need to be a congruent shape. In short, as long as both glass parts have the same refractive index and the incident angle between the light incident surface and the light exit surface is the same acute angle, the optical path similar to that of the optical pickup 20 of each of the above embodiments. It is possible to configure a length adjustment mechanism.

・上記各実施形態の光ピックアップ20における光路長調整機構を構成する硝材部品の対を、平行光の進行方向に沿って複数並べて配置するようにしても良い。例えば図13(b)には、第1硝材部品41、第2硝材部品42の対を、2対並べて配置した光路長調整機構の構成例が示されている。 In the optical pickup 20 of each of the above embodiments, a plurality of glass material parts constituting the optical path length adjusting mechanism may be arranged side by side along the traveling direction of parallel light. For example, FIG. 13B shows a configuration example of an optical path length adjusting mechanism in which two pairs of the first glass material part 41 and the second glass material part 42 are arranged side by side.

・図14(a)に示されるような3つの硝材部品51,52,53によって光路長調整機構を構成するようにしても良い。   -You may make it comprise an optical path length adjustment mechanism by three glass-material components 51, 52, 53 as shown to Fig.14 (a).

この光路長調整機構にあって、同機構の配設される平行光に対して最も入光側に配置される硝材部品51は、平行光の進行方向に垂直をなすように配置された入光面とその入光面に対して鋭角で交叉する出光面とを有して形成されている。また最も出光側に配置される硝材部品53は、平行光の進行方向に垂直をなすように配置される出光面とその出光面に対して鋭角で交叉する入光面とを有して形成されている。   In this optical path length adjusting mechanism, the glass material component 51 arranged closest to the incident light side with respect to the parallel light provided by the same mechanism is arranged so as to be perpendicular to the traveling direction of the parallel light. And a light exit surface that intersects the light incident surface at an acute angle. The glass part 53 arranged on the most light-emitting side has a light-emitting surface arranged so as to be perpendicular to the traveling direction of the parallel light and a light-incident surface that intersects the light-emitting surface at an acute angle. ing.

一方、それら硝材部品51,53の中間に介設される硝材部品52は、その入光面と出光面との挟み角θ3は、上記硝材部品51の入光面・出光面間の挟み角θ1と硝材部品52の入光面・出光面間の挟み角θ2との合計と等しい角度とされている(θ3=θ1+θ2)。また硝材部品53は、その入光面が上記硝材部品51の出光面と平行をなして対向され、且つその出光面が上記硝材部品52の入光面と平行をなして対向されるように配設されている。   On the other hand, the glass material part 52 interposed between the glass parts 51 and 53 has a sandwiching angle θ3 between the light incident surface and the light exiting surface of the glass material component 51, and the sandwiching angle θ1 between the light incident surface and the light emitting surface of the glass material component 51 is as follows. Is equal to the sum of the sandwiching angle θ2 between the light incident surface and the light emitting surface of the glass part 52 (θ3 = θ1 + θ2). Further, the glass material part 53 is arranged so that the light incident surface thereof is opposed in parallel with the light emission surface of the glass material component 51, and the light emission surface thereof is opposed in parallel with the light incident surface of the glass material component 52. It is installed.

こうした光路長調整機構においても、3つの硝材部品のうちの2つを、それらの厚さ変化方向に対して相対変位させることで光路長を変更することができる。   In such an optical path length adjusting mechanism, the optical path length can be changed by relatively displacing two of the three glass material parts with respect to the thickness change direction thereof.

ちなみに、こうした光路長調整機構は、同図に示される光軸に垂直な平面Dで硝材部品52を2つに切断することで形成される、図14(b)のような2組の硝材部品の対(硝材部品51と硝材部品52’とからなる対A、硝材部品52”と硝材部品53とからなる対B)と実質的に等価である。すなわち、図14(b)の硝材部品52’の出光面と硝材部品52”の入光面とを完全に密着させて一体化すれば、図14(a)の光路長調整機構となる。したがって同図(a)に示されるような光路長調整機構は、結局は、本発明に係る光路長調整機構を平行光の進行方向に沿って2つ並べて配置したものと実質的に同等である。   Incidentally, such an optical path length adjusting mechanism is formed by cutting the glass material parts 52 into two along a plane D perpendicular to the optical axis shown in the figure, as shown in FIG. 14B. (A pair A consisting of a glass part 51 and a glass part 52 ′, and a pair B consisting of a glass part 52 ″ and a glass part 53). That is, the glass part 52 shown in FIG. If the light exit surface of 'and the light entrance surface of the glass member 52 "are completely brought into close contact with each other, the optical path length adjusting mechanism shown in FIG. 14A is obtained. Accordingly, the optical path length adjusting mechanism as shown in FIG. 5A is substantially the same as the optical path length adjusting mechanism according to the present invention arranged side by side along the traveling direction of the parallel light. .

・上記各実施形態では、光ピックアップ20の1/4波長板27と反射ミラー28との間に光路長調整機構を設置しているが、平行光中であればその設置位置は適宜変更しても良い。すなわち、図2に例示したような光ピックアップ20であれば、メインビームの光路中のコリメータレンズ26と対物レンズ22との間の部位であれば、任意の部位に光路長調整機構を設置することができる。   In each of the above embodiments, an optical path length adjustment mechanism is installed between the quarter-wave plate 27 and the reflection mirror 28 of the optical pickup 20, but if it is in parallel light, its installation position is changed as appropriate. Also good. That is, in the case of the optical pickup 20 as illustrated in FIG. 2, an optical path length adjusting mechanism is installed at an arbitrary portion as long as it is a portion between the collimator lens 26 and the objective lens 22 in the optical path of the main beam. Can do.

・上記各実施形態では、光路長調整機構による光路長の調整を、製造直後に行う場合を説明したが、硝材部品を相対変位させるアクチュエータを設けて、光ピックアップの使用中に光路長を調整させるようにしても良い。例えば戻り光ノイズの発生を検出し、その検出結果に応じてアクチュエータを制御して光路長を調整させるように、光路長調整機構を構成することもできる。   In each of the above embodiments, the case where the optical path length adjustment by the optical path length adjustment mechanism is performed immediately after manufacturing has been described. However, an actuator that relatively displaces the glass material part is provided to adjust the optical path length during use of the optical pickup. You may do it. For example, the optical path length adjustment mechanism can be configured to detect the occurrence of return light noise and adjust the optical path length by controlling the actuator according to the detection result.

・上記各実施形態のような硝材部品の対を用いるとともにそれらを相対変位させる以外の手段にて、硝材部品の入光面と出光面との厚さを可変とする手段があれば、それを光ピックアップの光路長調整機構として採用しても良い。例えば電圧の印加に応じて厚さの変わる特性の硝材で形成された硝材の平行平板を平行光中に配設することでも、光ピックアップの光路長の容易且つ細密な調整は可能である。   If there is a means for changing the thickness of the light incident surface and the light outgoing surface of the glass material component by means other than using a pair of glass material components as in the above embodiments and relatively displacing them, You may employ | adopt as an optical path length adjustment mechanism of an optical pick-up. For example, it is possible to easily and finely adjust the optical path length of the optical pickup by disposing parallel plates of glass materials formed of glass materials whose thickness changes with application of voltage in parallel light.

・上記各実施形態では、光ピックアップでの光路長を調整する機構として本発明を実施した場合を例に説明したが、本発明の光路長調整機構は、光ピックアップ以外の光学機器に対しても、上記同様或いはそれに準じた態様で採用することができる。   In each of the above embodiments, the case where the present invention is implemented as a mechanism for adjusting the optical path length in the optical pickup has been described as an example. However, the optical path length adjusting mechanism of the present invention is also applicable to optical devices other than the optical pickup. These can be employed in the same manner as described above or in a similar manner.

第1実施形態の適用される光ディスク装置の斜視図。1 is a perspective view of an optical disc apparatus to which a first embodiment is applied. 同実施形態の光ピックアップについてその光学系の斜視図。The perspective view of the optical system about the optical pick-up of the embodiment. 同実施形態の光ピックアップでの往路における光路を示す模式図。The schematic diagram which shows the optical path in the outward path | route in the optical pick-up of the embodiment. 同実施形態の光ピックアップでの復路における光路を示す模式図。The schematic diagram which shows the optical path in the return path | route with the optical pick-up of the embodiment. 同実施形態の光ピックアップにおける光路長調整機構の斜視図。The perspective view of the optical path length adjustment mechanism in the optical pick-up of the embodiment. (a)〜(c)同光路長調整機構の光路長の可変態様を示す模式図。(A)-(c) The schematic diagram which shows the variable aspect of the optical path length of the optical path length adjustment mechanism. 光ピックアップの光路長調整機構近傍での光線の状態を示す模式図。The schematic diagram which shows the state of the light ray in the optical path length adjustment mechanism vicinity of an optical pick-up. 対物レンズの移動量と受光素子の受光量との関係を示すグラフ。The graph which shows the relationship between the movement amount of an objective lens, and the light reception amount of a light receiving element. 光ピックアップの光路長調整機構近傍の(a)斜視構造及び(b)その平面構造を併せ示す図。The figure which shows together (a) perspective structure near the optical path length adjustment mechanism of an optical pick-up, and (b) the planar structure. 第2実施形態の光ピックアップにおける光路長調整機構の斜視図。The perspective view of the optical path length adjustment mechanism in the optical pick-up of 2nd Embodiment. (a)〜(c)同光路長調整機構の光路長の可変態様を示す模式図。(A)-(c) The schematic diagram which shows the variable aspect of the optical path length of the optical path length adjustment mechanism. 第3実施形態の光ピックアップの光路長調整機構について(a)その斜視構造及び(b)側面構造を併せ示す図。The figure which shows together (a) the perspective structure and (b) side structure about the optical path length adjustment mechanism of the optical pick-up of 3rd Embodiment. (a)、(b)光路長調整機構の変形例の斜視構造をそれぞれ示す斜視図。(A), (b) The perspective view which shows the perspective structure of the modification of an optical path length adjustment mechanism, respectively. (a)光路長調整機構の変形例の斜視構造及び(b)その変形例の等価な光路長調整機構の斜視図。(A) The perspective structure of the modification of an optical path length adjustment mechanism, (b) The perspective view of the equivalent optical path length adjustment mechanism of the modification. 従来の光ピックアップの模式図。Schematic diagram of a conventional optical pickup. 戻り光の光路長と戻り光ノイズの大きさとの関係を示すグラフ。The graph which shows the relationship between the optical path length of return light, and the magnitude | size of return light noise.

10…光ディスク装置、11…シャーシ、12…保持部、13…スピンドルモータ、14…シャフト14、20…光ピックアップ、21…レーザー素子21…対物レンズ、23…受光素子、24…回折格子、25…偏光ビームスプリッタ、26…コリメータレンズ、27…1/4波長板、28…反射ミラー、29…フロントモニタ、30…センサレンズ、40,140,240…光路長調整機構、41…第1硝材部品(41a…入光面、41b…出光面)、42…第2硝材部品(42a…入光面、42b…出光面)、43…透明グリース。   DESCRIPTION OF SYMBOLS 10 ... Optical disk apparatus, 11 ... Chassis, 12 ... Holding part, 13 ... Spindle motor, 14 ... Shaft 14, 20 ... Optical pick-up, 21 ... Laser element 21 ... Objective lens, 23 ... Light receiving element, 24 ... Diffraction grating, 25 ... Polarization beam splitter, 26 ... collimator lens, 27 ... 1/4 wavelength plate, 28 ... reflection mirror, 29 ... front monitor, 30 ... sensor lens, 40, 140, 240 ... optical path length adjustment mechanism, 41 ... first glass material component ( 41a ... light entrance surface, 41b ... light exit surface), 42 ... second glass material part (42a ... light entrance surface, 42b ... light exit surface), 43 ... transparent grease.

Claims (3)

レーザー素子から出射されたレーザー光を光ディスクに照射する光ピックアップにおいて、当該光ピックアップの光路内の平行光中に、屈折率を同じくし、且つ入光面と出光面との挟み角が同一の第1硝材部品及び第2硝材部品を備え、前記第1硝材部品をその入光面が前記平行光の進行方向に対して略垂直をなすよう配置し、且つ前記第2硝材部品をその入光面が前記第1硝材部品の出光面に対して平行をなして対向するように配置し、前記第1硝材部品及び第2硝材部品は、それらの入光面と出光面と間の厚さの変化方向が、前記光ディスクのトラックの接線方向と一致するように配設されてなることを特徴とする光ピックアップ。In an optical pickup that irradiates an optical disc with laser light emitted from a laser element, the parallel light in the optical path of the optical pickup has the same refractive index and the same angle between the light incident surface and the light output surface. 1 glass material part and 2nd glass material part, the 1st glass material part is arrange | positioned so that the light incident surface may be substantially perpendicular | vertical with respect to the advancing direction of the parallel light, and the 2nd glass material component is the light incident surface Are arranged so as to face each other in parallel with the light exit surface of the first glass material component, and the first glass material component and the second glass material component have a thickness change between the light incident surface and the light exit surface. An optical pickup characterized in that the direction is arranged so as to coincide with a tangential direction of a track of the optical disk. 前記第1硝材部品の出光面と前記第2硝材部品の入光面とが摺接されてなる請求項1に記載の光ピックアップ。The optical pickup according to claim 1, wherein a light exit surface of the first glass material component and a light incident surface of the second glass material component are in sliding contact. 前記第1硝材部品の出光面と前記第2硝材部品の入光面との間に、それら第1硝材部品及び第2硝材部品と略同一の屈折率を有する液体又は粘弾性体が介設されてなる請求項1に記載の光ピックアップ。Between the light exit surface of the first glass material component and the light incident surface of the second glass material component, a liquid or viscoelastic body having substantially the same refractive index as that of the first glass material component and the second glass material component is interposed. The optical pickup according to claim 1.
JP2004103712A 2004-03-31 2004-03-31 Optical pickup Expired - Fee Related JP4383224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103712A JP4383224B2 (en) 2004-03-31 2004-03-31 Optical pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103712A JP4383224B2 (en) 2004-03-31 2004-03-31 Optical pickup

Publications (2)

Publication Number Publication Date
JP2005292239A JP2005292239A (en) 2005-10-20
JP4383224B2 true JP4383224B2 (en) 2009-12-16

Family

ID=35325271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103712A Expired - Fee Related JP4383224B2 (en) 2004-03-31 2004-03-31 Optical pickup

Country Status (1)

Country Link
JP (1) JP4383224B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100007934A1 (en) * 2007-01-18 2010-01-14 Sharp Kabushiki Kaisha Optical Element and Image Display Device Using the Same
JP5153424B2 (en) * 2008-04-11 2013-02-27 株式会社日立製作所 Optical head and optical disk apparatus
JP5505594B2 (en) * 2009-03-11 2014-05-28 株式会社リコー Optical scanning apparatus and image forming apparatus
CN110476103B (en) * 2017-04-03 2021-08-06 奥林巴斯株式会社 Endoscope system and method for adjusting endoscope system

Also Published As

Publication number Publication date
JP2005292239A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1895526A1 (en) Optical pickup device
JP4505533B2 (en) Optical pickup, optical disk drive device, and optical information device
US20090080307A1 (en) Method of manufacturing optical head including the step of adjusting parallelism of light beam
JP4964306B2 (en) Optical head device
US7358471B2 (en) Optical head device
JP4383224B2 (en) Optical pickup
JP2009104748A (en) Optical pickup
US20060227677A1 (en) Aberration detection device and optical pickup device provided with same
JP2009205775A (en) Optical pickup device
JP4785861B2 (en) Optical head device and optical disk device
JP4353780B2 (en) Optical pickup device
US20070104046A1 (en) Optical pickup device
US20050276297A1 (en) Optical pickup and optical disk apparatus
WO2007083809A1 (en) Optical pickup, optical disc drive device and optical information device
JP2001250257A (en) Optical integrated element and optical pickup device using it
JP4170264B2 (en) Optical pickup device and optical information recording / reproducing device
JP2010211842A (en) Optical pickup, optical information reproducing device, and optical information recording and reproducing device
JP4834168B2 (en) Optical pickup device
JP4112124B2 (en) Optical recording medium, recording / reproducing apparatus and recording / reproducing method for recording / reproducing information on / from the optical recording medium
JP3545360B2 (en) Optical pickup device
JP5272726B2 (en) Lens drive mechanism for optical pickup
JP2008508652A (en) Initial focus optimization for optical scanning devices
KR100693660B1 (en) Optical Pick-up apparatus
JP5392031B2 (en) Optical pickup device
JP2009087495A (en) Optical pickup device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees