JP4383069B2 - Spherical activated carbon for direct perfusion of blood and method for producing the same - Google Patents

Spherical activated carbon for direct perfusion of blood and method for producing the same Download PDF

Info

Publication number
JP4383069B2
JP4383069B2 JP2003046439A JP2003046439A JP4383069B2 JP 4383069 B2 JP4383069 B2 JP 4383069B2 JP 2003046439 A JP2003046439 A JP 2003046439A JP 2003046439 A JP2003046439 A JP 2003046439A JP 4383069 B2 JP4383069 B2 JP 4383069B2
Authority
JP
Japan
Prior art keywords
activated carbon
pitch
spherical activated
spherical
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003046439A
Other languages
Japanese (ja)
Other versions
JP2004256324A (en
Inventor
秀明 佐藤
丈樹 小野
直弘 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2003046439A priority Critical patent/JP4383069B2/en
Publication of JP2004256324A publication Critical patent/JP2004256324A/en
Application granted granted Critical
Publication of JP4383069B2 publication Critical patent/JP4383069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、血液の直接灌流用球状活性炭及びその製造方法に関する。
【0002】
【従来の技術】
腎疾患患者などの血液中に含まれる毒性物質を除去する目的で、患者の体外に血液循環路を形成し、患者の血液を体内から体外へ取り出し、体外での浄化処理を実施してから、再び患者体内へ血液を戻す治療方法がある。こうした血液浄化の代表的手段としては、従来から、セルロース製透析膜が利用されてきた。しかしながら、この血液透析法だけで、多様な患者の病態を健常者に近づけるには限界がある。すなわち、血液透析法によって患者から除去可能な物質はセルロース膜を透過する溶質のみであるため、分子量の比較的大きな溶質の除去は血液透析では対処することができない。
このような背景をもとに、血液中から毒性物質を直接除去することのできる手法として、血液透析に代わる手法が求められ、直接血液灌流(Direct Hemoperfusion,DHP)が開発された。この直接血液灌流法とは、活性炭などの吸着剤を血液に直接に接触させて、毒性物質を吸着除去する手法であり、吸着型血液浄化器などが厚生労働省から既に承認されており、臨床的にも普及している。
【0003】
前記の直接血液灌流法において用いる吸着剤は、血液と直接に接触し、しかも吸着処理後の血液を体内に戻すことになるので、吸着能以外にも種々の物性が要求される。すなわち、血液は、一般的に異物に接触すると凝血するので、血液を吸着剤(例えば、活性炭)と直接に接触させて毒性物質や不要な溶質を吸着させるためには、吸着剤表面を抗血栓性に改善する必要がある。また、血球の破壊防止と吸着剤粉末による血管閉塞の防止も必要である。
そこで、例えば、特公昭55−49868号公報(特許文献1)や特公昭58−41066号公報(特許文献2)などに記載されているように、活性炭などの吸着剤表面に樹脂皮膜を形成する技術が知られている。また、樹脂などで被覆処理する前の活性炭それ自体を改良することによって、より優れた吸着剤を提供することが可能になるはずである。例えば、特公昭60−22947号公報(特許文献3)や特公平1−27971号公報(特許文献4)などには、熱硬化性樹脂を主原料として製造された粒状活性炭が記載されている。
【0004】
【特許文献1】
特公昭55−49868号公報
【特許文献2】
特公昭58−41066号公報
【特許文献3】
特公昭60−22947号公報
【特許文献4】
特公平1−27971号公報
【0005】
【発明が解決しようとする課題】
本発明者は、直接血液灌流法において用いる吸着剤の原料となる活性炭それ自体の物性を向上させる研究を鋭意行ったところ、従来品(人工臓器用吸着剤MU−AZ:呉羽化学工業)において達成されていた種々の物性を損なうことなく、分子量が比較的大きい物質の吸着能が向上し、しかも水中振盪摩耗率も向上した新規の球状活性炭の開発に成功した。
すなわち、本発明者が開発した新規の球状活性炭では、分子量約100〜1000の毒性物質に対する吸着能は、従来の球状活性炭と少なくとも同程度であるが、分子量約1000〜10000(ビタミンB12と同程度の分子量)の毒性物質に対する吸着能が、従来の球状活性炭よりも向上する。また、本発明者が開発した新規の球状活性炭では、従来の球状活性炭と比較して水中振盪摩耗率も向上するので、吸着剤粉末の発生が一層抑制され、吸着剤粉末による血管閉塞の防止効果が向上する。
本発明は、こうした知見に基づくものである。
【0006】
【課題を解決するための手段】
従って、本発明は、直径が0.1〜1mmであり、H/Cが0.14以下であり、そして細孔直径5〜1000nmの細孔容積が0.25〜0.55mL/gであることを特徴とする、血液の直接灌流用球状活性炭に関する。
また、本発明は、多孔性球状酸化ピッチ又は球状活性炭前駆体を不活性ガス雰囲気中で1000〜2500℃で熱処理を行い、続いて、水蒸気と酸素と不活性ガスの混合ガス雰囲気中で750〜1200℃で賦活処理を行うことを特徴とする、前記の血液直接灌流用球状活性炭の製造方法にも関する。
【0007】
【発明の実施の形態】
本発明による球状活性炭は、直径が0.1〜1mmである。球状活性炭の直径が0.1mm未満になると、球状活性炭の外表面積が増加し、有益物質の吸着が起こりやすくなるとともに、血液浄化時の活性炭充填層の圧力損失が大きくなり、血球が破壊するおそれがあるので好ましくない。また、直径が1mmを超えると、球状活性炭内部への毒性物質の拡散距離が増加し、吸着速度が低下するので好ましくない。直径は、好ましくは0.3〜1mmである。なお、本明細書で「直径がDl〜Duである」という表現は、JIS K 1474に準じて作成した粒度累積線図(平均粒子径の測定方法に関連して後で説明する)において、ふるいの目開きDl〜Duの範囲に対応するふるい通過百分率(%)が90%以上であることを意味する。
【0008】
本発明による球状活性炭は、元素分析により求めた水素原子と炭素原子との比率(H/C:以下「H/C」と略記することがある)が0.14以下である。H/Cが0.14を越えると、毒性物質に対する吸着能が、従来公知の球状活性炭と同程度まで低下するか、あるいはそれ以下に低下するので、好ましくない。H/Cの好ましい範囲は、例えば0.13以下である。吸着能の観点からはH/Cの下限は特に限定されないが、H/C値を低下させるためには焼成処理温度を高くする必要があるので、経済性の観点から0.05以上であることが好ましい。
【0009】
本発明による球状活性炭は、細孔直径5〜1000nmの細孔容積が0.25〜0.55mL/gである。この細孔容積が0.25mL/g未満になると毒性物質に対する吸着能が低下するので好ましくない。また、この細孔容積が0.55mL/gを超えると表面強度が低下し、水中振盪摩耗率が大きくなるので好ましくない。前記の細孔容積は、好ましくは0.28〜0.52mL/gであり、特に好ましくは0.3〜0.52mL/gである。なお、細孔直径5〜1000nmの細孔容積の測定方法は後述する。
【0010】
本発明による球状活性炭の好ましい態様においては、BET法により求められる比表面積(以下「SSA」と省略することがある)が800m2/g以上である。SSAが800m2/gより小さい球状活性炭では、毒性物質に対する吸着能が低くなるので好ましくない。SSAは、より好ましくは1000m2/g以上である。SSAの上限は特に限定されるものではないが、カサ密度及び強度の観点から、SSAは2500m2/g以下であることが好ましい。
【0011】
本発明による球状活性炭の好ましい態様においては、水中振盪摩耗率が0.08%以下である。水中振盪摩耗率の測定方法後述する。
また、本発明による球状活性炭の好ましい態様においては、カサ密度が0.40〜0.55g/mLであり、より好ましくは0.40〜0.50g/mLである。カサ密度が0.40〜0.55g/mLの範囲になると、単位体積あたりの吸着能が大きい点で好ましい。カサ密度の測定方法後述する。
更に、本発明による球状活性炭の好ましい態様においては、ビタミンB12の吸着率が93%以上である。ビタミンB12の吸着率の測定方法後述する。
【0012】
本発明の球状活性炭は、例えば、以下の方法によって製造することができる。最初に、石油ピッチ又は石炭ピッチ等の等方性ピッチに対し、添加剤として、沸点200℃以上の2環式又は3環式の芳香族化合物又はその混合物を加えて加熱混合した後、成形してピッチ成形体を得る。なお、本発明による前記球状活性炭は、血液の直接灌流用吸着剤として利用するので、その原料も、安全上充分な純度を有し、且つ品質的に安定であることが必要である。
【0013】
次に、70〜180℃の熱水中で、前記のピッチ成形体を攪拌下に分散造粒し、冷却して微小球体化する。更に、ピッチに対して低溶解度を有し、かつ前記添加剤に対して高溶解度を有する溶剤で、微小球体化ピッチ成形体から添加剤を抽出除去し、得られた多孔性球状ピッチを、酸化剤を用いて酸化すると、熱に対して不融性の多孔性球状酸化ピッチが得られる。この不融化処理は、例えば、空気中にて、200〜300℃にて加熱することによって実施することができる。
【0014】
こうして得られた不融性の多孔性球状酸化ピッチを、不活性ガス(例えば、窒素、アルゴン、若しくはヘリウム、あるいはそれらの混合物)中で、1000〜2500℃(好ましくは1050〜1500℃)の温度で焼成処理し、更に、水蒸気、酸素及び不活性ガス(例えば、窒素、アルゴン、若しくはヘリウム、あるいはそれらの混合物)の存在下で、750〜1200℃、好ましくは800〜1000℃にてカサ密度が0.40〜0.55g/mLに達するまで賦活処理すると、本発明による球状活性炭を得ることができる。
前記の賦活処理における雰囲気中の水蒸気の濃度は40〜70vol%が好ましく、酸素の濃度は0.1〜1vol%が好ましい。
【0015】
熱処理後の賦活処理時間を短縮するため、予め多孔性球状酸化ピッチを、水蒸気が主成分であるガス雰囲気中で750〜1000℃で、カサ密度が0.6g/mL以上になるまで賦活処理(予備賦活処理)して得られた球状活性炭前駆体を熱処理前の原料として用いることもできる。ここで、水蒸気が主成分であるガス雰囲気としては、例えば、水蒸気40〜70vol%を含む不活性ガス(例えば、窒素、アルゴン、若しくはヘリウム、あるいはそれらの混合物)を用いることができる。
【0016】
前記の原料ピッチに対して、芳香族化合物を添加する目的は、原料ピッチの流動性を向上させ微小球体化を容易にすること及び成形後のピッチ成形体からその添加剤を抽出除去させることにより成形体を多孔質とし、その後の工程による構造制御ならびに焼成を容易にすることにある。このような添加剤としては、例えば、ナフタレン、メチルナフタレン、フェニルナフタレン、ベンジルナフタレン、メチルアントラセン、フェナンスレン、又はビフェニル等を単独で、又はそれらの2種以上の混合物を用いることができる。ピッチに対する添加量は、ピッチ100重量部に対し芳香族化合物10〜50重量部の範囲が好ましい。
【0017】
ピッチと添加剤との混合は、均一な混合を達成するために、加熱して溶融状態で行うのが好ましい。ピッチと添加剤との混合物は、得られる球状活性炭の粒径(直径)を制御するため、粒径約0.1〜1mmの粒子に成形することが好ましい。成形は溶融状態で行ってもよく、また混合物を冷却後に粉砕する等の方法によってもよい。
【0018】
ピッチと添加剤との混合物から添加剤を抽出除去するための溶剤としては、例えば、ブタン、ペンタン、ヘキサン、又はヘプタン等の脂肪族炭化水素、ナフサ、又はケロシン等の脂肪族炭化水素を主成分とする混合物、あるいはメタノール、エタノール、プロパノール、又はブタノール等の脂肪族アルコール類等が好適である。
このような溶剤でピッチと添加剤との混合物成形体から添加剤を抽出することによって、成形体の形状を維持したまま、添加剤を成形体から除去することができる。この際に、成形体中に添加剤の抜け穴が形成され、均一な多孔性を有するピッチ成形体が得られるものと推定される。
【0019】
前記の製造方法によって得られた本発明の球状活性炭の表面を、例えば、前記特公昭55−49868号公報又は特公昭58−41066号公報に記載の方法によって被覆することによって、直接灌流用吸着剤を得ることができる。具体的には、例えば、本発明による球状活性炭を、疎水性高分子物質によって下地被覆処理して下地被覆層を形成し、続いて、親水性高分子物質によって上地被覆処理して上地被覆層を形成し、更に必要により、上地被覆層を架橋処理することによって、直接灌流用吸着剤を得ることができる。
【0020】
本発明による球状活性炭は、前記のとおり、その表面を被覆処理して血液試料の直接灌流用吸着剤として用いることができる。しかしながら、本発明による球状活性炭をそのまま、あるいは適当に後加工してから、一般的な活性炭と同様に、例えば、水処理、空気浄化、脱臭、工業薬品の精製、食品精製、食品脱色、溶剤回収、触媒、貴金属回収、あるいはダイオキシン類などの有害物質の回収にも利用することができる。
【0021】
前記の血液試料直接灌流用吸着剤は、前記のとおり、例えば、直接血液灌流(Direct Hemoperfusion,DHP)に用いることができる。ここで「血液試料」とは、血液(全血)だけでなく、血漿なども含む。従って、前記の血液試料直接灌流用吸着剤は、血液(全血)の体外処理だけでなく、血漿の体外処理にも用いることができる。
【0022】
本発明による球状活性炭が有する各物性値、すなわち、直径(平均粒子径)、細孔容積、カサ密度、比表面積、水中振盪摩耗率、及びビタミンB12吸着率は、以下の方法によって測定する。
(1)平均粒子径
球状活性炭についてJIS K 1474に準じて粒度累積線図を作成する。平均粒子径は、粒度累積線図において、横軸の50%の点の垂直線と粒度累積線との交点から、横軸に水平線を引いて交点の示すふるいの目開き(mm)を求めて、平均粒子径とする。
【0023】
(2)水銀圧入法による細孔容積
水銀ポロシメーター(例えば、MICROMERITICS社製「AUTOPORE 9200」)を用いて細孔容積を測定することができる。試料である球状活性炭を試料容器に入れ、2.67Pa以下の圧力で30分間脱気する。次いで、水銀を試料容器内に導入し、徐々に加圧して水銀を球状活性炭試料の細孔へ圧入する(最高圧力=414MPa)。このときの圧力と水銀の圧入量との関係から以下の各計算式を用いて球状活性炭試料の細孔容積分布を測定する。
具体的には、細孔直径15μmに相当する圧力(0.07MPa)から最高圧力(414MPa:細孔直径3nm相当)までに球状活性炭試料に圧入された水銀の体積を測定する。細孔直径の算出は、直径(D)の円筒形の細孔に水銀を圧力(P)で圧入する場合、水銀の表面張力を「γ」とし、水銀と細孔壁との接触角を「θ」とすると、表面張力と細孔断面に働く圧力の釣り合いから、次式:
−πDγcosθ=π(D/2)2・P
が成り立つ。従って
D=(−4γcosθ)/P
となる。
本明細書においては、水銀の表面張力を484dyne/cmとし、水銀と炭素との接触角を130度とし、圧力PをMPaとし、そして細孔直径Dをμmで表示し、下記式:
D=1.27/P
により圧力Pと細孔直径Dの関係を求める。本明細書において細孔直径5〜1000nmの範囲の細孔容積とは、水銀圧入圧1.27〜254MPaまでに圧入された水銀の体積に相当する。
【0024】
(3)カサ密度
試料である球状活性炭を、115℃に調節した乾燥器中で3時間乾燥した後、デシケーター中で放冷する。乾燥した球状活性炭試料を、充填密度測定容器(JIS K 1474−5.7の図8に示された容器)に、その容器の容積の約1/5容量まで入れる。前記球状活性炭試料の上面が一定の高さになるまで、ゴム板上で静かにたたき、更に同量の球状活性炭試料を加えて静かにたたく。このたたき充填操作を繰り返し、容器の上端まで球状活性炭試料を充填し、容器上部の筒を抜き取り、ステンレスステール製直定規を用いて盛り上がった部分を削り取り、球状活性炭試料の上面を水平にする。前記容器内の球状活性炭試料の質量を0.1gの桁まで測定する。続いて、充填密度(L)は次の式によって算出する。
L=S/M
前記の式で、Lはカサ密度(g/mL)であり、Sは球状活性炭試料の質量(g)であり、Mは充填密度測定容器の容積(mL)である。
【0025】
(4)比表面積
連続流通式のガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「Flow Sorb II 2300」)を用いて、球状活性炭試料のガス吸着量を測定し、BETの式により比表面積を計算することができる。具体的には、試料である球状活性炭を試料管に充填し、その試料管に窒素30vol%を含有するヘリウムガスを流しながら以下の操作を行い、球状活性炭試料への窒素吸着量を求める。すなわち、試料管を−196℃に冷却し、球状活性炭試料に窒素を吸着させる。次に、試料管を室温に戻す。このとき球状活性炭試料から脱離してくる窒素量を熱伝導型検出器で測定し、吸着ガス量(v)とする。
BETの式から誘導された近似式:
m=1/(v・(1−x))
を用いて液体窒素温度における、窒素吸着による1点法(相対圧力x=0.3)によりvmを求め、次式:
比表面積=4.35×vm=(m2/g)
により試料の比表面積を計算する。前記の各計算式で、vmは試料表面に単分子量を形成するのに必要な吸着量(cm3/g)であり、vは実測される吸着量(cm3/g)であり、xは相対圧力である。
【0026】
(5)水中振盪摩耗率
濾過装置にメンブランフィルターを取り付け、メンブランフィルターに含まれる水を吸引濾過する。メンブランフィルターを取り外し、そのメンブランフィルターを115℃に調節された乾燥器で30分間乾燥する。デシケーターで30分間放冷した後、メンブランフィルターの質量を0.1mgの桁まで測定する。
一方、試料である球状活性炭(約50mL)を、115℃に調節した恒温乾燥器中で3時間乾燥した後、デシケーター中で放冷する。乾燥した球状活性炭試料約10gを0.1mgの桁まで測定し、その測定値を球状活性炭試料質量(S)とする。続いて、球状活性炭試料を振盪用瓶に移し、水50mLを加えた後、振盪数245±5r/minで30分間振盪する。ふるいで濾過し、大きな粒状の球状活性炭試料を取り除いた試料液を、質量を測定した前記メンブランフィルターが取り付けられた濾過装置で吸引濾過する。粉状の濾過残分が付着しているメンブランフィルターの質量を測定し、瓶に移し、115℃に調節された乾燥器で30分間乾燥する。デシケーターで30分間放冷した後、粉状の濾過残分が付着しているメンブランフィルターの乾燥質量を0.1mgの桁まで測定し、粉状濾過残分量(R)を求める。水中振盪摩耗率(A)は、次の式によって算出する。
A=(R/S)×100
前記の式で、Aは水中振盪摩耗率(%)であり、Rは濾過残分の質量(g)であり、そしてSは球状活性炭試料の質量(g)である。
【0027】
(6)ビタミンB12の吸着除去能
球状活性炭試料約5gを、115℃に調節された恒温乾燥機中で3時間乾燥させた後、デシケーター中で放冷する。吸着試験用ビーカーに、予めビタミンB12原液濃度(F)がわかっているビタミンB12標準原液を正確に100mLの量で入れる。そして、37℃に調節された水浴中に浸す。ビタミンB12標準原液の液温が37℃になったら、乾燥した球状活性炭試料を1±0.001gの範囲で0.1mgの桁まで秤量して取り、ビーカーに入れ、回転数405r/minで30分間攪拌し、濾過する。得られた濾液及び標準原液に関して、分光光度計を用いて波長520nmにおける吸光度を測定する。標準原液の吸光度より検量線を作成し、濾液の吸光度よりビタミンB12残存濃度(E)を求める。ビタミンB12吸着除去率(D)は、次の式によって算出する。
D(%)=〔(10−E)/F〕×100
前記の式で、DはビタミンB12吸着除去率(%)であり、EはビタミンB12残存濃度(mg/100mL)であり、そしてFはビタミンB12原液濃度(mg/100mL)である。
【0028】
【実施例】
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
【0029】
【実施例1】
石油系ピッチ(軟化点=210℃,キノリン不溶分=1重量%以下,H/C原子比=0.63)68kgと、ナフタレン32kgとを、攪拌翼のついた内容積300Lの耐圧容器に仕込み、180℃で溶融混合を行った後、80〜90℃に冷却して押し出し、紐状成形体を得た。次いで、この紐状成形体を直径と長さの比が約1〜2になるように破砕した。この破砕物に、0.23重量%のポリビニルアルコール(ケン化度=88%)水溶液120kgを加え、95℃で350rpmの速度で攪拌して分散させた後、急冷して分散粒子を凝固させ、球状ピッチ成形体を得た。
更に、濾過を行って水分を除去し、球状ピッチ成形体の約6倍重量のn−ヘキサンで球状ピッチ成形体中のナフタレンを抽出除去した。続いて、空気中にて、260℃で1時間保持して酸化処理を行い、不融性多孔性球状酸化ピッチを得た。
次に、不融性多孔性球状酸化ピッチに対して、窒素ガス雰囲気中で1350℃で4時間の焼成処理を行った。更に、50vol%の水蒸気と0.5vol%の酸素とを含む窒素ガス雰囲気中で、820℃で12時間の賦活処理を実施し、本発明による球状活性炭を得た。
【0030】
【実施例2】
賦活処理を900℃で5時間実施したこと以外は、実施例1に記載の操作を繰り返して、本発明による球状活性炭を得た。
【0031】
【実施例3】
焼成処理を2000℃で実施し、賦活処理を900℃で10時間実施したこと以外は、実施例1に記載の操作を繰り返して、本発明による球状活性炭を得た。
【0032】
【実施例4】
焼成処理を1100℃で実施し、賦活処理を900℃で4時間実施したこと以外は、実施例1に記載の操作を繰り返して、本発明による球状活性炭を得た。
【0033】
【実施例5】
石油系ピッチ(軟化点=210℃,キノリン不溶分=1重量%以下,H/C原子比=0.63)68kgと、ナフタレン32kgとを、攪拌翼のついた内容積300Lの耐圧容器に仕込み、180℃で溶融混合を行った後、80〜90℃に冷却して押し出し、紐状成形体を得た。次いで、この紐状成形体を直径と長さの比が約1〜2になるように破砕した。この破砕物に、0.23重量%のポリビニルアルコール(ケン化度=88%)水溶液120kgを加え、95℃で350rpmの速度で攪拌して分散させた後、急冷して分散粒子を凝固させ、球状ピッチ成形体を得た。
更に、濾過を行って水分を除去し、球状ピッチ成形体の約6倍重量のn−ヘキサンで球状ピッチ成形体中のナフタレンを抽出除去した。続いて、空気中にて、260℃で1時間保持して酸化処理を行い、不融性多孔性球状酸化ピッチを得た。
次に、得られた不融性多孔性球状酸化ピッチを、水蒸気50vol%を含む窒素ガス中で、カサ密度が0.6g/mL以上になるまで、予備賦活処理を実施して球状活性炭前駆体を得た。カサ密度が0.6g/mL以上になることは、予備賦活処理中に球状活性炭前駆体の一部を予備賦活炉より取り出して、カサ密度を測定することによって確認することができる。
次に、球状活性炭前駆体を、窒素ガス雰囲気中で1350℃で4時間の焼成処理を行った。更に、50vol%の水蒸気と0.5vol%の酸素とを含む窒素ガス雰囲気中で900℃で4時間の賦活処理を実施し、本発明による球状活性炭を得た。
【0034】
【実施例6】
賦活処理時間を7時間としたこと以外は、実施例5に記載の操作を繰り返して、本発明による球状活性炭を得た。
【0035】
【実施例7】
熱処理温度を2000℃とし、賦活処理時間を10時間としたこと以外は、実施例5に記載の操作を繰り返して、本発明による球状活性炭を得た。
【0036】
【実施例8】
熱処理温度を1100℃とし、賦活処理時間を7時間としたこと以外は、実施例5に記載の操作を繰り返して、本発明による球状活性炭を得た。
【0037】
【比較例1】
石油系ピッチ(軟化点=210℃,キノリン不溶分=1重量%以下,H/C原子比=0.63)68kgと、ナフタレン32kgとを、攪拌翼のついた内容積300Lの耐圧容器に仕込み、180℃で溶融混合を行った後、80〜90℃に冷却して押し出し、紐状成形体を得た。次いで、この紐状成形体を直径と長さの比が約1〜2になるように破砕した。この破砕物に、0.23重量%のポリビニルアルコール(ケン化度=88%)水溶液120kgを加え、95℃で350rpmの速度で攪拌して分散させた後、急冷して分散粒子を凝固させ、球状ピッチ成形体を得た。
更に、濾過を行って水分を除去し、球状ピッチ成形体の約6倍重量のn−ヘキサンで球状ピッチ成形体中のナフタレンを抽出除去した。続いて、空気中にて、260℃で1時間保持して酸化処理を行い、不融性多孔性球状酸化ピッチを得た。
次に、不融性多孔性球状酸化ピッチに対して、窒素ガス雰囲気中で820℃で0.5時間の焼成処理を行った。更に、50vol%の水蒸気と0.5vol%の酸素とを含む窒素ガス雰囲気中で、820℃で2時間の賦活処理を実施し、比較用の球状活性炭を得た。
【0038】
【比較例2】
石油系ピッチ(軟化点=210℃,キノリン不溶分=1重量%以下,H/C原子比=0.63)68kgと、ナフタレン32kgとを、攪拌翼のついた内容積300Lの耐圧容器に仕込み、180℃で溶融混合を行った後、80〜90℃に冷却して押し出し、紐状成形体を得た。次いで、この紐状成形体を直径と長さの比が約1〜2になるように破砕した。この破砕物に、0.23重量%のポリビニルアルコール(ケン化度=88%)水溶液120kgを加え、95℃で350rpmの速度で攪拌して分散させた後、急冷して分散粒子を凝固させ、球状ピッチ成形体を得た。
更に、濾過を行って水分を除去し、球状ピッチ成形体の約6倍重量のn−ヘキサンで球状ピッチ成形体中のナフタレンを抽出除去した。続いて、空気中にて、260℃で1時間保持して酸化処理を行い、不融性多孔性球状酸化ピッチを得た。
次に、得られた不融性多孔性球状酸化ピッチを、水蒸気50vol%を含む窒素ガス中で、カサ密度が0.6g/mL以上になるまで、予備賦活処理を実施して球状活性炭前駆体を得た。カサ密度が0.6g/mL以上になることは、予備賦活処理中に球状活性炭前駆体の一部を予備賦活炉より取り出して、カサ密度を測定することによって確認することができる。
次に、球状活性炭前駆体に対して、窒素ガス雰囲気中で1350℃で4時間の焼成処理を行った。更に、50vol%の水蒸気を含み、酸素を全く含まない窒素ガス雰囲気中で、900℃で6時間の賦活処理を実施し、比較用の球状活性炭を得た。
【0039】
【比較例3】
50vol%の水蒸気を含み、0.5vol%の酸素を含む窒素ガス雰囲気中で1時間の賦活処理を実施したこと以外は、比較例2に記載の操作を繰り返して、比較用の球状活性炭を得た。
【0040】
【比較例4】
石油系ピッチ(軟化点=210℃,キノリン不溶分=1重量%以下,H/C原子比=0.63)及びナフタレンにコバルト0.01重量%を添加したこと、賦活処理時間を1時間としたこと以外は、比較例1に記載の操作を繰り返して、比較用の球状活性炭を得た。
【0041】
【比較例5】
石油系ピッチ(軟化点=210℃,キノリン不溶分=1重量%以下,H/C原子比=0.63)に代えて、別の石油系ピッチ(軟化点=192℃,キノリン不溶分=34.2重量%以下,H/C原子比=0.53)を用いたこと以外は、比較例1に記載の操作を繰り返して、比較用の球状活性炭を得た。
【0042】
なお、上記実施例1〜8及び比較例1〜5に記載の各製造条件を、以下の表1にまとめて示した。
【0043】
【表1】

Figure 0004383069
【0044】
【物性評価】
前記の実施例1〜8及び比較例1〜5に記載の製造条件に基づいて得られた球状活性炭について、その直径(平均粒子径)、細孔容積、カサ密度、比表面積、H/C、水中振盪摩耗率、及びビタミンB12吸着率を測定した。各物性値は、前記の測定方法によって測定した。得られた各物性値を表2にまとめて示す。
【0045】
【表2】
Figure 0004383069
【0046】
実施例1〜8で得られた本発明の球状活性炭は、いずれも、水中振盪摩耗率が血液の直接灌流用球状活性炭として充分使用できる値であり、ビタミンB12の吸着除去能も高い値を示した。
一方、比較例1〜3で得られた比較用球状活性炭においては、水中振盪摩耗率が血液の直接灌流用球状活性炭として充分使用できる値ではあったが、ビタミンB12の吸着除去能が充分ではなかった。また、比較例4で得られた比較用球状活性炭においては、ビタミンB12の吸着除去能は充分な値を示したが、水中振盪摩耗率が大きく、血液の直接灌流用球状活性炭としては適さない。更に、比較例5で得られた比較用球状活性炭は、水中振盪摩耗率及びビタミンB12の吸着除去能がいずれも不充分である。
【0047】
【発明の効果】
本発明による新規の球状活性炭によれば、直接血液灌流法において用いる吸着剤の原料となる従来公知の活性炭において達成されていた種々の物性を損なうことなく、分子量が比較的大きい物質の吸着能が向上し、しかも水中振盪摩耗率も向上する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spherical activated carbon for direct perfusion of blood and a method for producing the same.
[0002]
[Prior art]
For the purpose of removing toxic substances contained in the blood of patients with kidney disease, etc., a blood circulation path is formed outside the patient's body, the patient's blood is taken out of the body, and purification is performed outside the body. There is a treatment method that returns blood to the patient again. As a representative means for such blood purification, a dialysis membrane made of cellulose has been conventionally used. However, there is a limit in bringing various patient pathologies closer to healthy individuals by this hemodialysis method alone. That is, since the only substance that can be removed from a patient by hemodialysis is a solute that permeates the cellulose membrane, removal of a solute having a relatively large molecular weight cannot be dealt with by hemodialysis.
Based on this background, an alternative to hemodialysis has been sought as a technique that can directly remove toxic substances from the blood, and direct blood perfusion (DHP) has been developed. This direct blood perfusion method is a method of adsorbing and removing toxic substances by directly adsorbing an adsorbent such as activated carbon to the blood. Adsorption-type blood purifiers have already been approved by the Ministry of Health, Labor and Welfare and are clinically It is also popular.
[0003]
Since the adsorbent used in the direct blood perfusion method is in direct contact with blood and returns the blood after adsorption treatment to the body, various physical properties are required in addition to the adsorption ability. That is, blood generally clots when it comes into contact with a foreign substance. Therefore, in order to adsorb toxic substances and unnecessary solutes by directly contacting blood with an adsorbent (for example, activated carbon), the surface of the adsorbent is antithrombotic. It is necessary to improve to sex. It is also necessary to prevent blood cell destruction and blood vessel occlusion with adsorbent powder.
Therefore, for example, as described in Japanese Patent Publication No. 55-49868 (Patent Document 1) and Japanese Patent Publication No. 58-41066 (Patent Document 2), a resin film is formed on the surface of an adsorbent such as activated carbon. Technology is known. Also, it should be possible to provide a better adsorbent by improving the activated carbon itself before being coated with a resin or the like. For example, Japanese Patent Publication No. 60-22947 (Patent Document 3) and Japanese Patent Publication No. 1-227971 (Patent Document 4) describe granular activated carbon produced using a thermosetting resin as a main raw material.
[0004]
[Patent Document 1]
Japanese Patent Publication No.55-49868
[Patent Document 2]
Japanese Patent Publication No. 58-41066
[Patent Document 3]
Japanese Patent Publication No. 60-22947
[Patent Document 4]
Japanese Patent Publication No. 1-227971
[0005]
[Problems to be solved by the invention]
The present inventor has intensively studied to improve the physical properties of the activated carbon itself that is the raw material of the adsorbent used in the direct blood perfusion method, and achieved it in the conventional product (artificial organ adsorbent MU-AZ: Kureha Chemical Industry). The present inventors succeeded in developing a new spherical activated carbon with improved adsorption ability for substances having a relatively large molecular weight and improved underwater shaking wear rate without impairing various physical properties.
That is, in the novel spherical activated carbon developed by the present inventors, the adsorption capacity for toxic substances having a molecular weight of about 100 to 1000 is at least the same as that of conventional spherical activated carbon, but the molecular weight is about 1000 to 10,000 (vitamin B). 12 The adsorbability for toxic substances having the same molecular weight as that of the conventional spherical activated carbon is improved. In addition, the new spherical activated carbon developed by the present inventor also improves the underwater shaking wear rate compared to conventional spherical activated carbon, so that the generation of adsorbent powder is further suppressed, and the blood vessel occlusion prevention effect by the adsorbent powder. Will improve.
The present invention is based on these findings.
[0006]
[Means for Solving the Problems]
Therefore, the present invention has a diameter of 0.1 to 1 mm, H / C of 0.14 or less, and a pore volume having a pore diameter of 5 to 1000 nm is 0.25 to 0.55 mL / g. The present invention relates to a spherical activated carbon for direct perfusion of blood.
In the present invention, the porous spherical oxide pitch or the spherical activated carbon precursor is heat-treated at 1000 to 2500 ° C. in an inert gas atmosphere, and subsequently, 750 to 750 in a mixed gas atmosphere of water vapor, oxygen, and inert gas. The present invention also relates to a method for producing the spherical activated carbon for direct blood perfusion, wherein the activation treatment is performed at 1200 ° C.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The spherical activated carbon according to the present invention has a diameter of 0.1 to 1 mm. When the diameter of the spherical activated carbon is less than 0.1 mm, the outer surface area of the spherical activated carbon increases, the adsorption of beneficial substances is likely to occur, and the pressure loss of the activated carbon packed bed during blood purification increases, and the blood cells may be destroyed. This is not preferable. On the other hand, if the diameter exceeds 1 mm, the diffusion distance of the toxic substance into the spherical activated carbon increases, and the adsorption rate decreases, which is not preferable. The diameter is preferably 0.3 to 1 mm. In the present specification, the expression “diameter is D1 to Du” is a sieve in a particle size cumulative diagram prepared in accordance with JIS K 1474 (which will be described later in connection with the method of measuring the average particle size). It means that the sieve passing percentage (%) corresponding to the range of the mesh openings Dl to Du is 90% or more.
[0008]
The spherical activated carbon according to the present invention has a ratio of hydrogen atoms to carbon atoms (H / C: hereinafter sometimes abbreviated as “H / C”) determined by elemental analysis of 0.14 or less. If H / C exceeds 0.14, the adsorptive capacity for toxic substances is reduced to the same level as that of conventionally known spherical activated carbon, or lower than that. A preferable range of H / C is, for example, 0.13 or less. From the standpoint of adsorption capacity, the lower limit of H / C is not particularly limited, but in order to reduce the H / C value, it is necessary to increase the firing temperature, so that it is 0.05 or more from the viewpoint of economy. Is preferred.
[0009]
The spherical activated carbon according to the present invention has a pore volume of 5 to 1000 nm and a pore volume of 0.25 to 0.55 mL / g. When the pore volume is less than 0.25 mL / g, the adsorptive capacity for toxic substances decreases, which is not preferable. On the other hand, when the pore volume exceeds 0.55 mL / g, the surface strength is lowered and the rate of underwater shaking wear is increased, which is not preferable. The pore volume is preferably 0.28 to 0.52 mL / g, and particularly preferably 0.3 to 0.52 mL / g. A method for measuring the pore volume having a pore diameter of 5 to 1000 nm will be described later.
[0010]
In a preferred embodiment of the spherical activated carbon according to the present invention, the specific surface area (hereinafter sometimes abbreviated as “SSA”) determined by the BET method is 800 m. 2 / G or more. SSA is 800m 2 A spherical activated carbon smaller than / g is not preferable because the adsorptive capacity for toxic substances is lowered. SSA is more preferably 1000 m 2 / G or more. The upper limit of SSA is not particularly limited, but from the viewpoint of bulk density and strength, SSA is 2500 m. 2 / G or less is preferable.
[0011]
In a preferred embodiment of the spherical activated carbon according to the present invention, the underwater shaking wear rate is 0.08% or less. Measuring method of underwater shaking wear rate Is It will be described later.
Moreover, in the preferable aspect of the spherical activated carbon by this invention, the bulk density is 0.40-0.55 g / mL, More preferably, it is 0.40-0.50 g / mL. When the bulk density is in the range of 0.40 to 0.55 g / mL, it is preferable in that the adsorption capacity per unit volume is large. Measuring method of density Is It will be described later.
Furthermore, in a preferred embodiment of the spherical activated carbon according to the present invention, vitamin B 12 Is an adsorption rate of 93% or more. Vitamin B 12 Method for measuring adsorption rate Is It will be described later.
[0012]
The spherical activated carbon of the present invention can be produced, for example, by the following method. First, a bicyclic or tricyclic aromatic compound having a boiling point of 200 ° C. or higher is added as an additive to an isotropic pitch such as petroleum pitch or coal pitch, and the mixture is heated and mixed, and then molded. To obtain a pitch compact. Since the spherical activated carbon according to the present invention is used as an adsorbent for direct perfusion of blood, it is necessary that the raw material has sufficient purity for safety and is stable in quality.
[0013]
Next, the above pitch compact is dispersed and granulated with stirring in hot water at 70 to 180 ° C., and cooled to form microspheres. Further, the additive is extracted and removed from the microspherical pitch molded body with a solvent having low solubility for pitch and high solubility for the additive, and the resulting porous spherical pitch is oxidized. When oxidized with an agent, a porous spherical oxidized pitch that is infusible to heat is obtained. This infusibilization treatment can be performed, for example, by heating at 200 to 300 ° C. in the air.
[0014]
The infusible porous spherical oxide pitch thus obtained is heated to 1000 to 2500 ° C. (preferably 1050 to 1500 ° C.) in an inert gas (for example, nitrogen, argon, or helium, or a mixture thereof). And a bulk density at 750 to 1200 ° C., preferably 800 to 1000 ° C. in the presence of water vapor, oxygen and an inert gas (for example, nitrogen, argon, or helium, or a mixture thereof). When the activation treatment is performed until 0.40 to 0.55 g / mL is reached, the spherical activated carbon according to the present invention can be obtained.
The concentration of water vapor in the atmosphere in the activation treatment is preferably 40 to 70 vol%, and the oxygen concentration is preferably 0.1 to 1 vol%.
[0015]
In order to shorten the activation treatment time after the heat treatment, the porous spherical oxidation pitch is preliminarily activated at 750 to 1000 ° C. in a gas atmosphere mainly composed of water vapor until the bulk density becomes 0.6 g / mL or more ( A spherical activated carbon precursor obtained by pre-activation treatment can also be used as a raw material before heat treatment. Here, as the gas atmosphere mainly composed of water vapor, for example, an inert gas (for example, nitrogen, argon, helium, or a mixture thereof) containing water vapor of 40 to 70 vol% can be used.
[0016]
The purpose of adding the aromatic compound to the raw material pitch is to improve the fluidity of the raw material pitch to facilitate microsphere formation and to extract and remove the additive from the formed pitch product. The object is to make the molded body porous and to facilitate structure control and firing in the subsequent steps. As such an additive, for example, naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, or biphenyl can be used alone, or a mixture of two or more thereof can be used. The addition amount with respect to the pitch is preferably in the range of 10 to 50 parts by weight of the aromatic compound with respect to 100 parts by weight of the pitch.
[0017]
In order to achieve uniform mixing, it is preferable to mix the pitch and the additive in a molten state by heating. The mixture of pitch and additive is preferably formed into particles having a particle diameter of about 0.1 to 1 mm in order to control the particle diameter (diameter) of the obtained spherical activated carbon. Molding may be performed in a molten state, or may be performed by a method such as grinding the mixture after cooling.
[0018]
Examples of the solvent for extracting and removing the additive from the mixture of pitch and additive include, for example, aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, and aliphatic hydrocarbons such as naphtha or kerosene. Or a mixture of aliphatic alcohols such as methanol, ethanol, propanol, or butanol.
By extracting the additive from the mixture molded product of pitch and additive with such a solvent, the additive can be removed from the molded product while maintaining the shape of the molded product. At this time, it is presumed that an additive loophole is formed in the molded body, and a pitch molded body having uniform porosity is obtained.
[0019]
The surface of the spherical activated carbon of the present invention obtained by the above production method is coated, for example, by the method described in Japanese Patent Publication No. 55-49868 or Japanese Patent Publication No. 58-41066. Can be obtained. Specifically, for example, the spherical activated carbon according to the present invention is subjected to a base coating treatment with a hydrophobic polymer material to form a base coating layer, and then a top coating treatment is performed with a hydrophilic polymer material. An adsorbent for direct perfusion can be obtained by forming a layer and, if necessary, cross-linking the upper coating layer.
[0020]
As described above, the spherical activated carbon according to the present invention can be used as an adsorbent for direct perfusion of a blood sample by coating the surface thereof. However, after the spherical activated carbon according to the present invention is processed as it is or after being appropriately processed, for example, water treatment, air purification, deodorization, purification of industrial chemicals, food purification, food decolorization, solvent recovery, as in general activated carbon It can also be used to recover catalysts, precious metals, or hazardous substances such as dioxins.
[0021]
As described above, the adsorbent for direct perfusion of blood sample can be used, for example, for direct blood perfusion (DHP). Here, the “blood sample” includes not only blood (whole blood) but also plasma. Therefore, the adsorbent for direct perfusion of blood sample can be used not only for in vitro treatment of blood (whole blood) but also for in vitro treatment of plasma.
[0022]
Various physical properties of the spherical activated carbon according to the present invention, that is, diameter (average particle diameter), pore volume, bulk density, specific surface area, underwater shaking wear rate, and vitamin B 12 The adsorption rate is measured by the following method.
(1) Average particle size
For spherical activated carbon, a cumulative particle size diagram is prepared according to JIS K 1474. For the average particle diameter, in the particle size cumulative diagram, the horizontal line is drawn on the horizontal axis from the intersection of the vertical line at the 50% point on the horizontal axis and the particle size cumulative line to obtain the mesh size (mm) of the sieve indicated by the intersection. The average particle size.
[0023]
(2) Pore volume by mercury porosimetry
The pore volume can be measured using a mercury porosimeter (for example, “AUTOPORE 9200” manufactured by MICROMERITICS). Spherical activated carbon as a sample is put in a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes. Next, mercury is introduced into the sample container and gradually pressurized to press the mercury into the pores of the spherical activated carbon sample (maximum pressure = 414 MPa). From the relationship between the pressure at this time and the amount of mercury injected, the pore volume distribution of the spherical activated carbon sample is measured using the following equations.
Specifically, the volume of mercury injected into the spherical activated carbon sample from a pressure corresponding to a pore diameter of 15 μm (0.07 MPa) to a maximum pressure (414 MPa: corresponding to a pore diameter of 3 nm) is measured. The pore diameter is calculated when mercury is pressed into a cylindrical pore having a diameter (D) at a pressure (P), where the surface tension of mercury is “γ” and the contact angle between the mercury and the pore wall is “ θ ”, from the balance between the surface tension and the pressure acting on the pore cross section, the following formula:
−πDγcos θ = π (D / 2) 2 ・ P
Holds. Therefore
D = (− 4γcos θ) / P
It becomes.
In this specification, the surface tension of mercury is 484 dyne / cm, the contact angle between mercury and carbon is 130 degrees, the pressure P is MPa, and the pore diameter D is expressed in μm.
D = 1.27 / P
To obtain the relationship between the pressure P and the pore diameter D. In the present specification, the pore volume having a pore diameter in the range of 5 to 1000 nm corresponds to the volume of mercury that is intruded to a mercury intrusion pressure of 1.27 to 254 MPa.
[0024]
(3) Bulk density
The sample spherical activated carbon is dried for 3 hours in a drier adjusted to 115 ° C., and then allowed to cool in a desiccator. The dried spherical activated carbon sample is placed in a packing density measurement container (the container shown in FIG. 8 of JIS K 1474-5.7) to about 1/5 volume of the volume of the container. Gently tap on the rubber plate until the upper surface of the spherical activated carbon sample reaches a certain height, and add the same amount of spherical activated carbon sample and tap gently. This tapping and filling operation is repeated, the spherical activated carbon sample is filled to the upper end of the container, the tube at the top of the container is removed, the raised part is scraped off using a stainless steel straight ruler, and the upper surface of the spherical activated carbon sample is leveled. Measure the mass of the spherical activated carbon sample in the container to the order of 0.1 g. Subsequently, the packing density (L) is calculated by the following equation.
L = S / M
In the above equation, L is the bulk density (g / mL), S is the mass (g) of the spherical activated carbon sample, and M is the volume (mL) of the packing density measuring container.
[0025]
(4) Specific surface area
Measure the amount of gas adsorbed on a spherical activated carbon sample using a continuous flow gas adsorption method (for example, “Flow Sorb II 2300” manufactured by MICROMERITICS) and calculate the specific surface area using the BET equation. Can do. Specifically, a sample tube is filled with spherical activated carbon, and the following operation is performed while flowing a helium gas containing 30 vol% nitrogen into the sample tube to determine the amount of nitrogen adsorbed on the spherical activated carbon sample. That is, the sample tube is cooled to −196 ° C., and nitrogen is adsorbed on the spherical activated carbon sample. The sample tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the spherical activated carbon sample is measured with a heat conduction detector and is defined as the amount of adsorbed gas (v).
Approximate expression derived from BET equation:
v m = 1 / (v · (1-x))
Using a one-point method with nitrogen adsorption (relative pressure x = 0.3) at liquid nitrogen temperature using m And the following formula:
Specific surface area = 4.35 × v m = (M 2 / G)
To calculate the specific surface area of the sample. In each of the above formulas, v m Is the amount of adsorption (cm) required to form a single molecular weight on the sample surface Three / G), and v is the actually measured adsorption amount (cm Three / G) and x is the relative pressure.
[0026]
(5) Underwater shaking wear rate
A membrane filter is attached to the filtration device, and water contained in the membrane filter is suction filtered. The membrane filter is removed, and the membrane filter is dried for 30 minutes in a drier adjusted to 115 ° C. After cooling for 30 minutes in a desiccator, the mass of the membrane filter is measured to the order of 0.1 mg.
On the other hand, spherical activated carbon (about 50 mL) as a sample is dried in a constant temperature dryer adjusted to 115 ° C. for 3 hours and then allowed to cool in a desiccator. About 10 g of the dried spherical activated carbon sample is measured to the order of 0.1 mg, and the measured value is defined as the spherical activated carbon sample mass (S). Subsequently, the spherical activated carbon sample is transferred to a shaker bottle, 50 mL of water is added, and shaken at a shake number of 245 ± 5 r / min for 30 minutes. The sample liquid obtained by filtering through a sieve and removing the large granular spherical activated carbon sample is suction filtered with a filtration apparatus to which the membrane filter whose mass has been measured is attached. The mass of the membrane filter to which the powdery filtration residue is adhered is measured, transferred to a bottle, and dried for 30 minutes in a drier adjusted to 115 ° C. After cooling for 30 minutes with a desiccator, the dry mass of the membrane filter to which the powdery filtration residue is adhered is measured to the order of 0.1 mg, and the amount of powdery filtration residue (R) is determined. The underwater shaking wear rate (A) is calculated by the following equation.
A = (R / S) × 100
In the above formula, A is the underwater shaking wear rate (%), R is the mass of the filtration residue (g), and S is the mass (g) of the spherical activated carbon sample.
[0027]
(6) Vitamin B 12 Adsorption removal ability
About 5 g of the spherical activated carbon sample is dried for 3 hours in a constant temperature dryer adjusted to 115 ° C., and then allowed to cool in a desiccator. Vitamin B in the beaker for adsorption test in advance 12 Vitamin B with known concentration (F) 12 Put the standard stock solution in exactly 100 mL. Then, it is immersed in a water bath adjusted to 37 ° C. Vitamin B 12 When the temperature of the standard stock solution reaches 37 ° C, a dry spherical activated carbon sample is weighed to the order of 0.1 mg within a range of 1 ± 0.001 g, placed in a beaker, and stirred for 30 minutes at a rotation speed of 405 r / min. And filter. For the obtained filtrate and standard stock solution, the absorbance at a wavelength of 520 nm is measured using a spectrophotometer. A calibration curve is prepared from the absorbance of the standard stock solution, and vitamin B is determined from the absorbance of the filtrate. 12 The residual concentration (E) is determined. Vitamin B 12 The adsorption removal rate (D) is calculated by the following equation.
D (%) = [(10−E) / F] × 100
In the above formula, D is vitamin B 12 Adsorption removal rate (%), E is vitamin B 12 Residual concentration (mg / 100 mL) and F is vitamin B 12 Stock solution concentration (mg / 100 mL).
[0028]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
[0029]
[Example 1]
68 kg of petroleum-based pitch (softening point = 210 ° C., quinoline insoluble content = 1 wt% or less, H / C atomic ratio = 0.63) and 32 kg of naphthalene are charged into a pressure-resistant container having a stirring capacity of 300 L. After melt mixing at 180 ° C., the mixture was cooled to 80 to 90 ° C. and extruded to obtain a string-like molded body. Next, the string-like molded body was crushed so that the ratio of diameter to length was about 1-2. To this crushed material, 120 kg of 0.23% by weight aqueous solution of polyvinyl alcohol (saponification degree = 88%) was added and dispersed by stirring at 95 ° C. at a speed of 350 rpm, and then rapidly cooled to solidify the dispersed particles. A spherical pitch molded body was obtained.
Further, filtration was performed to remove moisture, and naphthalene in the spherical pitch molded body was extracted and removed with n-hexane about 6 times the weight of the spherical pitch molded body. Subsequently, oxidation treatment was performed in air at 260 ° C. for 1 hour to obtain an infusible porous spherical oxidation pitch.
Next, the infusible porous spherical oxide pitch was baked at 1350 ° C. for 4 hours in a nitrogen gas atmosphere. Furthermore, activation treatment was performed at 820 ° C. for 12 hours in a nitrogen gas atmosphere containing 50 vol% water vapor and 0.5 vol% oxygen to obtain spherical activated carbon according to the present invention.
[0030]
[Example 2]
Except that the activation treatment was performed at 900 ° C. for 5 hours, the operation described in Example 1 was repeated to obtain a spherical activated carbon according to the present invention.
[0031]
[Example 3]
A spherical activated carbon according to the present invention was obtained by repeating the operation described in Example 1 except that the firing treatment was performed at 2000 ° C. and the activation treatment was performed at 900 ° C. for 10 hours.
[0032]
[Example 4]
A spherical activated carbon according to the present invention was obtained by repeating the operation described in Example 1 except that the firing treatment was performed at 1100 ° C. and the activation treatment was performed at 900 ° C. for 4 hours.
[0033]
[Example 5]
68 kg of petroleum-based pitch (softening point = 210 ° C., quinoline insoluble content = 1 wt% or less, H / C atomic ratio = 0.63) and 32 kg of naphthalene are charged into a pressure-resistant container having a stirring capacity of 300 L. After melt mixing at 180 ° C., the mixture was cooled to 80 to 90 ° C. and extruded to obtain a string-like molded body. Next, the string-like molded body was crushed so that the ratio of diameter to length was about 1-2. To this crushed material, 120 kg of 0.23% by weight aqueous solution of polyvinyl alcohol (saponification degree = 88%) was added and dispersed by stirring at 95 ° C. at a speed of 350 rpm, and then rapidly cooled to solidify the dispersed particles. A spherical pitch molded body was obtained.
Further, filtration was performed to remove moisture, and naphthalene in the spherical pitch molded body was extracted and removed with n-hexane about 6 times the weight of the spherical pitch molded body. Subsequently, oxidation treatment was performed in air at 260 ° C. for 1 hour to obtain an infusible porous spherical oxidation pitch.
Next, the obtained infusible porous spherical oxidized pitch is subjected to a pre-activation treatment in nitrogen gas containing 50 vol% of water vapor until the bulk density becomes 0.6 g / mL or more, and thus a spherical activated carbon precursor. Got. It can be confirmed that the bulk density is 0.6 g / mL or more by taking a part of the spherical activated carbon precursor from the preliminary activation furnace during the preliminary activation treatment and measuring the bulk density.
Next, the spherical activated carbon precursor was calcined at 1350 ° C. for 4 hours in a nitrogen gas atmosphere. Furthermore, activation treatment was performed at 900 ° C. for 4 hours in a nitrogen gas atmosphere containing 50 vol% water vapor and 0.5 vol% oxygen to obtain spherical activated carbon according to the present invention.
[0034]
[Example 6]
Except that the activation treatment time was 7 hours, the operation described in Example 5 was repeated to obtain spherical activated carbon according to the present invention.
[0035]
[Example 7]
Except that the heat treatment temperature was 2000 ° C. and the activation treatment time was 10 hours, the operation described in Example 5 was repeated to obtain spherical activated carbon according to the present invention.
[0036]
[Example 8]
Except that the heat treatment temperature was 1100 ° C. and the activation treatment time was 7 hours, the operation described in Example 5 was repeated to obtain spherical activated carbon according to the present invention.
[0037]
[Comparative Example 1]
68 kg of petroleum-based pitch (softening point = 210 ° C., quinoline insoluble content = 1 wt% or less, H / C atomic ratio = 0.63) and 32 kg of naphthalene are charged into a pressure-resistant container having a stirring capacity of 300 L. After melt mixing at 180 ° C., the mixture was cooled to 80 to 90 ° C. and extruded to obtain a string-like molded body. Next, the string-like molded body was crushed so that the ratio of diameter to length was about 1-2. To this crushed material, 120 kg of 0.23% by weight aqueous solution of polyvinyl alcohol (saponification degree = 88%) was added and dispersed by stirring at 95 ° C. at a speed of 350 rpm, and then rapidly cooled to solidify the dispersed particles. A spherical pitch molded body was obtained.
Further, filtration was performed to remove moisture, and naphthalene in the spherical pitch molded body was extracted and removed with n-hexane about 6 times the weight of the spherical pitch molded body. Subsequently, oxidation treatment was performed in air at 260 ° C. for 1 hour to obtain an infusible porous spherical oxidation pitch.
Next, the infusible porous spherical oxide pitch was baked at 820 ° C. for 0.5 hours in a nitrogen gas atmosphere. Furthermore, activation treatment was performed at 820 ° C. for 2 hours in a nitrogen gas atmosphere containing 50 vol% water vapor and 0.5 vol% oxygen to obtain a comparative spherical activated carbon.
[0038]
[Comparative Example 2]
68 kg of petroleum-based pitch (softening point = 210 ° C., quinoline insoluble content = 1 wt% or less, H / C atomic ratio = 0.63) and 32 kg of naphthalene are charged into a pressure-resistant container having a stirring capacity of 300 L. After melt mixing at 180 ° C., the mixture was cooled to 80 to 90 ° C. and extruded to obtain a string-like molded body. Next, the string-like molded body was crushed so that the ratio of diameter to length was about 1-2. To this crushed material, 120 kg of 0.23% by weight aqueous solution of polyvinyl alcohol (saponification degree = 88%) was added and dispersed by stirring at 95 ° C. at a speed of 350 rpm, and then rapidly cooled to solidify the dispersed particles. A spherical pitch molded body was obtained.
Further, filtration was performed to remove moisture, and naphthalene in the spherical pitch molded body was extracted and removed with n-hexane about 6 times the weight of the spherical pitch molded body. Subsequently, oxidation treatment was performed in air at 260 ° C. for 1 hour to obtain an infusible porous spherical oxidation pitch.
Next, the obtained infusible porous spherical oxidized pitch is subjected to a pre-activation treatment in nitrogen gas containing 50 vol% of water vapor until the bulk density becomes 0.6 g / mL or more, and thus a spherical activated carbon precursor. Got. It can be confirmed that the bulk density is 0.6 g / mL or more by taking a part of the spherical activated carbon precursor from the preliminary activation furnace during the preliminary activation treatment and measuring the bulk density.
Next, the spherical activated carbon precursor was baked at 1350 ° C. for 4 hours in a nitrogen gas atmosphere. Furthermore, activation treatment was carried out at 900 ° C. for 6 hours in a nitrogen gas atmosphere containing 50 vol% water vapor and no oxygen at all to obtain a spherical activated carbon for comparison.
[0039]
[Comparative Example 3]
A spherical activated carbon for comparison is obtained by repeating the operation described in Comparative Example 2 except that the activation treatment is performed for 1 hour in a nitrogen gas atmosphere containing 50 vol% water vapor and 0.5 vol% oxygen. It was.
[0040]
[Comparative Example 4]
The addition of 0.01 wt% cobalt to petroleum pitch (softening point = 210 ° C., quinoline insoluble content = 1 wt% or less, H / C atomic ratio = 0.63) and naphthalene, and the activation treatment time is 1 hour Except that, the operation described in Comparative Example 1 was repeated to obtain a comparative spherical activated carbon.
[0041]
[Comparative Example 5]
Instead of petroleum pitch (softening point = 210 ° C., quinoline insoluble content = 1 wt% or less, H / C atomic ratio = 0.63), another petroleum pitch (softening point = 192 ° C., quinoline insoluble content = 34 Spherical activated carbon for comparison was obtained by repeating the operation described in Comparative Example 1 except that .2 wt% or less, H / C atomic ratio = 0.53) was used.
[0042]
The production conditions described in Examples 1 to 8 and Comparative Examples 1 to 5 are summarized in Table 1 below.
[0043]
[Table 1]
Figure 0004383069
[0044]
【Evaluation of the physical properties】
About the spherical activated carbon obtained based on the manufacturing conditions described in Examples 1 to 8 and Comparative Examples 1 to 5, the diameter (average particle diameter), pore volume, bulk density, specific surface area, H / C, Underwater shaking wear rate and vitamin B 12 The adsorption rate was measured. Each physical property value was measured by the measurement method described above. The obtained physical property values are summarized in Table 2.
[0045]
[Table 2]
Figure 0004383069
[0046]
Each of the spherical activated carbons of the present invention obtained in Examples 1 to 8 has a water abrasion wear rate that can be sufficiently used as a spherical activated carbon for direct perfusion of blood. 12 The adsorptive removal ability of was also high.
On the other hand, in the comparative spherical activated carbon obtained in Comparative Examples 1 to 3, the underwater shaking wear rate was a value that could be sufficiently used as the spherical activated carbon for direct blood perfusion. 12 The adsorptive removal ability was not sufficient. Moreover, in the comparison spherical activated carbon obtained in Comparative Example 4, vitamin B 12 Although the adsorbing and removing ability of the sample showed a sufficient value, it has a high rate of underwater shaking wear and is not suitable as a spherical activated carbon for direct perfusion of blood. In addition, the comparative spherical activated carbon obtained in Comparative Example 5 has an underwater shaking wear rate and vitamin B 12 The adsorbing and removing ability of each is insufficient.
[0047]
【The invention's effect】
According to the novel spherical activated carbon according to the present invention, the ability of adsorbing a substance having a relatively large molecular weight can be obtained without impairing various physical properties that have been achieved in the conventionally known activated carbon used as a raw material for the adsorbent used in the direct blood perfusion method. In addition, the underwater shaking wear rate is also improved.

Claims (5)

直径が0.1〜1mmであり、H/Cが0.14以下であり、細孔直径5〜1000nmの細孔容積が0.25〜0.55mL/gであり、そして水中振盪摩耗率が0.08重量%以下であることを特徴とする、血液の直接灌流用球状活性炭。A diameter of 0.1 to 1 mm, H / C is 0.14 or less, the pore volume of the fine pore diameter 5~1000nm is 0.25~0.55mL / g der is, and water shaking wear rate Spherical activated carbon for direct perfusion of blood, characterized in that is 0.08% by weight or less . カサ密度が0.40〜0.55g/mLである、請求項1に記載の血液の直接灌流用球状活性炭。The spherical activated carbon for direct perfusion of blood according to claim 1, wherein the bulk density is 0.40 to 0.55 g / mL. ビタミンB12の吸着率が93%以上である、請求項1又は2に記載の血液の直接灌流用球状活性炭。Adsorption rate of vitamin B 12 is 93% or more, direct perfusion spherical activated carbon of blood according to claim 1 or 2. 多孔性球状酸化ピッチ又は球状活性炭前駆体を不活性ガス雰囲気中で1000〜2500℃で熱処理を行い、続いて、水蒸気と酸素と不活性ガスの混合ガス雰囲気中で750〜1200℃で賦活処理を行うことを特徴とする、請求項1〜3のいずれか一項に記載の血液の直接灌流用球状活性炭の製造方法。The porous spherical oxidized pitch or the spherical activated carbon precursor is heat-treated at 1000 to 2500 ° C. in an inert gas atmosphere, and subsequently activated at 750 to 1200 ° C. in a mixed gas atmosphere of water vapor, oxygen and inert gas. The method for producing spherical activated carbon for direct perfusion of blood according to any one of claims 1 to 3, wherein the method is performed. 前記多孔性球状酸化ピッチが、The porous spherical oxide pitch is
等方性ピッチに、沸点200℃以上の2環式又は3環式の芳香族化合物又はその混合物を加えて加熱混合した後、成形してピッチ成形体を得る段階;A step of adding a bicyclic or tricyclic aromatic compound having a boiling point of 200 ° C. or higher to an isotropic pitch, heating and mixing, and then molding to obtain a pitch molded body;
前記ピッチ成形体を熱水中で分散造粒し、そして冷却して微小球体化し、微小球体化ピッチ成形体を得る段階;及びDispersing and granulating the pitch compact in hot water and cooling to microspheres to obtain a microsphere pitch product; and
ピッチに対して低溶解度を示し、かつ前記芳香族化合物又はその混合物に対して高溶解度を有する溶剤を用いて、前記微小球体化ピッチ成形体から添加剤を抽出除去し、得られた多孔性球状ピッチを、酸化剤を用いて酸化する段階;A porous sphere obtained by extracting and removing the additive from the microspherical pitch-formed product using a solvent having low solubility with respect to pitch and having high solubility with respect to the aromatic compound or a mixture thereof. Oxidizing the pitch with an oxidizing agent;
によって得られる多孔性球状酸化ピッチである、請求項4に記載の血液の直接灌流用球状活性炭の製造方法。The method for producing a spherical activated carbon for direct perfusion of blood according to claim 4, which is a porous spherical oxidized pitch obtained by:
JP2003046439A 2003-02-24 2003-02-24 Spherical activated carbon for direct perfusion of blood and method for producing the same Expired - Fee Related JP4383069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046439A JP4383069B2 (en) 2003-02-24 2003-02-24 Spherical activated carbon for direct perfusion of blood and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046439A JP4383069B2 (en) 2003-02-24 2003-02-24 Spherical activated carbon for direct perfusion of blood and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004256324A JP2004256324A (en) 2004-09-16
JP4383069B2 true JP4383069B2 (en) 2009-12-16

Family

ID=33112981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046439A Expired - Fee Related JP4383069B2 (en) 2003-02-24 2003-02-24 Spherical activated carbon for direct perfusion of blood and method for producing the same

Country Status (1)

Country Link
JP (1) JP4383069B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968425B2 (en) * 2005-08-04 2012-07-04 戸田工業株式会社 Spherical porous carbon particle powder and method for producing the same
JP7008540B2 (en) 2018-03-01 2022-01-25 株式会社クレハ Toxin separator
JP2020048973A (en) * 2018-09-27 2020-04-02 株式会社クレハ Production method of absorbent for purifying liquid derived from organism

Also Published As

Publication number Publication date
JP2004256324A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4805144B2 (en) Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent
JP5144965B2 (en) Medical adsorbent
JP4641304B2 (en) Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent
TWI385120B (en) Process for preparing spherical activated carbon
EP2628483B1 (en) Medical adsorbent and method for producing same
KR101135260B1 (en) Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
JP6803398B2 (en) Spherical activated carbon and its manufacturing method
US20070270307A1 (en) Adsorbent And Process For Producing The Same
JPWO2006123618A1 (en) Oxidative stress inhibitor
WO2014129615A1 (en) Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease
JP4383069B2 (en) Spherical activated carbon for direct perfusion of blood and method for producing the same
JP4382629B2 (en) Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent
KR101858418B1 (en) Adsorbent for oral administration, therapeutic agent for renal diseases and therapeutic agent for hepatic diseases
JP2011084454A (en) Spherical activated carbon and method for producing the same
TWI520751B (en) Adsorbent for oral administration, and agent for treating renal or liver disease
JP4311923B2 (en) Treatment or prevention agent for liver disease for oral administration
JP2011111414A (en) Anti-anemia agent
JPWO2006033341A1 (en) Treatment or prevention agent for diabetic neuropathy
JP2005162683A (en) Therapeutic or prophylactic agent for hyperuricemia
JP2010120936A (en) Vascular endothelial function-ameliorating agent

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees