JP4382208B2 - Supercritical fluid extraction device - Google Patents

Supercritical fluid extraction device Download PDF

Info

Publication number
JP4382208B2
JP4382208B2 JP26577699A JP26577699A JP4382208B2 JP 4382208 B2 JP4382208 B2 JP 4382208B2 JP 26577699 A JP26577699 A JP 26577699A JP 26577699 A JP26577699 A JP 26577699A JP 4382208 B2 JP4382208 B2 JP 4382208B2
Authority
JP
Japan
Prior art keywords
extraction
fluid
detector
solvent
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26577699A
Other languages
Japanese (ja)
Other versions
JP2001079304A (en
Inventor
勝史 矢野
忠弘 高八
悟 角陸
Original Assignee
隆祥産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆祥産業株式会社 filed Critical 隆祥産業株式会社
Priority to JP26577699A priority Critical patent/JP4382208B2/en
Publication of JP2001079304A publication Critical patent/JP2001079304A/en
Application granted granted Critical
Publication of JP4382208B2 publication Critical patent/JP4382208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Description

【0001】
【発明の属する技術分野】
【0002】
本願発明は、超臨界流体に溶媒を加えて溶解度を変化させることにより所望の抽出条件を設定するようにした超臨界流体抽出装置に関するものである。
【従来の技術】
【0003】
超臨界状態の流体を利用した抽出方法は、有機溶媒を使用する抽出方法に比べると、安全性が高く、また一般に40℃〜80℃程度の温度条件下で抽出できることから、熱に不安定な抽出物質に適した安定な抽出方法として最近注目を浴びている。
【0004】
今図2は、例えば流体として二酸化炭素(CO2)を採用した従来の超臨界流体抽出装置の構成を示した概略図であり、該装置ではその中心となる抽出系路18が、図示のように流体ボンベ1、加圧ポンプ2、混合器11、抽出容器3、検出器4、圧力制御装置5、回収容器6を順次配管で接続して構成されている。
【0005】
このように構成された超臨界流体抽出装置では、流体ボンベ1から抽出系路18内に二酸化炭素を供給して、系内の空気を二酸化炭素に置換した後、抽出容器3の流体入口側で流体の圧力を高める加圧ポンプ2と同流体出口側でその圧力(背圧)を調整する圧力制御装置5とにより抽出容器3内を流れる流体を臨界圧力(例えば二酸化炭素の場合73atm程度)以上に加圧制御するとともに、恒温槽12によって臨界温度(同二酸化炭素の場合31℃程度)以上に加温制御することにより、上記抽出容器3内の二酸化炭素を超臨界流体(以下、単に流体という)の状態にし、該状態において上記抽出容器3内に入れられた所定の試料物質中から所望の成分を抽出し、上記検出器4により同抽出状態のモニターを行う。
【0006】
次に、以上のようにして抽出された抽出成分が溶解した同流体を圧力制御装置5に導き、減圧制御して臨界圧力以下に減圧する。その結果、該圧力制御装置5の出口側では、上記流体が元の二酸化炭素ガスにもどり、流体中に溶解していた抽出成分は析出・分離されて、所定の回収容器6内に回収される。
【0007】
ところで、この場合、上記二酸化炭素のような単一組成の超臨界流体を用いて抽出を行う場合、有機溶媒を用いた場合と比較すると、溶解力が小さいことが欠点になる。しかし、この点については超臨界流体に少量の溶媒を添加することにより溶解度を増大させることができるので問題はない。この溶媒を一般にエントレーナと呼んでおり、上記従来の装置でも図示のようにエントレーナ容器7を備え、該エントレーナ容器7内のエントレーナをエントレーナ送液ポンプ8および開閉バルブ9を介設したエントレーナ供給系路(溶媒供給系路)10を介して上記抽出容器3の上流側から上記混合器11を介して抽出系路18内に注入するようにしており、同混合器11によってエントレーナが上述の二酸化炭素と均一に混合されるようになっている。
【発明が解決しようとする課題】
【0008】
以上のように、従来の超臨界流体抽出装置では、少なくとも抽出中においては、常に流体ボンベ1から二酸化炭素を供給し続けるとともに、圧力制御装置5から常に二酸化炭素を放出し続ける構造となっている。すなわち、常時流通方式であるため、二酸化炭素(流体)の必要量が多くなる。また上記抽出容器3内のエントレーナ(溶媒)の濃度を変えることにより抽出成分の溶解度を所望のレベルに変化させて最適な抽出条件の検討を行う場合、一回の抽出について一定のエントレーナ濃度のみの抽出状態の確認しかできないこととなる。そのため、エントレーナ濃度を変更する度に被抽出物質としての試料物質を新しいものに交換して抽出状態を確認しなければならず、最適な抽出条件を見出だすまでには何回も繰り返して抽出操作を行わなければならない。したがって、試料物質が多量に必要となり、検討時間も長くかかるという問題があった。
【0009】
本願発明は、上記のような問題を解決するためになされたもので、上記抽出容器の上流側および上記検出容器と圧力制御装置との間の各々にそれぞれ切換バルブを設け、これら切換バルブ間に還流系路を並設することによって、上記抽出容器および検出器を介した閉鎖的な流体の循環系路を形成するとともに、その途中に別途溶媒の定量注入装置を設けることにより、抽出が完了するまで所定量の流体を外部に放出することなく繰り返し上記抽出容器および検出器を通して抽出を行わせることができるようにするとともに同抽出状態のモニターを行わせることができるようにして、使用流体および試料物質の必要量を低減し、かつ短時間で効率良く最適な抽出条件の検討を行うことができるようにした超臨界流体抽出装置を提供することを目的とするものである。
【課題を解決するための手段】
【0010】
本願発明は、上記の目的を達成するために、次のような課題解決手段を備えて構成されている。
【0011】
すなわち、本願請求項1の発明の超臨界流体抽出装置では、流体ボンベ、加圧ポンプ、抽出容器、検出器、圧力制御装置を順次配管により接続した抽出系路と該抽出系路の上記抽出容器上流側に所定の溶媒を供給する溶媒供給系路とを有し、所定の流体の超臨界状態において、同流体に所定の溶媒を加えることにより、試料物質の溶解度を変化させて試料物質中の所定の成分の抽出を行う超臨界流体抽出装置において、上記抽出系路の上記抽出容器の上流側および上記検出器と圧力制御装置との間の各々にそれぞれ切換バルブを設け、これら各切換バルブ間に上記検出器を経た流体を上記抽出容器側に還流させる還流系路を並設することによって、上記抽出容器および検出器を介して流体を循環させる閉鎖された流体循環系路を形成するとともに、該流体循環系路の途中に別途所定の溶媒の定量注入装置を設けたことを特徴としている。
【0012】
従って、該構成では、抽出が完了するまで上記閉鎖された循環系路を介して所定量の流体を外部に放出することなく繰り返し上記抽出容器および検出器を通して抽出ないし抽出状態のモニターを行わせることができるようになる。その結果、使用流体の量を低減し、かつ短時間で効率良く抽出を行わせることができるようになる。
【0013】
また、上記2つの切換バルブ間の抽出系路と還流系路との組合せよりなる流体循環系路の途中に超臨界状態を維持したままで一定量の溶媒を添加することができる定量注入装置を設けているので、上記循環系路中の溶媒濃度を上記閉鎖系路を保ったままの状態で段階的に変えることが可能となる。そして、それにより、一回の抽出で複数種の溶媒濃度添加条件に対する溶解度を測定することができるようになるので、溶媒を使用する最適な抽出条件を求める際の試料物質の使用量の削減と検討時間の短縮とを可能にすることができる。
【発明の実施の形態】
【0014】
次に、本願発明の一実施の形態について図1を参照して詳細に説明する。
【0015】
すなわち、先ず図1は同本願発明の一実施の形態に係る超臨界流体抽出装置の構成を示す図2と同様の概略図である。この超臨界流体抽出装置は、図示のように、例えば二酸化炭素(CO2)を充填した流体ボンベ1、流体圧を高めるための加圧ポンプ2、抽出条件の検討を行う場合を除く通常の抽出作業時にエントレーナ容器7からのエントレーナ(溶媒)を抽出系路18内に注入混合する混合器11、第1の切換バルブ13、抽出条件の検討を行う場合において一定量のエントレーナ(溶媒)を注入する定量注入装置17、被抽出物質である試料物質が入れられる抽出容器3、抽出レベル(飽和レベル)モニター用の検出器4、第2の切換バルブ14、流体の一部を外部にリリーフして圧力(背圧)を制御する圧力制御装置5、抽出成分を回収する回収容器6とを順次配管で接続してなる抽出系路18と、上記通常の抽出作業時においてエントレーナ容器7からのエントレーナ(溶媒)をエントレーナ送液ポンプ8および開閉バルブ9を介して上記混合器11に供給するエントレーナ供給系路10と、上記抽出条件の検討時において上記検出器4を経た流体を上記抽出容器3の上流側に還流循環させる循環ポンプ15を備え、上記第2の切換バルブ14と第1の切換バルブ13とを上記抽出系路18と同様の配管で接続して上記第1,第2の切換バルブ13,14間の上記抽出容器3および検出器4を有する抽出系路18の一部とともに超臨界流体の循環系路(鎖線矢印で示す閉ループ参照)を構成する還流系路19とからなっている。
【0016】
そして、上記エントレーナ(溶媒)の定量注入装置17は、上記循環系路内の適部に設けられる。
【0017】
したがって、該構成では、上記抽出系路18の上記第1,第2の切換バルブ13,14の切換操作により、上記流体ボンベ1と上記回収容器6間を破線矢印のようにストレートに連通させる開ループ連通状態と、該開ループ連通状態から上記還流系路19を介して上記抽出容器3の上流側定量注入装置17の上流および検出器4の下流間を相互に連通させる閉ループの循環系路状態に切換えることにより、上記抽出系路18の第1の切換バルブ13から第2の切換バルブ14までの間の定量注入装置17、抽出容器3、検出器4を、上記循環ポンプ15を有する還流系路19を介して閉鎖された循環系路状態に切換えて所定の流体を常時鎖線矢印のように循環させることができるようになる。
【0018】
すなわち、該構成では、上記エントレーナ供給系路10からのエントレーナ(溶媒)を使用する本来の抽出作業に先立って、供給されるエントレーナ(溶媒)の濃度の最適抽出条件を求めるに際し、先ず最初に抽出容器3内に試料物質を充填するとともに、上記第1,第2の切換バルブ13,14各々の3方3組の開閉弁部の全てを開放し、上記抽出系路18および還流系路19の各々に上記流体ボンベ1から流体としての二酸化炭素を流し始める。そして、上記抽出系路18および還流系路19を含む全ての系の空気を二酸化炭素で置換した後、上記加圧ポンプ2、圧力制御装置5及び恒温槽12で所定の圧力・温度に調整して超臨界状態を形成する。そして、該超臨界状態が形成されると、次に上記第1,第2の切換バルブ13,14を切換えることにより、それらの加圧ポンプ2側の開閉弁部および圧力制御装置5側の開閉弁部を閉じて上述の循環系路を形成し、上記超臨界状態にある流体を上記循環ポンプ15で鎖線矢印のように循環させる。
【0019】
すると、上記抽出容器3内の試料物質中の抽出成分の一部は該循環する流体に溶解し、上記検出器4により、その溶解状態をモニターされながら、上記抽出容器3と検出器4を繰返し循環して流れるようになる。
【0020】
そして、上記検出器4でのモニターの結果、上記循環する超臨界流体中への抽出成分の溶解作用が飽和したことが確認されると、上記定量注入装置17により一定量のエントレーナ(溶媒)を添加し、再び上記検出器4で抽出成分の溶解状態をモニターする。この繰り返しにより、上記エントレーナ(溶媒)を段階的に添加して行って各段階における抽出成分の溶解特性を正確に計測する。
【0021】
また一方、以上の場合とは別に上記循環系路を流れる超臨界流体に対する所定の純物質の溶解特性を計測するに際しては、所定の流量の超臨界流体に対して当該純物質が飽和状態になっても未だ溶解せずに所定量以上残る量、すなわち過飽和量の純物質を抽出容器3内に入れ、流体ボンベ1から二酸化炭素を供給して上記各系内の空気を二酸化炭素に置換した後、上記抽出容器3を恒温槽12により加熱し、かつ加圧ポンプ2により加圧することにより、上記二酸化炭素を所定の温度、圧力の超臨界流体にし、上記第1の切換バルブ13および第2の切換バルブ14を切換えて上述の循環系路状態を形成し、上記同様に循環ポンプ15で同超臨界流体を循環させて同超臨界流体中に上記純物質を飽和させるようにし、さらにエントレーナ(溶媒)を段階的に添加するようにする。このようにすれば、上述の場合と同様にして各段階における純物質の溶解特性を正確に計測することができる。
【0022】
以上の方法により、それぞれ同一の試料物質で複数レベルのエントレーナ添加条件に対する溶解特性を明らかにすることができる。
【0023】
以上のように、本願発明の超臨界流体抽出装置では、流体ボンベ、加圧ポンプ、抽出容器、検出器、圧力制御装置を順次配管により接続した抽出系路と該抽出系路の上記抽出容器上流側に所定の溶媒を供給する溶媒供給系路とを有し、所定の流体の超臨界状態において、同流体に所定の溶媒を加えることにより、試料物質の溶解度を変化させて試料物質中の所定の成分の抽出を行う超臨界流体抽出装置において、上記抽出系路の上記抽出容器の上流側と上記抽出容器の下流側上記検出器と圧力制御装置との間の各々にそれぞれ切換バルブを設け、これら各切換バルブ間に上記検出器を経た流体を上記抽出容器側に還流させる還流系路を並設することによって、上記抽出容器および検出器を介して流体を循環させる閉鎖された流体循環系路を形成するとともに、該流体循環系路の途中に別途所定の溶媒の定量注入装置を設けたことを特徴としている。
【0024】
従って、該構成では、抽出が完了するまで上記閉鎖された循環系路を介して所定量の流体を外部に放出することなく繰り返し上記抽出容器および検出器を通して抽出ないし抽出状態のモニターを行わせることができるようになる。その結果、使用流体の量を低減し、かつ短時間で効率良く抽出を行わせることができるようになる。
【0025】
また、上記2つの切換バルブ間の抽出系路と還流系路との組合せよりなる流体循環系路の途中に超臨界状態を維持したままで一定量の溶媒を添加することができる定量注入装置を設けているので、上記循環系路中の溶媒濃度を上記閉鎖系路を保ったままの状態で段階的に変えることが可能となる。そして、それにより、一回の抽出で複数種の溶媒濃度添加条件に対する溶解度を測定することができるようになるので、溶媒を使用する最適な抽出条件を求める際の試料物質の使用量の削減と検討時間の短縮とを可能にすることができる。
【図面の簡単な説明】
【図1】 本願発明の実施の形態に係る超臨界流体抽出装置の構成を示す概略図である。
【図2】 従来例に係る超臨界流体抽出装置の構成を示す概略図である。
【符号の説明】
1は流体ボンベ、2は加圧ポンプ、3は抽出容器、4は検出器、5は圧力制御装置、6は回収容器、8はエントレーナ送液ポンプ、9は開閉バルブ、10はエントレーナ供給系路、11は混合器、12は恒温槽、13は第1の切換バルブ、14は第2の切換バルブ、15は循環ポンプ、17は定量注入装置、18は抽出系路、19は還流系路である。
[0001]
BACKGROUND OF THE INVENTION
[0002]
The present invention relates to a supercritical fluid extraction apparatus in which desired extraction conditions are set by adding a solvent to a supercritical fluid to change the solubility.
[Prior art]
[0003]
The extraction method using a fluid in a supercritical state is higher in safety than the extraction method using an organic solvent, and is generally unstable to heat because it can be extracted under a temperature condition of about 40 ° C to 80 ° C. Recently, it has attracted attention as a stable extraction method suitable for the extracted substances.
[0004]
FIG. 2 is a schematic diagram showing the configuration of a conventional supercritical fluid extraction apparatus that employs, for example, carbon dioxide (CO 2 ) as a fluid. In the apparatus, an extraction system path 18 at the center of the apparatus is shown in the figure. The fluid cylinder 1, the pressure pump 2, the mixer 11, the extraction container 3, the detector 4, the pressure control device 5, and the recovery container 6 are sequentially connected by piping.
[0005]
In the supercritical fluid extraction apparatus configured as described above, after supplying carbon dioxide from the fluid cylinder 1 into the extraction system path 18 and substituting the carbon in the system with carbon dioxide, on the fluid inlet side of the extraction container 3. The fluid flowing in the extraction container 3 is made to be equal to or higher than the critical pressure (for example, about 73 atm in the case of carbon dioxide) by the pressurizing pump 2 for increasing the pressure of the fluid and the pressure control device 5 for adjusting the pressure (back pressure) on the same fluid outlet side In addition, the carbon dioxide in the extraction vessel 3 is supercritical fluid (hereinafter, simply referred to as fluid) by controlling the pressure to a critical temperature (about 31 ° C. in the case of the carbon dioxide) or higher by the thermostatic bath 12. In this state, a desired component is extracted from a predetermined sample substance placed in the extraction container 3, and the extraction state is monitored by the detector 4.
[0006]
Next, the same fluid in which the extracted components extracted as described above are dissolved is guided to the pressure control device 5, and the pressure is controlled to be reduced below the critical pressure. As a result, at the outlet side of the pressure control device 5, the fluid returns to the original carbon dioxide gas, and the extracted components dissolved in the fluid are precipitated and separated and recovered in a predetermined recovery container 6. .
[0007]
By the way, in this case, when extraction is performed using a supercritical fluid having a single composition such as carbon dioxide, a disadvantage is that the dissolving power is small as compared with the case where an organic solvent is used. However, there is no problem with this point because the solubility can be increased by adding a small amount of solvent to the supercritical fluid. This solvent is generally called an entrainer, and the above-mentioned conventional apparatus is provided with an entrainer container 7 as shown in the figure, and the entrainer in the entrainer container 7 is provided with an entrainer liquid feed pump 8 and an opening / closing valve 9. (Solvent supply line) 10 is injected from the upstream side of the extraction container 3 into the extraction line 18 via the mixer 11, and the mixer 11 allows the entrainer to It is designed to be mixed evenly.
[Problems to be solved by the invention]
[0008]
As described above, the conventional supercritical fluid extraction device has a structure in which carbon dioxide is continuously supplied from the fluid cylinder 1 and at least during the extraction, and carbon dioxide is always released from the pressure control device 5. . That is, since it is a constant distribution system, the required amount of carbon dioxide (fluid) increases. In addition, when the optimum extraction conditions are examined by changing the solubility of the extraction component to a desired level by changing the concentration of the entrainer (solvent) in the extraction container 3, only a certain entrainer concentration is required for one extraction. Only the extraction status can be confirmed. For this reason, every time the concentration of the entrainer is changed, the sample material as the material to be extracted must be replaced with a new one to check the extraction state, and extraction is repeated many times until the optimum extraction conditions are found. An operation must be performed. Therefore, there is a problem that a large amount of sample material is required and the examination time is long.
[0009]
The present invention has been made to solve the above problems, respectively provided switching valves in each of between the upstream and the detection container and the pressure control device of the extraction vessel, between these switching valve By arranging a reflux system in parallel, a closed fluid circulation system is formed via the extraction container and the detector, and a solvent metering device is separately provided in the middle of the extraction to complete the extraction. Fluid and sample to be used so that extraction can be repeated through the extraction container and detector without releasing a predetermined amount of fluid to the outside and monitoring of the extraction state can be performed. The aim is to provide a supercritical fluid extraction device that can reduce the required amount of substances and can study optimal extraction conditions efficiently in a short time. It is an.
[Means for Solving the Problems]
[0010]
In order to achieve the above object, the present invention is configured with the following problem solving means.
[0011]
That is, in the supercritical fluid extraction device according to the first aspect of the present invention, an extraction system line in which a fluid cylinder, a pressure pump, an extraction container, a detector, and a pressure control device are sequentially connected to each other by the piping and the extraction container of the extraction system path A solvent supply path for supplying a predetermined solvent upstream, and by adding a predetermined solvent to the fluid in a supercritical state of the predetermined fluid, the solubility of the sample material is changed to supercritical fluid extraction apparatus for extracting a predetermined component, upstream of the extraction vessel of said extraction system path and provided each changeover valve in each of between the detector and the pressure control device, between the respective switching valves And forming a closed fluid circulation system that circulates the fluid through the extraction container and the detector by juxtaposing a reflux system for refluxing the fluid that has passed through the detector to the extraction container side. To, it is characterized in that separate the middle of the fluid circulation passage is provided a quantitative injection device of a given solvent.
[0012]
Therefore, in this configuration, extraction or monitoring of the extraction state is repeatedly performed through the extraction container and the detector without discharging a predetermined amount of fluid to the outside through the closed circulation system until the extraction is completed. Will be able to. As a result, the amount of fluid used can be reduced and extraction can be performed efficiently in a short time.
[0013]
Also, a metering injection device capable of adding a certain amount of solvent while maintaining a supercritical state in the middle of a fluid circulation system comprising a combination of an extraction system and a reflux system between the two switching valves. Since it is provided, the solvent concentration in the circulation system can be changed stepwise while the closed system is maintained. As a result, it becomes possible to measure the solubility for a plurality of types of solvent concentration addition conditions in a single extraction, thereby reducing the amount of sample material used when determining the optimum extraction conditions using a solvent. It is possible to shorten the examination time.
DETAILED DESCRIPTION OF THE INVENTION
[0014]
Next, an embodiment of the present invention will be described in detail with reference to FIG.
[0015]
That is, first, FIG. 1 is a schematic view similar to FIG. 2 showing the configuration of the supercritical fluid extraction apparatus according to one embodiment of the present invention. As shown in the figure, this supercritical fluid extraction apparatus is a normal extraction excluding the case where a fluid cylinder 1 filled with, for example, carbon dioxide (CO 2 ), a pressurizing pump 2 for increasing fluid pressure, and examination of extraction conditions are examined. When working, the mixer 11 for injecting and mixing the entrainer (solvent) from the entrainer container 7 into the extraction system 18, the first switching valve 13, and the extraction conditions are examined, and a certain amount of entrainer (solvent) is injected. Fixed quantity injection device 17, extraction container 3 into which sample substance to be extracted is placed, detector 4 for extraction level (saturation level) monitor, second switching valve 14, and pressure by relief of a part of fluid to the outside The pressure control device 5 for controlling the (back pressure), the recovery container 6 for recovering the extracted components, and the extraction system path 18 connected in order by piping, and the entrainer container at the time of the normal extraction operation And the entrainer supply system 10 for supplying the entrainer (solvent) from the detector 11 to the mixer 11 via the entrainer liquid feed pump 8 and the open / close valve 9, and the fluid passing through the detector 4 at the time of examining the extraction conditions. A circulation pump 15 for reflux circulation is provided on the upstream side of the container 3, and the second switching valve 14 and the first switching valve 13 are connected by a pipe similar to the extraction system path 18 to connect the first and second valves. And a part of the extraction system 18 having the extraction vessel 3 and the detector 4 between the switching valves 13 and 14 and a reflux system 19 constituting a supercritical fluid circulation system (refer to a closed loop indicated by a chain arrow). It has become.
[0016]
The entrainer (solvent) metering device 17 is provided in an appropriate part of the circulation system.
[0017]
Therefore, in this structure, the fluid cylinder 1 and the recovery container 6 are communicated in a straight line as indicated by the broken line arrow by the switching operation of the first and second switching valves 13 and 14 of the extraction system 18. A loop communication state and a closed-loop circulation system state in which the upstream side of the upstream metering injection device 17 of the extraction container 3 and the downstream side of the detector 4 communicate with each other through the reflux system channel 19 from the open loop communication state. By switching to, the metering injection device 17, the extraction container 3, and the detector 4 between the first switching valve 13 and the second switching valve 14 in the extraction system path 18 are returned to the reflux system having the circulation pump 15. By switching to the closed circulation path state via the path 19, a predetermined fluid can be circulated at all times as indicated by a chain line arrow.
[0018]
That is, in this configuration, prior to the original extraction operation using the entrainer (solvent) from the entrainer supply system 10, the extraction is first performed when obtaining the optimum extraction condition of the concentration of the supplied entrainer (solvent). The container 3 is filled with the sample substance, and all the three-way three on-off valve portions of the first and second switching valves 13 and 14 are opened, and the extraction system path 18 and the reflux system path 19 are The carbon dioxide as a fluid is started to flow from the fluid cylinder 1 to each. And after replacing the air of all the systems including the extraction system path 18 and the reflux system path 19 with carbon dioxide, the pressure pump 2, the pressure control device 5, and the thermostatic chamber 12 are used to adjust to a predetermined pressure and temperature. To form a supercritical state. When the supercritical state is formed, the first and second switching valves 13 and 14 are then switched to open and close the opening / closing valve portion on the pressure pump 2 side and the opening and closing side on the pressure control device 5 side. The valve section is closed to form the above-described circulation system path, and the fluid in the supercritical state is circulated by the circulation pump 15 as indicated by a chain line arrow.
[0019]
Then, a part of the extracted component in the sample substance in the extraction container 3 is dissolved in the circulating fluid, and the extraction container 3 and the detector 4 are repeatedly used while the dissolved state is monitored by the detector 4. It will circulate and flow.
[0020]
Then, as a result of monitoring by the detector 4, when it is confirmed that the action of dissolving the extracted component in the circulating supercritical fluid is saturated, a fixed amount of entrainer (solvent) is removed by the quantitative injection device 17. Then, the dissolved state of the extracted component is monitored again by the detector 4. By repeating this process, the entrainer (solvent) is added stepwise to accurately measure the dissolution characteristics of the extracted components at each step.
[0021]
On the other hand, when measuring the dissolution characteristics of a predetermined pure substance in a supercritical fluid flowing in the circulation system, the pure substance is saturated with respect to the supercritical fluid having a predetermined flow rate. However, after a predetermined amount or more that remains undissolved, that is, a supersaturated amount of pure substance is placed in the extraction vessel 3 and carbon dioxide is supplied from the fluid cylinder 1 to replace the air in each system with carbon dioxide. The extraction container 3 is heated by the thermostatic bath 12 and pressurized by the pressurizing pump 2 to make the carbon dioxide a supercritical fluid having a predetermined temperature and pressure, and the first switching valve 13 and the second switching valve 13 The switching valve 14 is switched to form the above-described circulation system state, and the supercritical fluid is circulated by the circulation pump 15 in the same manner as described above to saturate the pure substance in the supercritical fluid. ) So as to stepwise added. In this way, the dissolution characteristic of the pure substance at each stage can be accurately measured in the same manner as described above.
[0022]
By the above method, it is possible to clarify the dissolution characteristics with respect to a plurality of levels of entrainer addition conditions with the same sample material.
[0023]
As described above, in the supercritical fluid extraction device of the present invention, an extraction system line in which a fluid cylinder, a pressure pump, an extraction container, a detector, and a pressure control device are sequentially connected by a pipe, and the extraction container upstream of the extraction system path. A solvent supply system for supplying a predetermined solvent to the side, and in a supercritical state of the predetermined fluid, by adding the predetermined solvent to the fluid, the solubility of the sample material is changed to change the predetermined amount in the sample material. In the supercritical fluid extraction device for extracting the components of the above, a switching valve is provided on each of the upstream side of the extraction vessel and the downstream side of the extraction vessel between the detector and the pressure control device, A closed fluid circulation system that circulates the fluid through the extraction container and the detector by arranging a reflux system that recirculates the fluid that has passed through the detector to the extraction container side between these switching valves. Shape As well as, it is characterized by separately providing the metering injection device of a given solvent in the middle of the fluid circulation path.
[0024]
Therefore, in this configuration, extraction or monitoring of the extraction state is repeatedly performed through the extraction container and the detector without discharging a predetermined amount of fluid to the outside through the closed circulation system until the extraction is completed. Will be able to. As a result, the amount of fluid used can be reduced and extraction can be performed efficiently in a short time.
[0025]
Also, a metering injection device capable of adding a certain amount of solvent while maintaining a supercritical state in the middle of a fluid circulation system comprising a combination of an extraction system and a reflux system between the two switching valves. Since it is provided, the solvent concentration in the circulation system can be changed stepwise while the closed system is maintained. As a result, it becomes possible to measure the solubility for a plurality of types of solvent concentration addition conditions in a single extraction, thereby reducing the amount of sample material used when determining the optimum extraction conditions using a solvent. It is possible to shorten the examination time.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a supercritical fluid extraction device according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a configuration of a supercritical fluid extraction apparatus according to a conventional example.
[Explanation of symbols]
1 is a fluid cylinder, 2 is a pressure pump, 3 is an extraction container, 4 is a detector, 5 is a pressure control device, 6 is a recovery container, 8 is an entrainer feed pump, 9 is an open / close valve, and 10 is an entrainer supply system , 11 is a mixer, 12 is a thermostatic bath, 13 is a first switching valve, 14 is a second switching valve, 15 is a circulation pump, 17 is a metering device, 18 is an extraction system, and 19 is a reflux system. is there.

Claims (1)

流体ボンベ、加圧ポンプ、抽出容器、検出器、圧力制御装置を順次配管により接続した抽出系路と該抽出系路の上記抽出容器上流側に所定の溶媒を供給する溶媒供給系路とを有し、所定の流体の超臨界状態において、同流体に所定の溶媒を加えることにより、試料物質の溶解度を変化させて試料物質中の所定の成分の抽出を行う超臨界流体抽出装置において、上記抽出系路の上記抽出容器の上流側および上記検出器と圧力制御装置との間の各々にそれぞれ切換バルブを設け、これら各切換バルブ間に上記検出器を経た流体を上記抽出容器側に還流させる還流系路を並設することによって、上記抽出容器および検出器を介して流体を循環させる閉鎖された流体循環系路を形成するとともに、該流体循環系路の途中に別途所定の溶媒の定量注入装置を設けたことを特徴とする超臨界流体抽出装置。An extraction system path in which a fluid cylinder, a pressure pump, an extraction container, a detector, and a pressure control device are sequentially connected by a pipe and a solvent supply system path for supplying a predetermined solvent to the extraction container upstream side of the extraction system path are provided. In the supercritical fluid extraction apparatus for extracting a predetermined component in a sample material by changing the solubility of the sample material by adding a predetermined solvent to the fluid in a supercritical state of the predetermined fluid. upstream of the extraction vessel system path and respectively provided switching valves in each of between the detector and the pressure control device, reflux fluid passing through the detector between each of these switching valves are refluxed to the extraction vessel side By arranging the system paths in parallel, a closed fluid circulation system path for circulating the fluid through the extraction container and the detector is formed, and a predetermined solvent quantitative injection device is separately provided in the middle of the fluid circulation system path. Supercritical fluid extraction device, characterized in that the provided.
JP26577699A 1999-09-20 1999-09-20 Supercritical fluid extraction device Expired - Fee Related JP4382208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26577699A JP4382208B2 (en) 1999-09-20 1999-09-20 Supercritical fluid extraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26577699A JP4382208B2 (en) 1999-09-20 1999-09-20 Supercritical fluid extraction device

Publications (2)

Publication Number Publication Date
JP2001079304A JP2001079304A (en) 2001-03-27
JP4382208B2 true JP4382208B2 (en) 2009-12-09

Family

ID=17421890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26577699A Expired - Fee Related JP4382208B2 (en) 1999-09-20 1999-09-20 Supercritical fluid extraction device

Country Status (1)

Country Link
JP (1) JP4382208B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101855100B1 (en) * 2016-05-27 2018-05-08 주식회사 아스타 Apparatus for solid phase extraction comprising level measurement and method using the same

Also Published As

Publication number Publication date
JP2001079304A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
EP2672002B1 (en) Cleaning method and cleaning device
US6149294A (en) System for the preparation of a fluid concentrate intended for medical use
US7584697B2 (en) Isostatic press
KR101024515B1 (en) Device and method for injecting a liquid colour into a polymer melt
JP2004006858A (en) Chemicals dispenser
US20070074354A1 (en) Method and apparatus for uniform application of treatment agents to a textile rope
JP6162067B2 (en) Textile processing equipment
KR20010052517A (en) Improved method of dyeing hydrophobic textile fibers with colorant material in supercritical fluid carbon dioxide
JP2000019165A (en) Gas chromatograph
JP4382208B2 (en) Supercritical fluid extraction device
JP2008034593A (en) Chemical treatment device, chemical supply method, and chemical supply program
JP2001044163A (en) Method and apparatus for control of fluid within substrate processing tank
EP0203182A4 (en) Dye color control system.
JP2015046443A (en) Apparatus for treating liquid, method for correcting concentration, and storage medium
US20080034509A1 (en) Method for Suspending and Introducing Solid Matter in a High-Pressure Process
KR102325287B1 (en) Monitoring apparatus for supercritical co2 dye process and normality dyeing judgment method using the apparatus
KR100717573B1 (en) Method and device for evenly applying treatment means on roped fabrics
JP6464864B2 (en) Textile processing method
KR20090032286A (en) Substrate treatment apparatus and treating method for controlling of chemical concentration thereof
TWI813786B (en) mixing device
KR102325286B1 (en) Monitoring apparatus for supercritical co2 dye process and normality dyeing judgment method using the apparatus
US6884867B2 (en) Precondition for inverting, mixing, and activating polymers
KR100550925B1 (en) dyeing machine
JP3667033B2 (en) Iron analyzer
EP4141442A1 (en) Element analysis device, operation method for element analysis device, and work program for element analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees