JP4382202B2 - Fat content measurement method - Google Patents
Fat content measurement method Download PDFInfo
- Publication number
- JP4382202B2 JP4382202B2 JP22650599A JP22650599A JP4382202B2 JP 4382202 B2 JP4382202 B2 JP 4382202B2 JP 22650599 A JP22650599 A JP 22650599A JP 22650599 A JP22650599 A JP 22650599A JP 4382202 B2 JP4382202 B2 JP 4382202B2
- Authority
- JP
- Japan
- Prior art keywords
- cell
- conductivity
- cells
- frequency
- fat content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、絶縁体膜で囲まれた電解質液中に非電解質が存在する粒子の場合に、粒子懸濁液の誘電緩和現象を利用して、電解質液の誘電率及び/又は導電率を測定することにより、当該電解質液中の非電解質の濃度を測定する方法に関する。より具体的には、絶縁体膜である細胞膜で囲まれ、内部が電解質液である細胞基質で満たされた細胞に存在する油脂量の簡便且つ迅速な計測方法に関する。
【0002】
【従来の技術】
植物や微生物から得られる油脂はその多くが細胞内に蓄積されるから、油脂原料の受入検査、製造工程管理及び該工程の改善において、油脂含量の測定は非常に重要である。通常、油脂含量測定のためには、まず油脂を抽出しなければならず、油脂の抽出方法としては、ヘキサン、クロロホルムなどの有機溶媒を使用する方法、又は、原料の破砕、圧搾によって抽出する方法などが知られている。油脂を抽出した後、さらに溶媒等の不純物を除去し、油脂重量を測定する方法やクロマトグラフィーで油脂含量を測定する方法が多く用いられているが、これら方法は繁雑であり、多くの時間と労力を必要とするという問題がある。
【0003】
例えば、微生物菌体中の油脂含量を測定する従来の方法(例えば、特開平6−153970号公報参照)では、培養液より乾燥菌体を得るための濾過・乾燥に約3時間程度の時間を要する。次いで、Bligh & Dyerの抽出法によって総脂質を抽出するためには、約1時間程度の時間を要する。これを、無水メタノール−塩酸を用いてメチルエステル化するために3時間を要する。得られた、脂肪酸メチルエステルを抽出、溶媒除去するために約4時間を要する。さらに、メチルエステル濃縮物を再度、所定量の溶媒に溶解し、ガスクロマトグラフィーで分析するために、全脂肪酸成分をクロマトグラフィーで溶出させるための時間を加味すると、約1時間程度の時間を要する。こうして、分析に要する時間は以上の合計約12時間となるが、分析は昼間作業で行う事が一般的であるため、分析を終えるのはサンプル採取の翌日になる。このため、脂肪酸生成量を工程管理項目とすることは、実際の工程進行と分析終了の時間差が大きいので、従来技術では実用上不可能であった。
【0004】
一方、微生物懸濁液の電気計測によって得られる誘電率は、当該微生物懸濁液の菌体濃度と高い相関を持つことが知られており、誘電率の電気計測は迅速且つ簡便であることから、誘電率は菌体濃度の計測に利用されている。誘電率測定の特徴として、(1)測定が容易であり連続自動測定ができること、(2)光学測定では難しい濁った試料や着色した試料についても測定できること、(3)細胞濃度を直接測定しているため、細胞の代謝量などからの間接測定に比べて正確であること、及び(4)細胞膜のイオンに対するバリア能を利用するため生きた細胞のみを測定できることが挙げられる。
【0005】
例えば、誘電体の電気計測を廃水処理(特公平4−25800号公報)、培養酵母(「計装」(1996)、第39巻第3号、第51−55ページ)、動物及び植物の培養細胞(「Bioprocess Engineering」(1994)、No.11、第213−222ページ)、培養中の固定化微生物(「J.Fermentation and Bioengineering」(1992)、Vol.72、No.4、第291−295ページ)に適用して、菌体又は細胞の濃度を計測する試みが報告されている。なお、上記の()内は、こうした試みを報告した文献の一例を挙げたものである。
【0006】
これら菌体又は細胞の濃度を測定する試みだけでなく、細胞内の液胞の体積変化を計測する試みも報告されている(「biochimica et Biophysica Acta」(1995)、No.1245、第99−105ページ参照)。しかし、これは、細胞膜による誘電緩和ではなくて、液胞の絶縁体膜(液胞膜)の誘電緩和を解析することによって計測された例である。
【0007】
以上のように、誘電計測の利用例は数多く報告されているが、細胞膜などの絶縁体膜で囲まれた電解質液中における油脂などの非電解質の含量を簡便且つ迅速に計測する試みは、これまで報告されていない。
【0008】
こうした次第であるから、例えば、高度不飽和脂肪酸などの油脂を微生物で生産する場合、該微生物によって作られて細胞内に蓄積された油脂の含量を簡便且つ迅速に測定する方法が強く望まれていた。
【0009】
【発明が解決しようとする課題】
本発明は、従来技術の上記のとおりの課題に鑑みて提案されたものであり、本発明の目的は、絶縁体膜である細胞膜で囲まれた細胞基質中に存在する油脂の量を簡便且つ迅速に計測する方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記の油脂含量測定技術の現状を鑑みて、鋭意様々な方法の検討を行なった結果、絶縁体膜である細胞膜で囲まれ内部が細胞基質で満たされた細胞中の油脂の体積と該細胞内部の誘電緩和周波数及び/又は導電率との間には、直線で近似することができる相関関係があることを見出した。本発明は、こうした知見に基づいて提案されたものであって、絶縁体膜である細胞膜に囲まれた細胞基質中の油脂の量を測定するために、細胞膜による誘電緩和周波数及び/又は細胞基質の導電率を測定することを特徴とする。一方、粒子中の油脂の体積と該粒子内部の誘電緩和周波数及び/又は導電率との間の相関関係を示す検量線を予め求めておくことにより、測定された誘電緩和周波数又は導電率をこの検量線に当てはめることにより、当該細胞の油脂含量を求めることができる。
【0011】
例えば、生物の細胞は細胞質とそれを取り囲む細胞膜から構成されており、細胞膜は主として脂質二重層で構成されているから、導電性が極めて低く絶縁体とみなすことができる。一方、細胞質を満たしている細胞基質は、水と、この水に溶解した各種イオンとで構成されているから、導電性を有する電解質液とみなすことができ、細胞質中の油脂は非電解質とみなすことができる。
【0012】
そこで、本発明は、細胞膜で囲まれ細胞基質で満たされた細胞質中の油脂量と該細胞質の誘電率及び/又は導電率との間に所定の相関が存在するとの知見に基づいて、細胞の誘電緩和周波数から細胞基質の導電率を測定することによって細胞質中の油脂含量を計測する方法を提供する。
【0013】
本発明に係る、絶縁体膜である細胞膜で囲まれ、内部が電解質液である細胞基質で満たされた細胞の内部に存在する油脂含量を測定する方法は、例えば、微生物細胞中の油脂含量の計測に利用することができる。当該計測に用いる検体は、油脂蓄積能を有する微生物の場合は、該微生物の培養液又は懸濁液であることが望ましい。
【0014】
上記油脂蓄積能を有する微生物として、例えば、コニディオボラス(Conidiobolus)属、エントモフソラ(Entomophthora)属、アブシディア(Absidia)属、クニングァメラ(Cunninghamella)属、モルティエレラ(Mortierella)属、リゾプス(Rhizopus)属、ムコール(Mucor)属、ピィティウム(Pythium)属、アスペルギルス(Aspergillus)属、フザリウム(Fusarium)属、ペリクラリア(Pellicularia)属、ペニシリウム(Pennicillium)属、クラドスポリウム(Cladosporium)属、トリポスポリウム(Tolyposporium)属、又はクラビセプス(Claviceps)属の糸状菌、キャンディダ(Candida)属、クリプトコッカス(Cryptococcus)属、エンドマイセス(Endomyces)属、ガラクトマイセス(Galactomyces)属、ウィリオプシス(Williopsis)属、ワルトマイセス(Waltomyces)属、リポマイセス(Lipomyces)属、ロドスポリディウム(Rhodosporidium)属、ロドトルラ(Rhodotorula)属、トリコスポロン(Ttichosporon)属、又はヤロウィア(Yarrowia)属の酵母、及びスピルリナ(Spirulina)属、クロレラ(Chlorella)属、クリプセコディウム(Crypthecodium)属、イソクリシス(Isochrysis)属、ナノクロロプシス(Nannochloropsis)属、フォダクティラム(Phaeodactylum)属、ポルフィリディウム(Porphyridium)属、ウルケニア(Ulkenia)属、又はシゾキトリウム(Schizochytrium)属の藻類などが挙げられる。
【0015】
【発明の実施の形態】
本発明に係る油脂含量測定方法を実施するため、まず、測定対象物の懸濁液の少なくとも1つの箇所に、周波数が変化する交流電場を印加する。測定対象物の懸濁液への交流電場の印加は、一対以上の電極を設置し該電極間に測定対象物の懸濁液を配置する方法や、コイルの周りに電磁誘導で発生する電界を測定対象物の懸濁液に印加する方法(例えば、「計装」(1996)、第39巻第3号、第51−55ページ参照)が利用できる。交流電場の周波数は5Hzから100MHzの範囲で掃印されて測定対象物の誘電率及び導電率の一連の測定値を得、これによって測定対象物の誘電率及び導電率の周波数特性を測定する。印加する交流電場の大きさは、測定対象とする細胞に損傷を与えない程度の大きさに選定するのがよく、微生物細胞の場合、好ましくは2V以下、より好ましくは1V以下の電圧がよい。
【0016】
次に、上で求めた導電率の一連の測定値より、粒子(細胞)媒質の導電率ka(単位S/m)を求める。粒子(細胞)濃度が低い場合には、最も低周波数側の導電率測定値、あるいは、低周波数側の導電率収束値又はその予測値を、導電率kaの近似値として用いることができる。
【0017】
さらに、上で求めた誘電率の周波数特性より、緩和周波数fc(単位Hz)を求める。緩和周波数fcは、「誘電率の低周波数側収束値と高周波数側収束値の中点が観測される周波数」を意味する。緩和周波数fcを求めるための1つの方法は、誘電率の周波数特性実測値がCole−Cole式(「J.Chemical Physics」(1941)、No.9、第341−351ページ参照)、即ち、
【0018】
【数1】
ε=εh+Re{(εl−εh)/(1+(jf/fc)β)} (1)
の曲線と最も良く合うようなパラメータfcを、計算機を用いて非線型最小自乗法で求めることである。但し、式(1)において、εは誘電率、εhは誘電率の高周波数側収束値、εlは誘電率の低周波数側収束値、fは印加された交流電場の周波数、fcは緩和周波数、βはCole−Coleパラメータ、jは虚数単位(=√(−1))である。しかし、緩和周波数fcの算出方法はこれに限られるものではない。通常、本発明における緩和周波数fcは周波数帯域100kHzから10MHzの範囲に入る。
【0019】
以上の測定に基づいて、目的とする電解質液中の非電解質の含量、即ち、細胞質中の油脂含量は以下のようにして計測することができる。
(1)上で求めた導電率kaが一定で,殆ど変化しない場合:
例えば細胞を一定濃度の電解質液に懸濁又は分散して測定に供する場合などは、緩和周波数fcと絶縁体膜で囲まれた内部の電解質液中の油脂含量との間には、直線で近似できる相関関係がある。そこで、こうした相関関係を示す検量線を予め求めておくことにより、誘電率の周波数特性から求めた緩和周波数fcを用いて、簡便且つ迅速に、油脂含量を求めることができる。
【0020】
(2)上で求めた導電率kaが変化する場合:
例えば、微生物の培養液などで、培養液中の電解質濃度が培養経過と共に変化する場合などは、以下の方法で細胞質中の油脂含量を求めることができる。細胞膜で囲まれた細胞質の導電率ki(単位S/m)と粒子媒質の導電率kaと緩和周波数fcとの間の関係は、細胞の形状、すなわち、微生物の形状がほぼ球形の場合には
【0021】
【数2】
1/fc=A[(1/ki)+(1/ka)] (2)
で近似することができ、長軸が短軸より十分に長い楕円体、桿状体及び繊維状体の場合は
【0022】
【数3】
1/fc=B[(1/ki)+(1/ka)] (3)
で近似することができる。但し、式(2)において、AはπDCmに等しい定数、Dは細胞の直径(単位m)、Cmは細胞膜の面積当り静電容量(単位F/m2)であり、式(3)において、BはπTCmに等しい定数、Tは楕円体の場合は細胞の短軸直径、桿状体及び繊維状体の場合は桿又は繊維の直径(単位m)、Cmは細胞膜の面積当り静電容量(単位F/m2)である。
【0023】
式(2)及び式(3)において、定数A及びBの値は細胞膜で囲まれた電解質液に固有の値である。しかも、導電率kiと細胞質中の油脂含量との間には直線で近似できる相関関係があることが判明している。したがって、当該細胞について、こうした相関関係を示す検量線と定数A、Bの値とを予め求めておくことにより、測定対称の細胞の導電率kiを測定することによって、簡便且つ迅速に、細胞質中の油脂含量を求めることができる。
【0024】
測定対象である細胞の定数A、Bの値が予め求められていない場合は、例えば、該細胞の懸濁液に無機塩類等の電解質を添加した場合の1/kaに対する1/fcの変化をプロットし、その傾きから定数A、Bの値を求めることができる。しかし、定数A、Bを求める方法はこれに限られるものではない。
【0025】
以上述べた方法を用いることにより、微生物細胞の油脂含量を測定することができる。当該方法は、測定対象物を破壊することなく迅速且つ簡便に実施することを可能とするものであり、液体培養中の微生物細胞の油脂含量の変化をオンラインで計測することに適用することも可能であるから、本発明は、微生物による油脂生産の工程制御及び工程管理に適用して極めて有益である。
【0026】
【実施例】
以下、本発明に係る油脂含量測定方法の具体例を若干の実施例で説明する。但し、本発明の技術的範囲はこれらの実施例に限定されるものではない。
【0027】
実施例1
糸状菌Mortierella alpina CBS754.68を50L培養槽で、大豆タンパク、グルコースを主成分とする培地で培養した。培養液を経時的に500mLビーカーに採取し、液中心付近に電磁誘導式プローブを入れて培養液の誘電率及び導電率を100kHzから30MHzの周波数範囲で計測した。得られた誘電率データのうち、400kHzから30MHzの周波数範囲の誘電率データを用いて、非線型最小自乗法による式(1)への曲線合わせによって緩和周波数fcを求め、導電率kaとして100kHzにおける導電率値を用いた。
【0028】
使用菌株は糸状菌であるので、粒子が繊維状である場合に適用される式(3)を用いることとした。定数Bの値を求めるために、培養液にKCl水溶液(濃度25%)を0.5mLずつ計6回添加し、添加の都度、緩和周波数fcと導電率kaを求めて両者の逆数をプロットし、その傾きから定数Bの値を求め、1.35×10-7[F/m]と決定した。このようにして求めた緩和周波数fc、導電率ka及び定数Bを用いて式(3)から導電率kiを求めた。一方、例えば特開平6−153970号公報に記載された、菌体より油脂を抽出する公知の方法を用いて、当該糸状菌の乾燥菌体当たり脂肪酸含量を求めた。
【0029】
以上の手順を同一の糸状菌について、脂肪酸含量が異なる毎に反復し、得られた脂肪酸含量と導電率kiとの関係をプロットしたところ、図1を得た。図1は、糸状菌の導電率kiと脂肪酸含量との間に直線で近似できる関係のあることを示している。したがって、図1のグラフを検量線として予め求めておくことにより、当該糸状菌の脂肪酸含量が未知のとき、その糸状菌の導電率kiを上記の手順で算出することにより、その脂肪酸含量を求めることができる。
【0030】
実施例2
酵母Lipomyces starkeyi IFO10385株を10L培養槽で、酵母エキス、グルコースを主成分とする培地で培養した。経時的に培養液を採取し、実施例1と同様の方法で誘電計測を行ない、球体に適用される式(2)を使って導電率kiを計算した。その後、培養液を遠心して酵母菌体を集め、水洗を3回繰り返して洗浄酵母菌体を得た後、これを乾燥させ、実施例1と同様の方法で菌体当たり脂肪酸含量を測定した。以上の手順を同一の酵母について、脂肪酸含量が異なる毎に反復し、得られた脂肪酸含量と導電率kiとの関係をプロットしたところ、図2を得た。図2は、酵母の導電率kiと脂肪酸含量との間に直線で近似できる関係のあることを示している。したがって、図2のグラフを検量線として予め求めておくことにより、当該酵母の脂肪酸含量が未知のとき、その酵母の導電率kiを上記の手順で算出することにより、その脂肪酸含量を求めることができる。
【0031】
実施例3
糸状菌Mortierella alpina CBS754.68を50L培養槽で、大豆タンパク、グルコースを主成分とする培地で培養した。培養液より遠心分離で菌体を得た後、10mM KCl溶液で洗浄し、遠心分離して菌体を得た。同様の洗浄操作をさらに2回繰り返した後、10mM KCl溶液に懸濁して白金電極セルに充填し、電極間に周波数帯域5Hzから10MHzの交流電場を加えて、その誘電率の周波数特性を計測したところ、細胞膜の誘電緩和による緩和が2箇所で観測され、そのときの低周波数側の収束値はおおよそ10kHz以下の周波数帯域に、高周波数側の収束値は100kHzから10MHzまでの周波数帯域に各々観測された。そこで、電極分極の影響を差し引いた後、これら2つの収束値の中点として緩和周波数fcを求めると共に、実施例1ど同様の方法で菌体当たり脂肪酸含量を測定した。
【0032】
以上の手順を同一の糸状菌について、脂肪酸含量が異なる毎に反復し、その結果得られた脂肪酸含量と緩和周波数fcとの関係をプロットしたところ、図3を得た。図3は、糸状菌の緩和周波数fcと脂肪酸含量との間に直線で近似できる関係のあることを示している。したがって、図3のグラフを検量線として予め求めておくことにより、当該糸状菌の脂肪酸含量が未知のとき、その糸状菌の緩和周波数fcを上記の手順で算出することにより、その脂肪酸含量を求めることができる。
【0033】
【発明の効果】
以上、若干の実施例に基づいて本発明に係る油脂含量測定方法を説明したところから理解できるように、本発明は、糸状菌や酵母などの微生物細胞の油脂含量を迅速且つ簡便に測定することができるという格別の効果を奏する。したがって、本発明は、微生物による油脂生産の工程制御及び工程管理に適用して極めて有益である。
【図面の簡単な説明】
【図1】糸状菌細胞質の導電率kiと乾燥菌体当たりの脂肪酸含有量との関係を示すグラフである。
【図2】酵母細胞質の導電率kiと乾燥菌体当たりの脂肪酸含有量との関係を示すグラフである。
【図3】糸状菌の緩和周波数fcと乾燥菌体当たりの脂肪酸含有量との関係を示すグラフである。[0001]
[Industrial application fields]
The present invention measures the dielectric constant and / or conductivity of an electrolyte solution by utilizing the dielectric relaxation phenomenon of a particle suspension in the case of particles in which an electrolyte is present in an electrolyte solution surrounded by an insulator film. This relates to a method for measuring the concentration of the non-electrolyte in the electrolyte solution. More specifically, the present invention relates to a simple and rapid method for measuring the amount of oil and fat present in cells surrounded by a cell membrane that is an insulator film and filled with a cell substrate that is an electrolyte solution.
[0002]
[Prior art]
Since most of the fats and oils obtained from plants and microorganisms accumulate in the cells, the measurement of the fat and oil content is very important in the acceptance inspection of the fats and oils raw material, the production process control, and the improvement of the process. Usually, in order to measure the fat content, the fat must first be extracted. As a method for extracting the fat, a method using an organic solvent such as hexane or chloroform, or a method of extracting by crushing or pressing the raw material Etc. are known. After extraction of fats and oils, impurities and other solvents are further removed, and the weight and fat weight measurement method and chromatographic method for fat and oil content measurement are often used, but these methods are complicated and require a lot of time. There is a problem of requiring labor.
[0003]
For example, in a conventional method for measuring the fat content in microbial cells (see, for example, JP-A-6-153970), filtration and drying for obtaining dry cells from the culture solution takes about 3 hours. Cost. Next, it takes about 1 hour to extract total lipids by the extraction method of Bligh & Dyer. It takes 3 hours to methyl esterify this with anhydrous methanol-hydrochloric acid. About 4 hours are required to extract the fatty acid methyl ester and remove the solvent. Furthermore, in order to dissolve the methyl ester concentrate again in a predetermined amount of solvent and analyze it by gas chromatography, it takes about 1 hour when taking into account the time for eluting all fatty acid components by chromatography. . In this way, the time required for the analysis is about 12 hours in total. However, since the analysis is generally performed by daytime work, the analysis is completed on the next day after the sample is collected. For this reason, it has been practically impossible with the prior art to use the amount of fatty acid produced as a process control item because the time difference between the actual process progress and the end of analysis is large.
[0004]
On the other hand, the dielectric constant obtained by electrical measurement of microbial suspension is known to have a high correlation with the cell concentration of the microbial suspension, and electrical measurement of dielectric constant is quick and simple. The dielectric constant is used for measuring the bacterial cell concentration. The features of dielectric constant measurement are (1) easy measurement and continuous automatic measurement, (2) measurement of turbid samples and colored samples that are difficult with optical measurement, and (3) direct measurement of cell concentration. Therefore, it is more accurate than indirect measurement from the amount of metabolism of cells, and (4) it can measure only living cells because it uses the barrier ability against ions of cell membranes.
[0005]
For example, electrical measurement of dielectrics can be performed in wastewater treatment (Japanese Patent Publication No. 4-25800), cultured yeast ("Instrumentation" (1996), Vol. 39, No. 3, pages 51-55), animal and plant culture. Cells ("Bioprocess Engineering" (1994), No. 11, pp. 213-222), immobilized microorganisms in culture ("J. Fermentation and Bioengineering" (1992), Vol. 72, No. 4, 291-291). 295)), and attempts to measure the concentration of cells or cells have been reported. In the above (), an example of a document reporting such an attempt is given.
[0006]
In addition to attempts to measure the concentration of these cells or cells, attempts to measure changes in the volume of intracellular vacuoles have also been reported ("biochimica et Biophysica Acta" (1995), No. 1245, No. 99- (See page 105). However, this is an example measured by analyzing the dielectric relaxation of the vacuolar insulator film (vacuum membrane), not the dielectric relaxation by the cell membrane.
[0007]
As described above, there have been many reports on the use of dielectric measurement. However, an attempt to easily and quickly measure the content of non-electrolytes such as fats and oils in an electrolyte solution surrounded by an insulator film such as a cell membrane has been reported. Not reported until.
[0008]
For this reason, for example, when fats and oils such as highly unsaturated fatty acids are produced by microorganisms, a method for easily and rapidly measuring the content of fats and oils produced by the microorganisms and accumulated in the cells is strongly desired. It was.
[0009]
[Problems to be solved by the invention]
The present invention has been proposed in view of the above-described problems of the prior art, and an object of the present invention is to simply and easily reduce the amount of fats and oils present in a cell substrate surrounded by a cell membrane that is an insulator film. It is to provide a method for measuring quickly.
[0010]
[Means for Solving the Problems]
In light of the present state of the oil content measurement technique described above, the present inventors have intensively studied various methods, and as a result, the fats and oils in a cell surrounded by a cell membrane that is an insulator film and filled with a cell substrate. It has been found that there is a correlation that can be approximated by a straight line between the volume of the cell and the dielectric relaxation frequency and / or conductivity inside the cell. The present invention has been proposed on the basis of such findings, and in order to measure the amount of fats and oils in a cell substrate surrounded by a cell membrane that is an insulator film, the dielectric relaxation frequency and / or cell substrate by the cell membrane is measured. It is characterized by measuring the electrical conductivity. On the other hand, by obtaining in advance a calibration curve indicating the correlation between the volume of fats and oils in the particle and the dielectric relaxation frequency and / or conductivity inside the particle, the measured dielectric relaxation frequency or conductivity can be obtained. By applying to a calibration curve, the fat content of the cell can be determined.
[0011]
For example, biological cells are composed of a cytoplasm and a cell membrane surrounding the cytoplasm, and the cell membrane is mainly composed of a lipid bilayer, so that it can be regarded as an insulator with extremely low conductivity. On the other hand, since the cell substrate that fills the cytoplasm is composed of water and various ions dissolved in this water, it can be regarded as a conductive electrolyte solution, and fats and oils in the cytoplasm are regarded as non-electrolytes. be able to.
[0012]
Therefore, the present invention is based on the knowledge that there is a predetermined correlation between the amount of fat and oil in the cytoplasm surrounded by the cell membrane and filled with the cell matrix and the dielectric constant and / or conductivity of the cytoplasm. Provided is a method for measuring the fat content in the cytoplasm by measuring the conductivity of the cell substrate from the dielectric relaxation frequency.
[0013]
According to the present invention, a method for measuring the fat content in a cell surrounded by a cell membrane that is an insulator film and filled with a cell substrate that is an electrolyte solution is, for example, the fat content in a microbial cell. It can be used for measurement. In the case where the specimen used for the measurement is a microorganism having the ability to accumulate oils and fats, it is desirable that the specimen is a culture solution or suspension of the microorganism.
[0014]
Examples of the above-mentioned microorganisms capable of accumulating fats and oils include, for example, the genus Conidiobolus, the genus Entomophthora, the genus Absidia, the genus Cunninghamella, the genus Mortierella, the genus Morizella, h, Mucor, Pythium, Aspergillus, Fusarium, Pericularia, Penicillium, Cladosporium, Porisporum Or the fungus of the genus Claviceps, the genus Candida Cryptococcus genus, Endomyces genus, Galactomyces genus, Williopsis genus, Waltmyces genus, Lipomyces genus, Rhododrum genus, Rhodospodium p Rhodotorula genus, Trichosporon genus, or Yarrowia genus yeast, and Spirulina genus, Chlorella genus, Crypthecodium genus, Isochris cis (Nanochloropsis) genus, Phaeodactylum Algae of the genus, Porphyridium genus, Ulkenia genus, or Schizochytrium genus.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In order to carry out the oil content measurement method according to the present invention, first, an alternating electric field whose frequency changes is applied to at least one location of the suspension of the measurement object. The application of an alternating electric field to the suspension of the measurement object can be achieved by installing a pair of electrodes and placing the suspension of the measurement object between the electrodes, or by applying an electric field generated by electromagnetic induction around the coil. A method of applying to the suspension of the measurement object (for example, see “Instrumentation” (1996), Vol. 39, No. 3, pages 51-55) can be used. The frequency of the alternating electric field is swept in the range of 5 Hz to 100 MHz to obtain a series of measured values of the dielectric constant and conductivity of the measurement object, thereby measuring the frequency characteristics of the dielectric constant and conductivity of the measurement object. The magnitude of the AC electric field to be applied should be selected so as not to damage the cells to be measured. In the case of microbial cells, the voltage is preferably 2 V or less, more preferably 1 V or less.
[0016]
Next, the conductivity ka (unit S / m) of the particle (cell) medium is determined from the series of measured conductivity values obtained above. When the particle (cell) concentration is low, the conductivity measurement value on the lowest frequency side, the conductivity convergence value on the low frequency side or its predicted value can be used as an approximation of the conductivity ka.
[0017]
Further, the relaxation frequency fc (unit: Hz) is obtained from the frequency characteristic of the dielectric constant obtained above. The relaxation frequency fc means “frequency at which the midpoint between the low-frequency-side convergence value and the high-frequency-side convergence value of the dielectric constant is observed”. One method for obtaining the relaxation frequency fc is that the measured frequency characteristic value of the dielectric constant is the Cole-Cole equation (see “J. Chemical Physics” (1941), No. 9, pages 341-351),
[0018]
[Expression 1]
ε = ε h + Re {(ε l −ε h ) / (1+ (jf / fc) β)} (1)
The parameter fc that best fits the curve is obtained by a non-linear least square method using a computer. In Equation (1), ε is the dielectric constant, ε h is the high frequency convergence value of the dielectric constant, ε l is the low frequency convergence value of the dielectric constant, f is the frequency of the applied AC electric field, and fc is relaxation. Frequency, β is a Cole-Cole parameter, and j is an imaginary unit (= √ (−1)). However, the method of calculating the relaxation frequency fc is not limited to this. Usually, the relaxation frequency fc in the present invention falls within the frequency band of 100 kHz to 10 MHz.
[0019]
Based on the above measurement, the content of the non-electrolyte in the target electrolyte solution, that is, the fat content in the cytoplasm can be measured as follows.
(1) When the conductivity ka obtained above is constant and hardly changes:
For example, when cells are suspended or dispersed in a certain concentration of electrolyte solution for measurement, a straight line approximates between the relaxation frequency fc and the fat content in the electrolyte solution inside the insulator film. There is a correlation that can be. Therefore, by obtaining a calibration curve showing such a correlation in advance, the fat and oil content can be obtained easily and quickly using the relaxation frequency fc obtained from the frequency characteristics of the dielectric constant.
[0020]
(2) When the conductivity ka obtained above changes:
For example, when the electrolyte concentration in the culture solution changes with the progress of culture in a culture solution of microorganisms, the fat content in the cytoplasm can be determined by the following method. The relationship between the conductivity ki (unit S / m) of the cytoplasm surrounded by the cell membrane, the conductivity ka of the particle medium and the relaxation frequency fc is as follows. [0021]
[Expression 2]
1 / fc = A [(1 / ki) + (1 / ka)] (2)
In the case of an ellipsoid, a rod-shaped body and a fibrous body whose major axis is sufficiently longer than the minor axis,
[Equation 3]
1 / fc = B [(1 / ki) + (1 / ka)] (3)
Can be approximated by However, in Formula (2), A is a constant equal to πDCm, D is a cell diameter (unit m), Cm is a capacitance per unit cell membrane area (unit F / m 2 ), and in Formula (3), B is a constant equal to πTCm, T is the short axis diameter of the cell in the case of an ellipsoid, the diameter of the ridge or fiber in the case of rods and fibers (unit m), and Cm is the capacitance per unit area of the cell membrane (unit) F / m 2 ).
[0023]
In the expressions (2) and (3), the values of the constants A and B are values inherent to the electrolyte solution surrounded by the cell membrane. Moreover, it has been found that there is a correlation that can be approximated by a straight line between the conductivity ki and the fat content in the cytoplasm. Therefore, a calibration curve showing such a correlation and the values of constants A and B are obtained in advance for the cell, and the conductivity ki of the measurement symmetrical cell is measured. The oil and fat content can be determined.
[0024]
When the values of the constants A and B of the cells to be measured are not obtained in advance, for example, the change of 1 / fc relative to 1 / ka when an electrolyte such as an inorganic salt is added to the cell suspension. The values of the constants A and B can be obtained from the plots. However, the method for obtaining the constants A and B is not limited to this.
[0025]
By using the method described above, the fat content of microbial cells can be measured. This method can be carried out quickly and easily without destroying the measurement object, and can also be applied to online measurement of changes in the fat content of microbial cells during liquid culture. Therefore, the present invention is extremely useful when applied to process control and process control of fats and oils production by microorganisms.
[0026]
【Example】
Hereinafter, specific examples of the method for measuring oil content according to the present invention will be described with reference to some examples. However, the technical scope of the present invention is not limited to these examples.
[0027]
Example 1
The filamentous fungus Mortierella alpina CBS754.68 was cultured in a 50 L culture tank in a medium mainly composed of soy protein and glucose. The culture solution was collected over time in a 500 mL beaker, an electromagnetic induction probe was placed near the center of the solution, and the dielectric constant and conductivity of the culture solution were measured in the frequency range from 100 kHz to 30 MHz. Among the obtained dielectric constant data, using the dielectric constant data in the frequency range from 400 kHz to 30 MHz, the relaxation frequency fc is obtained by curve fitting to the equation (1) by the nonlinear least square method, and the conductivity ka is 100 kHz. Conductivity values were used.
[0028]
Since the strain used is a filamentous fungus, the formula (3) applied when the particles are fibrous is used. In order to obtain the value of constant B, 0.5 mL of KCl aqueous solution (concentration 25%) was added to the culture solution 6 times in total, and each time the addition was performed, the relaxation frequency fc and conductivity ka were obtained, and the reciprocals of both were plotted. The value of the constant B was determined from the slope and determined to be 1.35 × 10 −7 [F / m]. Using the relaxation frequency fc, the conductivity ka, and the constant B thus determined, the conductivity ki was determined from Equation (3). On the other hand, the fatty acid content per dry cell of the filamentous fungus was determined using a known method described in JP-A-6-153970 for extracting fats and oils from the cell.
[0029]
The above procedure was repeated for the same filamentous fungus every time the fatty acid content was different, and the relationship between the obtained fatty acid content and the conductivity ki was plotted, and FIG. 1 was obtained. FIG. 1 shows that there is a linear approximation between the conductivity ki of the filamentous fungi and the fatty acid content. Therefore, when the fatty acid content of the filamentous fungus is unknown, the fatty acid content is obtained by calculating the conductivity ki of the filamentous fungus according to the above procedure when the graph of FIG. 1 is obtained in advance as a calibration curve. be able to.
[0030]
Example 2
Yeast Lipomyces starkeyi IFO10385 strain was cultured in a 10 L culture tank in a medium mainly composed of yeast extract and glucose. The culture solution was collected over time, dielectric measurement was performed in the same manner as in Example 1, and the conductivity ki was calculated using Equation (2) applied to the sphere. Thereafter, the culture broth was centrifuged to collect yeast cells, and washing with water was repeated three times to obtain washed yeast cells, which were dried and the fatty acid content per cell was measured in the same manner as in Example 1. The above procedure was repeated for the same yeast every time the fatty acid content was different, and the relationship between the obtained fatty acid content and conductivity ki was plotted, and FIG. 2 was obtained. FIG. 2 shows that there is a linear approximation between the electrical conductivity ki and the fatty acid content of yeast. Therefore, by obtaining the graph of FIG. 2 in advance as a calibration curve, when the fatty acid content of the yeast is unknown, the fatty acid content can be obtained by calculating the electrical conductivity ki of the yeast according to the above procedure. it can.
[0031]
Example 3
The filamentous fungus Mortierella alpina CBS754.68 was cultured in a 50 L culture tank in a medium mainly composed of soy protein and glucose. Bacteria were obtained from the culture solution by centrifugation, washed with 10 mM KCl solution, and centrifuged to obtain bacteria. The same washing operation was repeated twice more, then suspended in a 10 mM KCl solution and filled in a platinum electrode cell, an AC electric field having a frequency band of 5 Hz to 10 MHz was applied between the electrodes, and the frequency characteristics of the dielectric constant were measured. However, relaxation due to dielectric relaxation of the cell membrane is observed in two places, and the convergence value on the low frequency side at that time is observed in a frequency band of approximately 10 kHz or less, and the convergence value on the high frequency side is observed in a frequency band from 100 kHz to 10 MHz. It was done. Therefore, after subtracting the influence of electrode polarization, the relaxation frequency fc was determined as the midpoint between these two convergence values, and the fatty acid content per cell was measured in the same manner as in Example 1.
[0032]
The above procedure was repeated for the same filamentous fungus every time the fatty acid content was different, and the relationship between the resulting fatty acid content and the relaxation frequency fc was plotted, and FIG. 3 was obtained. FIG. 3 shows that there is a relationship that can be approximated by a straight line between the relaxation frequency fc of the filamentous fungus and the fatty acid content. Therefore, the fatty acid content is obtained by calculating the relaxation frequency fc of the filamentous fungus according to the above procedure when the fatty acid content of the filamentous fungus is unknown by obtaining the graph of FIG. 3 in advance as a calibration curve. be able to.
[0033]
【The invention's effect】
As described above, as can be understood from the description of the method for measuring oil content according to the present invention based on some examples, the present invention can quickly and easily measure the oil content of microorganism cells such as filamentous fungi and yeast. There is a special effect that you can. Therefore, the present invention is extremely useful when applied to process control and process control of fat and oil production by microorganisms.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the conductivity ki of filamentous fungi and the fatty acid content per dry cell.
FIG. 2 is a graph showing the relationship between the electrical conductivity ki of the yeast cytoplasm and the fatty acid content per dry cell.
FIG. 3 is a graph showing the relationship between the relaxation frequency fc of filamentous fungi and the fatty acid content per dry cell.
Claims (5)
前記細胞の懸濁系の誘電緩和周波数を測定する段階及び/又は前記細胞基質の導電率を測定する段階を備えることを特徴とする測定方法。A method for measuring the content of fats and oils present inside a cell surrounded by a cell membrane that is an insulator film and filled with a cell substrate that is an electrolyte solution,
A measurement method comprising: measuring a dielectric relaxation frequency of the cell suspension system and / or measuring a conductivity of the cell substrate.
前記細胞の油脂含量と該細胞の誘電緩和周波数との関係を示す検量線を予め求める段階と、
前記検量線において、測定された前記誘電緩和周波数に対応する油脂含量を求める段階と、
を備えることを特徴とする請求項1記載の測定方法。further,
Obtaining in advance a calibration curve indicating the relationship between the fat content of the cells and the dielectric relaxation frequency of the cells;
Obtaining a fat content corresponding to the measured dielectric relaxation frequency in the calibration curve;
The measurement method according to claim 1, further comprising:
前記細胞の油脂含量と該細胞の導電率との関係を示す検量線を予め求める段階と、
前記検量線において、測定された前記導電率に対応する油脂含量を求める段階と、
を備えることを特徴とする請求項1記載の測定方法。further,
Obtaining in advance a calibration curve indicating the relationship between the fat content of the cells and the conductivity of the cells;
Obtaining a fat content corresponding to the measured conductivity in the calibration curve;
The measurement method according to claim 1, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22650599A JP4382202B2 (en) | 1999-08-10 | 1999-08-10 | Fat content measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22650599A JP4382202B2 (en) | 1999-08-10 | 1999-08-10 | Fat content measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001050967A JP2001050967A (en) | 2001-02-23 |
JP4382202B2 true JP4382202B2 (en) | 2009-12-09 |
Family
ID=16846182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22650599A Expired - Fee Related JP4382202B2 (en) | 1999-08-10 | 1999-08-10 | Fat content measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4382202B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4935425B2 (en) * | 2007-03-01 | 2012-05-23 | ソニー株式会社 | Method for qualitative and / or quantitative analysis of blood cells and method for detecting blood deterioration |
-
1999
- 1999-08-10 JP JP22650599A patent/JP4382202B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001050967A (en) | 2001-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Eing et al. | Pulsed electric field treatment of microalgae—benefits for microalgae biomass processing | |
Samarasinghe et al. | Algal cell rupture using high pressure homogenization as a prelude to oil extraction | |
Khoomrung et al. | Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD | |
Lee et al. | Basic culturing and analytical measurement techniques | |
Suehiro et al. | Selective detection of viable bacteria using dielectrophoretic impedance measurement method | |
Yang et al. | Hydrophobicity characteristics of algae-fouled HVDC insulators in subtropical climates | |
de Moura et al. | Microwave‐assisted extraction of lipids from wet microalgae paste: a quick and efficient method | |
Halim et al. | Modelling the kinetics of lipid extraction from wet microalgal concentrate: A novel perspective on a classical process | |
Flores-Cosío et al. | Application of dielectric spectroscopy to unravel the physiological state of microorganisms: Current state, prospects and limits | |
Kregiel et al. | Novel permittivity test for determination of yeast surface charge and flocculation abilities | |
Günerken et al. | Flow cytometry to estimate the cell disruption yield and biomass release of Chlorella sp. during bead milling | |
JP4382202B2 (en) | Fat content measurement method | |
WO1992004630A1 (en) | Analytical method | |
Prabhakaran et al. | Hairless mice, human leprosy and thymus-derived-lymphocytes | |
Redón et al. | Effect of active dry wine yeast storage upon viability and lipid composition | |
Ali et al. | Control of the activity of Pseudomonas aeruginosa by positive electric impulses at resonance frequency | |
Krairak et al. | On-line monitoring of fungal cell concentration by dielectric spectroscopy | |
Nishida et al. | The cell membrane-shielding function of eicosapentaenoic acid for Escherichia coli against exogenously added hydrogen peroxide | |
Kanevskiy et al. | Electrophysical sensor systems for in vitro monitoring of bacterial metabolic activity | |
Zhao et al. | Characterization of crystallisation processes with electrical impedance spectroscopy | |
Tamura et al. | The dependence of nonlinear electrical properties of yeast suspensions on temperature and electrode shape | |
Cancela et al. | Harvesting and lipids extraction of Pavlova Lutheri | |
Weldon et al. | Surface enhanced Raman spectroscopic monitor of P. acnes lipid hydrolysis in vitro | |
McComas | Preliminary investigation of cellular lipid extraction using electroporation as an enhancement technique | |
EP3060074B1 (en) | Composition comprising algal oil bodies and methods for stabilizing algal oil bodies or improving the oxidation resistance of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060808 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090917 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131002 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |