JP4381760B2 - Flexible ceramic product and manufacturing method thereof - Google Patents

Flexible ceramic product and manufacturing method thereof Download PDF

Info

Publication number
JP4381760B2
JP4381760B2 JP2003330743A JP2003330743A JP4381760B2 JP 4381760 B2 JP4381760 B2 JP 4381760B2 JP 2003330743 A JP2003330743 A JP 2003330743A JP 2003330743 A JP2003330743 A JP 2003330743A JP 4381760 B2 JP4381760 B2 JP 4381760B2
Authority
JP
Japan
Prior art keywords
thermal expansion
particles
ceramic
average particle
ceramic product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003330743A
Other languages
Japanese (ja)
Other versions
JP2005097021A (en
Inventor
敏孝 太田
守 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003330743A priority Critical patent/JP4381760B2/en
Publication of JP2005097021A publication Critical patent/JP2005097021A/en
Application granted granted Critical
Publication of JP4381760B2 publication Critical patent/JP4381760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、可撓性セラミックス製品及びその製造方法に関する。   The present invention relates to a flexible ceramic product and a manufacturing method thereof.

セラミックスの分野において、部分安定化ジルコニアという物が発明され、高強度・高靱性のセラミックス製のナイフやはさみが製造されるようになった。これは多少撓むことができ、外からの応力は結晶変態の転移によって緩和される。以来、他のセラミックスに対しても粒径のコントロールや複合化によって高強度・高靱性のセラミックスが開発されている(例えば、特許文献1)。その応力緩和機構の一つとしてマイクロクラックの存在がある。   In the field of ceramics, a partially stabilized zirconia was invented, and high-strength and high-toughness ceramic knives and scissors have come to be manufactured. This can be somewhat deflected, and the external stress is relaxed by the transition of the crystal transformation. Since then, ceramics having high strength and high toughness have been developed by controlling the particle size and combining them with other ceramics (for example, Patent Document 1). One of the stress relaxation mechanisms is the presence of microcracks.

一般のセラミックスは応力が加わったとき、ほとんど変位しないまま破壊するのに対
し、マイクロクラックを持ったセラミックスでは変位量が多少増え、これは靱性が向上したとかヤング率が低下したという事実として説明される。しかし、マイクロクラックによる変位量(撓む程度)は、目に見えるほどではない。
In general, ceramics break with little displacement when stress is applied, whereas in ceramics with microcracks, the amount of displacement increases somewhat, which is explained as the fact that the toughness is improved and the Young's modulus is reduced. The However, the amount of displacement (the degree of bending) due to microcracks is not appreciable.

セラミックスは小さな結晶粒子の集合体であり、それらはいろいろな方向を向いている。そして、X、Y、Z軸方向の熱膨張係数が大きく異なる場合、違う方向の結晶面が隣り合った時、冷却過程で縮む程度が異なるため、結晶粒界に応力が発生してクラックが生成する。マイクロクラックの発生は結晶粒子の大きさと軸方向の熱膨張係数の差によって決まる。   Ceramics are aggregates of small crystal particles that are oriented in various directions. And if the thermal expansion coefficients in the X, Y, and Z axis directions are greatly different, when crystal planes in different directions are adjacent to each other, the degree of shrinkage in the cooling process is different, so stress is generated at the crystal grain boundaries and cracks are generated. To do. The occurrence of microcracks is determined by the difference between the size of crystal grains and the coefficient of thermal expansion in the axial direction.

一般にセラミックスの粒径はサブミクロンからせいぜい数十ミクロンの範囲であり、結晶軸方向の熱膨張係数の差が5×10-6/℃以上になると、マイクロクラックが発生する場
合が多くなる。そして、クラックもその名が示すようにマイクロメーターの大きさである。本発明者らは、熱膨張係数の差によりセラミックス中の結晶粒界にマイクロクラックが発生する条件について、既に報告している(非特許文献1)。
In general, the grain size of ceramics is in the range of submicron to tens of microns at most, and microcracks often occur when the difference in thermal expansion coefficient in the crystal axis direction is 5 × 10 −6 / ° C. or more. And as the name suggests, cracks are the size of a micrometer. The present inventors have already reported the conditions under which microcracks are generated at the grain boundaries in ceramics due to the difference in thermal expansion coefficient (Non-Patent Document 1).

一方、天然で可撓性を有する材料(鉱物)としてはコンニャク石という通称で知られるイタコルマイトが知られているが、産地は世界に数カ所であり、産出量も非常に僅かである。コンニャク石の場合は粒径及びクラックの大きさは数十μmから数百μmのオーダーで、曲がるのが目視できるほどになる。人工的に、コンニャク石と類似の可撓性を付与したセラミックスとしては、粒界部分を溶解することによって隙間を作る例が知られている(例えば、特許文献2)程度である。   On the other hand, itacorumite, commonly known as konjac stone, is known as a natural and flexible material (mineral), but it is produced in several places in the world and its output is very small. In the case of konjak stone, the particle size and the crack size are on the order of several tens of μm to several hundreds of μm, and the bending is visible. Artificially, an example of creating a gap by dissolving a grain boundary part is known as a ceramic having flexibility similar to konjac stone (for example, Patent Document 2).

特公平8−29977号公報Japanese Patent Publication No. 8-29977 特開平9−194260号公報JP-A-9-194260 J. Am. Ceram. Soc., 76 [2] 487-491 (1993)J. Am. Ceram. Soc., 76 [2] 487-491 (1993)

セラミックスは共有結合やイオン結合の結晶体であるために高強度であるが、靭性が乏しく、塑性変形しない、曲がらないなど、可撓性に劣っている。セラミックスにコンニャク石と同等以上の十分な可撓性を付与できれば、従来制約されていた用途へのセラミックスの利用を促進できる。   Ceramics are high in strength because they are covalently bonded or ionic bonded crystals, but they are poor in flexibility, such as poor toughness, plastic deformation and bending. If sufficient flexibility equivalent to or higher than that of konjac stones can be imparted to ceramics, it is possible to promote the use of ceramics for applications that have been conventionally restricted.

本発明は、熱膨張係数と粒径の異なるセラミックス粒子を混合、成形、焼成して、粒界にクラックによって3次元的に空隙を発生させ、クラックを応力緩和機構として挙動させることによって上記の課題を解決したものである。   The present invention solves the above problem by mixing, forming and firing ceramic particles having different thermal expansion coefficients and particle sizes, generating voids three-dimensionally by cracks at the grain boundaries, and causing the cracks to behave as a stress relaxation mechanism. Is a solution.

すなわち、本発明は、(1)複合する一方の成分は熱膨張係数が2×10-6/℃以下の低
熱膨張性セラミックスであり、もう一方の成分はそれよりも5×10-6/℃以上大きい熱膨
張係数を有する高熱膨張性セラミックスであり、かつどちらか一方の成分は平均粒径100
μm〜500μmの粒子であり、他方の成分は平均粒径10μm以下であるセラミックス粒子
を混合し、成形・焼成したセラミックスであって、粒界に粒子同士の熱膨張係数の差によって発生した3次元的に連続した開放気孔としてのクラックを5〜20容積%持つことを特
徴とする可撓性セラミックス製品、である。
また、本発明は、(2)高熱膨張性セラミックスは、熱膨張係数が20×10-6/℃以上のものであることを特徴とする上記(1)の可撓性セラミックス製品、である。
That is, in the present invention, (1) one component to be combined is a low thermal expansion ceramic having a thermal expansion coefficient of 2 × 10 −6 / ° C. or less, and the other component is 5 × 10 −6 / ° C. It is a high thermal expansion ceramic having a large thermal expansion coefficient, and either component has an average particle size of 100.
Three-dimensional particles generated by mixing the ceramic particles with an average particle size of 10 μm or less, and molding and firing them, due to the difference in thermal expansion coefficient between the particles. A flexible ceramic product characterized by having 5 to 20% by volume of cracks as continuous open pores.
The present invention also provides the flexible ceramic product according to (1), wherein (2) the high thermal expansion ceramic has a thermal expansion coefficient of 20 × 10 −6 / ° C. or more.

また、本発明は、(3)平均粒径100μm〜500μmの粒子は100μmより小さい単一相
の小さい粒子を予め焼結させたものであることを特徴とする上記(1)又は(2)の可撓性セラミックス製品、である。
In the present invention, (3) the particles having an average particle diameter of 100 μm to 500 μm are obtained by previously sintering small particles having a single phase smaller than 100 μm. Flexible ceramic products.

また、本発明は、(4)該開放気孔としてのクラックに樹脂及び/又は金属を持つことを特徴とする上記(1)ないし(3)のいずれかの可撓性セラミックス製品、である。   The present invention is also (4) the flexible ceramic product according to any one of (1) to (3) above, wherein the cracks as the open pores have a resin and / or a metal.

また、本発明は、(5)熱膨張係数及び粒径の異なるセラミックス粒子を2種以上混合し、成形、焼成して、粒界に粒子同士の熱膨張係数の差によって3次元的に連続した開放気孔としてのクラックを発生させることを特徴とする上記(1)ないし(3)のいずれかの可撓性セラミックス製品の製造方法、である。   In the present invention, (5) two or more kinds of ceramic particles having different thermal expansion coefficients and particle sizes are mixed, molded and fired, and three-dimensionally continuous at the grain boundaries due to the difference in thermal expansion coefficients between the particles. A method for producing a flexible ceramic product according to any one of (1) to (3), wherein cracks as open pores are generated.

また、本発明は、(6)上記(5)の方法で発生させた3次元的に連続した開放気孔としてのクラックに樹脂及び/又は金属を含浸させることを特徴とする上記(4)の可撓性セラミックス製品の製造方法、である。   Further, the present invention provides (6) the above (4), wherein a crack as a three-dimensional continuous open pore generated by the method of (5) is impregnated with resin and / or metal. A method for manufacturing a flexible ceramic product.

イタコルマイトは石英型SiO2であり、その空隙率が5〜20容積%であり、粒子はジクソ
ーパズルの様に噛み合って3次元の粒界隙間を有しているため、応力緩和機構として働き、変形可能であるが、本発明は、通常のセラミックスの製造工程を用いて、人工的にコンニャク石と同等以上の十分な可撓性を有し、塑性変形するセラミックスを提供することができた。
Itacormite is a quartz-type SiO 2 with a porosity of 5-20% by volume, and the particles mesh like a jigsaw puzzle and have a three-dimensional grain boundary gap. However, the present invention was able to provide a ceramic that has a sufficient flexibility equivalent to or higher than that of konjak and can be plastically deformed by using a normal ceramic manufacturing process.

図1は、本発明の原理を概念的に示す説明図である。原料粉末としては、熱膨張係数の異なるセラミックス粒子を2種以上混合する。複合する一方の成分は熱膨張係数が2×10-6/℃以下の低熱膨張性セラミックスであり、もう一方の成分はそれよりも5×10-6/℃以上大きい熱膨張係数を有する高熱膨張性セラミックスであり、かつどちらか一方の成分は平均粒径100μm〜500μmの粒子であり、他方の成分は平均粒径10μm以下であるセラミックス粒子を混合する。 FIG. 1 is an explanatory diagram conceptually showing the principle of the present invention. As the raw material powder, two or more kinds of ceramic particles having different thermal expansion coefficients are mixed. One component is a low thermal expansion ceramic with a coefficient of thermal expansion of 2 × 10 -6 / ° C or less, and the other component is a high thermal expansion with a coefficient of thermal expansion that is 5 × 10 -6 / ° C or higher. Ceramic particles, and either component is particles having an average particle size of 100 μm to 500 μm, and the other component is mixed with ceramic particles having an average particle size of 10 μm or less.

すなわち、複合する組み合わせは、(1)低熱膨張係数の平均粒径が100μm〜500μm程度の粒子とその粒界相としての高熱膨張係数の平均粒径が10μm以下程度もの、又は、(2)高熱膨張係数の100μm〜500μm程度の粒子とその粒界相としての低熱膨張係数の平均粒径が10μm以下程度ものである。なお、平均粒径は数平均粒径である。平均粒径が小さい方の粒子の下限は特に制約はないが、0.1μm程度でも特に支障はない。それぞれ
の平均粒子径が前記の範囲を外れるとクラックを十分に発生し難くなる。
That is, the composite combination includes (1) particles having an average particle size of low thermal expansion coefficient of about 100 μm to 500 μm and an average particle size of high thermal expansion coefficient as a grain boundary phase of about 10 μm or less, or (2) high heat The particles having an expansion coefficient of about 100 μm to 500 μm and the average particle diameter of the low thermal expansion coefficient as the grain boundary phase are about 10 μm or less. The average particle size is the number average particle size. The lower limit of the particles having a smaller average particle diameter is not particularly limited, but there is no particular problem even if it is about 0.1 μm. When the average particle diameter is out of the above range, cracks are hardly generated.

平均粒径の大きい粒子が充填された隙間に平均粒径の小さい粒子が詰まる。普通、粒子を充填するとその体積分率は50〜60容積%程度となり、残りの50〜40容積%程度が隙間になる。その隙間の部分を平均粒径の小さい粒子が埋めることになるので、平均粒径の大きい粒子に対して平均粒径の小さい粒子の割合は約50容積%以上でないと、全体が密にならないでクラックでない穴が残ってしまう。   Particles having a small average particle size are clogged in the gap filled with particles having a large average particle size. Usually, when the particles are filled, the volume fraction is about 50 to 60% by volume, and the remaining 50 to 40% by volume becomes a gap. Since the particles with a small average particle diameter are filled in the gaps, the ratio of the particles with a small average particle diameter to the particles with a large average particle diameter is not more than about 50% by volume. Holes that are not cracked remain.

なお、クラックの発生は、平均粒径と熱膨張係数の差が関係し、平均粒径が大きくなるほど熱膨張係数の差は小さくてもクラックが発生する。両者の熱膨張係数の差が5〜10×10-6/℃あれば、平均粒径の大きい方がおおよそ100μm〜500μmの平均粒径で、平均粒
径の小さい方がおおよそ10μm以下であれば、クラックは発生し、粒径の大きい方が100
μm以上の粒径の場合、成分の一つとして低熱膨張セラミックスを用いれば、もう一方の成分にはジルコニア、アルミナなどの一般のセラミックスを用いてもクラックが発生する。
The occurrence of cracks is related to the difference between the average particle diameter and the thermal expansion coefficient. The larger the average particle diameter, the more the cracks are generated even if the difference in thermal expansion coefficient is small. If the difference in thermal expansion coefficient between the two is 5 to 10 × 10 −6 / ° C., the larger average particle size is about 100 μm to 500 μm and the smaller average particle size is about 10 μm or less. , Cracks occur, the larger the particle size is 100
In the case of a particle size of μm or more, if a low thermal expansion ceramic is used as one of the components, cracks are generated even if a general ceramic such as zirconia or alumina is used for the other component.

複合する一方の成分として熱膨張係数が2×10-6/℃以下の低熱膨張性セラミックスを
用い、もう一方の成分として熱膨張係数が20×10-6/℃以上の高熱膨張性セラミックスを用いると粒界にクラックを発生させることが容易になるのでより好ましい。
Use low thermal expansion ceramics with a thermal expansion coefficient of 2 × 10 −6 / ° C. or lower as one component and use high thermal expansion ceramics with a thermal expansion coefficient of 20 × 10 −6 / ° C. or higher as the other component. It is more preferable because it is easy to generate cracks at the grain boundaries.

例えば、KZr2(PO4)3リン酸ジルコニウムカリウム(KZP)は低熱膨張係数(−0.4×10-6
℃)の物質である。また、KAlSi2O6リューサイト(L)は高熱膨張係数(25×10-6/℃の物質
である。KZPとして粒径の大きいものを用い、リューサイト(L)として粒径の小さいものを用い、大きなKZP粒子:小さなL粒子=30:70〜20:80程度とした場合、焼成後、冷却すると粒径の大きなKZP粒子の周りのリューサイト(L)が収縮するのでクラックが発生する。これと逆の場合は、粒径の大きなリューサイト(L)が収縮するためクラックが生じると考え
られる。このクラックが空隙として働く。
For example, KZr 2 (PO 4 ) 3 potassium potassium phosphate (KZP) has a low coefficient of thermal expansion (−0.4 × 10 −6 /
℃) substance. KAlSi 2 O 6 leucite (L) is a material with a high coefficient of thermal expansion (25 × 10 -6 / ° C. A material with a large particle size is used as KZP and a material with a small particle size is used as leucite (L). When using large KZP particles: small L particles = 30: 70 to 20:80, cracking occurs because the leucite (L) around the large KZP particles shrinks when cooled after firing. In the opposite case, it is considered that cracks are generated because leucite (L) having a large particle size contracts, and these cracks act as voids.

本発明のセラミックス製品の製造工程自体は、通常のセラミックス製品の製造工程と異ならず、原料粉末に適宜焼結促進剤を混合して、所要の形状にプレス成形し、所要の温度で焼成する。本発明は、原料粉末の選択と、該原料粉末に応じた焼成温度で焼成することに特徴を有する。   The manufacturing process itself of the ceramic product of the present invention is not different from the manufacturing process of a normal ceramic product, and a raw material powder is appropriately mixed with a sintering accelerator, press-formed into a required shape, and fired at a required temperature. The present invention is characterized by selection of raw material powder and firing at a firing temperature according to the raw material powder.

複合する粉末としては2種類の成分が焼成過程において反応しないものを選択することが好ましい。平均粒径100μm〜500μmの粒子は平均粒子が100μmよりも小さい単一相
の粒子を焼結させて大きな二次粒子を作っておいてから、別の成分である小さい粒子と混合し、次に、小さい粒子だけが焼結して全体を固めるようにすることによって、焼成過程における2種類の成分の反応を防ぐことができる。焼成温度条件は原料粉末及び添加剤の種類と量によって実験的に最適条件を選択する。
As the powder to be combined, it is preferable to select a powder in which two kinds of components do not react in the firing process. Particles with an average particle size of 100 μm to 500 μm are sintered with single-phase particles whose average particle is smaller than 100 μm to make large secondary particles, and then mixed with small particles as other components, By making only small particles sinter and harden the whole, the reaction of the two types of components in the firing process can be prevented. The optimum firing temperature condition is selected experimentally depending on the kind and amount of the raw material powder and additive.

このような原料の組み合わせを用いて焼成した後冷却すると、焼結体の粒界に3次元的なクラックが発生する。マイクロクラックの発生に関しては、2つの成分の界面において、(その熱膨張係数の差)×(粒径)×(焼成温度と冷却後の温度(通常は室温)との最
終的な温度差)で応力が決まるので、冷却速度はあまり関係がない。通常のセラミックスにおいて冷却速度が速い場合、セラミックス製品の表面と内部の温度差によってクラックが発生することがあるが、その場合は破壊に至る大きな割れとなる。
When fired using such a combination of raw materials and then cooled, three-dimensional cracks are generated at the grain boundaries of the sintered body. Regarding the occurrence of microcracks, at the interface between two components, (difference in thermal expansion coefficient) x (particle size) x (final temperature difference between firing temperature and temperature after cooling (usually room temperature)) Since the stress is determined, the cooling rate is not very relevant. When the cooling rate is high in normal ceramics, cracks may occur due to the temperature difference between the surface and the inside of the ceramic product. In this case, the cracks are large leading to breakage.

空隙率に関してはコンニャク石と同程度の5〜20容積%程度が好ましい。一般のセラミ
ックスにおいて、空隙率が5容積%未満になると主に閉気孔になるので、それ以上が必要
である。また20容積%程度を超えると、クラック以外の大きな気孔(穴)の存在が顕著と
なり、粒子同士の絡み合いが困難となる。なお、空隙率は試料の重量と見かけの体積等を用いてアルキメデス法によって測定した開気孔率である。
The porosity is preferably about 5 to 20% by volume, which is the same as konjac stone. In general ceramics, when the porosity is less than 5% by volume, closed pores are mainly formed. On the other hand, if it exceeds about 20% by volume, the presence of large pores (holes) other than cracks becomes remarkable, and it becomes difficult to entangle particles. The porosity is an open porosity measured by the Archimedes method using the weight of the sample and the apparent volume.

このクラックは連続開放空隙であるので、一般に用いられている多孔体へのポリマー及び金属の含浸法によりエポキシ樹脂やシリコーンゴムなどのポリマー及び/又はアルミニウムや珪素などの金属を含浸させてもよい。   Since this crack is a continuous open space, a polymer such as an epoxy resin or silicone rubber and / or a metal such as aluminum or silicon may be impregnated by a generally used method of impregnating a porous body with a polymer and metal.

実施例1
低熱膨張係数(−0.4×10-6/℃)で粒径が2μm以下のリン酸ジルコニウムカリウム(KZP)粉体を100重量部を取り、焼結促進剤として酸化マグネシウムを2重量部加えて十分混合
しペレット状に成形た後、1300℃で焼成した。冷却後これを粉砕し、ふるいにより平均粒径が100μm〜250μmのKZP粒子を作成した。
Example 1
Take 100 parts by weight of potassium zirconium phosphate (KZP) powder with a low coefficient of thermal expansion (-0.4 × 10 -6 / ° C) and a particle size of 2 μm or less, and add 2 parts by weight of magnesium oxide as a sintering accelerator. After mixing and forming into a pellet, it was fired at 1300 ° C. After cooling, this was pulverized and KZP particles having an average particle diameter of 100 μm to 250 μm were prepared by sieving.

次に、高熱膨張係数(25×10-6/℃)で粒径が2μm以下のリューサイト(L)粉体80重量部と、上記のKZP粒子20重量部並びに、焼結促進剤として炭酸リチウムを5重量部加えて十分混合した後、金型に充填し、一軸プレス成形機を用いて100MPaで5分間一軸加圧成形した
。その試料をセラミック焼成用の電気炉において1200℃、4時間酸化雰囲気中で焼成した
Next, 80 parts by weight of leucite (L) powder having a high thermal expansion coefficient (25 × 10 −6 / ° C.) and a particle size of 2 μm or less, 20 parts by weight of the above KZP particles, and lithium carbonate as a sintering accelerator After adding 5 parts by weight, the mixture was sufficiently mixed, filled in a mold, and uniaxially press-molded at 100 MPa for 5 minutes using a uniaxial press molding machine. The sample was fired in an oxidizing atmosphere at 1200 ° C. for 4 hours in an electric furnace for ceramic firing.

得られた焼結体の粒界を電子顕微鏡で観察した結果を図2の左上写真及び右上写真(左上写真の10倍の倍率)に示す。また、比較のために、イタコルマイトの電子顕微鏡像を左下写真及び右下写真(左下写真の10倍の倍率)に示す。図2に示されるとおりに、実施例で得られた焼結体の粒界には、天然のイタコルマイトと類似のクラックが3次元的に生じているのが観察された。   The results of observing the grain boundaries of the obtained sintered body with an electron microscope are shown in the upper left photograph and upper right photograph (magnification of 10 times the upper left photograph) in FIG. For comparison, an electron microscope image of itacolumite is shown in the lower left photograph and lower right photograph (magnification of 10 times that of the lower left photograph). As shown in FIG. 2, it was observed that cracks similar to natural itacolumite were generated three-dimensionally at the grain boundaries of the sintered bodies obtained in the examples.

また、図3に、3点曲げ試験による応力−歪み曲線を示す。図3の(1)及び(2)は、それぞれ、KZPとリューサイトの単一成分焼結体、(3)は、イタコルマイト、(4)
は、本実施例で得られた焼結体である。図3に示すように、単一成分焼結体のKZPやリュ
ーサイトセラミックスの場合と異なり、本実施例で得られた焼結体では天然のイタコルマイトと類似の曲線を示すことが分かった。さらに、得られた焼結体の重量と見かけの体積等を用いてアルキメデス法によって測定した空隙率は約10容積%であった。
FIG. 3 shows a stress-strain curve by a three-point bending test. (1) and (2) in FIG. 3 are respectively a single component sintered body of KZP and leucite, (3) is itacolumite, (4)
Is a sintered body obtained in this example. As shown in FIG. 3, it was found that the sintered body obtained in this example showed a curve similar to that of natural itacolumite, unlike the case of single component sintered body KZP or leucite ceramics. Furthermore, the porosity measured by the Archimedes method using the weight and apparent volume of the obtained sintered body was about 10% by volume.

本発明のセラミックス製品は、塑性変形により撓むので、弾力のある、歩行感の良い床材、地震などの揺れを減少させる防振材、衝撃吸収材、弾力性のある壁材・屋根材などへの用途が考えられる。   Since the ceramic product of the present invention bends due to plastic deformation, the floor material is elastic and has a good feeling of walking, vibration-proof material that reduces vibration such as earthquake, shock absorbing material, elastic wall material and roof material, etc. Possible uses for

本発明の原理を概念的に示す説明図である。It is explanatory drawing which shows the principle of this invention notionally. 実施例1で得られたセラミックス製品及びコンニャク石の電子顕微鏡像(SEM)を示す図面代用写真である。2 is a drawing-substituting photograph showing an electron microscope image (SEM) of the ceramic product and konjac stone obtained in Example 1. FIG. 実施例1で得られたセラミックス製品の3点曲げ試験の応力-歪み曲線を他の材料と比較したグラフである。2 is a graph comparing the stress-strain curve of the ceramic product obtained in Example 1 of a three-point bending test with other materials.

Claims (6)

複合する一方の成分は熱膨張係数が2×10-6/℃以下の低熱膨張性セラミックスであり、
もう一方の成分はそれよりも5×10-6/℃以上大きい熱膨張係数を有する高熱膨張性セラ
ミックスであり、かつどちらか一方の成分は平均粒径100μm〜500μmの粒子であり、他方の成分は平均粒径10μm以下であるセラミックス粒子を混合し、成形・焼成したセラミックスであって、粒界に粒子同士の熱膨張係数の差によって発生した3次元的に連続した開放気孔としてのクラックを5〜20容積%持つことを特徴とする可撓性セラミックス製品
One component of the composite is a low thermal expansion ceramic having a thermal expansion coefficient of 2 × 10 −6 / ° C. or less,
The other component is a high thermal expansion ceramic having a thermal expansion coefficient larger than that by 5 × 10 −6 / ° C., and either component is a particle having an average particle size of 100 μm to 500 μm, and the other component Is a ceramic that has been mixed and molded with ceramic particles with an average particle size of 10 μm or less, and cracks as three-dimensional continuous open pores generated by the difference in thermal expansion coefficient between the particles at the grain boundary. Flexible ceramic product characterized by having ~ 20% by volume.
高熱膨張性セラミックスは、熱膨張係数が20×10-6/℃以上のものであることを特徴とする請求項1記載の可撓性セラミックス製品。 2. The flexible ceramic product according to claim 1, wherein the high thermal expansion ceramic has a thermal expansion coefficient of 20 × 10 −6 / ° C. or more. 平均粒径100μm〜500μmの粒子は100μmより小さい単一相の小さい粒子を予め焼結さ
せたものであることを特徴とする請求項1又は2記載の可撓性セラミックス製品。
The flexible ceramic product according to claim 1 or 2, wherein the particles having an average particle size of 100 µm to 500 µm are obtained by previously sintering small particles having a single phase smaller than 100 µm.
該開放気孔としてのクラックに樹脂及び/又は金属を持つことを特徴とする請求項1ないし3のいずれかに記載の可撓性セラミックス製品。 The flexible ceramic product according to any one of claims 1 to 3, wherein the crack as the open pore has a resin and / or a metal. 熱膨張係数及び平均粒径の異なるセラミックス粒子を2種以上混合し、成形、焼成して、粒界に粒子同士の熱膨張係数の差によって3次元的に連続した開放気孔としてのクラックを発生させることを特徴とする請求項1ないし3のいずれかに記載の可撓性セラミックス製品の製造方法。 Two or more kinds of ceramic particles having different thermal expansion coefficients and average particle diameters are mixed, molded, and fired to generate cracks as open pores that are three-dimensionally continuous at the grain boundaries due to the difference in thermal expansion coefficients between the particles. The method for producing a flexible ceramic product according to any one of claims 1 to 3. 請求項5記載の方法で発生させた3次元的に連続した開放気孔としてのクラックに樹脂及び/又は金属を含浸させることを特徴とする請求項4記載の可撓性セラミックス製品の製造方法。 The method for producing a flexible ceramic product according to claim 4, wherein a crack as a three-dimensionally continuous open pore generated by the method according to claim 5 is impregnated with a resin and / or a metal.
JP2003330743A 2003-09-22 2003-09-22 Flexible ceramic product and manufacturing method thereof Expired - Lifetime JP4381760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330743A JP4381760B2 (en) 2003-09-22 2003-09-22 Flexible ceramic product and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330743A JP4381760B2 (en) 2003-09-22 2003-09-22 Flexible ceramic product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005097021A JP2005097021A (en) 2005-04-14
JP4381760B2 true JP4381760B2 (en) 2009-12-09

Family

ID=34459592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330743A Expired - Lifetime JP4381760B2 (en) 2003-09-22 2003-09-22 Flexible ceramic product and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4381760B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772527B2 (en) * 2006-02-13 2011-09-14 株式会社Lixil Method for manufacturing damping member
DE102007022093A1 (en) * 2007-05-11 2008-11-13 Epcos Ag Piezoelectric multilayer component

Also Published As

Publication number Publication date
JP2005097021A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
WO2011136136A1 (en) Max-phase oriented ceramic and production method therefor
RU2744543C1 (en) Method for producing ceramic composite material based on silicon carbide, reinforced with silicon carbide fibers
EP2657204A1 (en) Heat insulating material and method for producing same
Ganesh Development of β-SiAlON based ceramics for radome applications
JP2014210706A (en) Ceramic material
KR101869533B1 (en) Ceramic composite material consisting of aluminum oxide and zirconium oxide as the main constituents
Chen et al. Preparation of aluminum titanate flexible ceramic by solid-phase sintering and its mechanical behavior
JP2010524832A (en) Ceramic material
JP2007320802A (en) SiC CERAMIC AND METHOD FOR PRODUCING THE SAME
JP4381760B2 (en) Flexible ceramic product and manufacturing method thereof
RU2621241C1 (en) Nanostructured composite material based on boron carbide and the method of its obtaining
Boonyongmaneerat et al. Contributions to the interfacial adhesion in co-sintered bilayers
Musil Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders
Kornaus et al. Mechanical properties of hot-pressed SiC-TiC composites
JP2000247745A (en) Ceramics-base fiber composite material, its production and gas turbine part
KR100631157B1 (en) Ceramic body having 2-dimensional or 3-dimensional fibrous array
Garcia-Moreno et al. Sintering of mullite–β-eucryptite ceramics with very low thermal expansion
Bandyopadhyay et al. Mechanical properties of interconnected phase alumina-Al composites 24
Kobayashi et al. Fabrication of carbon nanotube reinforced boron carbide composite by hot-pressing following extrusion molding
JP4346934B2 (en) Manufacturing method of ceramic structure
Zhang et al. Microstructure and mechanical properties of glass-infiltrated Al 2 O 3/ZrO 2 nanocomposites
Steinau et al. Functionally graded ceramics derived from preceramic polymers
JP2002255649A (en) METHOD FOR MANUFACTURING HIGH-DENSITY SiC FIBER- REINFORCED SiC COMPOSITE MATERIAL
Meena et al. Synthesis and Analysis of Alumina, Zirconia and Alumina-Toughened-Zirconia Composites
JPH05319910A (en) Ceramic composite material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350